1
|
Smith AR, Rizvi F, Everton E, Adeagbo A, Wu S, Tam Y, Muramatsu H, Pardi N, Weissman D, Gouon-Evans V. Transient growth factor expression via mRNA in lipid nanoparticles promotes hepatocyte cell therapy in mice. Nat Commun 2024; 15:5010. [PMID: 38866762 PMCID: PMC11169405 DOI: 10.1038/s41467-024-49332-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 06/03/2024] [Indexed: 06/14/2024] Open
Abstract
Primary human hepatocyte (PHH) transplantation is a promising alternative to liver transplantation, whereby liver function could be restored by partial repopulation of the diseased organ with healthy cells. However, currently PHH engraftment efficiency is low and benefits are not maintained long-term. Here we refine two male mouse models of human chronic and acute liver diseases to recapitulate compromised hepatocyte proliferation observed in nearly all human liver diseases by overexpression of p21 in hepatocytes. In these clinically relevant contexts, we demonstrate that transient, yet robust expression of human hepatocyte growth factor and epidermal growth factor in the liver via nucleoside-modified mRNA in lipid nanoparticles, whose safety was validated with mRNA-based COVID-19 vaccines, drastically improves PHH engraftment, reduces disease burden, and improves overall liver function. This strategy may overcome the critical barriers to clinical translation of cell therapies with primary or stem cell-derived hepatocytes for the treatment of liver diseases.
Collapse
Affiliation(s)
- Anna R Smith
- Department of Medicine, Section of Gastroenterology, Center for Regenerative Medicine, Boston University Chobanian & Avedisian School of Medicine & Boston Medical Center, Boston, MA, USA
| | - Fatima Rizvi
- Department of Medicine, Section of Gastroenterology, Center for Regenerative Medicine, Boston University Chobanian & Avedisian School of Medicine & Boston Medical Center, Boston, MA, USA
| | - Elissa Everton
- Department of Medicine, Section of Gastroenterology, Center for Regenerative Medicine, Boston University Chobanian & Avedisian School of Medicine & Boston Medical Center, Boston, MA, USA
| | - Anisah Adeagbo
- Department of Medicine, Section of Gastroenterology, Center for Regenerative Medicine, Boston University Chobanian & Avedisian School of Medicine & Boston Medical Center, Boston, MA, USA
| | - Susan Wu
- Department of Medicine, Section of Gastroenterology, Center for Regenerative Medicine, Boston University Chobanian & Avedisian School of Medicine & Boston Medical Center, Boston, MA, USA
| | - Ying Tam
- Acuitas Therapeutics, Vancouver, BC, Canada
| | - Hiromi Muramatsu
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Norbert Pardi
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Valerie Gouon-Evans
- Department of Medicine, Section of Gastroenterology, Center for Regenerative Medicine, Boston University Chobanian & Avedisian School of Medicine & Boston Medical Center, Boston, MA, USA.
| |
Collapse
|
2
|
Xiao M, Yao J, Shao Z, Chen X. Silk-Based 3D Porous Scaffolds for Tissue Engineering. ACS Biomater Sci Eng 2024; 10:2827-2840. [PMID: 38690985 DOI: 10.1021/acsbiomaterials.4c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Silk fibroin, extracted from the silk of the Bombyx mori silkworm, stands out as a biomaterial due to its nontoxic nature, excellent biocompatibility, and adjustable biodegradability. Porous scaffolds, a type of biomaterial, are crucial for creating an optimal microenvironment that supports cell adhesion and proliferation, thereby playing an essential role in tissue remodeling and repair. Therefore, this review focuses on 3D porous silk fibroin-based scaffolds, first summarizing their preparation methods and then detailing their regenerative effects on bone, cartilage, tendon, vascular, neural, skin, hepatic, and tracheal epithelial tissue engineering in recent years.
Collapse
Affiliation(s)
- Menglin Xiao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People's Republic of China
| | - Jinrong Yao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People's Republic of China
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People's Republic of China
| | - Xin Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People's Republic of China
| |
Collapse
|
3
|
Abbas N, You K, Getachew A, Wu F, Hussain M, Huang X, Chen Y, Pan T, Li Y. Kupffer cells abrogate homing and repopulation of allogeneic hepatic progenitors in injured liver site. Stem Cell Res Ther 2024; 15:48. [PMID: 38378583 PMCID: PMC10877762 DOI: 10.1186/s13287-024-03656-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Allogeneic hepatocyte transplantation is an emerging approach to treat acute liver defects. However, durable engraftment of the transplanted cells remains a daunting task, as they are actively cleared by the recipient's immune system. Therefore, a detailed understanding of the innate or adaptive immune cells-derived responses against allogeneic transplanted hepatic cells is the key to rationalize cell-based therapies. METHODS Here, we induced an acute inflammatory regenerative niche (3-96 h) on the surface of the liver by the application of cryo-injury (CI) to systematically evaluate the innate immune response against transplanted allogeneic hepatic progenitors in a sustained micro-inflammatory environment. RESULTS The resulting data highlighted that the injured site was significantly repopulated by alternating numbers of innate immune cells, including neutrophils, monocytes and Kupffer cells (KCs), from 3 to 96 h. The transplanted allo-HPs, engrafted 6 h post-injury, were collectively eliminated by the innate immune response within 24 h of transplantation. Selective depletion of the KCs demonstrated a delayed recruitment of monocytes from day 2 to day 6. In addition, the intrasplenic engraftment of the hepatic progenitors 54 h post-transplantation was dismantled by KCs, while a time-dependent better survival and translocation of the transplanted cells into the injured site could be observed in samples devoid of KCs. CONCLUSION Overall, this study provides evidence that KCs ablation enables a better survival and integration of allo-HPs in a sustained liver inflammatory environment, having implications for rationalizing the cell-based therapeutic interventions against liver defects.
Collapse
Affiliation(s)
- Nasir Abbas
- Center for Health Research, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Centre for Regenerative Medicine and Health (CRMH), Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong, Hong Kong SAR, China
| | - Kai You
- Center for Health Research, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Anteneh Getachew
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, USA
| | - Feima Wu
- Center for Health Research, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Muzammal Hussain
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Xinping Huang
- Center for Health Research, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yan Chen
- Center for Health Research, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Tingcai Pan
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong Province, China
| | - Yinxiong Li
- Center for Health Research, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- State Key Laboratory of Respiratory Disease, Guangzhou, 510000, China.
- China-New Zealand Joint Laboratory of Biomedicine and Health, Guangzhou, 510530, China.
| |
Collapse
|
4
|
Tapparo M, Saccu G, Pasquino C, Fonsato V, Medana C, Schiavo V, Mecarelli E, Maccagno M, Silengo L, Bruno S, Camussi G, Herrera Sanchez MB. In vitro characterization of 3D culture-based differentiation of human liver stem cells. Front Cell Dev Biol 2024; 12:1352013. [PMID: 38389704 PMCID: PMC10881830 DOI: 10.3389/fcell.2024.1352013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Introduction: The lack of functional hepatocytes poses a significant challenge for drug safety testing and therapeutic applications due to the inability of mature hepatocytes to expand and their tendency to lose functionality in vitro. Previous studies have demonstrated the potential of Human Liver Stem Cells (HLSCs) to differentiate into hepatocyte-like cells within an in vitro rotary cell culture system, guided by a combination of growth factors and molecules known to regulate hepatocyte maturation. In this study, we employed a matrix multi-assay approach to comprehensively characterize HLSC differentiation. Methods: We evaluated the expression of hepatic markers using qRT-PCR, immunofluorescence, and Western blot analysis. Additionally, we measured urea and FVIII secretion into the supernatant and developed an updated indocyanine green in vitro assay to assess hepatocyte functionality. Results: Molecular analyses of differentiated HLSC aggregates revealed significant upregulation of hepatic genes, including CYP450, urea cycle enzymes, and uptake transporters exclusively expressed on the sinusoidal side of mature hepatocytes, evident as early as 1 day post-differentiation. Interestingly, HLSCs transiently upregulated stem cell markers during differentiation, followed by downregulation after 7 days. Furthermore, differentiated aggregates demonstrated the ability to release urea and FVIII into the supernatant as early as the first 24 h, with accumulation over time. Discussion: These findings suggest that a 3D rotation culture system may facilitate rapid hepatic differentiation of HLSCs. Despite the limitations of this rotary culture system, its unique advantages hold promise for characterizing HLSC GMP batches for clinical applications.
Collapse
Affiliation(s)
- Marta Tapparo
- Department of Medical Sciences, University of Torino, Turin, Italy
- Molecular Biotechnology Centre, University of Torino, Turin, Italy
| | - Gabriele Saccu
- Molecular Biotechnology Centre, University of Torino, Turin, Italy
- Department of Molecular Biotechnology and Health Sciences, Turin, Italy
| | - Chiara Pasquino
- Molecular Biotechnology Centre, University of Torino, Turin, Italy
- Officina Farmaceutica, University of Torino, Turin, Italy
| | - Valentina Fonsato
- Molecular Biotechnology Centre, University of Torino, Turin, Italy
- Officina Farmaceutica, University of Torino, Turin, Italy
| | - Claudio Medana
- Department of Molecular Biotechnology and Health Sciences, Turin, Italy
| | - Valentina Schiavo
- Department of Molecular Biotechnology and Health Sciences, Turin, Italy
| | - Enrica Mecarelli
- Department of Molecular Biotechnology and Health Sciences, Turin, Italy
| | - Monica Maccagno
- Molecular Biotechnology Centre, University of Torino, Turin, Italy
- Department of Molecular Biotechnology and Health Sciences, Turin, Italy
| | - Lorenzo Silengo
- Molecular Biotechnology Centre, University of Torino, Turin, Italy
| | - Stefania Bruno
- Department of Medical Sciences, University of Torino, Turin, Italy
| | - Giovanni Camussi
- Department of Medical Sciences, University of Torino, Turin, Italy
| | - Maria Beatriz Herrera Sanchez
- Molecular Biotechnology Centre, University of Torino, Turin, Italy
- 2i3T, Società per la Gestione dell'incubatore di Imprese e per il Trasferimento Tecnologico, University of Torino, Turin, Italy
| |
Collapse
|
5
|
Smith AR, Rizvi F, Everton E, Adeagbo A, Wu S, Tam Y, Muramatsu H, Pardi N, Weissman D, Gouon-Evans V. Transient growth factor expression via mRNA in lipid nanoparticles promotes hepatocyte cell therapy to treat murine liver diseases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.11.575286. [PMID: 38260488 PMCID: PMC10802626 DOI: 10.1101/2024.01.11.575286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Primary human hepatocyte (PHH) transplantation is a promising alternative to liver transplantation, whereby liver function could be restored by partial repopulation of the diseased organ with healthy cells. However, currently PHH engraftment efficiency is low and benefits are not maintained long-term. Here we refine two mouse models of human chronic and acute liver diseases to recapitulate compromised hepatocyte proliferation observed in nearly all human liver diseases by overexpression of p21 in hepatocytes. In these clinically relevant contexts, we demonstrate that transient, yet robust expression of human hepatocyte growth factor and epidermal growth factor in the liver via nucleoside-modified mRNA in lipid nanoparticles, whose safety was validated with mRNA-based COVID-19 vaccines, drastically improves PHH engraftment, reduces disease burden, and improves overall liver function. This novel strategy may overcome the critical barriers to clinical translation of cell therapies with primary or stem cell-derived hepatocytes for the treatment of liver diseases.
Collapse
|
6
|
Hussein M, Pasqua M, Pereira U, Benzoubir N, Duclos-Vallée JC, Dubart-Kupperschmitt A, Legallais C, Messina A. Microencapsulated Hepatocytes Differentiated from Human Induced Pluripotent Stem Cells: Optimizing 3D Culture for Tissue Engineering Applications. Cells 2023; 12:cells12060865. [PMID: 36980206 PMCID: PMC10047414 DOI: 10.3390/cells12060865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/14/2023] Open
Abstract
Liver cell therapy and in vitro models require functional human hepatocytes, the sources of which are considerably limited. Human induced pluripotent stem cells (hiPSCs) represent a promising and unlimited source of differentiated human hepatocytes. However, when obtained in two-dimensional (2D) cultures these hepatocytes are not fully mature and functional. As three-dimensional culture conditions offer advantageous strategies for differentiation, we describe here a combination of three-dimensional (3D) approaches enabling the successful differentiation of functional hepatocytes from hiPSCs by the encapsulation of hiPSC-derived hepatoblasts in alginate beads of preformed aggregates. The resulting encapsulated and differentiated hepatocytes (E-iHep-Orgs) displayed a high level of albumin synthesis associated with the disappearance of α-fetoprotein (AFP) synthesis, thus demonstrating that the E-iHep-Orgs had reached a high level of maturation, similar to that of adult hepatocytes. Gene expression analysis by RT-PCR and immunofluorescence confirmed this maturation. Further functional assessments demonstrated their enzymatic activities, including lactate and ammonia detoxification, as well as biotransformation activities of Phase I and Phase II enzymes. This study provides proof of concept regarding the benefits of combining three-dimensional techniques (guided aggregation and microencapsulation) with liver differentiation protocols as a robust approach to generate mature and functional hepatocytes that offer a permanent and unlimited source of hepatocytes. Based on these encouraging results, our combined conditions to produce mature hepatocytes from hiPSCs could be extended to liver tissue engineering and bioartificial liver (BAL) applications at the human scale for which large biomasses are mandatory.
Collapse
Affiliation(s)
- Marwa Hussein
- UMR_S 1193, INSERM/Université Paris Saclay, F-94800 Villejuif, France
- Fédération Hospitalo-Universitaire (FHU) Hépatinov, F-94800 Villejuif, France
| | - Mattia Pasqua
- Fédération Hospitalo-Universitaire (FHU) Hépatinov, F-94800 Villejuif, France
- UMR CNRS 7338 Biomechanics & Bioengineering, Université de Technologie de Compiègne, Sorbonne Universités, F-60203 Compiegne, France
| | - Ulysse Pereira
- Fédération Hospitalo-Universitaire (FHU) Hépatinov, F-94800 Villejuif, France
- UMR CNRS 7338 Biomechanics & Bioengineering, Université de Technologie de Compiègne, Sorbonne Universités, F-60203 Compiegne, France
| | - Nassima Benzoubir
- UMR_S 1193, INSERM/Université Paris Saclay, F-94800 Villejuif, France
- Fédération Hospitalo-Universitaire (FHU) Hépatinov, F-94800 Villejuif, France
| | - Jean-Charles Duclos-Vallée
- UMR_S 1193, INSERM/Université Paris Saclay, F-94800 Villejuif, France
- Fédération Hospitalo-Universitaire (FHU) Hépatinov, F-94800 Villejuif, France
| | - Anne Dubart-Kupperschmitt
- UMR_S 1193, INSERM/Université Paris Saclay, F-94800 Villejuif, France
- Fédération Hospitalo-Universitaire (FHU) Hépatinov, F-94800 Villejuif, France
| | - Cecile Legallais
- Fédération Hospitalo-Universitaire (FHU) Hépatinov, F-94800 Villejuif, France
- UMR CNRS 7338 Biomechanics & Bioengineering, Université de Technologie de Compiègne, Sorbonne Universités, F-60203 Compiegne, France
- Correspondence: (C.L.); (A.M.)
| | - Antonietta Messina
- UMR_S 1193, INSERM/Université Paris Saclay, F-94800 Villejuif, France
- Fédération Hospitalo-Universitaire (FHU) Hépatinov, F-94800 Villejuif, France
- Correspondence: (C.L.); (A.M.)
| |
Collapse
|
7
|
Tam PKH, Wong KKY, Atala A, Giobbe GG, Booth C, Gruber PJ, Monone M, Rafii S, Rando TA, Vacanti J, Comer CD, Elvassore N, Grikscheit T, de Coppi P. Regenerative medicine: postnatal approaches. THE LANCET. CHILD & ADOLESCENT HEALTH 2022; 6:654-666. [PMID: 35963270 DOI: 10.1016/s2352-4642(22)00193-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 05/20/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Paper 2 of the paediatric regenerative medicine Series focuses on recent advances in postnatal approaches. New gene, cell, and niche-based technologies and their combinations allow structural and functional reconstitution and simulation of complex postnatal cell, tissue, and organ hierarchies. Organoid and tissue engineering advances provide human disease models and novel treatments for both rare paediatric diseases and common diseases affecting all ages, such as COVID-19. Preclinical studies for gastrointestinal disorders are directed towards oesophageal replacement, short bowel syndrome, enteric neuropathy, biliary atresia, and chronic end-stage liver failure. For respiratory diseases, beside the first human tracheal replacement, more complex tissue engineering represents a promising solution to generate transplantable lungs. Genitourinary tissue replacement and expansion usually involve application of biocompatible scaffolds seeded with patient-derived cells. Gene and cell therapy approaches seem appropriate for rare paediatric diseases of the musculoskeletal system such as spinal muscular dystrophy, whereas congenital diseases of complex organs, such as the heart, continue to challenge new frontiers of regenerative medicine.
Collapse
Affiliation(s)
- Paul Kwong Hang Tam
- Faculty of Medicine, Macau University of Science and Technology, Macau Special Administrative Region, China; Division of Paediatric Surgery, Department of Surgery, Queen Mary Hospital, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China.
| | - Kenneth Kak Yuen Wong
- Division of Paediatric Surgery, Department of Surgery, Queen Mary Hospital, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA
| | - Giovanni Giuseppe Giobbe
- Stem Cell and Regenerative Medicine Section, Developmental Biology and Cancer Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Claire Booth
- Stem Cell and Regenerative Medicine Section, Developmental Biology and Cancer Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Peter J Gruber
- Department of Surgery, Yale University, New Haven, CT, USA
| | - Mimmi Monone
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Shahin Rafii
- Ansary Stem Cell Institute, Department of Medicine, Division of Regenerative Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Thomas A Rando
- Paul F Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Joseph Vacanti
- Department of Pediatric Surgery, Laboratory for Tissue Engineering and Organ Fabrication, Harvard Medical School, Massachusetts General Hospital, Mass General Hospital for Children, Boston, MA, USA
| | - Carly D Comer
- Department of Pediatric Surgery, Laboratory for Tissue Engineering and Organ Fabrication, Harvard Medical School, Massachusetts General Hospital, Mass General Hospital for Children, Boston, MA, USA
| | - Nicola Elvassore
- Stem Cell and Regenerative Medicine Section, Developmental Biology and Cancer Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, UK; Department of Industrial Engineering, University of Padova, Padova, Italy
| | - Tracy Grikscheit
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Paolo de Coppi
- Stem Cell and Regenerative Medicine Section, Developmental Biology and Cancer Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, UK; Department of Specialist Neonatal and Paediatric Surgery, Great Ormond Street Hospital, London, UK.
| |
Collapse
|
8
|
Antarianto RD, Mahmood A, Giselvania A, Asri Dewi AAP, Gustinanda J, Pawitan JA. Inventing Engineered Organoids for end-stage liver failure patients. J Mol Histol 2022; 53:611-621. [PMID: 35882727 PMCID: PMC9374785 DOI: 10.1007/s10735-022-10085-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/28/2022] [Indexed: 11/30/2022]
Abstract
End-stage liver disease (ESLD) is a term used clinically in reference to a group of liver diseases with liver transplantation as the choice of treatment. Due to the limitations of liver transplantation, alternative treatments are needed. The use of primary human hepatocytes represents a valid alternative treatment, but the limitations related to hepatocyte quality, viability, function, conservation, and storage need to be overcome. Transplanted hepatocytes have only been followed for 6–9 months. Therefore, long-term causes of failures are not yet established, including rejection, apoptosis, or other causes. Other alternative therapies to replace liver transplantation include plasmapheresis, hemodiafiltration, and artificial livers. Unfortunately, these methods are highly limited due to availability, high cost, anaphylaxis reaction, development-deposition of immune-complexes, and restricted functionality. Liver organoids, which utilize stem cells instead of ‘impractical’ adult hepatocytes, may be a solution for the development of a complex bioartificial liver. Recent studies have explored the benefits of differentiating mature hepatocytes from stem cells inside a bioreactor. When the use of human-induced Hepatocytes (hiHeps) was investigated in mouse and pig models of liver failure, liver failure markers were decreased, hepatocyte function indicated by albumin synthesis improved, and survival time increased. Bioartificial liver treatment may decrease the infiltration of inflammatory cells into liver tissue by down-regulating pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Radiana D Antarianto
- Department of Histology Fakultas Kedokteran Universitas Indonesia, Jakarta Pusat, Indonesia.
- Stem cell and tissue engineering research cluster IMERI UI, Jakarta, Indonesia.
| | - Amer Mahmood
- Stem Cell Unit, Department of Anatomy, King Saud University, Riyadh, Saudi Arabia
| | - Angela Giselvania
- Stem Cell Unit, Department of Anatomy, King Saud University, Riyadh, Saudi Arabia
- Department of Radiotherapy RS Cipto Mangunkusumo, Jakarta, Indonesia
| | - Ayu Aa Prima Asri Dewi
- Doctoral Program in Biomedical Science Fakultas Kedokteran Universitas Indonesia, Jakarta Pusat, Indonesia
- Department of Histology, Fakultas Kedokteran dan Ilmu Kesehatan Universitas Warmadewa, Bali, Indonesia
| | - Jatmiko Gustinanda
- Master Program in Biomedical Science Fakultas Kedokteran Universitas Indonesia, Jakarta Pusat, Indonesia
| | - Jeanne Adiwinata Pawitan
- Department of Histology Fakultas Kedokteran Universitas Indonesia, Jakarta Pusat, Indonesia
- Stem cell and tissue engineering research cluster IMERI UI, Jakarta, Indonesia
- Undergraduate Medicine Program Fakultas Kedokteran Universitas Indonesia, Jakarta Pusat, Indonesia
- Integrated Service Unit Stem Cells RS Cipto Mangunkusumo, Jakarta, Indonesia
| |
Collapse
|
9
|
Jindal A, Jagdish RK, Kumar A. Hepatic Regeneration in Cirrhosis. J Clin Exp Hepatol 2022; 12:603-616. [PMID: 35535091 PMCID: PMC9077225 DOI: 10.1016/j.jceh.2021.08.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/31/2021] [Indexed: 01/03/2023] Open
Abstract
End-stage liver disease is characterized by massive hepatocyte death resulting in clinical decompensation and organ failures. Clinical consequences in cirrhosis are the results of the loss of functional hepatocytes and excessive scarring. The only curative therapy in advanced cirrhosis is orthotropic liver transplantation, but the clinical demand outweighs the availability of acceptable donor organs. Moreover, this also necessitates lifelong immunosuppression and carries associated risks. The liver has a huge capability for regeneration. Self-replication of quiescent differentiated hepatocytes and cholangiocytes occurs in patients with acute liver injury. Due to limited hepatocyte self-renewal capacity in advanced cirrhosis, great interest has therefore been shown in characterizing the possible role of hepatic progenitor cells and bone marrow-derived stem cells to therapeutically aid this process. Transplantation of cells from various sources that can be properly differentiated into functional liver cells or use of growth factors for ex-vivo expansion of progenitor cells is needed at utmost priority. Multiple researches over the last two decades have aided researchers in refining proliferation, differentiation, and storage techniques and understand the functionality of these cells for use in clinical practice. However, these cell-based therapies are still experimental and have to be used in trial settings.
Collapse
Key Words
- Ang2, angiopoietin 2
- BM, Bone marrow
- BM-MNCs, bone marrow mononuclear cells
- BMSC, bone marrow stem cells
- DAMPs, Damage associated molecular patterns
- EPCs, endothelial progenitor cells
- ESRP2, epithelial splicing regulatory protein 2
- GCSF
- HGF, hepatocyte growth factor
- HPC, Hepatocyte progenitor cells
- HSCs, hematopoietic stem cells
- Hh, Hedgehog
- HybHP, hybrid periportal hepatocytes
- MMP, matrix metalloprotease
- MSCs, mesenchymal stromal cells
- OLT, Orthotropic liver transplantation
- PAMPs, Pathogen associated molecular patterns
- SAH, severe alcoholic hepatitis
- SDF1, stromal-derived factor 1
- TNFSF12, tumor necrosis factor ligand superfamily member 12
- Terthigh, high Telomerase reverse transcriptase
- [Hnf4a], Hepatocyte Nuclear Factor 4 Alpha
- [Mfsd2a], Major Facilitator Superfamily Domain containing 2A
- acute liver failure
- chronic liver diseases
- hepatocyte transplant
- liver regeneration
Collapse
Affiliation(s)
- Ankur Jindal
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi 110070, India
| | | | - Anupam Kumar
- Department of Research, Institute of Liver and Biliary Sciences, New Delhi 110070, India
| |
Collapse
|
10
|
Bram Y, Nguyen DHT, Gupta V, Park J, Richardson C, Chandar V, Schwartz RE. Cell and Tissue Therapy for the Treatment of Chronic Liver Disease. Annu Rev Biomed Eng 2021; 23:517-546. [PMID: 33974812 PMCID: PMC8864721 DOI: 10.1146/annurev-bioeng-112619-044026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Liver disease is an important clinical problem, impacting 600 million people worldwide. It is the 11th-leading cause of death in the world. Despite constant improvement in treatment and diagnostics, the aging population and accumulated risk factors led to increased morbidity due to nonalcoholic fatty liver disease and steatohepatitis. Liver transplantation, first established in the 1960s, is the second-most-common solid organ transplantation and is the gold standard for the treatment of liver failure. However, less than 10% of the global need for liver transplantation is met at the current rates of transplantation due to the paucity of available organs. Cell- and tissue-based therapies present an alternative to organ transplantation. This review surveys the approaches and tools that have been developed, discusses the distinctive challenges that exist for cell- and tissue-based therapies, and examines the future directions of regenerative therapies for the treatment of liver disease.
Collapse
Affiliation(s)
- Yaron Bram
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Duc-Huy T Nguyen
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Vikas Gupta
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Jiwoon Park
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Chanel Richardson
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Vasuretha Chandar
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Robert E Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA; .,Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
11
|
Utility of Common Marmoset ( Callithrix jacchus) Embryonic Stem Cells in Liver Disease Modeling, Tissue Engineering and Drug Metabolism. Genes (Basel) 2020; 11:genes11070729. [PMID: 32630053 PMCID: PMC7397002 DOI: 10.3390/genes11070729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/21/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022] Open
Abstract
The incidence of liver disease is increasing significantly worldwide and, as a result, there is a pressing need to develop new technologies and applications for end-stage liver diseases. For many of them, orthotopic liver transplantation is the only viable therapeutic option. Stem cells that are capable of differentiating into all liver cell types and could closely mimic human liver disease are extremely valuable for disease modeling, tissue regeneration and repair, and for drug metabolism studies to develop novel therapeutic treatments. Despite the extensive research efforts, positive results from rodent models have not translated meaningfully into realistic preclinical models and therapies. The common marmoset Callithrix jacchus has emerged as a viable non-human primate model to study various human diseases because of its distinct features and close physiologic, genetic and metabolic similarities to humans. C. jacchus embryonic stem cells (cjESC) and recently generated cjESC-derived hepatocyte-like cells (cjESC-HLCs) could fill the gaps in disease modeling, liver regeneration and metabolic studies. They are extremely useful for cell therapy to regenerate and repair damaged liver tissues in vivo as they could efficiently engraft into the liver parenchyma. For in vitro studies, they would be advantageous for drug design and metabolism in developing novel drugs and cell-based therapies. Specifically, they express both phase I and II metabolic enzymes that share similar substrate specificities, inhibition and induction characteristics, and drug metabolism as their human counterparts. In addition, cjESCs and cjESC-HLCs are advantageous for investigations on emerging research areas, including blastocyst complementation to generate entire livers, and bioengineering of discarded livers to regenerate whole livers for transplantation.
Collapse
|
12
|
Fernández-Colino A, Iop L, Ventura Ferreira MS, Mela P. Fibrosis in tissue engineering and regenerative medicine: treat or trigger? Adv Drug Deliv Rev 2019; 146:17-36. [PMID: 31295523 DOI: 10.1016/j.addr.2019.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 05/11/2019] [Accepted: 07/04/2019] [Indexed: 02/07/2023]
Abstract
Fibrosis is a life-threatening pathological condition resulting from a dysfunctional tissue repair process. There is no efficient treatment and organ transplantation is in many cases the only therapeutic option. Here we review tissue engineering and regenerative medicine (TERM) approaches to address fibrosis in the cardiovascular system, the kidney, the lung and the liver. These strategies have great potential to achieve repair or replacement of diseased organs by cell- and material-based therapies. However, paradoxically, they might also trigger fibrosis. Cases of TERM interventions with adverse outcome are also included in this review. Furthermore, we emphasize the fact that, although organ engineering is still in its infancy, the advances in the field are leading to biomedically relevant in vitro models with tremendous potential for disease recapitulation and development of therapies. These human tissue models might have increased predictive power for human drug responses thereby reducing the need for animal testing.
Collapse
|
13
|
A serum-free medium suitable for maintaining cell morphology and liver-specific function in induced human hepatocytes. Cytotechnology 2019; 71:329-344. [PMID: 30603919 DOI: 10.1007/s10616-018-0289-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 12/05/2018] [Indexed: 12/15/2022] Open
Abstract
hiHep is a new type of hepatocyte-like cell that is predicted to be a potential unlimited source of hepatocytes for a bioartificial liver. However, hiHep cannot currently be used in clinical settings because serum must be added during the culture process. Thus, a defined medium is required. Because serum is complex, an efficient statistical approach based on the Plackett-Burman design was used. In this manner, an original medium and several significant cell growth factors were identified. These factors include insulin, VH, and VE, and the original medium was optimized based on these significant factors. Additionally, hiHep liver-specific functions and metabolism in the optimized serum-free medium were measured. Results showed that hiHep functions, such as glycogen storage, albumin secretion, and urea production, were well maintained in our optimized serum-free medium. In summary, we created a chemically defined, serum-free medium in which cell growth, proliferation, metabolism, and function were well maintained. This medium has the potential to support the clinical use of hiHep.
Collapse
|
14
|
N-acetylcysteine protects hepatocytes from hypoxia-related cell injury. Clin Exp Hepatol 2018; 4:260-266. [PMID: 30603674 PMCID: PMC6311746 DOI: 10.5114/ceh.2018.80128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 06/06/2018] [Indexed: 02/06/2023] Open
Abstract
Aim of the study Hepatocyte transplantation has been discussed as an alternative to liver transplantation in selected cases of acute and chronic liver failure and metabolic diseases. Immediately after infusion of hepatocytes, hypoxia-related cell injury is inevitable. N-acetylcysteine (NAC) has been suggested to attenuate hypoxic damage. This study’s objective was to evaluate NAC’s protective effect in a model of hypoxia-related hepatocyte injury. Material and methods HepG2 cells were used as a model for hepatocytes and were cultured under standardized hypoxia or normoxia for 24 hours with or without NAC. Growth kinetics were monitored using trypan blue staining. The activation of apoptotic pathways was measured using quantitative real-time PCR for Bcl-2/Bax and p53. The proportions of vital, apoptotic and necrotic cells were verified by fluorescence activated cell sorting using annexin V-labelling. The expression of hypoxia inducible factor 1 (HIF-1) was measured indirectly using its downstream target vascular endothelial growth factor A (VEGF-A). Results After NAC, cell proliferation increased under both hypoxia and normoxia by 528% and 320% (p < 0.05), while VEGF-A expression decreased under normoxia by 67% and 37% (p < 0.05). Compared to cells treated without NAC under hypoxia, the Bcl-2/Bax ratio increased significantly in cells treated with NAC. This finding was confirmed by an increased number of vital cells in FACS analysis. Conclusions NAC protects hepatocytes from hypoxic injury and ultimately activates anti-apoptotic pathways.
Collapse
|
15
|
Fomin ME, Beyer AI, Muench MO. Human fetal liver cultures support multiple cell lineages that can engraft immunodeficient mice. Open Biol 2018; 7:rsob.170108. [PMID: 29237808 PMCID: PMC5746544 DOI: 10.1098/rsob.170108] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 11/17/2017] [Indexed: 12/25/2022] Open
Abstract
During prenatal development the liver is composed of multiple cell types with unique properties compared to their adult counterparts. We aimed to establish multilineage cultures of human fetal liver cells that could maintain stem cell and progenitor populations found in the developing liver. An aim of this study was to test if maturation of fetal hepatocytes in short-term cultures supported by epidermal growth factor and oncostatin M can improve their ability to engraft immunodeficient mice. Fetal liver cultures supported a mixture of albumin+ cytokertin-19+ hepatoblasts, hepatocytes, cholangiocytes, CD14++CD32+ liver sinusoidal endothelial cells (LSECs) and CD34+CD133+ haematopoietic stem cells. Transplantation of cultured cells into uPA-NOG or TK-NOG mice yielded long-term engraftment of hepatocytes, abundant LSEC engraftment and multilineage haematopoiesis. Haematopoietic engraftment included reconstitution of B-, T- and NK-lymphocytes. Colonies of polarized human hepatocytes were observed surrounded by human LSECs in contact with human CD45+ blood cells in the liver sinusoids. Thus, fetal liver cultures support multiple cell lineages including LSECs and haematopoietic stem cells while also promoting the ability of fetal hepatocytes to engraft adult mouse livers. Fetal liver cultures and liver-humanized mice created from these cultures can provide useful model systems to study liver development, function and disease.
Collapse
Affiliation(s)
- Marina E Fomin
- Blood Systems Research Institute, 270 Masonic Avenue, San Francisco, CA, USA
| | - Ashley I Beyer
- Blood Systems Research Institute, 270 Masonic Avenue, San Francisco, CA, USA
| | - Marcus O Muench
- Blood Systems Research Institute, 270 Masonic Avenue, San Francisco, CA, USA .,Liver Center and Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
16
|
Domino Hepatocyte Transplantation: A Therapeutic Alternative for the Treatment of Acute Liver Failure. Can J Gastroenterol Hepatol 2018; 2018:2593745. [PMID: 30065914 PMCID: PMC6051327 DOI: 10.1155/2018/2593745] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/25/2018] [Accepted: 05/31/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND AND AIMS Acute liver failure (ALF) is a severe syndrome with an elevated mortality rate, ranging from 40 to 80 %. Currently, liver transplantation is the only definitive treatment for these patients and new therapies aiming to treat ALF include artificial organs implant and stem cells therapy, for example. However, a major limitation of liver donors exists. Living donor liver transplantation (LDLT), split liver transplantation (SLT), and domino liver transplantation (DLT) are some of the available alternatives to treat ALF patients, but these do not reduce the number of patients on waiting lists. Herein, we discuss domino hepatocyte transplantation (DHT) using livers that would not meet transplantation criteria. METHODS We conducted a literature search on PubMed/Medline using acute liver failure, liver transplantation, hepatocyte transplantation, and domino liver transplantation as key words. RESULTS New sources of biochemically functional hepatocytes and therapeutic treatments, in parallel to organ transplantation, may improve liver injury recovery and decrease mortality rates. Moreover, the literature reports hepatocyte transplantation as a therapeutic alternative for organ shortage. However, a major challenge remains for a wide clinical application of hepatocytes therapy, i.e., the availability of sufficient amounts of cells for transplantation. Ideally, hepatocytes isolated from livers rejected for transplantation may be a promising alternative for this problem. CONCLUSION Our review suggests that DHT may be an excellent strategy to increase cell supplies for hepatocyte transplantation.
Collapse
|
17
|
Yang W, Chen Q, Xia R, Zhang Y, Shuai L, Lai J, You X, Jiang Y, Bie P, Zhang L, Zhang H, Bai L. A novel bioscaffold with naturally-occurring extracellular matrix promotes hepatocyte survival and vessel patency in mouse models of heterologous transplantation. Biomaterials 2018; 177:52-66. [PMID: 29885586 DOI: 10.1016/j.biomaterials.2018.05.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/14/2018] [Accepted: 05/16/2018] [Indexed: 01/26/2023]
Abstract
BACKGROUND Naïve decellularized liver scaffold (nDLS)-based tissue engineering has been impaired by the lack of a suitable extracellular matrix (ECM) to provide "active micro-environmental" support. AIM The present study aimed to examine whether a novel, regenerative DLS (rDLS) with an active ECM improves primary hepatocyte survival and prevents thrombosis. METHODS rDLS was obtained from a 30-55% partial hepatectomy that was maintained in vivo for 3-5 days and then perfused with detergent in vitro. Compared to nDLS generated from normal livers, rDLS possesses bioactive molecules due to the regenerative period in vivo. Primary mouse hepatocyte survival was evaluated by staining for Ki-67 and Trypan blue exclusion. Thrombosis was assessed by immunohistochemistry and ex vivo diluted whole-blood perfusion. Hemocompatibility was determined by near-infrared laser-Doppler flowmetry and heterotopic transplantation. RESULTS After recellularization, rDLS contained more Ki-67-positive primary hepatocytes than nDLS. rDLS had a higher oxygen saturation and blood flow velocity and a lower expression of integrin αIIb and α4 than nDLS. Tumor necrosis factor-α, hepatocyte growth factor, interleukin-10, interleukin-6 and interleukin-1β were highly expressed throughout the rDLS, whereas expression of collagen-I, collagen-IV and thrombopoietin were lower in rDLS than in nDLS. Improved blood vessel patency was observed in rDLS both in vitro and in vivo. The results in mice were confirmed in large animals (pigs). CONCLUSION rDLS is an effective DLS with an "active microenvironment" that supports primary hepatocyte survival and promotes blood vessel patency. This is the first study to demonstrate a rDLS with a blood microvessel network that promotes hepatocyte survival and resists thrombosis.
Collapse
Affiliation(s)
- Wei Yang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, 400715 Chongqing, China; Hepatobiliary Institute, Southwest Hospital, The Army Medical University, Chongqing 400038, China
| | - Quanyu Chen
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, 400715 Chongqing, China; Hepatobiliary Institute, Southwest Hospital, The Army Medical University, Chongqing 400038, China
| | - Renpei Xia
- Hepatobiliary Institute, Southwest Hospital, The Army Medical University, Chongqing 400038, China
| | - Yujun Zhang
- Hepatobiliary Institute, Southwest Hospital, The Army Medical University, Chongqing 400038, China
| | - Ling Shuai
- Hepatobiliary Institute, Southwest Hospital, The Army Medical University, Chongqing 400038, China
| | - Jiejuan Lai
- Hepatobiliary Institute, Southwest Hospital, The Army Medical University, Chongqing 400038, China
| | - Xiaolin You
- Hepatobiliary Institute, Southwest Hospital, The Army Medical University, Chongqing 400038, China
| | - Yan Jiang
- Hepatobiliary Institute, Southwest Hospital, The Army Medical University, Chongqing 400038, China
| | - Ping Bie
- Hepatobiliary Institute, Southwest Hospital, The Army Medical University, Chongqing 400038, China
| | - Leida Zhang
- Hepatobiliary Institute, Southwest Hospital, The Army Medical University, Chongqing 400038, China.
| | - Hongyu Zhang
- Hepatobiliary Institute, Southwest Hospital, The Army Medical University, Chongqing 400038, China.
| | - Lianhua Bai
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, 400715 Chongqing, China; Hepatobiliary Institute, Southwest Hospital, The Army Medical University, Chongqing 400038, China.
| |
Collapse
|
18
|
Mamat N, Darus F, Md Isa R, Jaafar M, Kawashita M. Hierarchical bioceramic scaffold for tissue engineering: A review. INT J POLYM MATER PO 2017. [DOI: 10.1080/00914037.2017.1291507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Normahira Mamat
- Biomaterials Niche Area Group, School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia Engineering Campus, Nibong Tebal, Malaysia
| | - Fadilah Darus
- Biomaterials Niche Area Group, School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia Engineering Campus, Nibong Tebal, Malaysia
| | - Rosaniza Md Isa
- Biomaterials Niche Area Group, School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia Engineering Campus, Nibong Tebal, Malaysia
| | - Mariatti Jaafar
- Biomaterials Niche Area Group, School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia Engineering Campus, Nibong Tebal, Malaysia
| | - Masakazu Kawashita
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| |
Collapse
|
19
|
Establishment of a Novel Simplified Surgical Model of Acute Liver Failure in the Cynomolgus Monkey. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3518989. [PMID: 28097130 PMCID: PMC5209601 DOI: 10.1155/2016/3518989] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/19/2016] [Accepted: 11/28/2016] [Indexed: 12/19/2022]
Abstract
Models using large animals that are suitable for studying artificial liver support system (ALSS) are urgently needed. Presently available acute liver failure (ALF) models mainly involve pigs or dogs. Establishment of current surgical ALF models (hepatectomy/devascularization) requires either very good surgical skills or multistep processes—even multiple stages of surgery. Therefore, it is necessary to develop a simplified surgical method. Here we report a novel simplified surgical ALF model using cynomolgus monkeys. Six monkeys underwent portal-right renal venous shunt combined with common bile duct ligation and transection (PRRS + CBDLT). Postoperatively, the monkeys had progressively increased listlessness, loss of appetite, and obvious jaundice. Blood biochemistry levels (Amm, ALT, AST, TBiL, DBiL, ALP, LDH, CK, and Cr) and prothrombin time (PT) were significantly increased (all P < 0.01) and albumin (ALB) was markedly reduced (P < 0.01) compared with baseline values. Histological examination of liver specimens on postoperative day 10 revealed cholestasis and inflammation. PRRS + CBDLT produced ALF that closely correlated with clinical situations. Compared with other surgical or drug ALF models, ours was simplified and animals were hemodynamically stable. This model could provide a good platform for further research on ALSS, especially regarding their detoxification functions.
Collapse
|
20
|
Nishii K, Reese G, Moran EC, Sparks JL. Multiscale computational model of fluid flow and matrix deformation in decellularized liver. J Mech Behav Biomed Mater 2016; 57:201-14. [PMID: 26722987 PMCID: PMC4831654 DOI: 10.1016/j.jmbbm.2015.11.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/23/2015] [Accepted: 11/30/2015] [Indexed: 01/26/2023]
Abstract
Currently little is known about the biomechanical environment in decellularized tissue. The goal of this research is to quantify the mechanical microenvironment in decellularized liver, for varying organ-scale perfusion conditions, using a combined experimental/computational approach. Needle-guided ultra-miniature pressure sensors were inserted into liver tissue to measure parenchymal fluid pressure ex-situ in portal vein-perfused native (n=5) and decellularized (n=7) ferret liver, for flow rates from 3-12mL/min. Pressures were also recorded at the inlet near the portal vein cannula to estimate total vascular resistance of the specimens. Experimental results were fit to a multiscale computational model to simulate perfusion conditions inside native versus decellularized livers for four experimental flow rates. The multiscale model consists of two parts: an organ-scale electrical analog model of liver hemodynamics and a tissue-scale model that predicts pore fluid pressure, pore fluid velocity, and solid matrix stress and deformation throughout the 3D hepatic lobule. Distinct models were created for native versus decellularized liver. Results show that vascular resistance decreases by 82% as a result of decellularization. The hydraulic conductivity of the decellularized liver lobule, a measure of tissue permeability, was 5.6 times that of native liver. For the four flow rates studied, mean fluid pressures in the decellularized lobule were 0.6-2.4mmHg, mean fluid velocities were 211-767μm/s, and average solid matrix principal strains were 1.7-6.1%. In the future this modeling platform can be used to guide the optimization of perfusion seeding and conditioning strategies for decellularized scaffolds in liver bioengineering.
Collapse
Affiliation(s)
- Kenichiro Nishii
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, United States
| | - Greg Reese
- Research Computing Support Group, Miami University, Oxford, OH, United States
| | - Emma C Moran
- Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, United States
| | - Jessica L Sparks
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, United States.
| |
Collapse
|
21
|
Zhang H, Siegel CT, Shuai L, Lai J, Zeng L, Zhang Y, Lai X, Bie P, Bai L. Repair of liver mediated by adult mouse liver neuro-glia antigen 2-positive progenitor cell transplantation in a mouse model of cirrhosis. Sci Rep 2016; 6:21783. [PMID: 26905303 PMCID: PMC4764864 DOI: 10.1038/srep21783] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 02/01/2016] [Indexed: 02/07/2023] Open
Abstract
NG2-expressing cells are a population of periportal vascular stem/progenitors (MLpvNG2(+) cells) that were isolated from healthy adult mouse liver by using a "Percoll-Plate-Wait" procedure. We demonstrated that isolated cells are able to restore liver function after transplantation into a cirrhotic liver, and co-localized with the pericyte marker (immunohistochemistry: PDGFR-β) and CK19. Cells were positive for: stem cell (Sca-1, CD133, Dlk) and liver stem cell markers (EpCAM, CD14, CD24, CD49f); and negative for: hematopoietic (CD34, CD45) and endothelial markers (CD31, vWf, von Willebrand factor). Cells were transplanted (1 × 10(6) cells) in mice with diethylnitrosamine-induced cirrhosis at week 6. Cells showed increased hepatic associated gene expression of alpha-fetoprotein (AFP), Albumin (Alb), Glucose-6-phosphatase (G6Pc), SRY (sex determining region Y)-box 9 (Sox9), hepatic nuclear factors (HNF1a, HNF1β, HNF3β, HNF4α, HNF6, Epithelial cell adhesion molecule (EpCAM), Leucine-rich repeated-containing G-protein coupled receptor 5-positive (Lgr5) and Tyrosine aminotransferase (TAT). Cells showed decreased fibrogenesis, hepatic stellate cell infiltration, Kupffer cells and inflammatory cytokines. Liver function markers improved. In a cirrhotic liver environment, cells could differentiate into hepatic lineages. In addition, grafted MLpvNG2(+) cells could mobilize endogenous stem/progenitors to participate in liver repair. These results suggest that MLpvNG2(+) cells may be novel adult liver progenitors that participate in liver regeneration.
Collapse
Affiliation(s)
- Hongyu Zhang
- Hepatobiliary Institute, Southwestern Hospital, No. 30 Gaotanyan, ShapingBa Distract, Chongqing 400038, China
| | - Christopher T. Siegel
- Department of Surgery, Division of Hepatobiliary and Abdominal Organ Transplantation, Case Western Reserve University Hospital, Cleveland OH 44106, USA
| | - Ling Shuai
- Hepatobiliary Institute, Southwestern Hospital, No. 30 Gaotanyan, ShapingBa Distract, Chongqing 400038, China
| | - Jiejuan Lai
- Hepatobiliary Institute, Southwestern Hospital, No. 30 Gaotanyan, ShapingBa Distract, Chongqing 400038, China
| | - Linli Zeng
- Hepatobiliary Institute, Southwestern Hospital, No. 30 Gaotanyan, ShapingBa Distract, Chongqing 400038, China
| | - Yujun Zhang
- Hepatobiliary Institute, Southwestern Hospital, No. 30 Gaotanyan, ShapingBa Distract, Chongqing 400038, China
| | - Xiangdong Lai
- Hepatobiliary Institute, Southwestern Hospital, No. 30 Gaotanyan, ShapingBa Distract, Chongqing 400038, China
| | - Ping Bie
- Hepatobiliary Institute, Southwestern Hospital, No. 30 Gaotanyan, ShapingBa Distract, Chongqing 400038, China
| | - Lianhua Bai
- Hepatobiliary Institute, Southwestern Hospital, No. 30 Gaotanyan, ShapingBa Distract, Chongqing 400038, China
| |
Collapse
|
22
|
Sooppan R, Paulsen SJ, Han J, Ta AH, Dinh P, Gaffey AC, Venkataraman C, Trubelja A, Hung G, Miller JS, Atluri P. In Vivo Anastomosis and Perfusion of a Three-Dimensionally-Printed Construct Containing Microchannel Networks. Tissue Eng Part C Methods 2015; 22:1-7. [PMID: 26414863 DOI: 10.1089/ten.tec.2015.0239] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The field of tissue engineering has advanced the development of increasingly biocompatible materials to mimic the extracellular matrix of vascularized tissue. However, a majority of studies instead rely on a multiday inosculation between engineered vessels and host vasculature rather than the direct connection of engineered microvascular networks with host vasculature. We have previously demonstrated that the rapid casting of three-dimensionally-printed (3D) sacrificial carbohydrate glass is an expeditious and a reliable method of creating scaffolds with 3D microvessel networks. Here, we describe a new surgical technique to directly connect host femoral arteries to patterned microvessel networks. Vessel networks were connected in vivo in a rat femoral artery graft model. We utilized laser Doppler imaging to monitor hind limb ischemia for several hours after implantation and thus measured the vascular patency of implants that were anastomosed to the femoral artery. This study may provide a method to overcome the challenge of rapid oxygen and nutrient delivery to engineered vascularized tissues implanted in vivo.
Collapse
Affiliation(s)
- Renganaden Sooppan
- 1 Division of Cardiovascular Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Samantha J Paulsen
- 2 Department of Bioengineering, George R. Brown School of Engineering, Rice University , Houston, Texas
| | - Jason Han
- 1 Division of Cardiovascular Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Anderson H Ta
- 2 Department of Bioengineering, George R. Brown School of Engineering, Rice University , Houston, Texas
| | - Patrick Dinh
- 1 Division of Cardiovascular Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Ann C Gaffey
- 1 Division of Cardiovascular Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Chantel Venkataraman
- 1 Division of Cardiovascular Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Alen Trubelja
- 1 Division of Cardiovascular Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - George Hung
- 1 Division of Cardiovascular Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Jordan S Miller
- 2 Department of Bioengineering, George R. Brown School of Engineering, Rice University , Houston, Texas
| | - Pavan Atluri
- 1 Division of Cardiovascular Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| |
Collapse
|
23
|
Alizadeh E, Eslaminejad MB, Akbarzadeh A, Sadeghi Z, Abasi M, Herizchi R, Zarghami N. Upregulation of MiR-122 via Trichostatin A Treatments in Hepatocyte-like Cells Derived from Mesenchymal Stem Cells. Chem Biol Drug Des 2015; 87:296-305. [PMID: 26360933 DOI: 10.1111/cbdd.12664] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 08/29/2015] [Accepted: 08/31/2015] [Indexed: 12/13/2022]
Abstract
The miR-122 is a tissue-specific miRNA; its expression is abundant in liver. MiR-122 upregulation is crucial for differentiation, functionality, and maintenance of differentiated phenotype in hepatocytes. The improving effects of trichostatin A (TSA) on hepatic differentiation have been reported previously. The aim of this study was to determine whether TSA can affect the expression of miR-122 in hepatocyte-like cells (HLCs) generated from human adipose tissue-derived mesenchymal stem cells (hAT-MSCs). The hepatic differentiation of hAT-MSCs induced by a mixture of growth factors and cytokines either with or without TSA treatments. The functionality of HLCs generated with or without TSA and the expression levels of miR-122 were studied. The expression levels of miR-122 in TSA-treated HLCs was significantly (p < 0.05) higher than those generated by growth factors and cytokines, only. The downregulation of a-fetoprotein (AFP) levels but enhanced albumin synthesis (p < 0.05) and upregulation of liver-enriched transcription factors (LETFs) HNF4α (hepatocyte nuclear factor 4α) and HNF6 (hepatocyte nuclear factor 6) were observed in TSA-treated HLCs (p < 0.05). In conclusion, administration of TSA in hepatogenic differentiation of hAT-MSCs resulted in higher expression levels of miR-122, facilitation of differentiation, and subsequently attenuation of AFP levels.
Collapse
Affiliation(s)
- Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht Ave., Tabriz 3137851656, I.R. Iran
| | - MohamadReza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology at Cell Sciences Research Center, Royan Institute for Stem Cell Biology and Technology, ACER, Royan Institute, Tehran, I.R. Iran
| | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht Ave., Tabriz 3137851656, I.R. Iran
| | - Zohre Sadeghi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht Ave., Tabriz 3137851656, I.R. Iran
| | - Mozghan Abasi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht Ave., Tabriz 3137851656, I.R. Iran
| | - Roya Herizchi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht Ave., Tabriz 3137851656, I.R. Iran
| | - Nosratollah Zarghami
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht Ave., Tabriz 3137851656, I.R. Iran.,The Umbilical Cord Stem Cell Research Center (UCSRC), Tabriz University of Medical Sciences, Golgasht Ave., Tabriz 3137851656, I.R. Iran
| |
Collapse
|
24
|
Forbes SJ, Gupta S, Dhawan A. Cell therapy for liver disease: From liver transplantation to cell factory. J Hepatol 2015; 62:S157-69. [PMID: 25920085 DOI: 10.1016/j.jhep.2015.02.040] [Citation(s) in RCA: 218] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/20/2015] [Accepted: 02/27/2015] [Indexed: 02/08/2023]
Abstract
Work over several decades has laid solid foundations for the advancement of liver cell therapy. To date liver cell therapy in people has taken the form of hepatocyte transplantation for metabolic disorders with a hepatic basis, and for acute or chronic liver failure. Although clinical trials using various types of autologous cells have been implemented to promote liver regeneration or reduce liver fibrosis, clear evidence of therapeutic benefits have so far been lacking. Cell types that have shown efficacy in preclinical models include hepatocytes, liver sinusoidal endothelial cells, mesenchymal stem cells, endothelial progenitor cells, and macrophages. However, positive results in animal models have not always translated through to successful clinical therapies and more realistic preclinical models need to be developed. Studies defining the optimal repopulation by transplanted cells, including routes of cell transplantation, superior engraftment and proliferation of transplanted cells, as well as optimal immunosuppression regimens are required. Tissue engineering approaches to transplant cells in extrahepatic locations have also been proposed. The derivation of hepatocytes from pluripotent or reprogrammed cells raises hope that donor organ and cell shortages could be overcome in the future. Critical hurdles to be overcome include the production of hepatocytes from pluripotent cells with equal functional capacity to primary hepatocytes and long-term phenotypic stability in vivo.
Collapse
Affiliation(s)
- Stuart J Forbes
- MRC Centre for Regenerative Medicine, Scottish Centre for Regenerative Medicine, 5 Little France Drive, Edinburgh EH16 4UU, United Kingdom.
| | - Sanjeev Gupta
- Departments of Medicine and Pathology, Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, 1300 Morris Park Avenue, Ullmann Building, Room 625, Bronx, NY 10461, United States
| | - Anil Dhawan
- Paediatric Liver GI and Nutrition Center and NIHR/Wellcome Cell Therapy Unit, King's College Hospital at King's College, London SE59RS, United Kingdom
| |
Collapse
|
25
|
Gurruchaga H, Saenz del Burgo L, Ciriza J, Orive G, Hernández RM, Pedraz JL. Advances in cell encapsulation technology and its application in drug delivery. Expert Opin Drug Deliv 2015; 12:1251-67. [PMID: 25563077 DOI: 10.1517/17425247.2015.1001362] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
INTRODUCTION Cell encapsulation technology has improved enormously since it was proposed 50 years ago. The advantages offered over other alternative systems, such as the prevention of repetitive drug administration, have triggered the use of this technology in multiple therapeutic applications. AREAS COVERED In this article, improvements in cell encapsulation technology and strategies to overcome the drawbacks that prevent its use in the clinic have been summarized and discussed. Different studies and clinical trials that have been performed in several therapeutic applications have also been described. EXPERT OPINION The authors believe that the future translation of this technology from bench to bedside requires the optimization of diverse aspects: i) biosafety, controlling and monitoring cell viability; ii) biocompatibility, reducing pericapsular fibrotic growth and hypoxia suffered by the graft; iii) control over drug delivery; iv) and the final scale up. On the other hand, an area that deserves more attention is the cryopreservation of encapsulated cells as this will facilitate the arrival of these biosystems to the clinic.
Collapse
Affiliation(s)
- Haritz Gurruchaga
- University of the Basque Country, Laboratory of Pharmacy and Pharmaceutical Technology, NanoBioCel Group, Faculty of Pharmacy, UPV/EHU , Vitoria-Gasteiz, 01006 , Spain
| | | | | | | | | | | |
Collapse
|