1
|
Li Q, Yang W, Zhang Q, Zhang D, Deng J, Chen B, Li P, Zhang H, Jiang Y, Li Y, Zhang B, Lin N. Wee1 inhibitor PD0166285 sensitized TP53 mutant lung squamous cell carcinoma to cisplatin via STAT1. Cancer Cell Int 2024; 24:315. [PMID: 39272147 PMCID: PMC11396119 DOI: 10.1186/s12935-024-03489-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Lung squamous cell carcinoma (LUSCs) is associated with high mortality (20-30%) and lacks of effective treatments. Almost all LUSC exhibit somatic mutations in TP53. Wee1, a tyrosine kinase, regulates the cell cycle at the G2/M checkpoint. In TP53-deficient cells, the dependence on G2/M checkpoints increases. PD0166285 is the first reported drug with inhibitory activity against both Wee1 and PKMYT1. METHODS Protein expression was determined by Western blot analysis. Cell proliferation was assessed using cell colony formation and CCK-8 assays. Cell cycle was performed by PI staining with flow cytometry. Apoptosis was evaluated using Annexin V-Phycoerythrin double staining and flow cytometry. DNA damage was detected through comet assay and immunofluorescence assay. In vivo, apoptosis and anti-tumor effects were assessed using the TUNEL assay, a nude mouse model, and immunohistochemistry (IHC). Co-immunoprecipitation assay was used to detect protein-protein interactions. We analyzed Wee1, PKMYT1, and Stat1 expression in pan-cancer studies using the Ualcan public database and assessed their prognostic implications with Kaplan-Meier curves. RESULT PD0166285, a Wee1 inhibitor, effectively inhibits Wee1 activity, promoting cell entry into a mitotic crisis. Moreover, PD0166285 sensitizes cells to cisplatin, enhancing clinical outcomes. Our study demonstrated that PD016628 regulates the cell cycle through Rad51 and results in cell cycle arrest at the G2/M phase. We observed increased apoptosis in tumor cells treated with PD0166285, particularly when combined with cisplatin, indicating an enhanced apoptotic response. The upregulation of γ-H2AX serves as an indicator of mitotic catastrophe. Co-immunoprecipitation and data analysis revealed that apoptosis in LUSC is mediated through the Stat1 pathway, accompanied by decreased levels of Socs3. Furthermore, IHC staining confirmed significant differences in the expression of Phospho-CDK1 and γ-H2AX in LUSCs, suggesting involvement in DNA damage. CONCLUSIONS In summary, our study suggests that PD0166285, an inhibitor of Wee1, sensitizes LUSC cells to cisplatin and modulates DNA damage and apoptosis pathways through Rad51 and Stat1, respectively. These findings highlight the combination of PD0166285 and cisplatin as a promising therapeutic approach for treating LUSC.
Collapse
Affiliation(s)
- Qi Li
- Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, 310006, China
| | - Wenjie Yang
- The Fourth Clinical College of Zhejiang, First People's Hospital, Chinese Medicine University, Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Qingyi Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Daoming Zhang
- Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jun Deng
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Guangxi, 530021, China
| | - Binxin Chen
- Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, 310006, China
| | - Ping Li
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, 310006, China
| | - Huanqi Zhang
- Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yiming Jiang
- Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yangling Li
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, 310006, China
- Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bo Zhang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| | - Nengming Lin
- Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, 310006, China.
| |
Collapse
|
2
|
Yousefi T, Mohammadi Jobani B, Taebi R, Qujeq D. Innovating Cancer Treatment Through Cell Cycle, Telomerase, Angiogenesis, and Metastasis. DNA Cell Biol 2024; 43:438-451. [PMID: 39018567 DOI: 10.1089/dna.2024.0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024] Open
Abstract
Cancer remains a formidable challenge in the field of medicine, necessitating innovative therapeutic strategies to combat its relentless progression. The cell cycle, a tightly regulated process governing cell growth and division, plays a pivotal role in cancer development. Dysregulation of the cell cycle allows cancer cells to proliferate uncontrollably. Therapeutic interventions designed to disrupt the cell cycle offer promise in restraining tumor growth and progression. Telomerase, an enzyme responsible for maintaining telomere length, is often overactive in cancer cells, conferring them with immortality. Targeting telomerase presents an opportunity to limit the replicative potential of cancer cells and hinder tumor growth. Angiogenesis, the formation of new blood vessels, is essential for tumor growth and metastasis. Strategies aimed at inhibiting angiogenesis seek to deprive tumors of their vital blood supply, thereby impeding their progression. Metastasis, the spread of cancer cells from the primary tumor to distant sites, is a major challenge in cancer therapy. Research efforts are focused on understanding the underlying mechanisms of metastasis and developing interventions to disrupt this deadly process. This review provides a glimpse into the multifaceted approach to cancer therapy, addressing critical aspects of cancer biology-cell cycle regulation, telomerase activity, angiogenesis, and metastasis. Through ongoing research and innovative strategies, the field of oncology continues to advance, offering new hope for improved treatment outcomes and enhanced quality of life for cancer patients.
Collapse
Affiliation(s)
- Tooba Yousefi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahareh Mohammadi Jobani
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Taebi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Durdi Qujeq
- Department of Clinical Biochemistry, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
3
|
Przybyszewski O, Mik M, Nowicki M, Kusiński M, Mikołajczyk-Solińska M, Śliwińska A. Using microRNAs Networks to Understand Pancreatic Cancer-A Literature Review. Biomedicines 2024; 12:1713. [PMID: 39200178 PMCID: PMC11351910 DOI: 10.3390/biomedicines12081713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 09/02/2024] Open
Abstract
Pancreatic cancer is a severe disease, challenging to diagnose and treat, and thereby characterized by a poor prognosis and a high mortality rate. Pancreatic ductal adenocarcinoma (PDAC) represents approximately 90% of pancreatic cancer cases, while other cases include neuroendocrine carcinoma. Despite the growing knowledge of the pathophysiology of this cancer, the mortality rate caused by it has not been effectively reduced. Recently, microRNAs have aroused great interest among scientists and clinicians, as they are negative regulators of gene expression, which participate in many processes, including those related to the development of pancreatic cancer. The aim of this review is to show how microRNAs (miRNAs) affect key signaling pathways and related cellular processes in pancreatic cancer development, progression, diagnosis and treatment. We included the results of in vitro studies, animal model of pancreatic cancer and those performed on blood, saliva and tumor tissue isolated from patients suffering from PDAC. Our investigation identified numerous dysregulated miRNAs involved in KRAS, JAK/STAT, PI3/AKT, Wnt/β-catenin and TGF-β signaling pathways participating in cell cycle control, proliferation, differentiation, apoptosis and metastasis. Moreover, some miRNAs (miRNA-23a, miRNA-24, miRNA-29c, miRNA-216a) seem to be engaged in a crosstalk between signaling pathways. Evidence concerning the utility of microRNAs in the diagnosis and therapy of this cancer is poor. Therefore, despite growing knowledge of the involvement of miRNAs in several processes associated with pancreatic cancer, we are beginning to recognize and understand their role and usefulness in clinical practice.
Collapse
Affiliation(s)
- Oskar Przybyszewski
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska St., 92-213 Lodz, Poland
| | - Michał Mik
- Department of General and Colorectal Surgery, Medical University of Lodz, 113 Stefana Żeromskiego St., 90-549 Lodz, Poland; (M.M.); (M.N.)
| | - Michał Nowicki
- Department of General and Colorectal Surgery, Medical University of Lodz, 113 Stefana Żeromskiego St., 90-549 Lodz, Poland; (M.M.); (M.N.)
| | - Michał Kusiński
- Department of Endocrinological, General and Oncological Surgery, Medical University of Lodz, 62 Pabianicka St., 93-513 Lodz, Poland;
| | - Melania Mikołajczyk-Solińska
- Department of Internal Medicine, Diabetology and Clinical Pharmacology, Medical University of Lodz, 251 Pomorska St., 92-213 Lodz, Poland;
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska St., 92-213 Lodz, Poland
| |
Collapse
|
4
|
Majirská M, Pilátová MB, Kudličková Z, Vojtek M, Diniz C. Targeting hematological malignancies with isoxazole derivatives. Drug Discov Today 2024; 29:104059. [PMID: 38871112 DOI: 10.1016/j.drudis.2024.104059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/18/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Compounds with a heterocyclic isoxazole ring are well known for their diverse biologic activities encompassing antimicrobial, antipsychotic, immunosuppressive, antidiabetic and anticancer effects. Recent studies on hematological malignancies have also shown that some of the isoxazole-derived compounds feature encouraging cancer selectivity, low toxicity to normal cells and ability to overcome cancer drug resistance of conventional treatments. These characteristics are particularly promising because patients with hematological malignancies face poor clinical outcomes caused by cancer drug resistance or relapse of the disease. This review summarizes the knowledge on isoxazole-derived compounds toward hematological malignancies and provides clues on their mechanism(s) of action (apoptosis, cell cycle arrest, ROS production) and putative pharmacological targets (c-Myc, BET, ATR, FLT3, HSP90, CARM1, tubulin, PD-1/PD-L1, HDACs) wherever known.
Collapse
Affiliation(s)
- Monika Majirská
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Slovakia
| | - Martina Bago Pilátová
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Slovakia.
| | - Zuzana Kudličková
- NMR Laboratory, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Slovakia
| | - Martin Vojtek
- LAQV/REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.
| | - Carmen Diniz
- LAQV/REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
5
|
Tiburcio PD, Chen K, Xu L, Chen KS. Actinomycin D and bortezomib disrupt protein homeostasis in Wilms tumor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598518. [PMID: 38948702 PMCID: PMC11212905 DOI: 10.1101/2024.06.11.598518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Wilms tumor is the most common kidney cancer in children, and diffusely anaplastic Wilms tumor is the most chemoresistant histological subtype. Here we explore how Wilms tumor cells evade the common chemotherapeutic drug actinomycin D, which inhibits ribosomal RNA biogenesis. Using ribosome profiling, protein arrays, and a genome-wide knockout screen, we describe how actinomycin D disrupts protein homeostasis and blocks cell cycle progression. We found that, when ribosomal capacity is limited by actinomycin D treatment, anaplastic Wilms tumor cells preferentially translate proteasome components and upregulate proteasome activity. Furthermore, the proteasome inhibitor bortezomib sensitizes cells to actinomycin D treatment by inducing apoptosis both in vitro and in vivo. Lastly, we show that increased levels of proteasome components are associated with anaplastic histology and with worse prognosis in non-anaplastic Wilms tumor. In sum, maintaining protein homeostasis is critical for Wilms tumor proliferation, and it can be therapeutically disrupted by blocking protein synthesis or turnover.
Collapse
Affiliation(s)
| | - Kenian Chen
- Quantitative Biomedical Research Center, Peter O’Donnell School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX
| | - Lin Xu
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
- Quantitative Biomedical Research Center, Peter O’Donnell School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX
| | - Kenneth S. Chen
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
6
|
Liu Y, Wen HK, Xu RX, Liu C, Li XH, Qin XD, Zhao YX, Jia YX, Luo DQ. Semisynthesis and antitumor activity of endertiin B and related triterpenoids from Ganoderma lucidum. Org Biomol Chem 2024; 22:4978-4986. [PMID: 38832762 DOI: 10.1039/d4ob00641k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Ganoderma lucidum, a fungus used in traditional Chinese medicine, is known for its medicinal value attributed to its active components called Ganoderma triterpenoids (GTs). However, the limited isolation rate of these GTs has hindered their potential as promising drug candidates. Therefore, it is imperative to achieve large-scale preparation of GTs. In this study, four GTs were effectively synthesised from lanosterol. The antitumor activity of these GTs was evaluated in vivo. Endertiin B exhibited potent inhibitory activity against breast cancer cells (9.85 ± 0.91 μM and 12.12 ± 0.95 μM). Further investigations demonstrated that endertiin B significantly upregulated p21 and p27 and downregulated cyclinD1 expression, arresting the cell cycle at the G0/G1 phase and inducing apoptosis by decreasing BCL-2 and increasing BAX and BAK levels. Additionally, endertiin B was found to reduce the expression of proteins associated with the PI3K-AKT signaling pathway. To summarize, endertiin B effectively inhibited cell proliferation by blocking the cell cycle and inducing apoptosis through the PI3K-AKT pathway.
Collapse
Affiliation(s)
- Yu Liu
- College of Life Science, Hebei University, Baoding, China.
- Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding, China
| | - Hong-Kai Wen
- College of Life Science, Hebei University, Baoding, China.
- Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding, China
| | - Rui-Xuan Xu
- College of Life Science, Hebei University, Baoding, China.
- Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding, China
| | - Chang Liu
- College of Life Science, Hebei University, Baoding, China.
- Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding, China
| | - Xiao-Han Li
- College of Life Science, Hebei University, Baoding, China.
- Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding, China
| | - Xiang-Dong Qin
- Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding, China
| | - You-Xing Zhao
- Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, People's Republic of China
| | - Yan-Xing Jia
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Beijing, China
| | - Dou-Qiang Luo
- College of Life Science, Hebei University, Baoding, China.
- Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding, China
| |
Collapse
|
7
|
Cavalu S, Abdelhamid AM, Saber S, Elmorsy EA, Hamad RS, Abdel-Reheim MA, Yahya G, Salama MM. Cell cycle machinery in oncology: A comprehensive review of therapeutic targets. FASEB J 2024; 38:e23734. [PMID: 38847486 DOI: 10.1096/fj.202400769r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/13/2024]
Abstract
The cell cycle is tightly regulated to ensure controlled cell proliferation. Dysregulation of the cell cycle machinery is a hallmark of cancer that leads to unchecked growth. This review comprehensively analyzes key molecular regulators of the cell cycle and how they contribute to carcinogenesis when mutated or overexpressed. It focuses on cyclins, cyclin-dependent kinases (CDKs), CDK inhibitors, checkpoint kinases, and mitotic regulators as therapeutic targets. Promising strategies include CDK4/6 inhibitors like palbociclib, ribociclib, and abemaciclib for breast cancer treatment. Other possible targets include the anaphase-promoting complex/cyclosome (APC/C), Skp2, p21, and aurora kinase inhibitors. However, challenges with resistance have limited clinical successes so far. Future efforts should focus on combinatorial therapies, next-generation inhibitors, and biomarkers for patient selection. Targeting the cell cycle holds promise but further optimization is necessary to fully exploit it as an anti-cancer strategy across diverse malignancies.
Collapse
Affiliation(s)
- Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Amir Mohamed Abdelhamid
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Elsayed A Elmorsy
- Department of Pharmacology and Therapeutics, College of Medicine, Qassim University, Buraidah, Saudi Arabia
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Rabab S Hamad
- Biological Sciences Department, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
- Central Laboratory, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, Egypt
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Al Sharqia, Egypt
| | - Mohamed M Salama
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| |
Collapse
|
8
|
Magge T, Rajendran S, Brufsky AM, Foldi J. CDK4/6 inhibitors: The Devil is in the Detail. Curr Oncol Rep 2024; 26:665-678. [PMID: 38713311 DOI: 10.1007/s11912-024-01540-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2024] [Indexed: 05/08/2024]
Abstract
PURPOSE OF REVIEW Update on the most recent clinical evidence on CDK4/6 inhibitors (CDK4/6i) in the treatment of hormone receptor (HR)-positive, human epidermal growth factor receptor (HER)2-negative breast cancer. RECENT FINDINGS Over the past decade, CDK4/6i have become part of the standard of care treatment of patients with both metastatic and high-risk early HR + /HER2- breast cancers. The three available CDK4/6i (palbociclib, ribociclib and abemaciclib) have been extensively studied in combination with endocrine therapy (ET) in metastatic breast cancer (mBC) with consistent prolongation of progression free survival; however, ribociclib has emerged as the preferred first line agent in mBC given overall survival benefit over endocrine monotherapy. In early BC, abemaciclib is the only currently approved agent while ribociclib has early positive clinical trial data. Toxicities and financial burden limit the use of CDK4/6i in all patients and resource-poor settings, and optimal timing of their use in mBC remains unclear. There is considerable evidence for the use of CDK4/6i in metastatic and early HR + /HER2- breast cancer, but knowledge gaps remain, and further research is necessary to better define their optimal use.
Collapse
Affiliation(s)
- Tara Magge
- Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Sneha Rajendran
- Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Adam M Brufsky
- Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Julia Foldi
- Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- Breast Medical Oncology, Magee Women's Hospital, University of Pittsburgh Medical Center, 300 Halket Street, Suite 3524, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
9
|
Gao G, Li J, Cao Y, Li X, Qian Y, Wang X, Li M, Qiu Y, Wu T, Wang L, Fang M. Design, synthesis, and biological evaluation of novel 4,4'-bipyridine derivatives acting as CDK9-Cyclin T1 protein-protein interaction inhibitors against triple-negative breast cancer. Eur J Med Chem 2023; 261:115858. [PMID: 37837671 DOI: 10.1016/j.ejmech.2023.115858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/25/2023] [Accepted: 10/05/2023] [Indexed: 10/16/2023]
Abstract
Cyclin-dependent kinase 9 (CDK9) is directly related to tumor development in triple-negative breast cancer (TNBC) patients. Increased CDK9 is significantly associated with poor patient prognosis, while inhibiting CDK9-Cyclin T1 protein-protein interaction has recently been demonstrated as a new approach to TNBC treatment. Herein, we synthesized a novel class of 4,4'-bipyridine derivatives as potential CDK9-Cyclin T1 PPI inhibitors against TNBC. The represented compound B19 was found to be an excellent and selective CDK9-Cyclin T1 PPI inhibitor with good potency against TNBC cell lines while exhibiting lower toxicity in normal human cell lines than the positive compound I-CDK9. Notably, compound B19 showed good pharmacokinetic properties and excellent antitumor activity against TNBC (4T1) allografts in mice with a therapeutic index of more than 42 (TGI4T1(12.5 mg/kg,i.p.) = 63.1% vs. LD50 = 537 mg/kg). Moreover, the administration of B19 in combination with the PARP inhibitor Olaparib results in a significant increase of the antitumor activity in MDA-MB-231 cells relative to that of either single agent. To our knowledge, B19 is the first reported non-metal organic compound that acts as a selective CDK9-Cyclin T1 PPI inhibitor with in vivo antitumor activity, and it may be alone and in combination with PARP inhibitor Olaparib for TNBC therapy.
Collapse
Affiliation(s)
- Guiping Gao
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Science, Xiamen University, Xiamen, 361102, China; Huaqiao University School of Medicine Science, Quanzhou, 362021, China
| | - Jiayi Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Science, Xiamen University, Xiamen, 361102, China
| | - Yin Cao
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Science, Xiamen University, Xiamen, 361102, China
| | - Xudan Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Science, Xiamen University, Xiamen, 361102, China
| | - Yuqing Qian
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Science, Xiamen University, Xiamen, 361102, China; School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, PR China
| | - Xiumei Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Science, Xiamen University, Xiamen, 361102, China
| | - Mengyu Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Science, Xiamen University, Xiamen, 361102, China
| | - Yingkun Qiu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Science, Xiamen University, Xiamen, 361102, China
| | - Tong Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Science, Xiamen University, Xiamen, 361102, China.
| | - Liqiang Wang
- Huaqiao University School of Medicine Science, Quanzhou, 362021, China.
| | - Meijuan Fang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Science, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
10
|
Zhu W, Ding M, Chang J, Liao H, Xiao G, Wang Q. A 9-gene prognostic signature for kidney renal clear cell carcinoma overall survival based on co-expression and regression analyses. Chem Biol Drug Des 2023; 101:422-437. [PMID: 36053927 DOI: 10.1111/cbdd.14141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 08/10/2022] [Accepted: 08/30/2022] [Indexed: 01/18/2023]
Abstract
This research attempted to screen potential signatures associated with KIRC progression and overall survival by weighted gene co-expression network analysis (WGCNA) and Cox regression. The KIRC-associated mRNA expression and clinical data were accessed from The Cancer Genome Atlas (TCGA) database. Differentially expressed genes (DEGs) were screened by differential analysis. A co-expression network was constructed by "WGCNA". Based on WGCNA module, GO and KEGG analyses were performed. Protein-protein interaction (PPI) network was constructed. Prognostic signatures were screened by Lasso-Cox regression. Prognostic model was evaluated by Receiver Operating Characteristic (ROC) and Kaplan-Meier (K-M) curves. Multivariate Cox and nomogram were introduced to examine whether risk score could be an independent marker. qRT-PCR was introduced to determine expression of 9 hub genes in KIRC clinical tumor tissues and adjacent tissues, respectively. Genes in the green module were highly associated with clinical status, and green module genes were significantly enriched in mitotic nuclear division, cell cycle, and p53 signaling pathway. Twenty-six candidates were subsequently screened out from the green module. Next, a 9-gene prognostic model (DLGAP5, NUF2, TOP2A, RRM2, HJURP, PLK1, AURKB, KIF18A, CCNB2) was constructed. The predicting ability of the model was optimal. Some cancer-related signaling pathways were differently activated between two risk score groups. Additionally, under-expression of some signature genes (AURKB, CCNB2, PLK1, RRM2, TOP2A) was associated with better survival rate for KIRC patients. Meanwhile, all 9 hub genes were substantially overexpressed in KIRC patients. A KIRC prognostic signature was screened in this study, contributing valuable findings to KIRC biomarker development.
Collapse
Affiliation(s)
- Wenwen Zhu
- Department of Oncology, the Affiliated Hospital of Shaoxing University, Zhejiang, China
| | - Mengyu Ding
- Department of Oncology, the Affiliated Hospital of Shaoxing University, Zhejiang, China
| | - Jian Chang
- Department of Oncology, the Affiliated Hospital of Shaoxing University, Zhejiang, China
| | - Hui Liao
- Department of Oncology, the Affiliated Hospital of Shaoxing University, Zhejiang, China
| | - Geqiong Xiao
- Department of Oncology, the Affiliated Hospital of Shaoxing University, Zhejiang, China
| | - Qiong Wang
- Department of Oncology, the Affiliated Hospital of Shaoxing University, Zhejiang, China
| |
Collapse
|
11
|
Chen JLY, Pan CK, Lin LC, Tsai CY, Kuo CY, Huang YS, Lin YL. Therapeutic efficacy of cyclin-dependent kinase inhibition in combination with ionizing radiation for lung cancer. Int J Radiat Biol 2023; 99:1257-1266. [PMID: 36598432 DOI: 10.1080/09553002.2023.2161658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/24/2022] [Accepted: 12/13/2022] [Indexed: 01/05/2023]
Abstract
PURPOSE To evaluate the therapeutic efficacy of cyclin-dependent kinase (CDK) inhibition in combination with ionizing radiation for lung cancer. MATERIALS AND METHODS Human lung adenocarcinoma (A549) and squamous cell carcinoma (H520) cells were used to evaluate the therapeutic efficacy of CDK inhibition in combination with ionizing radiation in vitro using colony formation assay, γH2AX immunofluorescence staining, western blotting, and cell cycle phase analysis. We also performed in vivo evaluations of ectopic tumor growth. RESULTS In vitro pretreatment with the CDK inhibitor, seliciclib, before irradiation significantly decreased the survival of A549 and H520 cells in a dose-dependent manner. Although CDK inhibition alone did not increase the intensity of γH2AX foci, its combination with ionizing radiation increased DNA double-strand breaks, as shown by γH2AX immunofluorescence staining and western blotting. The combination of CDK inhibition and ionizing radiation-induced G2/M arrest and increased apoptosis, as evidenced by the increased proportion of cells in G2/M arrest, subG1 apoptotic population, and expression of apoptotic markers (cleaved PARP-1 and cleaved caspase-3). Mechanistic studies showed reduced expression of cyclin A with combined treatment, indicating cell cycle shifting effects. An in vivo xenograft model showed that the combination of CDK inhibition and ionizing radiation delayed xenograft tumor growth, and increased the proportion of cleaved PARP-1- and cleaved caspase-3-positive cells, compared to either treatment alone. CONCLUSIONS We provide preclinical tumoricidal evidence that the combination of CDK inhibition and ionizing radiation is an efficacious treatment for lung cancer.
Collapse
Affiliation(s)
- Jenny Ling-Yu Chen
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Radiology, National Taiwan University College of Medicine, Taipei, Taiwan
- National Taiwan University Cancer Center, Taipei, Taiwan
| | - Chun-Kai Pan
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Li-Cheng Lin
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Ching-Yi Tsai
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
- Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ching-Ying Kuo
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Sen Huang
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Li Lin
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
12
|
Patra D, Bhavya K, Ramprasad P, Kalia M, Pal D. Anti-cancer drug molecules targeting cancer cell cycle and proliferation. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 135:343-395. [PMID: 37061337 DOI: 10.1016/bs.apcsb.2022.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Cancer, a vicious clinical burden that potentiates maximum fatality for humankind, arises due to unregulated excessive cell division and proliferation through an eccentric expression of cell cycle regulator proteins. A set of evolutionarily conserved machinery controls the cell cycle in an extremely precise manner so that a cell that went through the cycle can produce a genetically identical copy. To achieve perfection, several checkpoints were placed in the cycle for surveillance; so, errors during the division were rectified by the repair strategies. However, irreparable damage leads to exit from the cell cycle and induces programmed cell death. In comparison to a normal cell, cancer cells facilitate the constitutive activation of many dormant proteins and impede negative regulators of the checkpoint. Extensive studies in the last few decades on cell division and proliferation of cancer cells elucidate the molecular mechanism of the cell-cycle regulators that are often targeted for the development of anti-cancer therapy. Each phase of the cell cycle has been regulated by a unique set of proteins including master regulators Cyclins, and CDKs, along with the accessory proteins such as CKI, Cdc25, error-responsive proteins, and various kinase proteins mainly WEE1 kinases, Polo-like kinases, and Aurora kinases that control cell division. Here in this chapter, we have analytically discussed the role of cell cycle regulators and proliferation factors in cancer progression and the rationale of using various cell cycle-targeting drug molecules as anti-cancer therapy.
Collapse
Affiliation(s)
- Debarun Patra
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Kumari Bhavya
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Palla Ramprasad
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Moyna Kalia
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Durba Pal
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India.
| |
Collapse
|
13
|
Sonicated Extract from the Aril of Momordica Cochinchinensis Inhibits Cell Proliferation and Migration in Aggressive Prostate Cancer Cells. J Toxicol 2022; 2022:1149856. [PMID: 36605288 PMCID: PMC9810401 DOI: 10.1155/2022/1149856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/10/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
Momordica cochinchinensis or gac fruit has been reported to have several biological activities, including antioxidation, anti-inflammatory, and anticancer activities. However, the effect on cancer cell metastasis has not been extensively studied. With this aim, the extract from the aril part was selected and investigated for prostate cancer cell migration. The aril extracts were prepared as boiled extract, sonicated extract, ethanol extract, and HAE (hexane:acetone:ethanol; 2 : 1 : 1) extract, while the prostate cancer cell models were PC-3 and LNCaP cells. An MTT assay was performed to compare the antiproliferative effect between prostate cancer cells and normal Vero cells. As a result, the sonicated extract had the highest efficiency in PC-3 cells, with IC50 values of 2 mg/mL and 0.59 mg/mL for 48 and 72 h, respectively, while it had less of an effect in LNCaP cells and was not toxic to normal cells. Cell damage was further confirmed using LDH and cell cycle analysis. As a result, the sonicated extract did not cause cell damage or death and only inhibited cell proliferation. The effect on cancer metastasis was further examined by wound healing, transwell migration assays, and western blotting. The results demonstrated that the sonicated extract inhibited PC-3 cell migration and decreased MMP-9 but increased TIMP-1 expression. All these results support that gac fruit is a valuable source for further development as an anticancer agent for prostate cancer patients.
Collapse
|
14
|
He XL, Hu YH, Chen JM, Zhang DQ, Yang HL, Zhang LZ, Mu YP, Zhang H, Chen GF, Liu W, Liu P. SNS-032 attenuates liver fibrosis by anti-active hepatic stellate cells via inhibition of cyclin dependent kinase 9. Front Pharmacol 2022; 13:1016552. [PMID: 36313366 PMCID: PMC9597511 DOI: 10.3389/fphar.2022.1016552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
Liver fibrosis is a common pathological process of all chronic liver diseases. Hepatic stellate cells (HSCs) play a central role in the development of liver fibrosis. Cyclin-dependent kinase 9 (CDK9) is a cell cycle kinase that regulates mRNA transcription and elongation. A CDK9 inhibitor SNS-032 has been reported to have good effects in anti-tumor. However, the role of SNS-032 in the development of liver fibrosis is unclear. In this study, SNS-032 was found to alleviate hepatic fibrosis by inhibiting the activation and inducing the apoptosis of active HSCs in carbon tetrachloride-induced model mice. In vitro, SNS-032 inhibited the activation and proliferation of active HSCs and induced the apoptosis of active HSCs by downregulating the expression of CDK9 and its downstream signal transductors, such phosphorylated RNA polymerase II and Bcl-2. CDK9 short hairpin RNA was transfected into active HSCs to further elucidate the mechanism of the above effects. Similar results were observed in active HSCs after CDK9 knockdown. In active HSCs with CDK9 knockdown, the expression levels of CDK9, phosphorylated RNA polymerase II, XIAP, Bcl-2, Mcl-1, and ɑ-SMA significantly decreased, whereas those of cleaved-PARP1 and Bax decreased prominently. These results indicated that SNS-032 is a potential drug and CDK9 might be a new prospective target for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Xiao-Li He
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong-Hong Hu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia-Mei Chen
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ding-Qi Zhang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hai-Lin Yang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lin-Zhang Zhang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong-Ping Mu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Zhang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gao-Feng Chen
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Liu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Wei Liu, ; Ping Liu,
| | - Ping Liu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Wei Liu, ; Ping Liu,
| |
Collapse
|
15
|
Expression patterns and therapeutic implications of CDK4 across multiple carcinomas: a molecular docking and MD simulation study. Med Oncol 2022; 39:158. [DOI: 10.1007/s12032-022-01779-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/20/2022] [Indexed: 10/16/2022]
|
16
|
Arun Renganathan R, Hema M, Karthik C, Lokanath N, Ravishankar Rai V. Extraction of itaconic acid by endophytic Aspergillus sp., isolated from Garcinia indica: Spectroscopic, structural and quantum computational studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Omeprazole suppresses aggressive cancer growth and metastasis in mice through promoting Snail degradation. Acta Pharmacol Sin 2022; 43:1816-1828. [PMID: 34785782 PMCID: PMC9253046 DOI: 10.1038/s41401-021-00787-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 09/26/2021] [Indexed: 11/09/2022] Open
Abstract
Omeprazole is a proton pump inhibitor that has recently been reported to exhibit anticancer activity against several types of cancer. However, the anticancer mechanisms of omeprazole remain elusive. Snail is an oncogenic zinc finger transcription factor; aberrant activation of Snail is associated with the occurrence and progression of cancer. In this study, we investigated whether Snail acted as a direct anticancer target of omeprazole. We showed that omeprazole displayed a high binding-affinity to recombinant Snail protein (Kd = 0.076 mM), suggesting that omeprazole directly and physically binds to the Snail protein. We further revealed that omeprazole disrupted CREB-binding protein (CBP)/p300-mediated Snail acetylation and then promoted Snail degradation through the ubiquitin-proteasome pathway in HCT116 cells. Omeprazole treatment markedly suppressed Snail-driven epithelial-mesenchymal transition (EMT) in aggressive HCT116, SUM159, and 4T1 cancer cells in vitro and reduced EMT-associated tumor invasion and metastasis in cancer cell xenograft models. Omeprazole also inhibited tumor growth by limiting Snail-dependent cell cycle progression. Overall, this study, for the first time, identifies Snail as a target of omeprazole and reveals a novel mechanism underlying the therapeutic effects of omeprazole against cancer. This study strongly suggests that omeprazole may be an excellent auxiliary drug for treating patients with malignant tumors.
Collapse
|
18
|
Guan L, Tang Y, Li G, Qin Z, Li S. Comprehensive Analysis of Role of Cyclin-Dependent Kinases Family Members in Colorectal Cancer. Front Oncol 2022; 12:921710. [PMID: 35814446 PMCID: PMC9258493 DOI: 10.3389/fonc.2022.921710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/24/2022] [Indexed: 01/10/2023] Open
Abstract
Background Cyclin-dependent kinases (CDKs) are cell cycle regulators, and abnormal activation can accelerate tumor cell proliferation. However, The relation between CDKs dysregulation to colorectal cancer incidence and progression have not been examined in detail. Methods:Differences in CDKs expression between colorectal cancer and normal tissues, associations between expression and clinical prognosis, incidence and frequencies of CDKs gene mutations, and the influences of CDKs on tumor infiltration by immune cells were examined by analyses of Oncomine, Gene Expression Profiling Interactive Analysis, Kaplan-Meier plotter, cBioPortal, GeneMANIA, and TIMER databases. Results Colorectal cancer tissues showed enhanced expression levels of CDKs 1/2/4/5/6/8/12/13/19 but reduced CDK3 expression. CDK7 was highly expressed in some colorectal cancer tissues but downregulated in others. Expression levels of CDK1/3/4/7/8/10/11b/13/18/19/20 were correlated with clinical stage, and CDK 5/10/12/16 expression levels predicted prognosis and survival. Differential CDKs expression correlated with cell cycle progression, amino acid polypeptide modifications, and activation of other protein kinases. Expression levels of all CDKs except CDK16 were correlated with infiltration of CD4+T, CD8+T, B and Tregs cells. Conclusions CDK 1 and 4 could be used as diagnostic biomarkers for CRC. CDK 5/10/12/16 can be utilized as prognostic biomarkers.
Collapse
Affiliation(s)
- Liping Guan
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- Henan International Joint Laboratory of Immunity and Targeted Therapy for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, China
| | - Yuanyuan Tang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Guanghua Li
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Zhao Qin
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Shaoshan Li
- Department of General Surgery of the Third Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, China
- *Correspondence: Shaoshan Li,
| |
Collapse
|
19
|
Sofi S, Mehraj U, Qayoom H, Aisha S, Asdaq SMB, Almilaibary A, Mir MA. Cyclin-dependent kinases in breast cancer: expression pattern and therapeutic implications. Med Oncol 2022; 39:106. [PMID: 35486263 DOI: 10.1007/s12032-022-01731-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/05/2022] [Indexed: 02/07/2023]
Abstract
Presently, breast cancer (BC) is one of the most common malignancies diagnosed and the leading cause of tumor-related deaths among women worldwide. Cell cycle dysregulation is one of the hallmarks of cancer, resulting in uncontrolled cell proliferation. Cyclin-dependent kinases (CDKs) are central to the cell cycle control system, and deregulation of these kinases leads to the development of malignancies, including breast cancer. CDKs and cyclins have been reported as crucial components involved in tumor cell proliferation and metastasis. Given the aggressive nature, tumor heterogeneity, and chemoresistance, there is an urgent need to explore novel targets and therapeutics to manage breast cancer effectively. Inhibitors targeting CDKs modulate the cell cycle, thus throwing light upon their therapeutic aspect where the progression of tumor cells could be inhibited. This article gives a comprehensive account of CDKs in breast cancer progression and metastasis and recent developments in the modulation of CDKs in treating malignancies. We have also explored the expression pattern and prognostic significance of CDKs in breast cancer patients. The article will also shed light on the Implications of CDK inhibition and TGF-β signaling in breast cancer.
Collapse
Affiliation(s)
- Shazia Sofi
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India
| | - Umar Mehraj
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India
| | - Hina Qayoom
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India
| | - Shariqa Aisha
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India
| | | | - Abdullah Almilaibary
- Department of Family and Community Medicine, Faculty of Medicine, Albaha University, Albaha, 65511, Kingdom of Saudi Arabia
| | - Manzoor A Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India.
| |
Collapse
|
20
|
Biological Effects of Cyclin-Dependent Kinase Inhibitors Ribociclib, Palbociclib and Abemaciclib on Breast Cancer Bone Microenvironment. Int J Mol Sci 2022; 23:ijms23052477. [PMID: 35269621 PMCID: PMC8910497 DOI: 10.3390/ijms23052477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 12/18/2022] Open
Abstract
The CDK4/6 inhibitors (CDKi) palbociclib, ribociclib, and abemaciclib are currently approved in combination with anti-estrogen therapy for the treatment of advanced and/or metastatic hormone receptor-positive/HER2-neu-negative breast cancer patients. Given the high incidence of bone metastases in this population, we investigated and compared the potential effects of palbociclib, ribociclib, and abemaciclib on the breast cancer bone microenvironment. Primary osteoclasts (OCs) and osteoblasts (OBs) were obtained from human monocyte and mesenchymal stem cells, respectively. OC function was evaluated by tartrate-resistant acid phosphatase assay and real-time PCR; OB activity was assessed by an alizarin red assay. OB/breast cancer co-culture models were generated via the seeding of MCF-7 cells on a layer of OBs, and tumor cell proliferation was analyzed using flow cytometry. Here, we showed that ribociclib, palbociclib, and abemaciclib exerted similar inhibitory effects on the OC differentiation and expression of bone resorption markers without affecting OC viability. On the other hand, the three CDKi did not affect the ability of OB to produce bone matrix, even if the higher doses of palbociclib and abemaciclib reduced the OB viability. In OB/MCF-7 co-culture models, palbociclib demonstrated a lower anti-tumor effect than ribociclib and abemaciclib. Overall, our results revealed the direct effects of CDKi on the tumor bone microenvironment, highlighting differences potentially relevant for clinical practice.
Collapse
|
21
|
Kaushik P, Kumar A. Emerging role and function of miR-198 in human health and diseases. Pathol Res Pract 2021; 229:153741. [PMID: 34952425 DOI: 10.1016/j.prp.2021.153741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 01/10/2023]
Abstract
Ever since their discovery, microRNAs (miRNAs/miRs) have astonished us by the plethora of processes they regulate, and thus adding another dimension to the gene regulation. They have been implicated in several diseases affecting cardiovascular, neurodegenerative, hepatic, autoimmune and inflammatory functions. A primate specific exonic miRNA, miR-198 has been vastly studied during the past decade, and shown to have a critical role in wound healing. The aberrant expression of miR-198 was first reported in schizophrenia, linking it to neural development. Later, its dysregulation and tumor suppressive role was reported in hepatocellular carcinoma. However, this was just a beginning, and after which there was an explosion of reports linking miR-198 deregulation to cancers and other ailments. The first target to be identified for miR-198 was Cyclin T1 in monocytes affecting HIV1 replication. Depending on the type of cancer, miR-198 has been shown to function either as a tumor suppressor or an oncomir. Interestingly, miR-198 is not only known to regulate multiple targets and pathways, but also is itself regulated by several circular RNAs and long-non-coding RNAs, highlighting a complex regulatory network. This review highlights the currently understood mechanism and regulation of miR-198 in different diseases, and its possible diagnostic and therapeutic potential.
Collapse
Affiliation(s)
- Pankhuri Kaushik
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Arun Kumar
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
22
|
Guo Y, Yang L, Guo W, Wei L, Zhou Y. FV-429 enhances the efficacy of paclitaxel in NSCLC by reprogramming HIF-1α-modulated FattyAcid metabolism. Chem Biol Interact 2021; 350:109702. [PMID: 34648812 DOI: 10.1016/j.cbi.2021.109702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/24/2021] [Accepted: 10/10/2021] [Indexed: 01/18/2023]
Abstract
Solid tumors often exhibit hypoxia in their centers, which has been associated with a marked reduction in the sensitivity of the tumor cells to anti-tumor and chemotherapeutic interventions. Here, we found that the occurrence and progress of hypoxic insensitivity to paclitaxel in non-small cell lung cancer (NSCLC) are closely associated with the HIF-1α pathway. The HIF-1α protein upregulated the expression of adipose differentiation-related protein (ADRP), fatty acid synthase (FASN), and sterol regulatory element binding protein 1(SREBP1), while simultaneously downregulating carnitine palmitoyltransferase 1 (CPT1), thereby leading to a more pronounced uptake of lipids and reduced oxidation of fatty acids. Diminished levels of fatty acids led to reduced Wnt pathway activation and β-catenin nuclear translocation, leading to G2/M cell cycle arrest. In this study, FV-429, a derivative of the natural flavonoid wogonin, reprogrammed metabolism of cancer cells and decreased fatty acid levels. Moreover, paclitaxel-induced G2/M phase arrest in hypoxia-resistant NSCLC was hampered but FV-429 improved the sensitivity of these cancer cells to paclitaxel. FV-429 activated and modulated fatty acid metabolism in NSCLC cells, significantly reduced levels of fatty acids within cells and increased the oxidation of these fatty acids. The results of our study demonstrated that FV-429 could reshape fatty acid metabolism in hypoxia-induced paclitaxel-resistant NSCLC and enhance the sensitivity of NSCLC cells to paclitaxel through G2/M phase arrest deterioration, by inactivating the Wnt pathway, and suggested the possibility of using FV-429 as a promising candidate therapeutic agent for advanced NSCLC.
Collapse
Affiliation(s)
- Yongjian Guo
- School of Biopharmacy, China Pharmaceutical University, #639 Longmian Avenue, Nanjing, 211198, People's Republic of China
| | - Liliang Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Wenjing Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Libin Wei
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing, 210009, People's Republic of China.
| | - Yuxin Zhou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
23
|
Stingless Bee Propolis: New Insights for Anticancer Drugs. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2169017. [PMID: 34603594 PMCID: PMC8483912 DOI: 10.1155/2021/2169017] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/16/2021] [Accepted: 09/03/2021] [Indexed: 12/16/2022]
Abstract
Natural products are important sources of biomolecules possessing antitumor activity and can be used as anticancer drug prototypes. The rich biodiversity of tropical and subtropical regions of the world provides considerable bioprospecting potential, including the potential of propolis produced by stingless bee species. Investigations of the potential of these products are extremely important, not only for providing a scientific basis for their use as adjuvants for existing drug therapies but also as a source of new and potent anticancer drugs. In this context, this article organizes the main studies describing the anticancer potential of propolis from different species of stingless bees with an emphasis on the chemical compounds, mechanisms of action, and cell death profiles. These mechanisms include apoptotic events; modulation of BAX, BAD, BCL2-L1 (BCL-2 like 1), and BCL-2; depolarization of the mitochondrial membrane; increased caspase-3 activity; poly (ADP-ribose) polymerase (PARP) cleavage; and cell death induction by necroptosis via receptor interacting protein kinase 1 (RIPK1) activation. Additionally, the correlation between compounds with antioxidant and anti-inflammatory potential is demonstrated that help in the prevention of cancer development. In summary, we highlight the important antitumor potential of propolis from stingless bees, but further preclinical and clinical trials are needed to explore the selectivity, efficacy, and safety of propolis.
Collapse
|
24
|
Esposito F, Giuffrida R, Raciti G, Puglisi C, Forte S. Wee1 Kinase: A Potential Target to Overcome Tumor Resistance to Therapy. Int J Mol Sci 2021; 22:ijms221910689. [PMID: 34639030 PMCID: PMC8508993 DOI: 10.3390/ijms221910689] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/21/2022] Open
Abstract
During the cell cycle, DNA suffers several lesions that need to be repaired prior to entry into mitosis to preserve genome integrity in daughter cells. Toward this aim, cells have developed complex enzymatic machinery, the so-called DNA damage response (DDR), which is able to repair DNA, temporarily stopping the cell cycle to provide more time to repair, or if the damage is too severe, inducing apoptosis. This DDR mechanism is considered the main source of resistance to DNA-damaging therapeutic treatments in oncology. Recently, cancer stem cells (CSCs), which are a small subset of tumor cells, were identified as tumor-initiating cells. CSCs possess self-renewal potential and persistent tumorigenic capacity, allowing for tumor re-growth and relapse. Compared with cancer cells, CSCs are more resistant to therapeutic treatments. Wee1 is the principal gatekeeper for both G2/M and S-phase checkpoints, where it plays a key role in cell cycle regulation and DNA damage repair. From this perspective, Wee1 inhibition might increase the effectiveness of DNA-damaging treatments, such as radiotherapy, forcing tumor cells and CSCs to enter into mitosis, even with damaged DNA, leading to mitotic catastrophe and subsequent cell death.
Collapse
|
25
|
Chantkran W, Hsieh YC, Zheleva D, Frame S, Wheadon H, Copland M. Interrogation of novel CDK2/9 inhibitor fadraciclib (CYC065) as a potential therapeutic approach for AML. Cell Death Dis 2021; 7:137. [PMID: 34112754 PMCID: PMC8192769 DOI: 10.1038/s41420-021-00496-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/04/2021] [Accepted: 04/22/2021] [Indexed: 02/05/2023]
Abstract
Over the last 50 years, there has been a steady improvement in the treatment outcome of acute myeloid leukemia (AML). However, median survival in the elderly is still poor due to intolerance to intensive chemotherapy and higher numbers of patients with adverse cytogenetics. Fadraciclib (CYC065), a novel cyclin-dependent kinase (CDK) 2/9 inhibitor, has preclinical efficacy in AML. In AML cell lines, myeloid cell leukemia 1 (MCL-1) was downregulated following treatment with fadraciclib, resulting in a rapid induction of apoptosis. In addition, RNA polymerase II (RNAPII)-driven transcription was suppressed, rendering a global gene suppression. Rapid induction of apoptosis was observed in primary AML cells after treatment with fadraciclib for 6-8 h. Twenty-four hours continuous treatment further increased efficacy of fadraciclib. Although preliminary results showed that AML cell lines harboring KMT2A rearrangement (KMT2A-r) are more sensitive to fadraciclib, we found that the drug can induce apoptosis and decrease MCL-1 expression in primary AML cells, regardless of KMT2A status. Importantly, the diversity of genetic mutations observed in primary AML patient samples was associated with variable response to fadraciclib, confirming the need for patient stratification to enable a more effective and personalized treatment approach. Synergistic activity was demonstrated when fadraciclib was combined with the BCL-2 inhibitor venetoclax, or the conventional chemotherapy agents, cytarabine, or azacitidine, with the combination of fadraciclib and azacitidine having the most favorable therapeutic window. In summary, these results highlight the potential of fadraciclib as a novel therapeutic approach for AML.
Collapse
Affiliation(s)
- Wittawat Chantkran
- grid.8756.c0000 0001 2193 314XPaul O’Gorman Leukaemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK ,grid.10223.320000 0004 1937 0490Department of Pathology, Phramongkutklao College of Medicine, Bangkok, Thailand
| | - Ya-Ching Hsieh
- grid.8756.c0000 0001 2193 314XPaul O’Gorman Leukaemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | | - Sheelagh Frame
- grid.481607.c0000 0004 0397 2104Cyclacel Limited, Dundee, UK
| | - Helen Wheadon
- grid.8756.c0000 0001 2193 314XPaul O’Gorman Leukaemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Mhairi Copland
- grid.8756.c0000 0001 2193 314XPaul O’Gorman Leukaemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
26
|
Etman AM, Abdel Mageed SS, Ali MA, El Hassab MAEM. Cyclin-Dependent Kinase as a Novel Therapeutic Target: An Endless Story. CURRENT CHEMICAL BIOLOGY 2021; 15:139-162. [DOI: 10.2174/2212796814999201123194016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/03/2020] [Accepted: 09/16/2020] [Indexed: 09/02/2023]
Abstract
Cyclin-Dependent Kinases (CDKs) are a family of enzymes that, along with their Cyclin
partners, play a crucial role in cell cycle regulation at many biological functions such as proliferation,
differentiation, DNA repair, and apoptosis. Thus, they are tightly regulated by a number of inhibitory
and activating enzymes. Deregulation of these kinases’ activity either by amplification,
overexpression or mutation of CDKs or Cyclins leads to uncontrolled proliferation of cancer cells.
Hyperactivity of these kinases has been reported in a wide variety of human cancers. Hence, CDKs
have been established as one of the most attractive pharmacological targets in the development of
promising anticancer drugs. The elucidated structural features and the well-characterized molecular
mechanisms of CDKs have been the guide in designing inhibitors to these kinases. Yet, they remain
a challenging therapeutic class as they share conserved structure similarity in their active site.
Several inhibitors have been discovered from natural sources or identified through high throughput
screening and rational drug design approaches. Most of these inhibitors target the ATP binding
pocket, therefore, they suffer from a number of limitations. Here, a growing number of ATP noncompetitive
peptides and small molecules has been reported.
Collapse
Affiliation(s)
- Ahmed Mohamed Etman
- Department of Pharmacology, Faculty of Pharmacy, Tanta University, Tanta, 31111,Egypt
| | - Sherif Sabry Abdel Mageed
- Department of Pharmacology, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr city, Cairo, 11829,Egypt
| | - Mohamed Ahmed Ali
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr city, Cairo, 11829,Egypt
| | - Mahmoud Abd El Monem El Hassab
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr city, Cairo, 11829,Egypt
| |
Collapse
|
27
|
Yang XY, Wang GB, Le YJ, Liu WT, He QY. Quantitative Proteomics Reveals the Antitumor Effects of Sodium New Houttuyfonate on Non-small Cell Lung Cancer. JOURNAL OF EXPLORATORY RESEARCH IN PHARMACOLOGY 2021; 000:000-000. [DOI: 10.14218/jerp.2021.00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
28
|
Gaji RY, Sharp AK, Brown AM. Protein kinases in Toxoplasma gondii. Int J Parasitol 2021; 51:415-429. [PMID: 33581139 PMCID: PMC11065138 DOI: 10.1016/j.ijpara.2020.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/10/2020] [Accepted: 11/15/2020] [Indexed: 02/06/2023]
Abstract
Toxoplasma gondii is an obligatory intracellular pathogen that causes life threatening illness in immunodeficient individuals, miscarriage in pregnant woman, and blindness in newborn children. Similar to any other eukaryotic cell, protein kinases play critical and essential roles in the Toxoplasma life cycle. Accordingly, many studies have focused on identifying and defining the mechanism of function of these signalling proteins with a long-term goal to develop anti-Toxoplasma therapeutics. In this review, we briefly discuss classification and key components of the catalytic domain which are critical for functioning of kinases, with a focus on domains, families, and groups of kinases within Toxoplasma. More importantly, this article provides a comprehensive, current overview of research on kinase groups in Toxoplasma including the established eukaryotic AGC, CAMK, CK1, CMGC, STE, TKL families and the apicomplexan-specific FIKK, ROPK and WNG family of kinases. This work provides an overview and discusses current knowledge on Toxoplasma kinases including their localization, function, signalling network and role in acute and chronic pathogenesis, with a view towards the future in probing kinases as viable drug targets.
Collapse
Affiliation(s)
- Rajshekhar Y Gaji
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech University, Blacksburg, VA, USA; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA.
| | - Amanda K Sharp
- Interdisciplinary Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA, USA
| | - Anne M Brown
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA; University Libraries, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
29
|
SCD5 expression correlates with prognosis and response to neoadjuvant chemotherapy in breast cancer. Sci Rep 2021; 11:8976. [PMID: 33903614 PMCID: PMC8076324 DOI: 10.1038/s41598-021-88258-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/08/2021] [Indexed: 12/31/2022] Open
Abstract
Neoadjuvant chemotherapy (NACT) represents a standard option for breast cancer. Unfortunately, about 55–80% of breast cancer patients do not have a favorable response to chemotherapy. Highly specific tumor biomarker that can predict the pathological response to neoadjuvant chemotherapy is lacking. Stearoyl-CoA desaturase 5 (SCD5) is an integral membrane protein of the endoplasmic reticulum that participates in lipid metabolism. Previous studies on the role of SCD5 in human cancers drew different conclusions. Therefore, the role of SCD5 in breast cancer remains unclear. Our study aims to understand its expression signature, prognosis value and correlation with pathological response to NACT in breast cancer using bioinformatics from public databases. Analysis of samples from public databases showed that SCD5 expression was down-regulated in some human cancers including breast cancer, and low expression of SCD5 was associated with more aggressive breast cancer phenotypes. Survival analysis revealed that SCD5 expression was related to prognosis in breast cancer. Integrated analysis of multiple public datasets indicated that SCD5 expression signature was associated with pathological response to NACT, particularly in TNBC. Based on functional enrichment analysis, the most affected biological functions in high SCD5-expressing breast cancer tissues were involved in negative regulation of cell cycle. Moreover, a significantly negative correlation between SCD5 expression and several cell cycle regulators was noted. Taken together, SCD5 was involved in the development and progression of breast cancer and might be a predictive biomarker for response to NACT. In conclusion, SCD5 could serve as a predictive biomarker of pathological response to NACT and play a carcinostatic role in breast cancer. These results provided us with clues to better understand SCD5 from the perspective of bioinformatics and highlighted the clinical importance of SCD5 in breast cancer, especially triple negative breast cancer (TNBC).
Collapse
|
30
|
Joshi A, Bhojwani H, Wagal O, Begwani K, Joshi U, Sathaye S, Kanchan D. Evaluation of Benzamide-chalcone Derivatives as EGFR/CDK2 inhibitor: Synthesis, in-vitro Inhibition, and Molecular Modeling Studies. Anticancer Agents Med Chem 2021; 22:328-343. [PMID: 33858315 DOI: 10.2174/1871520621666210415091359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/08/2021] [Accepted: 03/14/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND EGFR (Epidermal Growth Factor Receptor) and CDK2 (Cyclin Dependent Kinase 2) are important targets in the treatment of many solid tumors and different ligands of these receptors share many common structural features. OBJECTIVE The study involved synthesis of benzamide-substituted chalcones and determination of their antiproliferative activity as well as preliminary evaluation of EGFR and CDK2 inhibitory potential using both receptor binding and computational methods. METHODS We synthesized 13 benzamide-substituted chalcone derivatives and tested their antiproliferative activity against MCF-7, HT-29 and U373MG cell-lines using Sulforhodamine B Assay. Four compounds were examined for activity against EGFR and CDK2 kinase. The compounds were docked into both EGFR and CDK2 using Glide software. The stability of the interactions for most active compound was evaluated by Molecular Dynamics Simulation using Desmond software. Molecular Docking studies on mutant EGFR (T790M, T790M/L858R, and T790M/C797S) were also carried out. RESULTS From the SRB assay, we concluded that compounds 1g, and 1k were effective in inhibiting the growth of MCF-7 cell line whereas the other compounds were moderately active. Most compounds were either moderately active or inactive on U373 MG and HT-29 cell line. Compounds 1g and 1k showed good inhibitory activity against CDK2 kinase while 1d and 1f were moderately active. Compounds 1d, 1f, 1g, and 1k were moderately active against EGFR kinase. Molecular docking reveals involvement of one hydrogen bond with Met793 in binding with EGFR however; it was not stable during simulation and these compounds bind to the receptor mainly via hydrophobic contacts. This fact also points towards a different orientation of the inhibitor within the active site of EGFR kinase. Binding mode analysis for CDK2 inhibition studies indicate that hydrogen bonding interaction with Lys 33 and Leu83 are important for the activity. These interactions were found to be stable throughout the simulation. Considering the results for wild-type EGFR inhibition, the docking studies on mutants were performed and which indicate that the compounds bind to the mutant EGFR but the amino acid residues involved are similar to the wild-type EGFR and therefore, the selectivity seems to be limited. CONCLUSION These benzamide-substituted chalcone derivatives will be useful as lead molecules for the further development of newer inhibitors of EGFR and/or CDK2 kinases.
Collapse
Affiliation(s)
- Akshada Joshi
- Department of Pharmaceutical Chemistry, Prin. K. M. Kundnani College of Pharmacy, Mumbai 400005. India
| | - Heena Bhojwani
- Department of Pharmaceutical Chemistry, Prin. K. M. Kundnani College of Pharmacy, Mumbai 400005. India
| | - Ojas Wagal
- Department of Pharmaceutical Chemistry, Prin. K. M. Kundnani College of Pharmacy, Mumbai 400005. India
| | - Khushboo Begwani
- Department of Pharmaceutical Chemistry, Prin. K. M. Kundnani College of Pharmacy, Mumbai 400005. India
| | - Urmila Joshi
- Department of Pharmaceutical Chemistry, Prin. K. M. Kundnani College of Pharmacy, Mumbai 400005. India
| | - Sadhana Sathaye
- Department of Pharmaceutical Science and Technology, Institute of Chemical Technology, Mumbai 400019. India
| | - Divya Kanchan
- Department of Pharmaceutical Chemistry, Prin. K. M. Kundnani College of Pharmacy, Mumbai 400005. India
| |
Collapse
|
31
|
Tang K, Zhang H, Li Y, Sun Q, Jin H. Circular RNA as a Potential Biomarker for Melanoma: A Systematic Review. Front Cell Dev Biol 2021; 9:638548. [PMID: 33869186 PMCID: PMC8047128 DOI: 10.3389/fcell.2021.638548] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/08/2021] [Indexed: 12/22/2022] Open
Abstract
Circular RNAs (circRNAs) are newly discovered RNAs with covalently looped structures. Due to their resistance to RNAase degradation and tissue-specific expression, circRNAs are expected to be potential biomarkers in early diagnosis and target treatment of many diseases. However, the role of circRNAs in melanoma still needs to be systematically reviewed for better understanding and further research. Based on published articles in PubMed, Embase, Cochrane Library, and Web of Science database, we systematically reviewed the implications and recent advances of circRNAs in melanoma, focusing on function, mechanism, and correlation with melanoma progression. According to inclusion and exclusion criteria, a total of 19 articles were finally included in this systematic review. Of the 19 studies, 17 used human samples, including melanoma tissues (n = 16) and blood serum of patients with melanoma (n = 1). The sample size of the study group ranged from 20 to 105 based on the reported data. Several studies explored the association between circRNAs and clinicopathological characteristics. circRNA dysregulation was commonly observed in melanoma patients. circRNAs function in melanoma by miRNA sponging and interaction with RNA binding proteins (RBP), ultimately controlling several important signaling pathways and cancer-related cellular processes, including proliferation, migration, invasion, metastasis, apoptosis, and glucose metabolism. circRNA expression could be associated with prognostic factors and drug responses, consolidating the potential clinical value in melanoma. Herein, we clarified the functional, prognostic, and predictive roles of circRNAs in melanoma in this systematic review, providing future directions for studies on melanoma-associated circRNAs.
Collapse
Affiliation(s)
- Keyun Tang
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hanlin Zhang
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yaqi Li
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Qiuning Sun
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hongzhong Jin
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
32
|
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most aggressive and invasive type of pancreatic cancer (PCa) and is expected to be the second most common cause of cancer-associated deaths. The high mortality rate is due to the asymptomatic progression of the clinical features until the advanced stages of the disease and the limited effectiveness of the current therapeutics. Aberrant expression of several microRNAs (miRs/miRNAs) has been related to PDAC progression and thus they could be potential early diagnostic, prognostic, and/or therapeutic predictors for PDAC. miRs are small (18 to 24 nucleotides long) non-coding RNAs, which regulate the expression of key genes by targeting their 3′-untranslated mRNA region. Increased evidence has also suggested that the chemoresistance of PDAC cells is associated with metabolic alterations. Metabolic stress and the dysfunctionality of systems to compensate for the altered metabolic status of PDAC cells is the foundation for cellular damage. Current data have implicated multiple systems as hallmarks of PDAC development, such as glutamine redox imbalance, oxidative stress, and mitochondrial dysfunction. Hence, both the aberrant expression of miRs and dysregulation in metabolism can have unfavorable effects in several biological processes, such as apoptosis, cell proliferation, growth, survival, stress response, angiogenesis, chemoresistance, invasion, and migration. Therefore, due to these dismal statistics, it is crucial to develop beneficial therapeutic strategies based on an improved understanding of the biology of both miRs and metabolic mediators. This review focuses on miR-mediated pathways and therapeutic resistance mechanisms in PDAC and evaluates the impact of metabolic alterations in the progression of PDAC.
Collapse
|
33
|
Wang D, Fan C, Tang J. Regorafenib Suppresses Migration of and Induces Cell Cycle Arrest and Apoptosis in MCF-7 Cells. BRAZ J PHARM SCI 2021. [DOI: 10.1590/s2175-979020200004181122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Dawei Wang
- Wuhan Huaxia University of Technology, China
| | - Ceji Fan
- Wuhan Huaxia University of Technology, China
| | - Jun Tang
- Wuhan Huaxia University of Technology, China
| |
Collapse
|
34
|
Nishi R, Shigemi H, Negoro E, Okura M, Hosono N, Yamauchi T. Venetoclax and alvocidib are both cytotoxic to acute myeloid leukemia cells resistant to cytarabine and clofarabine. BMC Cancer 2020; 20:984. [PMID: 33046037 PMCID: PMC7552348 DOI: 10.1186/s12885-020-07469-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/29/2020] [Indexed: 12/21/2022] Open
Abstract
Background Cytarabine (ara-C) is the major drug for the treatment of acute myeloid leukemia (AML), but cellular resistance to ara-C is a major obstacle to therapeutic success. The present study examined enhanced anti-apoptosis identified in 3 newly established nucleoside analogue-resistant leukemic cell line variants and approaches to overcoming this resistance. Methods HL-60 human AML cells were used to develop the ara-C– or clofarabine (CAFdA)-resistant variants. The Bcl-2 inhibitor venetoclax and the Mcl-1 inhibitor alvocidib were tested to determine whether they could reverse these cells’ resistance. Results A 10-fold ara-C-resistant HL-60 variant, a 4-fold CAFdA-resistant HL-60 variant, and a 30-fold CAFdA-resistant HL-60 variant were newly established. The variants demonstrated reduced deoxycytidine kinase and deoxyguanosine kinase expression, but intact expression of surface transporters (hENT1, hENT2, hCNT3). The variants exhibited lower expression of intracellular nucleoside analogue triphosphates compared with non-variant HL-60 cells. The variants also overexpressed Bcl-2 and Mcl-1. Venetoclax as a single agent was not cytotoxic to the resistant variants. Nevertheless, venetoclax with nucleoside analogs demonstrated synergistic cytotoxicity against the variants. Alvocidib as a single agent was cytotoxic to the cells. However, alvocidib induced G1 arrest and suppressed the cytotoxicity of the co-administered nucleoside analogs. Conclusions Three new nucleoside analogue-resistant HL-60 cell variants exhibited reduced production of intracellular analogue triphosphates and enhanced Bcl-2 and Mcl-1 expressions. Venetoclax combined with nucleoside analogs showed synergistic anti-leukemic effects and overcame the drug resistance.
Collapse
Affiliation(s)
- Rie Nishi
- Department of Hematology and Oncology, Faculty of Medical Sciences, University of Fukui, 23-3 Shimoaizuki, Matsuoka, Eiheiji, Fukui, 910-1193, Japan.
| | - Hiroko Shigemi
- Public Health Center of Tango, 855 Tanba, Mineyama, Kyotango, Kyoto, 627-8570, Japan
| | - Eiju Negoro
- Department of Hematology and Oncology, Faculty of Medical Sciences, University of Fukui, 23-3 Shimoaizuki, Matsuoka, Eiheiji, Fukui, 910-1193, Japan
| | - Miyuki Okura
- Department of Hematology and Oncology, Faculty of Medical Sciences, University of Fukui, 23-3 Shimoaizuki, Matsuoka, Eiheiji, Fukui, 910-1193, Japan
| | - Naoko Hosono
- Department of Hematology and Oncology, Faculty of Medical Sciences, University of Fukui, 23-3 Shimoaizuki, Matsuoka, Eiheiji, Fukui, 910-1193, Japan
| | - Takahiro Yamauchi
- Department of Hematology and Oncology, Faculty of Medical Sciences, University of Fukui, 23-3 Shimoaizuki, Matsuoka, Eiheiji, Fukui, 910-1193, Japan
| |
Collapse
|
35
|
Wetendorf M, Li R, Wu SP, Liu J, Creighton CJ, Wang T, Janardhan KS, Willson CJ, Lanz RB, Murphy BD, Lydon JP, DeMayo FJ. Constitutive expression of progesterone receptor isoforms promotes the development of hormone-dependent ovarian neoplasms. Sci Signal 2020; 13:eaaz9646. [PMID: 33023986 PMCID: PMC10251233 DOI: 10.1126/scisignal.aaz9646] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Differences in the relative abundances of the progesterone receptor (PGR) isoforms PGRA and PGRB are often observed in women with reproductive tract cancers. To assess the importance of the PGR isoform ratio in the maintenance of the reproductive tract, we generated mice that overexpress PGRA or PGRB in all PGR-positive tissues. Whereas few PGRA-overexpressing mice developed reproductive tract tumors, all PGRB-overexpressing mice developed ovarian neoplasms that were derived from ovarian luteal cells. Transcriptomic analyses of the ovarian tumors from PGRB-overexpressing mice revealed enhanced AKT signaling and a gene expression signature similar to those of human ovarian and endometrial cancers. Treating PGRB-overexpressing mice with the PGR antagonist RU486 stalled tumor growth and decreased the expression of cell cycle-associated genes, indicating that tumor growth and cell proliferation were hormone dependent in addition to being isoform dependent. Analysis of the PGRB cistrome identified binding events at genes encoding proteins that are critical regulators of mitotic phase entry. This work suggests a mechanism whereby an increase in the abundance of PGRB relative to that of PGRA drives neoplasia in vivo by stimulating cell cycling.
Collapse
Affiliation(s)
- Margeaux Wetendorf
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Rong Li
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - San-Pin Wu
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Jian Liu
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Chad J Creighton
- Department of Medicine and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Tianyuan Wang
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | | | - Rainer B Lanz
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Bruce D Murphy
- Centre de recherche en reproduction et fertilité, University of Montreal, St-Hyacinthe, QC, Canada
| | - John P Lydon
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Francesco J DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
| |
Collapse
|
36
|
Salla M, Pandya V, Bhullar KS, Kerek E, Wong YF, Losch R, Ou J, Aldawsari FS, Velazquez-Martinez C, Thiesen A, Dyck JRB, Hubbard BP, Baksh S. Resveratrol and Resveratrol-Aspirin Hybrid Compounds as Potent Intestinal Anti-Inflammatory and Anti-Tumor Drugs. Molecules 2020; 25:molecules25173849. [PMID: 32847114 PMCID: PMC7503224 DOI: 10.3390/molecules25173849] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
Resveratrol (3,4,5-Trihydroxy-trans-stilbene) is a naturally occurring polyphenol that exhibits beneficial pleiotropic health effects. It is one of the most promising natural molecules in the prevention and treatment of chronic diseases and autoimmune disorders. One of the key limitations in the clinical use of resveratrol is its extensive metabolic processing to its glucuronides and sulfates. It has been estimated that around 75% of this polyphenol is excreted via feces and urine. To possibly alleviate the extensive metabolic processing and improve bioavailability, we have added segments of acetylsalicylic acid to resveratrol in an attempt to maintain the functional properties of both. We initially characterized resveratrol-aspirin derivatives as products that can inhibit cytochrome P450 Family 1 Subfamily A Member 1 (CYP1A1) activity, DNA methyltransferase (DNMT) activity, and cyclooxygenase (COX) activity. In this study, we provide a detailed analysis of how resveratrol and its aspirin derivatives can inhibit nuclear factor kappa B (NFκB) activation, cytokine production, the growth rate of cancer cells, and in vivo alleviate intestinal inflammation and tumor growth. We identified resveratrol derivatives C3 and C11 as closely preserving resveratrol bioactivities of growth inhibition of cancer cells, inhibition of NFκB activation, activation of sirtuin, and 5’ adenosine monophosphate-activated protein kinase (AMPK) activity. We speculate that the aspirin derivatives of resveratrol would be more metabolically stable, resulting in increased efficacy for treating immune disorders and as an anti-cancer agent.
Collapse
Affiliation(s)
- Mohamed Salla
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2E1, Canada; (M.S.); (V.P.); (R.L.); (J.O.)
| | - Vrajesh Pandya
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2E1, Canada; (M.S.); (V.P.); (R.L.); (J.O.)
| | - Khushwant S. Bhullar
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2E1, Canada; (K.S.B.); (E.K.); (J.R.B.D.); (B.P.H.)
| | - Evan Kerek
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2E1, Canada; (K.S.B.); (E.K.); (J.R.B.D.); (B.P.H.)
| | - Yoke Fuan Wong
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2E1, Canada;
| | - Robyn Losch
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2E1, Canada; (M.S.); (V.P.); (R.L.); (J.O.)
| | - Joe Ou
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2E1, Canada; (M.S.); (V.P.); (R.L.); (J.O.)
| | - Fahad S. Aldawsari
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2E1, Canada or (F.S.A.); (C.V.-M.)
- Saudi Food and Drug Authority Laboratories, 3292 Northern Ring Road, Riyadh 13312, Saudi Arabia
| | - Carlos Velazquez-Martinez
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2E1, Canada or (F.S.A.); (C.V.-M.)
| | - Aducio Thiesen
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2E1, Canada;
| | - Jason R. B. Dyck
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2E1, Canada; (K.S.B.); (E.K.); (J.R.B.D.); (B.P.H.)
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2E1, Canada;
| | - Basil P. Hubbard
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2E1, Canada; (K.S.B.); (E.K.); (J.R.B.D.); (B.P.H.)
| | - Shairaz Baksh
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2E1, Canada; (M.S.); (V.P.); (R.L.); (J.O.)
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2E1, Canada;
- Departments of Oncology, Faculty of Medicine and Dentistry, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2E1, Canada
- Member, Cancer Research Institute of Northern Alberta and Women and Children’s Health Research Institute, Edmonton, AB T6G 2E1, Canada
- BioImmuno Designs, Inc., 4560 TEC Centre, 10230 Jasper Avenue, Edmonton, AB T5J 4P6, Canada
- Correspondence: ; Tel.: +1-780-239-0518
| |
Collapse
|
37
|
Li J, Zhang H, Liu M, Xiang Y, Li H, Huang F, Li H, Dai Z, Gu CJ, Liao X, Zhang T. miR‐133a‐3p/FOXP3 axis regulates cell proliferation and autophagy in gastric cancer. J Cell Biochem 2020; 121:3392-3405. [DOI: 10.1002/jcb.29613] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 12/11/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Jia‐Peng Li
- College of Life and Health Sciences, Institute of Biology and MedicineWuhan University of Science and Technology Wuhan Hubei China
| | - Hui‐Min Zhang
- College of Life and Health Sciences, Institute of Biology and MedicineWuhan University of Science and Technology Wuhan Hubei China
| | - Mei‐Jun Liu
- College of Life and Health Sciences, Institute of Biology and MedicineWuhan University of Science and Technology Wuhan Hubei China
| | - Yuan Xiang
- College of Life and Health Sciences, Institute of Biology and MedicineWuhan University of Science and Technology Wuhan Hubei China
| | - Hui Li
- College of Life and Health Sciences, Institute of Biology and MedicineWuhan University of Science and Technology Wuhan Hubei China
| | - Feng Huang
- College of Life and Health Sciences, Institute of Biology and MedicineWuhan University of Science and Technology Wuhan Hubei China
| | - Han‐Han Li
- College of Life and Health Sciences, Institute of Biology and MedicineWuhan University of Science and Technology Wuhan Hubei China
| | - Zhou‐Tong Dai
- College of Life and Health Sciences, Institute of Biology and MedicineWuhan University of Science and Technology Wuhan Hubei China
| | - Chao Jiang Gu
- College of Life and Health Sciences, Institute of Biology and MedicineWuhan University of Science and Technology Wuhan Hubei China
| | - Xing‐Hua Liao
- College of Life and Health Sciences, Institute of Biology and MedicineWuhan University of Science and Technology Wuhan Hubei China
| | - Tong‐Cun Zhang
- College of Life and Health Sciences, Institute of Biology and MedicineWuhan University of Science and Technology Wuhan Hubei China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, College of BiotechnologyTianjin University of Science and Technology Tianjin China
| |
Collapse
|
38
|
Synthesis and Biological Evaluation of 2-Substituted Benzyl-/Phenylethylamino-4-amino-5-aroylthiazoles as Apoptosis-Inducing Anticancer Agents. Molecules 2020; 25:molecules25092177. [PMID: 32384805 PMCID: PMC7248693 DOI: 10.3390/molecules25092177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 01/03/2023] Open
Abstract
Induction of apoptosis is a common chemotherapeutic mechanism to kill cancer cells The thiazole system has been reported over the past decades as a building block for the preparation of anticancer agents. A novel series of 2-arylalkylamino-4-amino-5-(3′,4′,5′-trimethoxybenzoyl)-thiazole derivatives designed as dual inhibitors of tubulin and cyclin-dependent kinases (CDKs) were synthesized and evaluated for their antiproliferative activity in vitro against two cancer cell lines and, for selected highly active compounds, for interactions with tubulin and cyclin-dependent kinases and for cell cycle and apoptosis effects. Structure-activity relationships were elucidated for various substituents at the 2-position of the thiazole skeleton. Among the synthesized compounds, the most active analogues were found to be the p-chlorobenzylamino derivative 8e as well as the p-chloro and p-methoxyphenethylamino analogues 8f and 8k, respectively, which inhibited the growth of U-937 and SK-MEL-1 cancer cell lines with IC50 values ranging from 5.7 to 12.2 μM. On U-937 cells, the tested compounds 8f and 8k induced apoptosis in a time and concentration dependent manner. These two latter molecules did not affect tubulin polymerization (IC50 > 20 μM) nor CDK activity at a single concentration of 10 μM, suggesting alternative targets than tubulin and CDK for the compounds.
Collapse
|
39
|
A Comprehensive Review on Schisandrin B and Its Biological Properties. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2172740. [PMID: 32256947 PMCID: PMC7102409 DOI: 10.1155/2020/2172740] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/22/2020] [Indexed: 02/06/2023]
Abstract
Nature is a vast source of bioactive molecules and has provided an active and efficient reservoir for drug discovery. Among natural compounds, one of the most promising is Schisandrin B (Sch B), isolated from Schisandra chinensis, which was documented to possess diversified pharmacokinetic propriety, among them antioxidant, anti-inflammation, cardioprotection, and neuroprotection. Due to its large biological properties, Sch B was recorded to be a potent cure for several diseases by targeting several signaling pathways. This review is aimed at emphasizing the recent data on the biological properties of Sch B among the molecular mechanism of this drug on tumoral, cardiac, and neural diseases. The data suggest that the antitumor activities of Sch B were mainly through apoptosis and cell cycle arrest at the diver's stage. It is reported that Sch B could be used as effective chemotherapy, neuroprotection, and cardioprotection since it possesses a spectrum of biological activities; however, further investigations on the mechanism of its action and preclinical trials are still mandatory to further validate the potential of this natural drug candidate.
Collapse
|
40
|
Ding L, Cao J, Lin W, Chen H, Xiong X, Ao H, Yu M, Lin J, Cui Q. The Roles of Cyclin-Dependent Kinases in Cell-Cycle Progression and Therapeutic Strategies in Human Breast Cancer. Int J Mol Sci 2020; 21:ijms21061960. [PMID: 32183020 PMCID: PMC7139603 DOI: 10.3390/ijms21061960] [Citation(s) in RCA: 309] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 12/12/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) are serine/threonine kinases whose catalytic activities are regulated by interactions with cyclins and CDK inhibitors (CKIs). CDKs are key regulatory enzymes involved in cell proliferation through regulating cell-cycle checkpoints and transcriptional events in response to extracellular and intracellular signals. Not surprisingly, the dysregulation of CDKs is a hallmark of cancers, and inhibition of specific members is considered an attractive target in cancer therapy. In breast cancer (BC), dual CDK4/6 inhibitors, palbociclib, ribociclib, and abemaciclib, combined with other agents, were approved by the Food and Drug Administration (FDA) recently for the treatment of hormone receptor positive (HR+) advanced or metastatic breast cancer (A/MBC), as well as other sub-types of breast cancer. Furthermore, ongoing studies identified more selective CDK inhibitors as promising clinical targets. In this review, we focus on the roles of CDKs in driving cell-cycle progression, cell-cycle checkpoints, and transcriptional regulation, a highlight of dysregulated CDK activation in BC. We also discuss the most relevant CDK inhibitors currently in clinical BC trials, with special emphasis on CDK4/6 inhibitors used for the treatment of estrogen receptor-positive (ER+)/human epidermal growth factor 2-negative (HER2−) M/ABC patients, as well as more emerging precise therapeutic strategies, such as combination therapies and microRNA (miRNA) therapy.
Collapse
Affiliation(s)
- Lei Ding
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (J.C.); (W.L.); (H.C.); (X.X.); (H.A.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Jiaqi Cao
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (J.C.); (W.L.); (H.C.); (X.X.); (H.A.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Wen Lin
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (J.C.); (W.L.); (H.C.); (X.X.); (H.A.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Hongjian Chen
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (J.C.); (W.L.); (H.C.); (X.X.); (H.A.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Xianhui Xiong
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (J.C.); (W.L.); (H.C.); (X.X.); (H.A.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Hongshun Ao
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (J.C.); (W.L.); (H.C.); (X.X.); (H.A.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Min Yu
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (J.C.); (W.L.); (H.C.); (X.X.); (H.A.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Jie Lin
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (J.C.); (W.L.); (H.C.); (X.X.); (H.A.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
| | - Qinghua Cui
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China; (L.D.); (J.C.); (W.L.); (H.C.); (X.X.); (H.A.); (M.Y.); (J.L.)
- Key Lab of Molecular Cancer Biology, Yunnan Education Department, Kunming 650091, China
- Correspondence:
| |
Collapse
|
41
|
Wang Y, Chen X, Yan Y, Zhu X, Liu M, Liu X. Discovery and SARs of 5-Chloro-N4-phenyl-N2-(pyridin-2-yl)pyrimidine-2,4-diamine Derivatives as Oral Available and Dual CDK 6 and 9 Inhibitors with Potent Antitumor Activity. J Med Chem 2020; 63:3327-3347. [DOI: 10.1021/acs.jmedchem.9b02121] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yang Wang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xing Chen
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yaoyao Yan
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xiaochen Zhu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Mingming Liu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
- Anhui Chem-Bright Bioengineering Co., Ltd., Huaibei 235025, China
| | - Xinhua Liu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
42
|
Ruan B, Liu W, Chen P, Cui R, Li Y, Ji M, Hou P, Yang Q. NVP-BEZ235 inhibits thyroid cancer growth by p53- dependent/independent p21 upregulation. Int J Biol Sci 2020; 16:682-693. [PMID: 32025215 PMCID: PMC6990918 DOI: 10.7150/ijbs.37592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/30/2019] [Indexed: 01/25/2023] Open
Abstract
NVP-BEZ235 is a novel dual PI3K/mTOR inhibitor, currently in phase 1/2 clinical trials, exhibiting clinical efficiency in treatment of numerous malignancies including thyroid cancer. Cancer cells harboring mutant p53 was widely reported to be blunt to pharmaceutical therapies. However, whether this genotype dependent effect also presents in thyroid cancer when treated with NVP-BEZ235 remains unknown. Therefore, in this study, the tumor suppressing effects of NVP-BEZ235 in thyroid cancer cell lines and in-vivo xenograft mouse model harboring different p53 status were examined. The antitumor effects were confirmed in p53 mutant thyroid cancer cells, though less prominent than p53 wild type cells. And for the p53 mutant cells, p53-independent upregulation of p21 plays a critical role in their response to NVP-BEZ235. Moreover, GSK3β/β-catenin signaling inhibition was implicated in the p21-mediated G0/G1 cell cycle arrest in both p53 wild type and mutant thyroid cancer cells treated with NVP-BEZ235.
Collapse
Affiliation(s)
- Banjun Ruan
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Wei Liu
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Pu Chen
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Rongrong Cui
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Yu Li
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Meiju Ji
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Peng Hou
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Qi Yang
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| |
Collapse
|
43
|
Dandawate P, Subramaniam D, Panovich P, Standing D, Krishnamachary B, Kaushik G, Thomas SM, Dhar A, Weir SJ, Jensen RA, Anant S. Cucurbitacin B and I inhibits colon cancer growth by targeting the Notch signaling pathway. Sci Rep 2020; 10:1290. [PMID: 31992775 PMCID: PMC6987129 DOI: 10.1038/s41598-020-57940-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/02/2020] [Indexed: 02/08/2023] Open
Abstract
Cancer stem cells (CSCs) have the ability to self-renew and induce drug resistance and recurrence in colorectal cancer (CRC). As current chemotherapy doesn’t eliminate CSCs completely, there is a need to identify novel agents to target them. We investigated the effects of cucurbitacin B (C-B) or I (C-I), a natural compound that exists in edible plants (bitter melons, cucumbers, pumpkins and zucchini), against CRC. C-B or C-I inhibited proliferation, clonogenicity, induced G2/M cell-cycle arrest and caspase-mediated-apoptosis of CRC cells. C-B or C-I suppressed colonosphere formation and inhibited expression of CD44, DCLK1 and LGR5. These compounds inhibited notch signaling by reducing the expression of Notch 1–4 receptors, their ligands (Jagged 1-2, DLL1,3,4), γ-secretase complex proteins (Presenilin 1, Nicastrin), and downstream target Hes-1. Molecular docking showed that C-B or C-I binds to the ankyrin domain of Notch receptor, which was confirmed using the cellular thermal shift assay. Finally, C-B or C-I inhibited tumor xenograft growth in nude mice and decreased the expression of CSC-markers and notch signaling proteins in tumor tissues. Together, our study suggests that C-B and C-I inhibit colon cancer growth by inhibiting Notch signaling pathway.
Collapse
Affiliation(s)
- Prasad Dandawate
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | | | - Peyton Panovich
- Shawnee Mission School District Center for Academic Achievement, Kansas City, KS, 66204, USA
| | - David Standing
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Balaji Krishnamachary
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Gaurav Kaushik
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Sufi Mary Thomas
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.,Department of Surgery, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Animesh Dhar
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Scott J Weir
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.,Institute for Advancing Medical Innovation, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Roy A Jensen
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Shrikant Anant
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
44
|
Zhang H, Zou J, Yin Y, Zhang B, Hu Y, Wang J, Mu H. Bioinformatic analysis identifies potentially key differentially expressed genes in oncogenesis and progression of clear cell renal cell carcinoma. PeerJ 2019; 7:e8096. [PMID: 31788359 PMCID: PMC6883955 DOI: 10.7717/peerj.8096] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/24/2019] [Indexed: 12/12/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is one of the most common and lethal types of cancer within the urinary system. Great efforts have been made to elucidate the pathogeny. However, the molecular mechanism of ccRCC is still not well understood. The aim of this study is to identify key genes in the carcinogenesis and progression of ccRCC. The mRNA microarray dataset GSE53757 was downloaded from the Gene Expression Omnibus database. The GSE53757 dataset contains tumor and matched paracancerous specimens from 72 ccRCC patients with clinical stage I to IV. The linear model of microarray data (limma) package in R language was used to identify differentially expressed genes (DEGs). The protein–protein interaction (PPI) network of the DEGs was constructed using the search tool for the retrieval of interacting genes (STRING). Subsequently, we visualized molecular interaction networks by Cytoscape software and analyzed modules with MCODE. A total of 1,284, 1,416, 1,610 and 1,185 up-regulated genes, and 932, 1,236, 1,006 and 929 down-regulated genes were identified from clinical stage I to IV ccRCC patients, respectively. The overlapping DEGs among the four clinical stages contain 870 up-regulated and 645 down-regulated genes. The enrichment analysis of DEGs in the top module was carried out with DAVID. The results showed the DEGs of the top module were mainly enriched in microtubule-based movement, mitotic cytokinesis and mitotic chromosome condensation. Eleven up-regulated genes and one down-regulated gene were identified as hub genes. Survival analysis showed the high expression of CENPE, KIF20A, KIF4A, MELK, NCAPG, NDC80, NUF2, TOP2A, TPX2 and UBE2C, and low expression of ACADM gene could be involved in the carcinogenesis, invasion or recurrence of ccRCC. Literature retrieval results showed the hub gene NDC80, CENPE and ACADM might be novel targets for the diagnosis, clinical treatment and prognosis of ccRCC. In conclusion, the findings of present study may help us understand the molecular mechanisms underlying the carcinogenesis and progression of ccRCC, and provide potential diagnostic, therapeutic and prognostic biomarkers.
Collapse
Affiliation(s)
- Haiping Zhang
- Department of Derma Science Laboratory, Wuxi NO.2 People's Hospital affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Jian Zou
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China.,Wuxi Institute of Translational Medicine, Wuxi, Jiangsu, China
| | - Ying Yin
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China.,Wuxi Institute of Translational Medicine, Wuxi, Jiangsu, China
| | - Bo Zhang
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China.,Wuxi Institute of Translational Medicine, Wuxi, Jiangsu, China
| | - Yaling Hu
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China.,Wuxi Institute of Translational Medicine, Wuxi, Jiangsu, China
| | - Jingjing Wang
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China.,Wuxi Institute of Translational Medicine, Wuxi, Jiangsu, China
| | - Huijun Mu
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China.,Wuxi Institute of Translational Medicine, Wuxi, Jiangsu, China
| |
Collapse
|
45
|
Downregulation of class II phosphoinositide 3-kinase PI3K-C2β delays cell division and potentiates the effect of docetaxel on cancer cell growth. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:472. [PMID: 31752944 PMCID: PMC6873561 DOI: 10.1186/s13046-019-1472-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023]
Abstract
Background Alteration of signalling pathways regulating cell cycle progression is a common feature of cancer cells. Several drugs targeting distinct phases of the cell cycle have been developed but the inability of many of them to discriminate between normal and cancer cells has strongly limited their clinical potential because of their reduced efficacy at the concentrations used to limit adverse side effects. Mechanisms of resistance have also been described, further affecting their efficacy. Identification of novel targets that can potentiate the effect of these drugs or overcome drug resistance can provide a useful strategy to exploit the anti-cancer properties of these agents to their fullest. Methods The class II PI3K isoform PI3K-C2β was downregulated in prostate cancer PC3 cells and cervical cancer HeLa cells using selective siRNAs and the effect on cell growth was determined in the absence or presence of the microtubule-stabilizing agent/anti-cancer drug docetaxel. Mitosis progression was monitored by time-lapse microscopy. Clonogenic assays were performed to determine the ability of PC3 and HeLa cells to form colonies upon PI3K-C2β downregulation in the absence or presence of docetaxel. Cell multi-nucleation was assessed by immunofluorescence. Tumour growth in vivo was assessed using a xenograft model of PC3 cells upon PI3K-C2β downregulation and in combination with docetaxel. Results Downregulation of PI3K-C2β delays mitosis progression in PC3 and HeLa cells, resulting in reduced ability to form colonies in clonogenic assays in vitro. Compared to control cells, PC3 cells lacking PI3K-C2β form smaller and more compact colonies in vitro and they form tumours more slowly in vivo in the first weeks after cells implant. Stable and transient PI3K-C2β downregulation potentiates the effect of low concentrations of docetaxel on cancer cell growth. Combination of PI3K-C2β downregulation and docetaxel almost completely prevents colonies formation in clonogenic assays in vitro and strongly inhibits tumour growth in vivo. Conclusions These data reveal a novel role for the class II PI3K PI3K-C2β during mitosis progression. Furthermore, data indicate that blockade of PI3K-C2β might represent a novel strategy to potentiate the effect of docetaxel on cancer cell growth.
Collapse
|
46
|
朱 星, 杨 嘉, 张 恩, 乔 炜, 李 学. [Bioinformatic analysis of direct protein targets of aspirin against human breast cancer proliferation]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:1141-1148. [PMID: 31801720 PMCID: PMC6867953 DOI: 10.12122/j.issn.1673-4254.2019.10.02] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Indexed: 01/05/2023]
Abstract
OBJECTIVE To explore the molecular mechanism underlying the inhibitory effects of aspirin against human breast cancer cell proliferation through bioinformatics analysis. METHODS Drug Bank 5.1.3 was searched to identify direct protein targets (DPTs) of aspirin, and the protein-protein interaction (PPI) network of the DPTs was constructed online using STRING and the signaling pathways involved were identified. The genetic alterations of 6 DPTs associated with human breast cancer was analyzed and visualized by cBio Portal and OncoPrint, respectively. The transcriptomic data of breast cancer and normal tissues were downloaded from TCGA database, and the overexpressed genes were analyzed by DECenter. The intersection between the genes associated with the DPTs obtained by STRING analysis and the differentially over-expressed genes in TCGA was determined to confirm the candidate DPTs as a potential target of aspirin, and GO functional enrichment analysis was performed using Gene Ontology. The potential targets of aspirin against the proliferation of human breast cancer cells were verified by Western blotting. RESULTS Eleven DPTs of aspirin were identified. KEGG pathway enrichment indicated that 6 genes (EDNRA, IKBKB, NFKB2, NFKBIA, PTGS2 and TP53) were associated with the occurrence and development of cancer. A total of 10 220 differentially expressed genes were identified from the TCGA database, and among them 4 genes (CDC25C, TPX2, CDC20, PLK1) were found to be the potential targets for aspirin. These genes were involved mostly in the regulation of cell cycle and cell division. Western blotting showed that aspirin could down-regulate the expression levels of several pivotal proteins that regulated cell cycle and cell division, including CDC25C, TPX2, CDC20 and PLK1. CONCLUSIONS CDC25C, TPX2, CDC20 and PLK1 may be potential targets for aspirin to inhibit the proliferation of human breast cancer cells, by affecting the progress of cell cycle and cell division.
Collapse
Affiliation(s)
- 星枚 朱
- 陕西中医药大学药学院药理学教研室,陕西 咸阳 712046Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, China
- 陕西省中医药管理局中药药效机制与物质基础重点研究室,陕西 咸阳 712046Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, China
- 陕西省中药基础与新药研究重点实验室,陕西 咸阳 712046Shaanxi Key Laboratory of Traditional Medicine Foundation and New Drug Research, Xianyang 712046, China
| | - 嘉妮 杨
- 陕西中医药大学药学院药理学教研室,陕西 咸阳 712046Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, China
- 陕西省中医药管理局中药药效机制与物质基础重点研究室,陕西 咸阳 712046Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, China
- 陕西省中药基础与新药研究重点实验室,陕西 咸阳 712046Shaanxi Key Laboratory of Traditional Medicine Foundation and New Drug Research, Xianyang 712046, China
| | - 恩户 张
- 陕西中医药大学药学院药理学教研室,陕西 咸阳 712046Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, China
- 陕西省中医药管理局中药药效机制与物质基础重点研究室,陕西 咸阳 712046Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, China
| | - 炜 乔
- 中国兵器工业五二一医院,陕西 西安 710065Department of Gastroenterology, 521 Hospital of Norinco Group, Shaanxi, Xi'an, 710065, China
| | - 学军 李
- 北京大学医学部药理学系,北京 100191School of Basic Medicine, Peking University Health Science Center, Beijing, 100191, China
| |
Collapse
|
47
|
Liu J, Zhang X, Wang H, Zhang M, Peng Y, Li M, Xie L, Jiang F, Gong Y, Zhao Q, Zhou P. Implication of myeloid differentiation factor 88 inhibitor TJ-M2010-5 for therapeutic intervention of hepatocellular carcinoma. Hepatol Res 2019; 49:1182-1194. [PMID: 31074165 DOI: 10.1111/hepr.13359] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 04/06/2019] [Accepted: 05/04/2019] [Indexed: 12/12/2022]
Abstract
AIM Myeloid differentiation factor 88 (MyD88) plays a key role in tumor proliferation and metastasis. Targeting MyD88 is a potent strategy in tumor therapy. TJ-M2010-5 is a small molecule derivative of aminothiazole and could inhibit dimer formation of MyD88. To explore the potential of TJ-M2010-5 in tumor therapy, we determined its antitumor effect and correlate mechanisms of TJ-M2010-5 in hepatocellular carcinoma (HCC). METHODS The antitumor effect of intratumoral injection of TJ-M2010-5 to H22 tumor-bearing BALB/c mice was observed. Tumor growth was monitored. The expression of MyD88 and Ki-67 were detected by immunofluorescence. In vitro, the impacts of TJ-M2010-5 on proliferation, cell cycle, necrosis, and apoptosis of H22 cells were evaluated. The direct and indirect effects of TJ-M2010-5 on macrophages were evaluated using flow cytometry. RESULTS TJ-M2010-5 induced both G0 /G1 and G1 /S phase arrests in HCC cells. Mechanically, downstream activation of MyD88 was suppressed by TJ-M2010-5 through the extracellular regulated protein kinase-1/2/p90 ribosomal S6 kinase/glycogen synthase kinase-3β signaling pathway. In turn, cyclin-dependent kinase (CDK)6/cyclin D1 and CDK2/cyclin E complexes were downregulated. More importantly, TJ-M2010-5 significantly inhibited tumor growth in mice. Additionally, the portion of antitumor M1 macrophages (F4/80+ CD11c+ ) in the tumor microenvironment were increased after TJ-M2010-5 treatment. Together, these data indicate that TJ-M2010-5 is a promising therapeutic drug for HCC. CONCLUSIONS These results indicate that MyD88 is a feasible target for antitumor treatment and TJ-M2010-5 is a qualified candidate for HCC therapy.
Collapse
Affiliation(s)
- Jing Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Xue Zhang
- Department of Breast Surgery, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Health, and Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China
| | - Haizhou Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Meng Zhang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Yanan Peng
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Mingqiang Li
- Department of Surgery, Taian City Central Hospital, Taian, China
| | - Lin Xie
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Health, and Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China
| | - Fengchao Jiang
- Academy of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiping Gong
- Department of Breast Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Ping Zhou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Health, and Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China
| |
Collapse
|
48
|
Shen S, Dean DC, Yu Z, Duan Z. Role of cyclin-dependent kinases (CDKs) in hepatocellular carcinoma: Therapeutic potential of targeting the CDK signaling pathway. Hepatol Res 2019; 49:1097-1108. [PMID: 31009153 DOI: 10.1111/hepr.13353] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 02/23/2019] [Accepted: 03/28/2019] [Indexed: 12/12/2022]
Abstract
Liver cancer is the fourth leading cause of cancer related mortality in the world, with hepatocellular carcinoma (HCC) representing the most common primary subtype. Two-thirds of HCC patients have advanced disease when diagnosed, and for these patients, treatment strategies remain limited. In addition, there is a high incidence of tumor recurrence after surgical resection with the current treatment regimens. The development of novel and more effective agents is required. Cyclin-dependent kinases (CDKs) constitute a family of 21 different protein kinases involved in regulating cell proliferation, apoptosis, and drug resistance, and are evaluated in preclinical and clinical trials as chemotherapeutics. To summarize and discuss the therapeutic potential of targeting CDKs in HCC, recent published articles identified from PubMed were comprehensively reviewed. The key words included hepatocellular carcinoma, cyclin-dependent kinases, and CDK inhibitors. This review focuses on the emerging evidence from studies describing the genetic and functional aspects of CDKs in HCC. We also present an overview of CDK inhibitors that have shown efficacy in laboratory studies of HCC. Although many of the studies assessing CDK-targeting therapies in HCC are at the preclinical stage, there is significant evidence that CDK inhibitors used alone or in combination with established chemotherapy drugs could have significant applications in HCC.
Collapse
Affiliation(s)
- Shen Shen
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Sarcoma Biology Laboratory, Department of Orthopedic Surgery, David Geffen School of Medicine at University of Los Angeles, Los Angeles, CA, USA
| | - Dylan C Dean
- Sarcoma Biology Laboratory, Department of Orthopedic Surgery, David Geffen School of Medicine at University of Los Angeles, Los Angeles, CA, USA
| | - Zujiang Yu
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenfeng Duan
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Sarcoma Biology Laboratory, Department of Orthopedic Surgery, David Geffen School of Medicine at University of Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
49
|
Liang Z, Li X, Chen J, Cai H, Zhang L, Li C, Tong J, Hu W. PRC1 promotes cell proliferation and cell cycle progression by regulating p21/p27-pRB family molecules and FAK-paxillin pathway in non-small cell lung cancer. Transl Cancer Res 2019; 8:2059-2072. [PMID: 35116955 PMCID: PMC8799135 DOI: 10.21037/tcr.2019.09.19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 09/11/2019] [Indexed: 12/12/2022]
Abstract
Background This study aimed to demonstrate the function and molecular mechanism of protein regulator of cytokinesis 1 (PRC1) in the carcinogenesis of non-small cell lung cancer (NSCLC). Methods Bioinformatics analysis was performed. Cell culture and plasmid construction were conducted for cell transfection. mRNA and protein expression, cell proliferation, migration, and cell cycle were detected. Mice models were also constructed. The relationship between PRC1 and the prognosis of NSCLC patients was analyzed. Results PRC1 expression was higher in tumor tissues than adjacent non-tumor tissues (P<0.05). Cells transfected with the high-expression PRC1 plasmid (TOPO-PRC1 group) had the stronger ability of proliferation and migration (P<0.05) along with a lower incidence of stay at the G2/M phase (P<0.05) than the low-expression PRC1 plasmid. Mice models showed tumors obtained from mice in the TOPO-PRC1 group significantly grew faster, larger, and heavier (P<0.05) than the low-expression PRC1 group. Among the 150 NSCLC patients, patients with the higher PRC1 expression were more likely to have lymph node metastasis occur (P<0.05) and progress into an advanced stage (P<0.05), and showed shorter survival (P<0.05). Moreover, the TOPO-PRC1 group had a lower phosphorylation level, and a lower expression of Cip1/p21 (P<0.05) and Kip1/p27 (P<0.01). Conclusions PRC1 could promote cell proliferation and cell cycle progression through FAK-paxillin pathway molecules and the regulation of the phosphorylation level of p21/p27-pRB family molecules. PRC1 might be a new and promising therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Zhigang Liang
- Department of Thoracic Surgery, Ningbo First Hospital, Ningbo 315000, China
| | - Xinjian Li
- Department of Thoracic Surgery, Ningbo First Hospital, Ningbo 315000, China
| | - Jian Chen
- Department of Thoracic Surgery, Ningbo First Hospital, Ningbo 315000, China
| | - Haina Cai
- Department of Thoracic Surgery, Ningbo First Hospital, Ningbo 315000, China
| | - Liqun Zhang
- Department of Thoracic Surgery, Ningbo First Hospital, Ningbo 315000, China
| | - Chenwei Li
- Department of Thoracic Surgery, Ningbo First Hospital, Ningbo 315000, China
| | - Jingjie Tong
- Department of Thoracic Surgery, Ningbo First Hospital, Ningbo 315000, China
| | - Wentao Hu
- Department of Thoracic Surgery, Ningbo First Hospital, Ningbo 315000, China
| |
Collapse
|
50
|
Downregulation of miR-144 by triptolide enhanced p85α-PTEN complex formation causing S phase arrest of human nasopharyngeal carcinoma cells. Eur J Pharmacol 2019; 855:137-148. [PMID: 31059711 DOI: 10.1016/j.ejphar.2019.04.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 12/15/2022]
Abstract
Selective pharmacologic targeting of cell cycle regulators is a potent anti-cancer therapeutic strategy. Here, we show that caspase-3-mediated p21 cleavage involves p53 independent of triptolide (TPL)-induced S phase arrest in human type 1 nasopharyngeal carcinoma (NPC) cells. Coimmunoprecipitation studies demonstrated that TPL causes S phase cell cycle arrest by suppressing the formation of cyclin A-phosphor (p)-cyclin-dependent kinas 2 (CDK2) (Thr 39) complexes. Ectopic expression of constitutively active protein kinase B1 (Akt1) blocks the induction of S phase arrest and the suppression of cyclin A expression and CDK2 Thr 39 phosphorylation by TPL. Expression of the phosphomimetic mutant CDK2 (T39E) rescues the cells from TPL-induced S phase arrest, whereas phosphorylation-deficient CDK2 (T39A) expression regulates cell growth with significant S phase arrest and enhances TPL-triggered S phase arrest. Treatment with TPL induces an increase in the formation of complexes between unphosphorylated phosphatase and tensin homolog deleted from chromosome 10 (PTEN) and p85α in the plasma membrane. Decreased microRNA (miR)-144 expression and increased PTEN expression after TPL treatment were demonstrated, and TPL-enhanced p85α-PTEN complexes and inhibitory effects on Akt (Ser 473) phosphorylation and S phase arrest were suppressed by ectopic PTEN short hairpin RNA or miR-144 expression. Knockdown of endogenous miR-144 by miR-144 Trap upregulated PTEN expression and accordingly enhanced p85α-PTEN complex formation and S phase arrest. Collectively, the effect of TPL on S phase arrest in human NPC cells is likely to enhance the p85α-PTEN interaction in the plasma membrane by suppressing miR-144 expression, resulting in the attenuation of cyclin A-p-CDK2 (Thr 39) complex formation via Akt inactivation.
Collapse
|