1
|
Alessia A, Anastasia G, Alessia DD, Simona B, Alessandro P, Emanuela B, Valentina B, Valeria T, Nicola P, Dario B. Fetal and obstetrics manifestations of mitochondrial diseases. J Transl Med 2024; 22:853. [PMID: 39313811 PMCID: PMC11421203 DOI: 10.1186/s12967-024-05633-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
During embryonic and neonatal development, mitochondria have essential effects on metabolic and energetic regulation, shaping cell fate decisions and leading to significant short- and long-term effects on embryonic and offspring health. Therefore, perturbation on mitochondrial function can have a pathological effect on pregnancy. Several shreds of evidence collected in preclinical models revealed that severe mitochondrial dysfunction is incompatible with life or leads to critical developmental defects, highlighting the importance of correct mitochondrial function during embryo-fetal development. The mechanism impairing the correct development is unknown and may include a dysfunctional metabolic switch in differentiating cells due to decreased ATP production or altered apoptotic signalling. Given the central role of mitochondria in embryonic and fetal development, the mitochondrial dysfunction typical of Mitochondrial Diseases (MDs) should, in principle, be detectable during pregnancy. However, little is known about the clinical manifestations of MDs in embryonic and fetal development. In this manuscript, we review preclinical and clinical evidence suggesting that MDs may affect fetal development and highlight the fetal and maternal outcomes that may provide a wake-up call for targeted genetic diagnosis.
Collapse
Affiliation(s)
- Adelizzi Alessia
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Giri Anastasia
- Fetal Medicine and Surgery Service, Ospedale Maggiore Policlinico, Fondazione IRCCS Ca' Granda, Milan, Italy
| | - Di Donfrancesco Alessia
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Boito Simona
- Fetal Medicine and Surgery Service, Ospedale Maggiore Policlinico, Fondazione IRCCS Ca' Granda, Milan, Italy
| | - Prigione Alessandro
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Bottani Emanuela
- Department of Diagnostics and Public Health, University of Verona, Verona, 37124, Italy
| | - Bollati Valentina
- Dipartimento di Scienze Cliniche e di Comunità, Dipartimento di Eccellenza, University of Milan, Milan, 2023-2027, Italy
| | - Tiranti Valeria
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Persico Nicola
- Fetal Medicine and Surgery Service, Ospedale Maggiore Policlinico, Fondazione IRCCS Ca' Granda, Milan, Italy.
- Dipartimento di Scienze Cliniche e di Comunità, Dipartimento di Eccellenza, University of Milan, Milan, 2023-2027, Italy.
| | - Brunetti Dario
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy.
- Dipartimento di Scienze Cliniche e di Comunità, Dipartimento di Eccellenza, University of Milan, Milan, 2023-2027, Italy.
| |
Collapse
|
2
|
de Vareilles H, Rivière D, Mangin JF, Dubois J. Development of cortical folds in the human brain: An attempt to review biological hypotheses, early neuroimaging investigations and functional correlates. Dev Cogn Neurosci 2023; 61:101249. [PMID: 37141790 PMCID: PMC10311195 DOI: 10.1016/j.dcn.2023.101249] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/28/2023] [Accepted: 04/21/2023] [Indexed: 05/06/2023] Open
Abstract
The folding of the human brain mostly takes place in utero, making it challenging to study. After a few pioneer studies looking into it in post-mortem foetal specimen, modern approaches based on neuroimaging have allowed the community to investigate the folding process in vivo, its normal progression, its early disturbances, and its relationship to later functional outcomes. In this review article, we aimed to first give an overview of the current hypotheses on the mechanisms governing cortical folding. After describing the methodological difficulties raised by its study in fetuses, neonates and infants with magnetic resonance imaging (MRI), we reported our current understanding of sulcal pattern emergence in the developing brain. We then highlighted the functional relevance of early sulcal development, through recent insights about hemispheric asymmetries and early factors influencing this dynamic such as prematurity. Finally, we outlined how longitudinal studies have started to relate early folding markers and the child's sensorimotor and cognitive outcome. Through this review, we hope to raise awareness on the potential of studying early sulcal patterns both from a fundamental and clinical perspective, as a window into early neurodevelopment and plasticity in relation to growth in utero and postnatal environment of the child.
Collapse
Affiliation(s)
- H de Vareilles
- Université Paris-Saclay, NeuroSpin-BAOBAB, CEA, CNRS, Gif-sur-Yvette, France.
| | - D Rivière
- Université Paris-Saclay, NeuroSpin-BAOBAB, CEA, CNRS, Gif-sur-Yvette, France
| | - J F Mangin
- Université Paris-Saclay, NeuroSpin-BAOBAB, CEA, CNRS, Gif-sur-Yvette, France
| | - J Dubois
- Université Paris Cité, NeuroDiderot, Inserm, Paris, France; Université Paris-Saclay, NeuroSpin-UNIACT, CEA, Gif-sur-Yvette, France
| |
Collapse
|
3
|
Paredes MF, Mora C, Flores-Ramirez Q, Cebrian-Silla A, Del Dosso A, Larimer P, Chen J, Kang G, Gonzalez Granero S, Garcia E, Chu J, Delgado R, Cotter JA, Tang V, Spatazza J, Obernier K, Ferrer Lozano J, Vento M, Scott J, Studholme C, Nowakowski TJ, Kriegstein AR, Oldham MC, Hasenstaub A, Garcia-Verdugo JM, Alvarez-Buylla A, Huang EJ. Nests of dividing neuroblasts sustain interneuron production for the developing human brain. Science 2022; 375:eabk2346. [PMID: 35084970 DOI: 10.1126/science.abk2346] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The human cortex contains inhibitory interneurons derived from the medial ganglionic eminence (MGE), a germinal zone in the embryonic ventral forebrain. How this germinal zone generates sufficient interneurons for the human brain remains unclear. We found that the human MGE (hMGE) contains nests of proliferative neuroblasts with ultrastructural and transcriptomic features that distinguish them from other progenitors in the hMGE. When dissociated hMGE cells are transplanted into the neonatal mouse brain, they reform into nests containing proliferating neuroblasts that generate young neurons that migrate extensively into the mouse forebrain and mature into different subtypes of functional interneurons. Together, these results indicate that the nest organization and sustained proliferation of neuroblasts in the hMGE provide a mechanism for the extended production of interneurons for the human forebrain.
Collapse
Affiliation(s)
- Mercedes F Paredes
- Department of Neurology, University of California, San Francisco, CA 94143, USA.,Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, CA 94143, USA.,Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143, USA.,Developmental and Stem Cell Graduate Program, University of California, San Francisco, CA 94143, USA
| | - Cristina Mora
- Department of Pathology, University of California, San Francisco, CA 94143, USA
| | | | - Arantxa Cebrian-Silla
- Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, CA 94143, USA.,Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Ashley Del Dosso
- Department of Pathology, University of California, San Francisco, CA 94143, USA
| | - Phil Larimer
- Department of Neurology, University of California, San Francisco, CA 94143, USA
| | - Jiapei Chen
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143, USA.,Department of Pathology, University of California, San Francisco, CA 94143, USA
| | - Gugene Kang
- Developmental and Stem Cell Graduate Program, University of California, San Francisco, CA 94143, USA.,Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Susana Gonzalez Granero
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València-Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Valencia, Spain
| | - Eric Garcia
- Department of Neurology, University of California, San Francisco, CA 94143, USA
| | - Julia Chu
- Department of Neurology, University of California, San Francisco, CA 94143, USA
| | - Ryan Delgado
- Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, CA 94143, USA
| | - Jennifer A Cotter
- Department of Pathology, Children's Hospital Los Angeles, and Keck School of Medicine of University of Southern California, Los Angeles, CA 90027, USA
| | - Vivian Tang
- Department of Pathology, University of California, San Francisco, CA 94143, USA
| | - Julien Spatazza
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Kirsten Obernier
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Jaime Ferrer Lozano
- Department of Pathology, Hospital Universitari i Politecnic La Fe, Valencia, Spain
| | - Maximo Vento
- Neonatal Research Group, Health Research Institute La Fe, Valencia, Spain.,Division of Neonatology, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Julia Scott
- Department of Bioengineering, Santa Clara University, Santa Clara, CA 95053, USA
| | - Colin Studholme
- Biomedical Image Computing Group, Departments of Pediatrics, Bioengineering, and Radiology, University of Washington, Seattle, WA 98195, USA.,Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.,Department of Radiology, University of Washington, Seattle, WA 98195, USA
| | - Tomasz J Nowakowski
- Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, CA 94143, USA.,Department of Anatomy and Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA 94143, USA
| | - Arnold R Kriegstein
- Department of Neurology, University of California, San Francisco, CA 94143, USA.,Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, CA 94143, USA.,Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143, USA.,Developmental and Stem Cell Graduate Program, University of California, San Francisco, CA 94143, USA
| | - Michael C Oldham
- Developmental and Stem Cell Graduate Program, University of California, San Francisco, CA 94143, USA.,Department of Pathology, University of California, San Francisco, CA 94143, USA.,Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Andrea Hasenstaub
- Department of Otolaryngology, University of California, San Francisco, CA 94143, USA
| | - Jose Manuel Garcia-Verdugo
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València-Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Valencia, Spain
| | - Arturo Alvarez-Buylla
- Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, CA 94143, USA.,Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143, USA.,Developmental and Stem Cell Graduate Program, University of California, San Francisco, CA 94143, USA.,Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Eric J Huang
- Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, CA 94143, USA.,Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143, USA.,Developmental and Stem Cell Graduate Program, University of California, San Francisco, CA 94143, USA.,Department of Pathology, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
4
|
Rutherford S, Sturmfels P, Angstadt M, Hect J, Wiens J, van den Heuvel MI, Scheinost D, Sripada C, Thomason M. Automated Brain Masking of Fetal Functional MRI with Open Data. Neuroinformatics 2022; 20:173-185. [PMID: 34129169 PMCID: PMC9437772 DOI: 10.1007/s12021-021-09528-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2021] [Indexed: 01/09/2023]
Abstract
Fetal resting-state functional magnetic resonance imaging (rs-fMRI) has emerged as a critical new approach for characterizing brain development before birth. Despite the rapid and widespread growth of this approach, at present, we lack neuroimaging processing pipelines suited to address the unique challenges inherent in this data type. Here, we solve the most challenging processing step, rapid and accurate isolation of the fetal brain from surrounding tissue across thousands of non-stationary 3D brain volumes. Leveraging our library of 1,241 manually traced fetal fMRI images from 207 fetuses, we trained a Convolutional Neural Network (CNN) that achieved excellent performance across two held-out test sets from separate scanners and populations. Furthermore, we unite the auto-masking model with additional fMRI preprocessing steps from existing software and provide insight into our adaptation of each step. This work represents an initial advancement towards a fully comprehensive, open-source workflow, with openly shared code and data, for fetal functional MRI data preprocessing.
Collapse
Affiliation(s)
- Saige Rutherford
- Donders Institute, Radboud University Medical Center, Nijmegen, The Netherlands.
- Department of Psychiatry, University of Michigan, MI, Ann Arbor, USA.
| | - Pascal Sturmfels
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
| | - Mike Angstadt
- Department of Psychiatry, University of Michigan, MI, Ann Arbor, USA
| | - Jasmine Hect
- Department of Psychology, Wayne State University, Detroit, MI, USA
| | - Jenna Wiens
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
| | | | - Dustin Scheinost
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Department of Statistics and Data Science, Yale University, New Haven, CT, USA
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
| | - Chandra Sripada
- Department of Psychiatry, University of Michigan, MI, Ann Arbor, USA
| | - Moriah Thomason
- Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
- Department of Population Health, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
5
|
Hoffmann M, Abaci Turk E, Gagoski B, Morgan L, Wighton P, Tisdall MD, Reuter M, Adalsteinsson E, Grant PE, Wald LL, van der Kouwe AJW. Rapid head-pose detection for automated slice prescription of fetal-brain MRI. INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY 2021; 31:1136-1154. [PMID: 34421216 PMCID: PMC8372849 DOI: 10.1002/ima.22563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/29/2021] [Accepted: 02/09/2021] [Indexed: 06/13/2023]
Abstract
In fetal-brain MRI, head-pose changes between prescription and acquisition present a challenge to obtaining the standard sagittal, coronal and axial views essential to clinical assessment. As motion limits acquisitions to thick slices that preclude retrospective resampling, technologists repeat ~55-second stack-of-slices scans (HASTE) with incrementally reoriented field of view numerous times, deducing the head pose from previous stacks. To address this inefficient workflow, we propose a robust head-pose detection algorithm using full-uterus scout scans (EPI) which take ~5 seconds to acquire. Our ~2-second procedure automatically locates the fetal brain and eyes, which we derive from maximally stable extremal regions (MSERs). The success rate of the method exceeds 94% in the third trimester, outperforming a trained technologist by up to 20%. The pipeline may be used to automatically orient the anatomical sequence, removing the need to estimate the head pose from 2D views and reducing delays during which motion can occur.
Collapse
Affiliation(s)
- Malte Hoffmann
- Department of Radiology, Massachusetts General HospitalBostonMassachusettsUSA
- Department of RadiologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Esra Abaci Turk
- Fetal‐Neonatal Neuroimaging and Developmental Science Center, Boston Children's HospitalBostonMassachusettsUSA
- Electrical Engineering and Computer ScienceMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Borjan Gagoski
- Department of RadiologyHarvard Medical SchoolBostonMassachusettsUSA
- Fetal‐Neonatal Neuroimaging and Developmental Science Center, Boston Children's HospitalBostonMassachusettsUSA
| | - Leah Morgan
- Department of Radiology, Massachusetts General HospitalBostonMassachusettsUSA
| | - Paul Wighton
- Department of Radiology, Massachusetts General HospitalBostonMassachusettsUSA
| | - Matthew Dylan Tisdall
- Radiology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Martin Reuter
- Department of Radiology, Massachusetts General HospitalBostonMassachusettsUSA
- Department of RadiologyHarvard Medical SchoolBostonMassachusettsUSA
- German Center for Neurodegenerative DiseasesBonnGermany
| | - Elfar Adalsteinsson
- Electrical Engineering and Computer ScienceMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
- Institute for Medical Engineering and ScienceMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Patricia Ellen Grant
- Department of RadiologyHarvard Medical SchoolBostonMassachusettsUSA
- Fetal‐Neonatal Neuroimaging and Developmental Science Center, Boston Children's HospitalBostonMassachusettsUSA
| | - Lawrence L. Wald
- Department of Radiology, Massachusetts General HospitalBostonMassachusettsUSA
- Department of RadiologyHarvard Medical SchoolBostonMassachusettsUSA
| | - André J. W. van der Kouwe
- Department of Radiology, Massachusetts General HospitalBostonMassachusettsUSA
- Department of RadiologyHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
6
|
Tarui T, Im K, Madan N, Madankumar R, Skotko BG, Schwartz A, Sharr C, Ralston SJ, Kitano R, Akiyama S, Yun HJ, Grant E, Bianchi DW. Quantitative MRI Analyses of Regional Brain Growth in Living Fetuses with Down Syndrome. Cereb Cortex 2021; 30:382-390. [PMID: 31264685 DOI: 10.1093/cercor/bhz094] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/04/2019] [Accepted: 04/14/2019] [Indexed: 01/06/2023] Open
Abstract
Down syndrome (DS) is the most common liveborn autosomal chromosomal anomaly and is a major cause of developmental disability. Atypical brain development and the resulting intellectual disability originate during the fetal period. Perinatal interventions to correct such aberrant development are on the horizon in preclinical studies. However, we lack tools to sensitively measure aberrant structural brain development in living human fetuses with DS. In this study, we aimed to develop safe and precise neuroimaging measures to monitor fetal brain development in DS. We measured growth patterns of regional brain structures in 10 fetal brains with DS (29.1 ± 4.2, weeks of gestation, mean ± SD, range 21.7~35.1) and 12 control fetuses (25.2 ± 5.0, range 18.6~33.3) using regional volumetric analysis of fetal brain MRI. All cases with DS had confirmed karyotypes. We performed non-linear regression models to compare fitted regional growth curves between DS and controls. We found decreased growth trajectories of the cortical plate (P = 0.033), the subcortical parenchyma (P = 0.010), and the cerebellar hemispheres (P < 0.0001) in DS compared to controls. This study provides proof of principle that regional volumetric analysis of fetal brain MRI facilitates successful evaluation of brain development in living fetuses with DS.
Collapse
Affiliation(s)
- Tomo Tarui
- Mother Infant Research Institute, Fetal Neonatal Neurology Program, Pediatric Neurology, Tufts Medical Center, Boston, MA, USA
| | - Kiho Im
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Neel Madan
- Radiology, Tufts Medical Center, Boston, MA, USA
| | - Rajeevi Madankumar
- Maternal Fetal Medicine, Obstetrics and Gynecology, Long Island Jewish Medical Center Northwell Health, New Hyde Park, NY, USA
| | - Brian G Skotko
- Down Syndrome Program, Genetics, Pediatrics, Massachusetts General Hospital, Boston, MA, USA
| | - Allie Schwartz
- Down Syndrome Program, Genetics, Pediatrics, Massachusetts General Hospital, Boston, MA, USA
| | - Christianne Sharr
- Down Syndrome Program, Genetics, Pediatrics, Massachusetts General Hospital, Boston, MA, USA
| | - Steven J Ralston
- Maternal Fetal Medicine, Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA, USA
| | - Rie Kitano
- Mother Infant Research Institute, Fetal Neonatal Neurology Program, Pediatric Neurology, Tufts Medical Center, Boston, MA, USA
| | - Shizuko Akiyama
- Mother Infant Research Institute, Fetal Neonatal Neurology Program, Pediatric Neurology, Tufts Medical Center, Boston, MA, USA
| | - Hyuk Jin Yun
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ellen Grant
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Diana W Bianchi
- Prenatal Genomics and Fetal Therapy Section, Medical Gen etics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| |
Collapse
|
7
|
Thomason ME. Development of Brain Networks In Utero: Relevance for Common Neural Disorders. Biol Psychiatry 2020; 88:40-50. [PMID: 32305217 PMCID: PMC7808399 DOI: 10.1016/j.biopsych.2020.02.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 01/05/2020] [Accepted: 02/05/2020] [Indexed: 01/27/2023]
Abstract
Magnetic resonance imaging, histological, and gene analysis approaches in living and nonliving human fetuses and in prematurely born neonates have provided insight into the staged processes of prenatal brain development. Increased understanding of micro- and macroscale brain network development before birth has spurred interest in understanding the relevance of prenatal brain development to common neurological diseases. Questions abound as to the sensitivity of the intrauterine brain to environmental programming, to windows of plasticity, and to the prenatal origin of disorders of childhood that involve disruptions in large-scale network connectivity. Much of the available literature on human prenatal neural development comes from cross-sectional or case studies that are not able to resolve the longitudinal consequences of individual variation in brain development before birth. This review will 1) detail specific methodologies for studying the human prenatal brain, 2) summarize large-scale human prenatal neural network development, integrating findings from across a variety of experimental approaches, 3) explore the plasticity of the early developing brain as well as potential sex differences in prenatal susceptibility, and 4) evaluate opportunities to link specific prenatal brain developmental processes to the forms of aberrant neural connectivity that underlie common neurological disorders of childhood.
Collapse
Affiliation(s)
- Moriah E Thomason
- Department of Child and Adolescent Psychiatry, Department of Population Health, and Neuroscience Institute, New York University Langone Health, New York, New York.
| |
Collapse
|
8
|
Serati M, Delvecchio G, Orsenigo G, Mandolini GM, Lazzaretti M, Scola E, Triulzi F, Brambilla P. The Role of the Subplate in Schizophrenia and Autism: A Systematic Review. Neuroscience 2019; 408:58-67. [PMID: 30930130 DOI: 10.1016/j.neuroscience.2019.03.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 02/07/2023]
Abstract
The subplate (SP) represents a transitory cytoarchitectural fetal compartment containing most subcortical and cortico-cortical afferents, and has a fundamental role in the structural development of the healthy adult brain. There is evidence that schizophrenia and autism may be determined by developmental defects in the cortex or cortical circuitry during the earliest stages of pregnancy. This article provides an overview on fetal SP development, considering its role in schizophrenia and autism, as supported by a systematic review of the main databases. The SP has been described as a cortical amplifier with a role in the coordination of cortical activity, and sensitive growth and migration windows have crucial consequences with respect to cognitive functioning. Although there are not enough studies to draw final conclusions, improved knowledge of the SP's role in schizophrenia and autism spectrum disorders may help to elucidate and possibly prevent the onset of these two severe disorders.
Collapse
Affiliation(s)
- Marta Serati
- Department of Mental Health, ASST Rhodense, Rho, Milan, Italy.
| | - Giuseppe Delvecchio
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Giulia Orsenigo
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Italy
| | - Gian Mario Mandolini
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Italy
| | - Matteo Lazzaretti
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Italy
| | - Elisa Scola
- Department of Neuroradiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Fabio Triulzi
- Department of Neuroradiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paolo Brambilla
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; Department of Psychiatry and Behavioural Neurosciences, University of Texas at Houston, TX, USA
| |
Collapse
|
9
|
Robinson AJ, Ederies MA. Fetal neuroimaging: an update on technical advances and clinical findings. Pediatr Radiol 2018; 48:471-485. [PMID: 29550864 DOI: 10.1007/s00247-017-3965-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/14/2017] [Accepted: 08/09/2017] [Indexed: 10/17/2022]
Abstract
This paper is based on a literature review from 2011 to 2016. The paper is divided into two main sections. The first section relates to technical advances in fetal imaging techniques, including fetal motion compensation, imaging at 3.0 T, 3-D T2-weighted MRI, susceptibility-weighted imaging, computed tomography, morphometric analysis, diffusion tensor imaging, spectroscopy and fetal behavioral assessment. The second section relates to clinical updates, including cerebral lamination, migrational anomalies, midline anomalies, neural tube defects, posterior fossa anomalies, sulcation/gyration and hypoxic-ischemic insults.
Collapse
Affiliation(s)
- Ashley J Robinson
- Sidra Medical and Research Center, Qatar Foundation, Education City North, Al Luqta Street, Doha, 26999, Qatar. .,Clinical Radiology, Weill-Cornell Medical College, New York, NY, USA.
| | - M Ashraf Ederies
- Sidra Medical and Research Center, Qatar Foundation, Education City North, Al Luqta Street, Doha, 26999, Qatar.,Clinical Radiology, Weill-Cornell Medical College, New York, NY, USA
| |
Collapse
|
10
|
A normative spatiotemporal MRI atlas of the fetal brain for automatic segmentation and analysis of early brain growth. Sci Rep 2017; 7:476. [PMID: 28352082 PMCID: PMC5428658 DOI: 10.1038/s41598-017-00525-w] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 03/01/2017] [Indexed: 12/25/2022] Open
Abstract
Longitudinal characterization of early brain growth in-utero has been limited by a number of challenges in fetal imaging, the rapid change in size, shape and volume of the developing brain, and the consequent lack of suitable algorithms for fetal brain image analysis. There is a need for an improved digital brain atlas of the spatiotemporal maturation of the fetal brain extending over the key developmental periods. We have developed an algorithm for construction of an unbiased four-dimensional atlas of the developing fetal brain by integrating symmetric diffeomorphic deformable registration in space with kernel regression in age. We applied this new algorithm to construct a spatiotemporal atlas from MRI of 81 normal fetuses scanned between 19 and 39 weeks of gestation and labeled the structures of the developing brain. We evaluated the use of this atlas and additional individual fetal brain MRI atlases for completely automatic multi-atlas segmentation of fetal brain MRI. The atlas is available online as a reference for anatomy and for registration and segmentation, to aid in connectivity analysis, and for groupwise and longitudinal analysis of early brain growth.
Collapse
|
11
|
Pier DB, Gholipour A, Afacan O, Velasco-Annis C, Clancy S, Kapur K, Estroff JA, Warfield SK. 3D Super-Resolution Motion-Corrected MRI: Validation of Fetal Posterior Fossa Measurements. J Neuroimaging 2016; 26:539-44. [PMID: 26990618 DOI: 10.1111/jon.12342] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/04/2016] [Indexed: 02/01/2023] Open
Abstract
PURPOSE Current diagnosis of fetal posterior fossa anomalies by sonography and conventional MRI is limited by fetal position, motion, and by two-dimensional (2D), rather than three-dimensional (3D), representation. In this study, we aimed to validate the use of a novel magnetic resonance imaging (MRI) technique, 3D super-resolution motion-corrected MRI, to image the fetal posterior fossa. METHODS From a database of pregnant women who received fetal MRIs at our institution, images of 49 normal fetal brains were reconstructed. Six measurements of the cerebellum, vermis, and pons were obtained for all cases on 2D conventional and 3D reconstructed MRI, and the agreement between the two methods was determined using concordance correlation coefficients. Concordance of axial and coronal measurements of the transcerebellar diameter was also assessed within each method. RESULTS Between the two methods, the concordance of measurements was high for all six structures (P < .001), and was highest for larger structures such as the transcerebellar diameter. Within each method, agreement of axial and coronal measurements of the transcerebellar diameter was superior in 3D reconstructed MRI compared to 2D conventional MRI (P < .001). CONCLUSIONS This comparison study validates the use of 3D super-resolution motion-corrected MRI for imaging the fetal posterior fossa, as this technique results in linear measurements that have high concordance with 2D conventional MRI measurements. Lengths of the transcerebellar diameter measured within a 3D reconstruction are more concordant between imaging planes, as they correct for fetal motion and orthogonal slice acquisition. This technique will facilitate further study of fetal abnormalities of the posterior fossa.
Collapse
Affiliation(s)
- Danielle B Pier
- Department of Neurology, Boston Children's Hospital, Boston, MA.,Harvard Medical School, Boston, MA
| | - Ali Gholipour
- Department of Radiology, Boston Children's Hospital, Boston, MA.,Computational Radiology Laboratory, Boston Children's Hospital, Boston, MA.,Harvard Medical School, Boston, MA
| | - Onur Afacan
- Department of Radiology, Boston Children's Hospital, Boston, MA.,Computational Radiology Laboratory, Boston Children's Hospital, Boston, MA.,Harvard Medical School, Boston, MA
| | - Clemente Velasco-Annis
- Department of Radiology, Boston Children's Hospital, Boston, MA.,Computational Radiology Laboratory, Boston Children's Hospital, Boston, MA
| | - Sean Clancy
- Department of Radiology, Boston Children's Hospital, Boston, MA.,Computational Radiology Laboratory, Boston Children's Hospital, Boston, MA
| | - Kush Kapur
- Department of Neurology, Boston Children's Hospital, Boston, MA.,Harvard Medical School, Boston, MA
| | - Judy A Estroff
- Department of Radiology, Boston Children's Hospital, Boston, MA.,Harvard Medical School, Boston, MA
| | - Simon K Warfield
- Department of Radiology, Boston Children's Hospital, Boston, MA.,Computational Radiology Laboratory, Boston Children's Hospital, Boston, MA.,Harvard Medical School, Boston, MA
| |
Collapse
|