1
|
Shah H, Trivedi M, Gurjar T, Sahoo DK, Jergens AE, Yadav VK, Patel A, Pandya P. Decoding the Gut Microbiome in Companion Animals: Impacts and Innovations. Microorganisms 2024; 12:1831. [PMID: 39338505 PMCID: PMC11433972 DOI: 10.3390/microorganisms12091831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
The changing notion of "companion animals" and their increasing global status as family members underscores the dynamic interaction between gut microbiota and host health. This review provides a comprehensive understanding of the intricate microbial ecology within companion animals required to maintain overall health and prevent disease. Exploration of specific diseases and syndromes linked to gut microbiome alterations (dysbiosis), such as inflammatory bowel disease, obesity, and neurological conditions like epilepsy, are highlighted. In addition, this review provides an analysis of the various factors that impact the abundance of the gut microbiome like age, breed, habitual diet, and microbe-targeted interventions, such as probiotics. Detection methods including PCR-based algorithms, fluorescence in situ hybridisation, and 16S rRNA gene sequencing are reviewed, along with their limitations and the need for future advancements. Prospects for longitudinal investigations, functional dynamics exploration, and accurate identification of microbial signatures associated with specific health problems offer promising directions for future research. In summary, it is an attempt to provide a deeper insight into the orchestration of multiple microbial species shaping the health of companion animals and possible species-specific differences.
Collapse
Affiliation(s)
- Harsh Shah
- TREE Lab, Department of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara 391410, India (M.T.)
| | - Mithil Trivedi
- TREE Lab, Department of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara 391410, India (M.T.)
| | - Tejas Gurjar
- TREE Lab, Department of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara 391410, India (M.T.)
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA;
| | - Albert E. Jergens
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA;
| | - Virendra Kumar Yadav
- Marwadi University Research Center, Department of Microbiology, Faculty of Sciences, Marwadi University, Rajkot 360003, India;
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan 384265, India;
| | - Parth Pandya
- TREE Lab, Department of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara 391410, India (M.T.)
| |
Collapse
|
2
|
Rojas CA, Park B, Scarsella E, Jospin G, Entrolezo Z, Jarett JK, Martin A, Ganz HH. Species-level characterization of the core microbiome in healthy dogs using full-length 16S rRNA gene sequencing. Front Vet Sci 2024; 11:1405470. [PMID: 39286595 PMCID: PMC11404154 DOI: 10.3389/fvets.2024.1405470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/09/2024] [Indexed: 09/19/2024] Open
Abstract
Despite considerable interest and research in the canine fecal microbiome, our understanding of its species-level composition remains incomplete, as the majority of studies have only provided genus-level resolution. Here, we used full-length 16S rRNA gene sequencing to characterize the fecal microbiomes of 286 presumed healthy dogs living in homes in North America who are devoid of clinical signs, physical conditions, medication use, and behavioral problems. We identified the bacterial species comprising the core microbiome and investigated whether a dog's sex & neuter status, age, body weight, diet, and geographic region predicted microbiome variation. Our analysis revealed that 23 bacterial species comprised the core microbiome, among them Collinsella intestinalis, Megamonas funiformis, Peptacetobacter hiranonis, Prevotella copri, and Turicibacter sanguinis. The 23 taxa comprised 75% of the microbiome on average. Sterilized females, dogs of intermediate body sizes, and those exclusively fed kibble tended to harbor the most core taxa. Host diet category, geographic region, and body weight predicted microbiome beta-diversity, but the effect sizes were modest. Specifically, the fecal microbiomes of dogs fed kibble were enriched in several core taxa, including C. intestinalis, P. copri, and Holdemanella biformis, compared to those fed raw or cooked food. Conversely, dogs on a raw food diet exhibited higher abundances of Bacteroides vulgatus, Caballeronia sordicola, and Enterococcus faecium, among others. In summary, our study provides novel insights into the species-level composition and drivers of the fecal microbiome in healthy dogs living in homes; however, extrapolation of our findings to different dog populations will require further study.
Collapse
|
3
|
Li K, Xiao X, Li Y, Lu S, Zi J, Sun X, Xu J, Liu HY, Li X, Song T, Cai D. Insights into the interplay between gut microbiota and lipid metabolism in the obesity management of canines and felines. J Anim Sci Biotechnol 2024; 15:114. [PMID: 39118186 PMCID: PMC11308499 DOI: 10.1186/s40104-024-01073-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024] Open
Abstract
Obesity is a prevalent chronic disease that has significant negative impacts on humans and our companion animals, including dogs and cats. Obesity occurs with multiple comorbidities, such as diabetes, hypertension, heart disease and osteoarthritis in dogs and cats. A direct link between lipid metabolism dysregulation and obesity-associated diseases has been implicated. However, the understanding of such pathophysiology in companion animals is limited. This review aims to address the role of lipid metabolism in various metabolic disorders associated with obesity, emphasizing the involvement of the gut microbiota. Furthermore, we also discuss the management of obesity, including approaches like nutritional interventions, thus providing novel insights into obesity prevention and treatment for canines and felines.
Collapse
Affiliation(s)
- Kaiqi Li
- Laboratory of Animal Physiology and Molecular Nutrition, Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xiangyu Xiao
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuling Li
- School of Life Science and Engineering, Foshan University, Foshan, 528231, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310021, People's Republic of China
| | - Sichen Lu
- Laboratory of Animal Physiology and Molecular Nutrition, Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Jianghang Zi
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoqiang Sun
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jia Xu
- College of Agriculture, Jinhua Polytechnic, Jinhua, 321017, China
| | - Hao-Yu Liu
- Laboratory of Animal Physiology and Molecular Nutrition, Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoqiong Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310021, People's Republic of China.
| | - Tongxing Song
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Demin Cai
- Laboratory of Animal Physiology and Molecular Nutrition, Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
4
|
Acheampong OD, Ofori EK, Johnson SA, Egyam BC, Asare-Dompreh K, Amponsah SK, Asare-Anane H. Diagnostic utility of selected faecal biochemical parameters in the determination of acute diarrhoea and associated defecation stooling characteristics in dogs: An observational study. Vet Anim Sci 2024; 24:100353. [PMID: 38699217 PMCID: PMC11064610 DOI: 10.1016/j.vas.2024.100353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024] Open
Abstract
Diarrhoea, which is a clinical manifestation of various illnesses, is frequently observed in dogs. Regrettably, many dog owners find it difficult to provide comprehensive case histories, primarily because of limited interaction with their canine companions. This study aimed to evaluate the potential of faecal biochemical analytes in detecting and characterizing acute diarrhoea in dogs. Sixty-two domestic dogs were selected using the proportionate stratified sample technique. A structured questionnaire was used to collect demographic and clinical data. Faecal stool specimens from the dogs were obtained using the colon flush technique. The specimens were taken through biochemical analysis to determine urea, creatinine, total bilirubin, total cholesterol, triglycerides, gamma-glutamyl transferase and uric acid levels. Results showed a significant association between the diarrhoea status of the participants and their age, weight, breed, body size, source of last diet, period of inappetence, and other gastrointestinal signs (p < 0.050, respectively). Dogs that had not eaten in at least three days were five times more likely (p < 0.05) to have diarrhoea. Furthermore, miniature breeds were about six times more likely to develop diarrhoea (p < 0.05). Of the seven selected biochemical parameters, total faecal cholesterol was the most predictive index in diagnosing acute diarrhoea in dogs, with a likelihood ratio of 6.5, and it was the most accurate in predicting defecation stooling frequency and texture. In summary, in situations of inadequate case histories, measuring total faecal cholesterol could assist veterinarians in detecting diarrhoea and predicting its faecal stooling texture and frequency in dogs.
Collapse
Affiliation(s)
- Obed D. Acheampong
- Department of Chemical Pathology, University of Ghana Medical School, Accra, Ghana
- School of Veterinary Medicine, College of Basic and Applied Sciences, University of Ghana, Ghana
| | - Emmanuel K. Ofori
- Department of Chemical Pathology, University of Ghana Medical School, Accra, Ghana
| | - Sherry A.M. Johnson
- School of Veterinary Medicine, College of Basic and Applied Sciences, University of Ghana, Ghana
| | - Bill C. Egyam
- Department of Chemical Pathology, University of Ghana Medical School, Accra, Ghana
| | - Kweku Asare-Dompreh
- School of Veterinary Medicine, College of Basic and Applied Sciences, University of Ghana, Ghana
| | - Seth K. Amponsah
- Department of Medical Pharmacology, University of Ghana Medical School, Accra, Ghana
| | - Henry Asare-Anane
- Department of Chemical Pathology, University of Ghana Medical School, Accra, Ghana
| |
Collapse
|
5
|
Grant CE, Godfrey H, Tal M, Bakovic M, Shoveller AK, Blois SL, Hesta M, Verbrugghe A. Description of the fasted serum metabolomic signature of lean and obese cats at maintenance and of obese cats under energy restriction. PLoS One 2024; 19:e0299375. [PMID: 38489282 PMCID: PMC10942044 DOI: 10.1371/journal.pone.0299375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/05/2024] [Indexed: 03/17/2024] Open
Abstract
This study aimed to investigate the serum metabolomic profile of obese and lean cats as well as obese cats before and after energy restriction for weight loss. Thirty cats, 16 obese (body condition score 8 to 9/9) and 14 lean (body condition score 4 to 5/9), were fed a veterinary weight loss food during a 4-week period of weight maintenance (L-MAINT and O-MAINT). The 16 obese cats were then energy restricted by a 60% energy intake reduction with the same food for a 10-week period (O-RESTRICT). Fasted serum metabolites were measured using nuclear magnetic resonance and direct infusion mass spectrometry after the maintenance period for L-MAINT and O-MAINT cats and after the energy restriction period for O-RESTRICT and compared between groups using a two-sided t-test. Obese cats lost 672 g ± 303 g over the 10-week restriction period, representing a weight loss rate of 0.94 ± 0.28% per week. Glycine, l-alanine, l-histidine, l-glutamine, 2-hydroxybutyrate, isobutryric acid, citric acid, creatine, and methanol were greater in O-RESTRICT compared to O-MAINT. There was a greater concentration of long-chain acylcarnitines in O-RESTRICT compared to both O-MAINT and L-MAINT, and greater total amino acids compared to O-MAINT. Glycerol and 3-hydroxybutyric acid were greater in O-MAINT compared to L-MAINT, as were several lysophosphatidylcholines. Thus, energy restriction resulted in increased dispensable amino acids in feline serum which could indicate alterations in amino acid partitioning. An increase in lipolysis was not evident, though greater circulating acylcarnitines were observed, suggesting that fatty acid oxidation rates may have been greater under calorie restriction. More research is needed to elucidate energy metabolism and substrate utilization, specifically fatty acid oxidation and methyl status, during energy restriction in strict carnivorous cats to optimize weight loss.
Collapse
Affiliation(s)
- Caitlin E. Grant
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Hannah Godfrey
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Moran Tal
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Marica Bakovic
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Anna K. Shoveller
- Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, Ontario, Canada
| | - Shauna L. Blois
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Myriam Hesta
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Adronie Verbrugghe
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
6
|
Scarsella E, Fay JS, Jospin G, Jarett JK, Entrolezo Z, Ganz HH. Characterization and Description of the Fecal Microbiomes of Pet Domestic Ferrets ( Mustela putorius furo) Living in Homes. Animals (Basel) 2023; 13:3354. [PMID: 37958109 PMCID: PMC10647649 DOI: 10.3390/ani13213354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/14/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
The domestic ferret (Mustela putorius furo) is a popular companion pet in the United States, with an estimated population of 500,000. Despite being obligate carnivores with a fast digestive system, little is known about their gut microbiomes. This study aims to compare the fecal microbiomes of healthy domestic ferrets and cats, which are both obligate carnivores. We collected and analyzed stool samples from 36 healthy ferrets and 36 healthy cats, sequencing the V4 region of the 16S rRNA gene. Using QIIME 2, we assessed the alpha and beta diversities and identified the taxa differences. Compared to cats, ferrets exhibited a higher representation of Firmicutes and Proteobacteria, while Bacteroidota and Actinomycetota were more prevalent in cats. The ferrets' microbiomes displayed lower alpha diversities. The highly present bacterial genera in the gut microbiomes of ferrets included Clostridium sensu stricto, Streptococcus, Romboutsia, Paeniclostridium, Lactobacillus, Enterococcus, and Lactococcus. Notably, the ferrets' microbiomes significantly differed from those of cats. This research highlights the potential differences in gastrointestinal care for ferrets, emphasizing the need for tailored approaches. Future studies should explore microbiome variations in ferrets with gastrointestinal issues and their responses to dietary and medical interventions.
Collapse
Affiliation(s)
- Elisa Scarsella
- AnimalBiome, 400 29th Street, Suite 502, Oakland, CA 94609, USA; (E.S.); (G.J.); (J.K.J.); (Z.E.)
| | - J. Skyla Fay
- Ferret Microbiome Research Institute, Hull, MA 02045, USA;
| | - Guillaume Jospin
- AnimalBiome, 400 29th Street, Suite 502, Oakland, CA 94609, USA; (E.S.); (G.J.); (J.K.J.); (Z.E.)
| | - Jessica K. Jarett
- AnimalBiome, 400 29th Street, Suite 502, Oakland, CA 94609, USA; (E.S.); (G.J.); (J.K.J.); (Z.E.)
| | - Zhandra Entrolezo
- AnimalBiome, 400 29th Street, Suite 502, Oakland, CA 94609, USA; (E.S.); (G.J.); (J.K.J.); (Z.E.)
| | - Holly H. Ganz
- AnimalBiome, 400 29th Street, Suite 502, Oakland, CA 94609, USA; (E.S.); (G.J.); (J.K.J.); (Z.E.)
| |
Collapse
|
7
|
Allenspach K, Sung CH, Ceron JJ, Peres Rubio C, Bourgois-Mochel A, Suchodolski JS, Yuan L, Kundu D, Colom Comas J, Rea K, Mochel JP. Effect of the Probiotic Bacillus subtilis DE-CA9 TM on Fecal Scores, Serum Oxidative Stress Markers and Fecal and Serum Metabolome in Healthy Dogs. Vet Sci 2023; 10:566. [PMID: 37756088 PMCID: PMC10537710 DOI: 10.3390/vetsci10090566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND There is increasing interest in the use of Bacillus species as probiotics since their spore-forming ability favors their survival in the acidic gastric environment over other probiotic species. The subsequent germination of B. subtilis to their vegetative form allows for their growth in the small intestine and may increase their beneficial effect on the host. B. subtilis strains have also previously been shown to have beneficial effects in humans and production animals, however, no reports are available so far on their use in companion animals. STUDY DESIGN The goal of this study was therefore to investigate the daily administration of 1 × 109 cfu DE-CA9TM orally per day versus placebo on health parameters, fecal scores, fecal microbiome, fecal metabolomics, as well as serum metabolomics and oxidative stress markers in ten healthy Beagle dogs in a parallel, randomized, prospective, placebo-controlled design over a period of 45 days. RESULTS DE-CA9TM decreased the oxidative status compared to controls for advanced oxidation protein products (AOPP), thiobarbituric acid reactive substances (TBARS) and reactive oxygen metabolites (d-ROMS), suggesting an antioxidant effect of the treatment. Fecal metabolomics revealed a significant reduction in metabolites associated with tryptophan metabolism in the DE-CA9TM-treated group. DE-CA9TM also significantly decreased phenylalanine and homocysteine and increased homoserine and threonine levels. Amino acid metabolism was also affected in the serum metabolome, with increased levels of urea and cadaverine, and reductions in N-acetylornithine in DE-CA9TM compared to controls. Similarly, changes in essential amino acids were observed, with a significant increase in tryptophan and lysine levels and a decrease in homocysteine. An increase in serum guanine and deoxyuridine was also detected, with a decrease in beta-alanine in the animals that ingested DE-CA9TM. CONCLUSIONS Data generated throughout this study suggest that the daily administration of 1 × 109 cfu of DE-CA9TM in healthy Beagle dogs is safe and does not affect markers of general health and fecal scores. Furthermore, DE-CA9TM administration had a potential positive effect on some serum markers of oxidative stress, and protein and lipid metabolism in serum and feces.
Collapse
Affiliation(s)
- Karin Allenspach
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA;
| | - Chi-Hsuan Sung
- The Gastrointestinal Laboratory, Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; (C.-H.S.); (J.S.S.)
| | - Jose Joaquin Ceron
- Department of Clinical Pathology, College of Veterinary Medicine, University of Murcia, 30100 Murcia, Spain; (J.J.C.); (C.P.R.); (L.Y.)
| | - Camila Peres Rubio
- Department of Clinical Pathology, College of Veterinary Medicine, University of Murcia, 30100 Murcia, Spain; (J.J.C.); (C.P.R.); (L.Y.)
| | - Agnes Bourgois-Mochel
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA;
| | - Jan S. Suchodolski
- The Gastrointestinal Laboratory, Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; (C.-H.S.); (J.S.S.)
| | - Lingnan Yuan
- Department of Clinical Pathology, College of Veterinary Medicine, University of Murcia, 30100 Murcia, Spain; (J.J.C.); (C.P.R.); (L.Y.)
| | - Debosmita Kundu
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA; (D.K.); (J.P.M.)
| | - Joan Colom Comas
- ADM Cork H&W Limited, Bioinnovation Unit, Food Science Building, College Road, University College Cork, T12 Y337 Cork, Ireland; (J.C.C.); (K.R.)
| | - Kieran Rea
- ADM Cork H&W Limited, Bioinnovation Unit, Food Science Building, College Road, University College Cork, T12 Y337 Cork, Ireland; (J.C.C.); (K.R.)
| | - Jonathan P. Mochel
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA; (D.K.); (J.P.M.)
| |
Collapse
|
8
|
Scarsella E, Meineri G, Sandri M, Ganz HH, Stefanon B. Characterization of the Blood Microbiome and Comparison with the Fecal Microbiome in Healthy Dogs and Dogs with Gastrointestinal Disease. Vet Sci 2023; 10:vetsci10040277. [PMID: 37104432 PMCID: PMC10144428 DOI: 10.3390/vetsci10040277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/25/2023] [Accepted: 04/04/2023] [Indexed: 04/28/2023] Open
Abstract
Recent studies have found bacterial DNA in the blood of healthy individuals. To date, most studies on the blood microbiome have focused on human health, but this topic is an expanding research area in animal health as well. This study aims to characterize the blood microbiome of both healthy dogs and those with chronic gastro-enteropathies. For this study, blood and fecal samples were collected from 18 healthy and 19 sick subjects, DNA was extracted through commercial kits, and the V3-V4 regions of the 16S rRNA gene were sequenced on the Illumina platform. The sequences were analyzed for taxonomic annotation and statistical analysis. Alpha and beta diversities of fecal microbiome were significantly different between the two groups of dogs. Principal coordinates analysis revealed that healthy and sick subjects were significantly clustered for both blood and fecal microbiome samples. Moreover, bacterial translocation from the gut to the bloodstream has been suggested because of found shared taxa. Further studies are needed to determine the origin of the blood microbiome and the bacteria viability. The characterization of a blood core microbiome in healthy dogs has potential for use as a diagnostic tool to monitor for the development of gastro-intestinal disease.
Collapse
Affiliation(s)
- Elisa Scarsella
- AnimalBiome, 400 29th Street, Suite 101, Oakland, CA 94609, USA
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, Italy
| | - Giorgia Meineri
- Department of Veterinary Science, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Misa Sandri
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, Italy
| | - Holly H Ganz
- AnimalBiome, 400 29th Street, Suite 101, Oakland, CA 94609, USA
| | - Bruno Stefanon
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, Italy
| |
Collapse
|
9
|
Vecchiato CG, Golinelli S, Pinna C, Pilla R, Suchodolski JS, Tvarijonaviciute A, Rubio CP, Dorato E, Delsante C, Stefanelli C, Pagani E, Fracassi F, Biagi G. Fecal microbiota and inflammatory and antioxidant status of obese and lean dogs, and the effect of caloric restriction. Front Microbiol 2023; 13:1050474. [PMID: 36713218 PMCID: PMC9878458 DOI: 10.3389/fmicb.2022.1050474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction Obesity is the most common nutritional disease in dogs, and is generally managed by caloric restriction. Gut microbiota alteration could represent a predisposing factor for obesity development, which has been associated with a low-grade inflammatory condition and an impaired antioxidant status. Besides, weight loss has been shown to influence the gut microbiota composition and reduce the inflammatory response and oxidative stress. Method However, these insights in canine obesity have not been fully elucidated. The aim of this study was to assess the differences in serum and inflammatory parameters, antioxidant status, fecal microbiota and bacterial metabolites in 16 obese and 15 lean client-owned dogs and how these parameters in obese may be influenced by caloric restriction. First, for 30 days, all dogs received a high-protein, high-fiber diet in amounts to maintain their body weight; later, obese dogs were fed for 180 days the same diet in restricted amounts to promote weight loss. Results Before the introduction of the experimental diet (T0), small differences in fecal microbial populations were detected between obese and lean dogs, but bacterial diversity and main bacterial metabolites did not differ. The fecal Dysbiosis Index (DI) was within the reference range (< 0) in most of dogs of both groups. Compared to lean dogs, obese dogs showed higher serum concentrations of acute-phase proteins, total thyroxine (TT4), and antioxidant capacity. Compared to T0, dietary treatment affected the fecal microbiota of obese dogs, decreasing the abundance of Firmicutes and increasing Bacteroides spp. However, these changes did not significantly affect the DI. The caloric restriction failed to exert significative changes on a large scale on bacterial populations. Consequently, the DI, bacterial diversity indices and metabolites were unaffected in obese dogs. Caloric restriction was not associated with a reduction of inflammatory markers or an improvement of the antioxidant status, while an increase of TT4 has been observed. Discussion In summary, the present results underline that canine obesity is associated with chronic inflammation. This study highlights that changes on fecal microbiota of obese dogs induced by the characteristics of the diet should be differentiated from those that are the consequence of the reduced energy intake.
Collapse
Affiliation(s)
- Carla Giuditta Vecchiato
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy,*Correspondence: Carla Giuditta Vecchiato, ✉
| | - Stefania Golinelli
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Carlo Pinna
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Rachel Pilla
- Gastrointestinal Laboratory, Texas A&M University, College Station, TX, United States
| | - Jan S. Suchodolski
- Gastrointestinal Laboratory, Texas A&M University, College Station, TX, United States
| | - Asta Tvarijonaviciute
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Murcia, Spain
| | - Camila Peres Rubio
- Department of Animal and Food Science, School of Veterinary Science, Autonomous University of Barcelona, Barcelona, Spain
| | - Elisa Dorato
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Costanza Delsante
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Claudio Stefanelli
- Dipartimento di Scienze per la Qualità della Vita, University of Bologna, Rimini, Italy
| | - Elena Pagani
- Monge & C. S.p.A., Monasterolo di Savigliano, Italy
| | - Federico Fracassi
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Giacomo Biagi
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
10
|
Yang K, Lin X, Jian S, Wen J, Jian X, He S, Wen C, Liu T, Qi X, Yin Y, Deng B. Changes in gut microbiota and short-chain fatty acids are involved in the process of canine obesity after neutering. J Anim Sci 2023; 101:skad283. [PMID: 37632755 PMCID: PMC10558198 DOI: 10.1093/jas/skad283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 08/25/2023] [Indexed: 08/28/2023] Open
Abstract
Neutering is a significant risk factor for obesity in dogs. Changes in gut microbiota and its metabolites have been identified as a key player during obesity progression. However, the mechanisms that promote neuter-associated weight gain are not well understood. Therefore, in this study, sixteen clinically healthy Beagle dogs (6 male and 10 female, mean age = 8.22 ± 0.25 mo old) were neutered. Body weight (BW) and body condition score (BCS) were recorded at 1 d before neutering, 3, 6, 10, 16, and 21 mo after neutering. Dogs were grouped based on their BCS as ideal weight group (IW, n = 4, mean BW = 13.22 ± 1.30 kg, mean BCS = 5.00 ± 0.41) and obese group (OB, n = 12, mean BW = 18.57 ± 1.08 kg, mean BCS = 7.92 ± 0.82) at 21 mo after neutering. Serum lipid profile, glucose, and hormones and fecal microbiota and short-chain fatty acids (SCFAs) were measured. Our results showed that OB dogs had greater (P < 0.0001) BW (18.57 vs. 13.22 kg), BCS (7.92 vs. 5.00), and average daily gain (12.27 vs. 5.69 g/d) than IW dogs at 21 mo after neutering, and the obesity rate was up to 60%. In addition, significant increases (P < 0.05) in serum triglyceride (TG, 1.10 vs. 0.56 mmol/L) and high-density lipoprotein cholesterol (HDL-C, 6.96 vs. 5.40 mmol/L) levels and a significant decrease (P < 0.05) in serum adiponectin (APN, 54.06 vs. 58.39 μg/L) level were observed in OB dogs; serum total cholesterol (4.83 vs. 3.75 mmol/L) (P = 0.075) and leptin (LEP, 2.82 vs. 2.53 μg/L) (P = 0.065) levels tended to be greater in OB dogs; there was a trend towards a lower (P = 0.092) APN/LEP (19.32 vs. 21.81) in OB dogs. Results of fecal microbial alpha-diversity showed that Observed_species and Chao1 indices tended to be lower (P = 0.069) in OB dogs. The STAMP and LEfSe analyses revealed that OB dogs had a greater (P < 0.05 and LDA > 2) reduction in relative abundances of Bacteroides, Prevotella_9, and Megamonas than IW dogs. In addition, OB dogs also had greater (P < 0.05) reduction in fecal acetate, propionate, and butyrate concentrations than IW dogs. Moreover, clear negative correlations (|r| > 0.5 and P < 0.05) were found between SCFAs-producing bacteria and BW, TG, and HDL-C. The functional predictions of microbial communities based on PICRUSt2 analysis revealed that lipid metabolism and endocrine system were significantly disturbed in obese dogs after neutering. Thus, intervention with SCFAs-producing bacteria might represent a new target for the prevention or treatment of canine obesity after neutering. Moreover, weight control before neutering may also contribute to the prevention of canine obesity after neutering.
Collapse
Affiliation(s)
- Kang Yang
- School of Life and Health Science, Kaili University, Kaili 556011, China
| | - Xinye Lin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Shiyan Jian
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiawei Wen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoying Jian
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Shansong He
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Chaoyu Wen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Tingting Liu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xin Qi
- Department of Technology, Beijing Veterinary Drug and Feed Monitoring Center, Beijing 101127, China
| | - Yulong Yin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Baichuan Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
11
|
Oba PM, Kelly J, Kostiuk D, Swanson KS. Effects of weight loss and feeding specially formulated diets on the body composition, blood metabolite profiles, voluntary physical activity, and fecal metabolites and microbiota of obese dogs. J Anim Sci 2023; 101:skad073. [PMID: 36879442 PMCID: PMC10083730 DOI: 10.1093/jas/skad073] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Canine obesity negatively influences health and well-being, but can be managed by altering diet composition and caloric intake. Restricted feeding, dietary intervention, and consequent weight loss may be used to improve health and modify gastrointestinal microbiota. In this study, we aimed to determine the effects of restricted feeding of specially formulated foods on weight loss, body composition, voluntary physical activity, serum hormones and oxidative stress markers, and fecal metabolites and microbiota populations of obese dogs. Twenty-four obese dogs [body weight (BW) = 15.2 ± 1.7 kg; body condition score (BCS) = 8.7 ± 0.4; muscle condition score (MCS) = 3.5 ± 0.3; age = 7.2 ± 1.6 yr] were used in a 24-wk study. A control (OR) food was fed during a 4-wk baseline to identify intake needed to maintain BW. After baseline, dogs were allotted to one of two diets: OR or test (FT), and then fed to lose 1.5% BW/wk. Food intake, BW, BCS, and MCS were measured, blood and fecal samples were collected, DEXA scans were performed, and voluntary physical activity was measured over time. Microbiota data were evaluated using QIIME2 and change from baseline data from other measures were evaluated using the Mixed Models procedure of SAS, with P < 0.05 being significant. Restricted feeding led to reduced BW, BCS, fat mass, and blood cholesterol, triglyceride, glucose, and leptin concentrations, and increased MCS and lean body mass percentage. Blood cholesterol reduction was greater in dogs fed FT vs. OR. Fecal metabolites and bacterial alpha-diversity were affected by diet and weight loss. Dogs fed FT had greater reductions in fecal short-chain fatty acid, branched-chain fatty acid, and ammonia concentrations than those fed OR. Dogs fed OR had a higher alpha-diversity than those fed FT. Weight loss increased alpha-diversity (weeks 16, 20, and 24 > weeks 0 and 4). Beta-diversity showed separation between dietary groups and between week 0 and all other time points after week 8. Weight loss increased fecal Allobaculum and Ruminococcus torques. Weight loss also increased fecal Bifidobacterium, Faecalibaculum, and Parasutterella, but were greater in dogs fed OR. Weight loss decreased fecal Collinsella, Turicibacter, Blautia, Ruminococcus gnavus, Faecalibacterium, and Peptoclostridium, but were greater in dogs fed OR. In summary, restricted feeding promoted safe weight and fat loss, reduced blood lipid and leptin concentrations, and altered fecal microbiota of obese dogs.
Collapse
Affiliation(s)
- Patrícia M Oba
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | - Kelly S Swanson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801USA
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801USA
| |
Collapse
|
12
|
Scarsella E, Jha A, Sandri M, Stefanon B. Network-based gut microbiome analysis in dogs. ITALIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1080/1828051x.2022.2124932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Elisa Scarsella
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, University of Udine, Udine, Italy
| | - Aashish Jha
- Genetic Heritage Group, Program in Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Misa Sandri
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, University of Udine, Udine, Italy
| | - Bruno Stefanon
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, University of Udine, Udine, Italy
| |
Collapse
|
13
|
Gaillard V, Chastant S, England G, Forman O, German AJ, Suchodolski JS, Villaverde C, Chavatte-Palmer P, Péron F. Environmental risk factors in puppies and kittens for developing chronic disorders in adulthood: A call for research on developmental programming. Front Vet Sci 2022; 9:944821. [PMID: 36619947 PMCID: PMC9816871 DOI: 10.3389/fvets.2022.944821] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Many dogs and cats are affected by chronic diseases that significantly impact their health and welfare and relationships with humans. Some of these diseases can be challenging to treat, and a better understanding of early-life risk factors for diseases occurring in adulthood is key to improving preventive veterinary care and husbandry practices. This article reviews early-life risk factors for obesity and chronic enteropathy, and for chronic behavioral problems, which can also be intractable with life-changing consequences. Aspects of early life in puppies and kittens that can impact the risk of adult disorders include maternal nutrition, establishment of the gut microbiome, maternal behavior, weaning, nutrition during growth, growth rate, socialization with conspecifics and humans, rehoming and neutering. Despite evidence in some species that the disorders reviewed here reflect the developmental origins of health and disease (DOHaD), developmental programming has rarely been studied in dogs and cats. Priorities and strategies to increase knowledge of early-life risk factors and DOHaD in dogs and cats are discussed. Critical windows of development are proposed: preconception, gestation, the suckling period, early growth pre-neutering or pre-puberty, and growth post-neutering or post-puberty to adult size, the durations of which depend upon species and breed. Challenges to DOHaD research in these species include a large number of breeds with wide genetic and phenotypic variability, and the existence of many mixed-breed individuals. Moreover, difficulties in conducting prospective lifelong cohort studies are exacerbated by discontinuity in pet husbandry between breeders and subsequent owners, and by the dispersed nature of pet ownership.
Collapse
Affiliation(s)
- Virginie Gaillard
- Research and Development Center, Royal Canin, Aimargues, France,*Correspondence: Virginie Gaillard ✉
| | - Sylvie Chastant
- NeoCare, Université de Toulouse, Ecole Nationale Vétérinaire de Toulouse (ENVT), Toulouse, France
| | - Gary England
- School of Veterinary Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Oliver Forman
- Wisdom Panel, Kinship, Waltham-on-the-Wolds, Leicestershire, United Kingdom
| | - Alexander J. German
- Institute of Life Course and Medical Sciences of Small Animal Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Jan S. Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | | | - Pascale Chavatte-Palmer
- Université Paris-Saclay, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Institut National de Recherche Pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Biologie de la Reproduction, Environnement, Epigénétique et Développement (BREED), Jouy-en-Josas, France,Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | - Franck Péron
- Research and Development Center, Royal Canin, Aimargues, France
| |
Collapse
|
14
|
Chen L, Pu Y, Xu Y, He X, Cao J, Ma Y, Jiang W. Anti-diabetic and anti-obesity: Efficacy evaluation and exploitation of polyphenols in fruits and vegetables. Food Res Int 2022; 157:111202. [DOI: 10.1016/j.foodres.2022.111202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023]
|
15
|
Menard J, Goggs R, Mitchell P, Yang Y, Robbins S, Franklin-Guild RJ, Thachil AJ, Altier C, Anderson R, Putzel GG, McQueary H, Goodman LB. Effect of antimicrobial administration on fecal microbiota of critically ill dogs: dynamics of antimicrobial resistance over time. Anim Microbiome 2022; 4:36. [PMID: 35659110 PMCID: PMC9167539 DOI: 10.1186/s42523-022-00178-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 04/01/2022] [Indexed: 11/25/2022] Open
Abstract
Background Multidrug resistance in companion animals poses significant risks to animal and human health. Prolonged antimicrobial drug (AMD) treatment in animals is a potential source of selection pressure for antimicrobial resistance (AMR) including in the gastrointestinal microbiota. We performed a prospective study of dogs treated for septic peritonitis, pyometra, or bacterial pneumonia and collected repeated fecal samples over 60 days. Bacterial cultures and direct molecular analyses of fecal samples were performed including targeted resistance gene profiling. Results Resistant Escherichia coli increased after 1 week of treatment (D1:21.4% vs. D7:67.9% P < 0.001) and returned to baseline proportions by D60 (D7:67.9% vs D60:42.9%, P = 0.04). Dogs with septic peritonitis were hospitalized significantly longer than those with pneumonia or pyometra. Based on genetic analysis, Simpson’s diversity index significantly decreased after 1 week of treatment (D1 to D7, P = 0.008), followed by a gradual increase to day 60 (D1 and D60, P = 0.4). Detection of CTX-M was associated with phenotypic resistance to third-generation cephalosporins in E. coli (OR 12.1, 3.3–68.0, P < 0.001). Lincosamide and macrolide-resistance genes were more frequently recovered on days 14 and 28 compared to day 1 (P = 0.002 and P = 0.004 respectively). Conclusion AMR was associated with prescribed drugs but also developed against AMDs not administered during the study. Companion animals may be reservoirs of zoonotic multidrug resistant pathogens, suggesting that veterinary AMD stewardship and surveillance efforts should be prioritized. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s42523-022-00178-9.
Collapse
Affiliation(s)
- Julie Menard
- Department of Veterinary Diagnostic and Clinical Sciences, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.
| | - Robert Goggs
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Patrick Mitchell
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Yufan Yang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Sarah Robbins
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Rebecca J Franklin-Guild
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Anil J Thachil
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Craig Altier
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Renee Anderson
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Gregory G Putzel
- Microbiome Core Lab and Jill Roberts IBD Institute, Weill Cornell Medicine, Cornell University, New York City, NY, USA
| | - Holly McQueary
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Laura B Goodman
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
16
|
Morelli G, Patuzzi I, Losasso C, Ricci A, Contiero B, Andrighetto I, Ricci R. Characterization of intestinal microbiota in normal weight and overweight Border Collie and Labrador Retriever dogs. Sci Rep 2022; 12:9199. [PMID: 35655089 PMCID: PMC9163050 DOI: 10.1038/s41598-022-13270-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/12/2022] [Indexed: 11/08/2022] Open
Abstract
Obesity in dogs is an emerging issue that affects canine health and well-being. Its development is ascribed to several factors, including genetic predisposition and dietary management, and recent evidence suggests that intestinal microbiota may be involved as well. Previous works have shown obesity to be linked to significant changes in gut microbiota composition in humans and mice, but only limited information is available on the role played by canine gut microbiota. The aim of this exploratory study was to investigate whether composition of canine faecal microbiota may be influenced by overweight condition and breed. All the enrolled companion dogs were young adults, intact, healthy, and fed commercial extruded pet food; none had received antibiotics, probiotics or immunosuppressant drugs in the previous six months. Labrador Retriever (LR) and Border Collie (BC) were chosen as reference breeds and Body Condition Score (BCS) on a 9-point scale as reference method for evaluating body fat. The faecal microbial communities of 15 lean (BCS 4-5/9; 7 LRs and 8 BCs) and 14 overweight (BCS > 5/9; 8 LRs and 6 BCs) family dogs were analysed using 16S rRNA gene sequencing. Moreover, for each dog, the daily intake of energy (kcal/d) and dietary macronutrients (g/d) were calculated according to an accurate feeding history collection. Firmicutes and Bacteroidetes resulted the predominant phyla (51.5 ± 10.0% and 33.4 ± 8.5%, respectively) in all dogs. Bioinformatic and statistical analysis revealed that no bacterial taxon differed significantly based on body condition, except for genus Allisonella (p < 0.05); BC gut microbiota was richer (p < 0.05) in bacteria belonging to phyla Actinobacteria (family Coriobacteriaceae in particular) and Firmicutes (Allobaculum and Roseburia genera). No remarkable differences were recorded either for diversity indices (i.e., alpha diversity, p > 0.10) or for divergence within the sample set (i.e., beta diversity, p > 0.05). PERMANOVA tests performed on single factors demonstrated the tendency of dietary protein to influence the recruited dogs' microbiota beta-diversity at amplicon sequence variant level (p = 0.08). In conclusion, the faecal microbiota of dogs involved in this exploratory study showed no major variations based on body condition. However, our findings suggested that certain bacterial taxa previously acknowledged in obesity-related studies may be detected in dissimilar amounts depending on canine breed.
Collapse
Affiliation(s)
- Giada Morelli
- Department of Animal Medicine, Production and Health, University of Padua, 35020, Legnaro, PD, Italy.
| | - Ilaria Patuzzi
- Laboratory of Microbial Ecology and Genomics, Istituto Zooprofilattico Sperimentale delle Venezie, 35020, Legnaro, PD, Italy
- Research and Development Division, EuBiome S.R.L., 35129, Padua, Italy
| | - Carmen Losasso
- Laboratory of Microbial Ecology and Genomics, Istituto Zooprofilattico Sperimentale delle Venezie, 35020, Legnaro, PD, Italy
| | - Antonia Ricci
- Laboratory of Microbial Ecology and Genomics, Istituto Zooprofilattico Sperimentale delle Venezie, 35020, Legnaro, PD, Italy
| | - Barbara Contiero
- Department of Animal Medicine, Production and Health, University of Padua, 35020, Legnaro, PD, Italy
| | - Igino Andrighetto
- Department of Animal Medicine, Production and Health, University of Padua, 35020, Legnaro, PD, Italy
| | - Rebecca Ricci
- Department of Animal Medicine, Production and Health, University of Padua, 35020, Legnaro, PD, Italy
| |
Collapse
|
17
|
Domestic Environment and Gut Microbiota: Lessons from Pet Dogs. Microorganisms 2022; 10:microorganisms10050949. [PMID: 35630391 PMCID: PMC9143008 DOI: 10.3390/microorganisms10050949] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022] Open
Abstract
Accumulating data show the involvement of intestinal microbiota in the development and maintenance of numerous diseases. Many environmental factors influence the composition and function of the gut microbiota. An animal model subjected to the same environmental constraints that will allow better characterization of the microbiota–host dialogue is awaited. The domestic dog has physiological, dietary and pathological characteristics similar to those of humans and shares the domestic environment and lifestyle of its owner. This review exposes how the domestication of dogs has brought them closer to humans based on their intrinsic and extrinsic similarities which were discerned through examining and comparing the current knowledge and data on the intestinal microbiota of humans and canines in the context of several spontaneous pathologies, including inflammatory bowel disease, obesity and diabetes mellitus.
Collapse
|
18
|
Söder J, Wernersson S, Höglund K, Hagman R, Lindåse S, Dicksved J. Composition and short-term stability of gut microbiota in lean and spontaneously overweight healthy Labrador retriever dogs. Acta Vet Scand 2022; 64:8. [PMID: 35346308 PMCID: PMC8962211 DOI: 10.1186/s13028-022-00628-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Background The gut microbiota and its metabolic end-products act in close collaboration with the nutrient metabolism of the animal. A relationship between excess adiposity and alterations in gut microbiota composition has been identified in humans and rodents, but data are scarce for overweight dogs. This study compared composition and temporal variations of gut microbiota in healthy lean and spontaneously overweight dogs. The analysis was based on three individual fresh faeces samples from each dog during a 10-day period. Twenty-seven healthy and intact male Labrador retriever dogs were included, 12 of which were classified as lean (body condition score (BCS) 4–5 on a 9-point scale) and 15 as overweight (BCS 6–8). Gut microbiota was analysed by Illumina sequencing of the V3-V4 region of the 16S rRNA gene. Results Lean and overweight groups of dogs were not separated by principal coordinate analysis (PCoA), analysis of similarity (one-way ANOSIM, P = 0.99) or species indicator analysis (IndVal) using operational taxonomic units (OTU) data. Gut microbial taxa at phylum, family or genus level did not differ between lean and overweight dogs in mixed-model repeated measures analyses. Short-term stability, evaluated by similarity index, did not differ between lean and overweight dogs over the 10-day period. Pooled Firmicutes/Bacteroidetes (F/B) ratio was 3.1 ± 3.7 in overweight dogs and 2.1 ± 1.2 in lean dogs (P = 0.83). Individual dogs, irrespective of body condition (lean or overweight), displayed variation in mean alpha diversity (Chao-1 index range 122–245, Shannon index range 2.6–3.6) and mean similarity index (range 44–85%). Conclusions Healthy lean and spontaneously overweight Labrador retriever dogs had comparable gut microbiota composition and short-term stability over a 10-day sampling period. There were no alterations in microbial diversity or in relative abundance of specific taxa at phylum, family or genus level in overweight compared to lean dogs. Our findings suggest that there are few detectable differences in gut microbiota composition between healthy spontaneously overweight and lean dogs by the current method. Future application of metagenomic or metabolomic techniques could be used to investigate microbial genes or microbial end-products that may differ even when microbiota compositional analyses fail to detect a significant difference between lean and overweight dogs. Supplementary Information The online version contains supplementary material available at 10.1186/s13028-022-00628-z.
Collapse
|
19
|
Lyu Y, Liu D, Nguyen P, Peters I, Heilmann RM, Fievez V, Hemeryck LY, Hesta M. Differences in Metabolic Profiles of Healthy Dogs Fed a High-Fat vs. a High-Starch Diet. Front Vet Sci 2022; 9:801863. [PMID: 35252418 PMCID: PMC8891928 DOI: 10.3389/fvets.2022.801863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/24/2022] [Indexed: 11/17/2022] Open
Abstract
Obesity is a common problem in dogs and overconsumption of energy-rich foods is a key factor. This study compared the inflammatory response and fecal metabolome of dogs fed a high-fat vs. a high-starch diet. Ten healthy lean adult beagles were equally allocated into two groups in a cross-over design. Each group received two diets in which fat (horse fat) and starch (pregelatinized corn starch) were exchanged in an isocaloric way to compare high fat vs. high starch. There was a tendency to increase the glucose and glycine concentrations and the glucose/insulin ratio in the blood in dogs fed with the high-fat diet, whereas there was a decrease in the level of Non-esterified fatty acids and a tendency to decrease the alanine level in dogs fed with the high-starch diet. Untargeted analysis of the fecal metabolome revealed 10 annotated metabolites of interest, including L-methionine, which showed a higher abundance in dogs fed the high-starch diet. Five other metabolites were upregulated in dogs fed the high-fat diet, but could not be annotated. The obtained results indicate that a high-starch diet, compared to a high-fat diet, may promote lipid metabolism, anti-oxidative effects, protein biosynthesis and catabolism, mucosal barrier function, and immunomodulation in healthy lean dogs.
Collapse
Affiliation(s)
- Yang Lyu
- ECAN Equine and Companion Animal Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Daisy Liu
- ECAN Equine and Companion Animal Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Patrick Nguyen
- Nutrition, Physiopathology and Pharmacology Unit, National College of Veterinary Medicine, Food Science and Engineering, Nantes, France
| | - Iain Peters
- SYNLAB VPG, Exeter Science Park, Exeter, United Kingdom
| | - Romy M. Heilmann
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Veerle Fievez
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent, Belgium
| | - Lieselot Y. Hemeryck
- Laboratory of Chemical Analysis, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- *Correspondence: Myriam Hesta
| | - Myriam Hesta
- ECAN Equine and Companion Animal Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Lieselot Y. Hemeryck
| |
Collapse
|
20
|
Thomson P, Santibáñez R, Rodríguez-Salas C, Flores-Yañez C, Garrido D. Differences in the composition and predicted functions of the intestinal microbiome of obese and normal weight adult dogs. PeerJ 2022; 10:e12695. [PMID: 35190784 PMCID: PMC8857902 DOI: 10.7717/peerj.12695] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 12/06/2021] [Indexed: 01/07/2023] Open
Abstract
Obesity is a multifactorial nutritional disorder highly prevalent in dogs, observed in developed and developing countries. It is estimated that over 40% of the canine population suffers from obesity, which manifests in an increased risk of chronic osteoarticular, metabolic, and cardiovascular diseases. The intestinal microbiome of obese animals shows increases in the abundance of certain members capable of extracting energy from complex polysaccharides. The objective of this study was to compare the composition and predicted function of the intestinal microbiome of Chilean obese and normal weight adult dogs. Twenty clinically healthy dogs were classified according to their body condition score (BCS) as obese (n = 10) or normal weight (n = 10). DNA was extracted from stool samples, followed by next-generation sequencing of the 16S rRNA V3-V4 region and bioinformatics analysis targeting microbiome composition and function. Significant differences were observed between these groups at the phylum level, with anincrease in Firmicutes and a decrease in Bacteroidetes in obese dogs. Microbiome compositions of these animals correlated with their BCS, and obese dogs showed enrichment in pathways related to transport, chemotaxis, and flagellar assembly. These results highlight the differences in the gut microbiome between normal weight and obese dogs and prompt further research to improve animal health by modulating the gut microbiome.
Collapse
Affiliation(s)
- Pamela Thomson
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Nacional Andrés Bello., Santiago, Chile
| | - Rodrigo Santibáñez
- Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Camila Rodríguez-Salas
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Nacional Andrés Bello., Santiago, Chile
| | | | - Daniel Garrido
- Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
21
|
Vieira AB, Restrepo MA, Auzenne D, Molina K, O'Sullivan M, Machado MV, Cavanaugh SM. Mild to moderate overweight in dogs: is there an impact on routine hematological and biochemical profiles, echocardiographic parameters and cardiac autonomic modulation? Vet Res Commun 2022; 46:527-535. [PMID: 35018593 DOI: 10.1007/s11259-021-09880-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 12/27/2021] [Indexed: 11/25/2022]
Abstract
Obesity is considered the most common nutritional disease of dogs. Even though overt obesity is more likely to impair health, even moderately overweight dogs are at greater risk for requiring medication for chronic health problems earlier in life. Although the number of overweight dogs far exceeds the number of obese ones, most of the studies published so far focused on derangements in a mixed overweight/obese population (Body condition score - BCS ≥7/9) rather than in separated groups. This study aimed to evaluate the impact of mild to moderate obesity on routine hematological and biochemical profile and cardiovascular parameters in dogs. Nine healthy lean (BCS =4-5/9) and 24 overweight dogs (BCS = 6-7/9) were enrolled. Complete blood count, serum biochemistry analyses, echocardiographic parameters, and cardiac autonomic function by heart rate variability (HRV) were determined. In our study population, although total protein, globulin and phosphorus concentrations were increased in overweight compared to lean dogs, all complete blood count and biochemical parameters were within reference ranges for both groups. Parameters usually increased in obese dogs, like triglycerides and cholesterol concentrations, were within reference ranges in our overweight population. There were no significant changes in echocardiographic parameters, but HRV had a significant decrease in high frequency (HF) power (P = 0.02), suggesting a depression in parasympathetic activity. Our findings show that mild to moderate overweight dogs do not show the hematological and echocardiographic alterations already reported for mixed overweight/obese populations but might have impaired cardiac autonomic modulation. Although not enough to make conclusions, our data raise the question of whether research studies should place overweight and obese dogs in the same category.
Collapse
Affiliation(s)
- Aline Bomfim Vieira
- Biomedical Department, Ross University School of Veterinary Medicine (RUSVM), West Farm, PO Box 334, Basseterre, West Indies, Saint Kitts and Nevis.
| | - Mariana Alvarez Restrepo
- Biomedical Department, Ross University School of Veterinary Medicine (RUSVM), West Farm, PO Box 334, Basseterre, West Indies, Saint Kitts and Nevis
| | - Danielle Auzenne
- Biomedical Department, Ross University School of Veterinary Medicine (RUSVM), West Farm, PO Box 334, Basseterre, West Indies, Saint Kitts and Nevis
| | - Kevin Molina
- Biomedical Department, Ross University School of Veterinary Medicine (RUSVM), West Farm, PO Box 334, Basseterre, West Indies, Saint Kitts and Nevis
| | - Meghan O'Sullivan
- Biomedical Department, Ross University School of Veterinary Medicine (RUSVM), West Farm, PO Box 334, Basseterre, West Indies, Saint Kitts and Nevis
| | - Marcus Vinicius Machado
- Biomedical Department, Ross University School of Veterinary Medicine (RUSVM), West Farm, PO Box 334, Basseterre, West Indies, Saint Kitts and Nevis
| | - Sarah Marie Cavanaugh
- Biomedical Department, Ross University School of Veterinary Medicine (RUSVM), West Farm, PO Box 334, Basseterre, West Indies, Saint Kitts and Nevis
| |
Collapse
|
22
|
Ko DK, Brandizzi F. Advanced genomics identifies growth effectors for proteotoxic ER stress recovery in Arabidopsis thaliana. Commun Biol 2022; 5:16. [PMID: 35017639 PMCID: PMC8752741 DOI: 10.1038/s42003-021-02964-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/10/2021] [Indexed: 12/20/2022] Open
Abstract
Adverse environmental and pathophysiological situations can overwhelm the biosynthetic capacity of the endoplasmic reticulum (ER), igniting a potentially lethal condition known as ER stress. ER stress hampers growth and triggers a conserved cytoprotective signaling cascade, the unfolded protein response (UPR) for ER homeostasis. As ER stress subsides, growth is resumed. Despite the pivotal role of the UPR in growth restoration, the underlying mechanisms for growth resumption are yet unknown. To discover these, we undertook a genomics approach in the model plant species Arabidopsis thaliana and mined the gene reprogramming roles of the UPR modulators, basic leucine zipper28 (bZIP28) and bZIP60, in ER stress resolution. Through a network modeling and experimental validation, we identified key genes downstream of the UPR bZIP-transcription factors (bZIP-TFs), and demonstrated their functional roles. Our analyses have set up a critical pipeline for functional gene discovery in ER stress resolution with broad applicability across multicellular eukaryotes. Ko and Brandizzi use Arabidopsis thaliana to investigate the downstream regulators of two major endoplasmic reticulum (ER) stress-related transcription factors, bZIP60 and bZIP28. Their results provide further insight on how two modulators of the unfolded protein response contribute to growth recovery from ER stress.
Collapse
Affiliation(s)
- Dae Kwan Ko
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA.,Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA. .,Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA. .,Department of Plant Biology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
23
|
Liu D, Wang J, Zeng H, Zhou F, Wen B, Zhang X, Luo Y, Wu W, Huang J, Liu Z. The metabolic regulation of Fuzhuan brick tea in high-fat diet-induced obese mice and the potential contribution of gut microbiota. Food Funct 2022; 13:356-374. [PMID: 34904994 DOI: 10.1039/d1fo02181h] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This study investigated the metabolic effects of Fuzhuan brick tea (FBT) in high-fat diet (HFD)-induced obese mice and the potential contribution of gut microbiota. The results showed that FBT ameliorated the HFD-induced glycerophospholipid metabolic aberrance, specifically increased the serum levels of phosphatidylcholines (PCs), lysophosphatidylcholines (LysoPCs), and the ratio of PC to phosphatidylethanolamines (PE). Besides, FBT increased the serum level of gut microbiota-derived aryl hydrocarbon receptor (AhR) ligand, 3-indole propionic acid, as well as the relative abundance of intestinal AhR-ligand producing bacteria such as Clostridiaceae, Bacteroidales_S24-7_group, and Lactobacillaceae. However, the metabolic benefits of FBT were weakened when the gut microbiota were depleted by antibiotic treatment, thereby suggesting that gut microbiota was required for FBT to regulate glycerophospholipid metabolism. Indeed, the metabolites regulated by FBT were significantly correlated with the AhR-ligand producing bacteria. The KEGG pathway enrichment analysis and expressions of AhR target genes indicated that FBT would improve the glycerophospholipid metabolism via the AhR-Pemt signal axis, in which the gut microbiota and their metabolites played pivotal mediators. Overall, FBT could be a functional beverage to improve HFD-induced metabolic disorders in a gut microbiota dependent manner.
Collapse
Affiliation(s)
- Dongmin Liu
- Changsha University of Science & Technology, Changsha 410114, China.,Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China. .,National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China.
| | - Jianhui Wang
- Changsha University of Science & Technology, Changsha 410114, China
| | - Hongliang Zeng
- Research Institute of Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha, Hunan 410013, China
| | - Fang Zhou
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China. .,National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China.
| | - Beibei Wen
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China. .,National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China.
| | - Xiangna Zhang
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China. .,National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China.
| | - Yong Luo
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China. .,National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China.
| | - Wenliang Wu
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China. .,National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China.
| | - Jianan Huang
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China. .,National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China.
| | - Zhonghua Liu
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China. .,National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China.
| |
Collapse
|
24
|
Qu W, Chen Z, Hu X, Zou T, Huang Y, Zhang Y, Hu Y, Tian S, Wan J, Liao R, Bai L, Xue J, Ding Y, Hu M, Zhang XJ, Zhang X, Zhao J, Cheng X, She ZG, Li H. Profound Perturbation in the Metabolome of a Canine Obesity and Metabolic Disorder Model. Front Endocrinol (Lausanne) 2022; 13:849060. [PMID: 35620391 PMCID: PMC9128610 DOI: 10.3389/fendo.2022.849060] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/17/2022] [Indexed: 12/19/2022] Open
Abstract
Canine models are increasingly being used in metabolic studies due to their physiological similarity with humans. The present study aimed to identify changes in metabolic pathways and biomarkers with potential clinical utility in a canine model of obesity and metabolic disorders induced by a high-fat diet (HFD). Eighteen male beagles were included in this study, 9 of which were fed a HFD for 24 weeks, and the remaining 9 were fed normal chow (NC) during the same period. Plasma and urine samples were collected at weeks 12 and 24 for untargeted metabolomic analysis. Dogs fed a HFD showed a gradual body weight increase during the feeding period and had hyperlipidemia, increased leukocyte counts, and impaired insulin sensitivity at week 24. Plasma and urine metabonomics analysis displayed clear separations between the HFD-fed and NC-fed dogs. A total of 263 plasma metabolites varied between the two groups, including stearidonic acid, linolenic acid, carnitine, long-chain ceramide, 3-methylxanthine, and theophylline, which are mainly engaged in fatty acid metabolism, sphingolipid metabolism, and caffeine metabolism. A total of 132 urine metabolites related to HFD-induced obesity and metabolic disorders were identified, including 3-methylxanthine, theophylline, pyridoxal 5'-phosphate, and harmine, which participate in pathways such as caffeine metabolism and vitamin digestion and absorption. Eight metabolites with increased abundance (e.g., 3-methylxanthine, theophylline, and harmine) and 4 metabolites with decreased abundance (e.g., trigonelline) in both the plasma and urine of the HFD-fed dogs were identified. In conclusion, the metabolomic analysis revealed molecular events underlying a canine HFD model and identified several metabolites as potential targets for the prevention and treatment of obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Weiyi Qu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Ze Chen
- Institute of Model Animal, Wuhan University, Wuhan, China
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xing Hu
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| | - Toujun Zou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Yongping Huang
- Institute of Model Animal, Wuhan University, Wuhan, China
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Yanyan Zhang
- Institute of Model Animal, Wuhan University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yufeng Hu
- Institute of Model Animal, Wuhan University, Wuhan, China
- Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| | - Song Tian
- Institute of Model Animal, Wuhan University, Wuhan, China
- School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Juan Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Rufang Liao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lan Bai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Jinhua Xue
- Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
- Department of Pathophysiology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, China
| | - Yi Ding
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Manli Hu
- Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| | - Xiao-Jing Zhang
- Institute of Model Animal, Wuhan University, Wuhan, China
- School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Xin Zhang
- Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| | - Jingjing Zhao
- Department of Cardiology, Tongren Hospital of Wuhan University and Wuhan Third Hospital, Wuhan, China
| | - Xu Cheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
- *Correspondence: Hongliang Li, ; Zhi-Gang She, ; Xu Cheng,
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
- *Correspondence: Hongliang Li, ; Zhi-Gang She, ; Xu Cheng,
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
- School of Basic Medical Science, Wuhan University, Wuhan, China
- *Correspondence: Hongliang Li, ; Zhi-Gang She, ; Xu Cheng,
| |
Collapse
|
25
|
Kuleš J, Rubić I, Beer Ljubić B, Bilić P, Barić Rafaj R, Brkljačić M, Burchmore R, Eckersall D, Mrljak V. Combined Untargeted and Targeted Metabolomics Approaches Reveal Urinary Changes of Amino Acids and Energy Metabolism in Canine Babesiosis With Different Levels of Kidney Function. Front Microbiol 2021; 12:715701. [PMID: 34603243 PMCID: PMC8484968 DOI: 10.3389/fmicb.2021.715701] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/17/2021] [Indexed: 12/13/2022] Open
Abstract
Canine babesiosis is a tick-borne disease with a worldwide distribution, caused by the haemoprotozoan parasites of the genus Babesia. One of the most prevalent complication is acute kidney injury, and an early diagnosis of altered kidney function remains a challenge for veterinary practice. The aim of this study was to assess the urine metabolic profile from dogs with babesiosis and different degree of kidney function using untargeted and targeted MS-based metabolomics approaches. In this study, 22 dogs naturally infected with Babesia canis and 12 healthy dogs were included. Untargeted metabolomics approach identified 601 features with a differential abundance between the healthy group and groups of dogs with babesiosis and different level of kidney function, with 27 of them identified as a match to known standards; while targeted approach identified 17 metabolites with significantly different concentrations between the groups. A pattern of significantly altered metabolites referring to the inflammatory host response, oxidative stress, and energy metabolism modulation in babesiosis was presented. Our findings have demonstrated that kidney dysfunction accompanying canine babesiosis was associated with changes in amino acid metabolism, energy metabolism, fatty acid metabolism, and biochemical pathways such as urea cycle and ammonia detoxication. These findings will enable the inclusion of urinary markers for the detection and monitoring of renal damage in babesiosis, as well as in other similar diseases.
Collapse
Affiliation(s)
- Josipa Kuleš
- Laboratory of Proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Ivana Rubić
- Laboratory of Proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Blanka Beer Ljubić
- Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Petra Bilić
- Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Renata Barić Rafaj
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Mirna Brkljačić
- Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Richard Burchmore
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - David Eckersall
- College of Medical, Veterinary, and Life Sciences, Institute of Biodiversity, Animal Health, and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Vladimir Mrljak
- Laboratory of Proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
- Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
26
|
Burron S, Richards T, Patterson K, Grant C, Akhtar N, Trevizan L, Pearson W, Shoveller AK. Safety of Dietary Camelina Oil Supplementation in Healthy, Adult Dogs. Animals (Basel) 2021; 11:2603. [PMID: 34573569 PMCID: PMC8468089 DOI: 10.3390/ani11092603] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 11/23/2022] Open
Abstract
This study aimed to determine whether camelina oil is safe for use in canine diets, using canola oil and flax oil as controls, as they are similar and generally regarded as safe (GRAS) for canine diets. A total of thirty privately-owned adult dogs of various breeds (17 females; 13 males), with an average age of 7.2 ± 3.1 years (mean ± SD) and a body weight (BW) of 27.4 ± 14.0 kg were used. After a 4-week wash-in period using sunflower oil and kibble, the dogs were blocked by breed, age, and size and were randomly allocated to one of three treatment oils (camelina (CAM), flax (FLX), or canola (OLA)) at a level of 8.2 g oil/100 g total dietary intake. Body condition score (BCS), BW, food intake (FI), and hematological and select biochemical parameters were measured at various timepoints over a 16-week feeding period. All of the data were analyzed with ANOVA using the PROC GLIMMIX of SAS. No biologically significant differences were seen between the treatment groups in terms of BW, BCS, FI, and hematological and biochemical results. Statistically significant differences noted among some serum biochemical results were considered small and were due to normal biological variation. These results support the conclusion that camelina oil is safe for use in canine nutrition.
Collapse
Affiliation(s)
- Scarlett Burron
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (S.B.); (T.R.); (K.P.); (N.A.); (W.P.)
| | - Taylor Richards
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (S.B.); (T.R.); (K.P.); (N.A.); (W.P.)
| | - Keely Patterson
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (S.B.); (T.R.); (K.P.); (N.A.); (W.P.)
| | - Caitlin Grant
- Department of Clinical Studies, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Nadeem Akhtar
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (S.B.); (T.R.); (K.P.); (N.A.); (W.P.)
| | - Luciano Trevizan
- Departamento de Zootecnia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91540-000, Rio Grande do Sul, Brazil;
| | - Wendy Pearson
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (S.B.); (T.R.); (K.P.); (N.A.); (W.P.)
| | - Anna Kate Shoveller
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (S.B.); (T.R.); (K.P.); (N.A.); (W.P.)
| |
Collapse
|
27
|
Park M, Kim KH, Jaiswal V, Choi J, Chun JL, Seo KM, Lee MJ, Lee HJ. Effect of black ginseng and silkworm supplementation on obesity, the transcriptome, and the gut microbiome of diet-induced overweight dogs. Sci Rep 2021; 11:16334. [PMID: 34381138 PMCID: PMC8358025 DOI: 10.1038/s41598-021-95789-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/23/2021] [Indexed: 01/04/2023] Open
Abstract
Like humans, weight control in overweight dogs is associated with a longer life expectancy and a healthier life. Dietary supplements are one of the best strategies for controlling obesity and obesity-associated diseases. This study was conducted to assess the potential of black ginseng (BG) and silkworm (SW) as supplements for weight control in diet-induced overweight beagle dogs. To investigate the changes that occur in dogs administered the supplements, different obesity-related parameters, such as body condition score (BCS), blood fatty acid profile, transcriptome, and microbiome, were assessed in high energy diet (HD) and HD with BG + SW supplementation (HDT) groups of test animals. After 12 weeks of BG + SW supplementation, total cholesterol and triglyceride levels were reduced in the HDT group. In the transcriptome analysis, nine genes (NUGGC, EFR3B, RTP4, ACAN, HOXC4, IL17RB, SOX13, SLC18A2, and SOX4) that are known to be associated with obesity were found to be differentially expressed between the ND (normal diet) and HD groups as well as the HD and HDT groups. Significant changes in some taxa were observed between the HD and ND groups. These data suggest that the BG + SW supplement could be developed as dietary interventions against diet-induced obesity, and obesity-related differential genes could be important candidates in the mechanism of the anti-obesity effects of the BG + SW supplement.
Collapse
Affiliation(s)
- Miey Park
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, 13120, Gyeonggi-do, Korea
| | - Ki Hyun Kim
- Animal Welfare Research Team, National Institute of Animal Science, National Institute of Animal Science, Rural Development Administration, Wanju, 55365, Korea
| | - Varun Jaiswal
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, 13120, Gyeonggi-do, Korea
| | - Jihee Choi
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, 13120, Gyeonggi-do, Korea
| | - Ju Lan Chun
- Animal Welfare Research Team, National Institute of Animal Science, National Institute of Animal Science, Rural Development Administration, Wanju, 55365, Korea
| | - Kang Min Seo
- Animal Welfare Research Team, National Institute of Animal Science, National Institute of Animal Science, Rural Development Administration, Wanju, 55365, Korea
| | - Mi-Jin Lee
- Clinical Nutritional Medicine, Veterinary Medical Teaching Hospital, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, 13120, Gyeonggi-do, Korea.
| |
Collapse
|
28
|
Phungviwatnikul T, Alexander C, Do S, He F, Suchodolski JS, de Godoy MRC, Swanson KS. Effects of Dietary Macronutrient Profile on Apparent Total Tract Macronutrient Digestibility and Fecal Microbiota, Fermentative Metabolites, and Bile Acids of Female Dogs after Spay Surgery. J Anim Sci 2021; 99:6333593. [PMID: 34333604 DOI: 10.1093/jas/skab225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 07/29/2021] [Indexed: 11/13/2022] Open
Abstract
Obesity and estrogen reduction are known to impact the gut microbiota and gut microbial-derived metabolites in some species, but limited information is available in dogs. The aim of this study was to determine the effects of dietary macronutrient profile on apparent total tract macronutrient digestibility, fecal microbiota, and fecal metabolites of adult female dogs after spay surgery. Twenty-eight adult intact female beagles (age: 3.02 ± 0.71 yr, BW: 10.28 ± 0.77 kg; BCS: 4.98 ± 0.57) were used. After a 5-wk baseline phase (wk 0), 24 dogs were spayed and randomly allotted to one of three experimental diets (n=8/group): 1) control (CO) containing moderate protein and fiber (COSP), 2) high-protein, high-fiber (HPHF), or 3) high-protein, high-fiber plus omega-3 and medium-chain fatty acids (HPHFO). Four dogs were sham-operated and fed CO (COSH). All dogs were fed to maintain BW for 12 wk after spay, then allowed to consume twice that amount for 12 wk. Fecal samples were collected at wk 0, 12, and 24 for digestibility, microbiota, and metabolite analysis. All data were analyzed using repeated measures and linear Mixed Models procedure of SAS 9.4, with results reported as change from baseline. Apparent organic matter and energy digestibilities had greater decreases in HPHF and HPHFO than COSH and COSP. Increases in fecal acetate, total short-chain fatty acids, and secondary bile acids were greater and decreases in primary bile acids were greater in HPHF and HPHFO. Principal coordinates analysis of weighted UniFrac distances revealed that HPHF and HPHFO clustered together and separately from COSH and COSP at wk 12 and 24, with relative abundances of Faecalibacterium, Romboutsia, and Fusobacterium increasing to a greater extent and Catenibacterium, Bifidobacterium, Prevotella 9, Eubacterium, and Megamonas decreasing to a greater extent in HPHF or HPHFO. Our results suggest that high-protein, high-fiber diets alter nutrient and energy digestibilities, fecal metabolite concentrations, and fecal gut microbiota, but spay surgery had minor effects. Future research is needed to investigate how food intake, nutrient profile, and changes in hormone production influence gut microbiota and metabolites of dogs individually and how this knowledge may be used to manage spayed pets.
Collapse
Affiliation(s)
| | - Celeste Alexander
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| | - Sungho Do
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | - Fei He
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | - Jan S Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - Maria R C de Godoy
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA.,Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| | - Kelly S Swanson
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA.,Department of Veterinary Clinical Medicine, University of Illinois, Urbana, IL, USA.,Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| |
Collapse
|
29
|
Paßlack N, Galliou F, Manios T, Lasaridi K, Tsiplakou E, Vahjen W, Zentek J. Impact of the dietary inclusion of dried food residues on the apparent nutrient digestibility and the intestinal microbiota of dogs. Arch Anim Nutr 2021; 75:311-327. [PMID: 34253098 DOI: 10.1080/1745039x.2021.1949229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The use of food residues for animal nutrition might imply ecological and economic advantages; however, their effects as a potential ingredient have not yet been evaluated in dogs. In the present study, four diets with 0, 5, 10 and 15% dried food residues (DFR), derived from hotel catering, were fed to 10 healthy adult dogs. At the end of each three-week feeding period, faeces and blood were collected. The apparent nutrient digestibility was calculated by the dietary inclusion of titanium dioxide as an inert marker. The results demonstrated that the apparent crude protein digestibility and ether extract digestibility decreased with increasing amounts of DFR in the diets (p < 0.05). In addition, an increase of the faecal concentrations of acetic acid, propionic acid, n-butyric acid and total short-chain fatty acids (SCFA) was observed (p < 0.05). Faecal ammonium and lactate concentrations, as well as plasma phenol and indole concentrations, were not linearly affected by the dietary inclusion of DFR. The relative abundance of Fusobacteria in the faeces of the dogs decreased, and the relative abundance of Actinobacteria and Bacteroidetes increased with increasing amounts of DFR in the diets (p < 0.05). In conclusion, the DFR seemed to be intensively fermented by the intestinal microbiota of the dogs, as indicated by the increased faecal SCFA concentrations and the shifts in the composition of the faecal microbiota. Dietary inclusion levels of up to 5% can be recommended based on our results, as the observed lower apparent crude protein and ether extract digestibility might limit the use of food residues for dogs at higher amounts.
Collapse
Affiliation(s)
- Nadine Paßlack
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany.,Small Animal Clinic, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Giessen, Germany
| | - Fenia Galliou
- Department of Agriculture, Hellenic Mediterranean University, Heraklion, Greece
| | | | - Katia Lasaridi
- Department of Geography, Harokopio University, Athens, Greece
| | - Eleni Tsiplakou
- Department of Animal Science, Laboratory of Nutritional Physiology and Feeding, School of Animal Biosciences, Agricultural University of Athens, Athens, Greece
| | - Wilfried Vahjen
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Jürgen Zentek
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
30
|
Navarro PF, Gil L, Martín G, Fernández-Barredo S. Reference intervals for electrophoretograms obtained by capillary electrophoresis of dialyzed urine from healthy dogs. J Vet Diagn Invest 2021; 33:632-639. [PMID: 34088253 DOI: 10.1177/10406387211020117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Electrophoresis of urine to evaluate protein fractions in dogs with proteinuria to differentiate glomerular from tubular damage has increased in recent years; however, capillary electrophoresis (CE) of urine has not been reported in a study of > 40 healthy animals, to our knowledge. We aimed to establish reference intervals (RIs) for the urine protein fractions obtained by CE of urine from healthy dogs. We obtained urine samples from 123 clinically healthy dogs of both sexes between December 2016 and April 2019; urine was frozen until CE was performed. The electrophoretic patterns obtained were divided into 5 protein fractions, and RIs were established in percentages and absolute values using nonparametric methods. RIs were obtained for the fractions (F) as follows: 5.5 to 56.2% for F1, 3.2 to 16.5% for F2, 3.5 to 16.2% for F3, 17.8 to 69.8% for F4, and 5.1 to 23.9% for F5. These RIs obtained by CE might be useful clinically as a basis for comparison with pathologic samples. Age was a statistically significant factor for F2 (p = 0.01) and F3 (p = 0.02), and sex was a statistically significant factor for F1 (p = 0.03).
Collapse
Affiliation(s)
- Paula F Navarro
- Facultad de Veterinaria y Ciencias Experimentales, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain.,Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - Laura Gil
- Facultad de Veterinaria y Ciencias Experimentales
| | | | | |
Collapse
|
31
|
Effects of Weight Loss and Moderate-Protein, High-Fiber Diet Consumption on the Fasted Serum Metabolome of Cats. Metabolites 2021; 11:metabo11050324. [PMID: 34070109 PMCID: PMC8158395 DOI: 10.3390/metabo11050324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/12/2021] [Accepted: 05/16/2021] [Indexed: 01/06/2023] Open
Abstract
Feline obesity elicits a plethora of metabolic responses leading to comorbidities, with potential reversal during weight loss. The specific metabolic alterations and biomarkers of organ dysfunction are not entirely understood. Untargeted, high-throughput metabolomic technologies may allow the identification of biological components that change with weight status in cats, increasing our understanding of feline metabolism. The objective of this study was to utilize untargeted metabolomic techniques to identify biomarkers and gain mechanistic insight into the serum metabolite changes associated with reduced food intake and weight loss in overweight cats. During a four-wk baseline period, cats were fed to maintain body weight. For 18 wk following baseline, cats were fed to lose weight at a rate of ~1.5% body weight/wk. Blood serum metabolites were measured at wk 0, 1, 2, 4, 8, 12, and 16. A total of 535 named metabolites were identified, with up to 269 of them being altered (p- and q-values < 0.05) at any time point. A principal component analysis showed a continual shift in metabolite profile as weight loss progressed, with early changes being distinct from those over the long term. The majority of lipid metabolites decreased with weight loss; however, ketone bodies and small lipid particles increased with weight loss. The majority of carbohydrate metabolites decreased with weight loss. Protein metabolites had a variable result, with some increasing, but others decreasing with weight loss. Metabolic mediators of inflammation, oxidative stress, xenobiotics, and insulin resistance decreased with weight loss. In conclusion, global metabolomics identified biomarkers of reduced food intake and weight loss in cats, including decreased markers of inflammation and/or altered macronutrient metabolism.
Collapse
|
32
|
Vendramini THA, Macedo HT, Zafalon RVA, Macegoza MV, Pedrinelli V, Risolia LW, Ocampos FMM, Jeremias JT, Pontieri CFF, Ferriolli E, Colnago LA, Brunetto MA. Serum metabolomics analysis reveals that weight loss in obese dogs results in a similar metabolic profile to dogs in ideal body condition. Metabolomics 2021; 17:27. [PMID: 33594460 DOI: 10.1007/s11306-020-01753-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/26/2020] [Indexed: 01/04/2023]
Abstract
INTRODUCTION The study of metabolic profile can be an important tool to better understand, at a systemic level, metabolic alterations caused by different pathological conditions, such as obesity. Furthermore, it allows the discovery of metabolic biomarkers, which may help to diagnose alterations caused by obesity. OBJECTIVE To investigate the metabolic profile of blood serum of obese dogs, control dogs, and dogs that were subjected to a weight loss program. METHODS Ten obese adult spayed female dogs were included, and their body composition was determined by the deuterium isotope dilution method. The dogs were subjected to a weight loss program and formed a new experimental group after losing 20% of the initial body weight. A third experimental group was composed of ten lean adult spayed female dogs. The metabolic profile of blood serum was evaluated through nuclear magnetic resonance (NMR). Principal Component Analyses (PCA) and Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA) models were constructed using Pareto scaling pre-processing. Pathway analysis was also performed using the MetaboAnalist online tool. RESULTS The PCA shows that the control and after weight loss groups presented a trend to negative PC1, indicating similarities between these two groups. In contrast, obese animals presented a tendency to appear on negative PC2 indicating a different metabolic profile. The OPLS-DA analysis of the serum indicated that healthy groups presented higher content of glucose, while animals that lost weight had higher levels of cholesterol and lactate than the control group. On the other hand, the analysis showed that lipid content, cholesterol, and branched-chain amino acids were highest in obese animals. Variable Influence on Projection (VIP) analysis demonstrated that Lactate is the most important metabolite for the OPLS-DA model and Hierarchical Cluster Analysis (HCA) corroborated the similarity between the control group and the obese after weight loss groups. Moreover, the pathway analysis indicated the most important metabolic pathways related to this dataset. CONCLUSIONS The metabolomic assessment based on NMR of blood serum differed between obese dogs and animals in optimal body condition. Moreover, the weight loss resulted in metabolic profiles similar to those observed in lean animals.
Collapse
Affiliation(s)
- Thiago H A Vendramini
- Pet Nutrology Research Center, Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of Sao Paulo (USP), 225, Avenida Duque de Caxias Norte, Pirassununga, São Paulo, 13635-900, Brazil
| | - Henrique T Macedo
- Pet Nutrology Research Center, Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of Sao Paulo (USP), 225, Avenida Duque de Caxias Norte, Pirassununga, São Paulo, 13635-900, Brazil
| | - Rafael V A Zafalon
- Pet Nutrology Research Center, Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of Sao Paulo (USP), 225, Avenida Duque de Caxias Norte, Pirassununga, São Paulo, 13635-900, Brazil
| | - Matheus V Macegoza
- Pet Nutrology Research Center, Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of Sao Paulo (USP), 225, Avenida Duque de Caxias Norte, Pirassununga, São Paulo, 13635-900, Brazil
| | - Vivian Pedrinelli
- Veterinary Nutrology Service, Veterinary Teaching Hospital, School of Veterinary Medicine and Animal Science, University of Sao Paulo (USP), Sao Paulo, 13635-900, Brazil
| | - Larissa W Risolia
- Veterinary Nutrology Service, Veterinary Teaching Hospital, School of Veterinary Medicine and Animal Science, University of Sao Paulo (USP), Sao Paulo, 13635-900, Brazil
| | - Fernanda M M Ocampos
- Brazilian Agricultural Research Corporation (Embrapa-CNPDIA), São Carlos, 13560-970, Brazil
| | | | | | - Eduardo Ferriolli
- Medical School of Ribeirão Preto, University of Sao Paulo (USP), Ribeirão Preto, 14049900, Brazil
| | - Luiz A Colnago
- Brazilian Agricultural Research Corporation (Embrapa-CNPDIA), São Carlos, 13560-970, Brazil
| | - Marcio A Brunetto
- Pet Nutrology Research Center, Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of Sao Paulo (USP), 225, Avenida Duque de Caxias Norte, Pirassununga, São Paulo, 13635-900, Brazil.
- Veterinary Nutrology Service, Veterinary Teaching Hospital, School of Veterinary Medicine and Animal Science, University of Sao Paulo (USP), Sao Paulo, 13635-900, Brazil.
| |
Collapse
|
33
|
Scarsella E, Sandri M, Monego SD, Licastro D, Stefanon B. Blood Microbiome: A New Marker of Gut Microbial Population in Dogs? Vet Sci 2020; 7:vetsci7040198. [PMID: 33291629 PMCID: PMC7761930 DOI: 10.3390/vetsci7040198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022] Open
Abstract
The characterization of the microbial population in different compartments of the organism, such as the gastrointestinal tract, is now possible thanks to the use of high-throughput DNA sequencing technique. Several studies in the companion animals field have already investigated the fecal microbiome in healthy or sick subjects; however, the methodologies used in the different laboratories and the limited number of animals recruited in each experiment do not allow a straight comparison among published results. Previously, our research focused on the characterization of the microbial taxa variability in 340 fecal samples from 132 healthy dogs, collected serially from several in-house experiments. The results supported the responsiveness of microbiota to dietary and sex factors and allowed us to cluster dogs with high accuracy. For the present study, intestinal and blood microbiota of healthy dogs from different breeds, genders, ages and food habits were collected, with three principal aims: firstly, to confirm the results of our previous study regarding the fecal microbiome affected by the different type of diet; secondly, to investigate the existence of a blood microbial population, even in heathy subjects; and thirdly, to seek for a possible connection between the fecal and the blood microbiota. Limited researches have been published on blood microbiota in humans, and this is the first evidence of the presence of a bacterial population in the blood of dogs. Moreover, gut and blood microbiota can discriminate the animals by factors such as diet, suggesting some relationship between them. These preliminary results make us believe in the use of the blood microbiome for diagnostic purposes, such as researching and preventing gut inflammatory diseases.
Collapse
Affiliation(s)
- Elisa Scarsella
- Department of Agriculture, Food, Environmental and Animal Science, University of Udine, 33100 Udine, Italy; (E.S.); (M.S.)
| | - Misa Sandri
- Department of Agriculture, Food, Environmental and Animal Science, University of Udine, 33100 Udine, Italy; (E.S.); (M.S.)
| | - Simeone Dal Monego
- ARGO Open Lab Platform for Genome Sequencing, AREA Science Park, Padriciano, 34149 Trieste, Italy; (S.D.M.); (D.L.)
| | - Danilo Licastro
- ARGO Open Lab Platform for Genome Sequencing, AREA Science Park, Padriciano, 34149 Trieste, Italy; (S.D.M.); (D.L.)
| | - Bruno Stefanon
- Department of Agriculture, Food, Environmental and Animal Science, University of Udine, 33100 Udine, Italy; (E.S.); (M.S.)
- Correspondence: ; Tel.: +39-0432-55-8581
| |
Collapse
|
34
|
Alessandri G, Argentini C, Milani C, Turroni F, Cristina Ossiprandi M, van Sinderen D, Ventura M. Catching a glimpse of the bacterial gut community of companion animals: a canine and feline perspective. Microb Biotechnol 2020; 13:1708-1732. [PMID: 32864871 PMCID: PMC7533323 DOI: 10.1111/1751-7915.13656] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/13/2022] Open
Abstract
Dogs and cats have gained a special position in human society by becoming our principal companion animals. In this context, efforts to ensure their health and welfare have increased exponentially, with in recent times a growing interest in assessing the impact of the gut microbiota on canine and feline health. Recent technological advances have generated new tools to not only examine the intestinal microbial composition of dogs and cats, but also to scrutinize the genetic repertoire and associated metabolic functions of this microbial community. The application of high-throughput sequencing techniques to canine and feline faecal samples revealed similarities in their bacterial composition, with Fusobacteria, Firmicutes and Bacteroidetes as the most prevalent and abundant phyla, followed by Proteobacteria and Actinobacteria. Although key bacterial members were consistently present in their gut microbiota, the taxonomic composition and the metabolic repertoire of the intestinal microbial population may be influenced by several factors, including diet, age and anthropogenic aspects, as well as intestinal dysbiosis. The current review aims to provide a comprehensive overview of the multitude of factors which play a role in the modulation of the canine and feline gut microbiota and that of their human owners with whom they share the same environment.
Collapse
Affiliation(s)
- Giulia Alessandri
- Department of Veterinary Medical ScienceUniversity of ParmaParmaItaly
| | - Chiara Argentini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
- Microbiome Research HubUniversity of ParmaParmaItaly
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
- Microbiome Research HubUniversity of ParmaParmaItaly
| | - Maria Cristina Ossiprandi
- Department of Veterinary Medical ScienceUniversity of ParmaParmaItaly
- Microbiome Research HubUniversity of ParmaParmaItaly
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience InstituteNational University of IrelandCorkIreland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
- Microbiome Research HubUniversity of ParmaParmaItaly
| |
Collapse
|
35
|
Moore R, Anturaniemi J, Velagapudi V, Nandania J, Barrouin-Melo SM, Hielm-Björkman A. Targeted Metabolomics With Ultraperformance Liquid Chromatography-Mass Spectrometry (UPLC-MS) Highlights Metabolic Differences in Healthy and Atopic Staffordshire Bull Terriers Fed Two Different Diets, A Pilot Study. Front Vet Sci 2020; 7:554296. [PMID: 33195525 PMCID: PMC7653775 DOI: 10.3389/fvets.2020.554296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/22/2020] [Indexed: 01/09/2023] Open
Abstract
Background: While anecdotal evidence has long claimed that a raw meat-based diet (RMBD) improves the metabolic health of canines, no rigorous scientific study has clarified this issue. Canine atopic dermatitis (CAD) has also been linked to metabolic health, but its relation to diet remains poorly understood. This study investigates whether dietary choice is linked to metabolic health in healthy and CAD-diagnosed canines via targeted serum and urine metabolomic analysis of polar, non-ionic metabolites, as well as whether the underlying CAD condition modulates the response to nutritional intake. Materials and Methods: Serum metabolites of client-owned Staffordshire bull terriers, divided into CAD-diagnosed (n = 14) and healthy (n = 6) cohorts, were studied. Urine metabolites of a subset of the CAD-diagnosed canines (n = 8) were also studied. The canines were split into two cohorts based on diet. The first cohort were fed a commercially available high-fat, moderate-protein, low-carbohydrate RMBD (n = 11, CAD diagnosed n = 8, healthy n = 3). Those in the second cohort were fed a commercially available moderate-fat, moderate-protein, high-carbohydrate kibble diet (KD) (n = 9: CAD diagnosed n = 6, healthy n = 3). The diet intervention period lasted approximately 4.5 months (median 135 days). Statistical analyses of the serum profiles across all dogs (n = 20) and the urine profiles of the CAD-diagnosed subset (n = 8) were performed. Results and Discussion: The KD cohort was found to have higher concentrations of methionine than the RMBD cohort, both in serum (all dogs, p < 0.0001) and in urine (CAD-only cohort, p < 0.0002), as well as cystathionine and 4-pyridoxic acid. Methionine plays important roles in homocysteine metabolism, and elevated levels have been implicated in various pathologies. The CAD (n = 14) cohort dogs showed starker metabolic changes in response to diet regarding these pathways compared to the healthy (n = 6) cohort. However, there was no significant change in CAD severity as a result of either diet. Likely due to the higher meat content of the RMBD, higher concentrations of several carnitines and creatine were found in the RMBD cohort. Citrulline was found in higher concentrations in the KD cohort. Our findings provide insight into the relationship between diet and the serum and urine metabolite profiles of canines. They also suggest that neither diet significantly affected CAD severity.
Collapse
Affiliation(s)
- Robin Moore
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Johanna Anturaniemi
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Vidya Velagapudi
- Metabolomics Unit, Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Jatin Nandania
- Metabolomics Unit, Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Stella Maria Barrouin-Melo
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Anatomy, Pathology and Clinics, School of Veterinary Medicine and Zootechny, Federal University of Bahia, Salvador, Brazil
| | - Anna Hielm-Björkman
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
36
|
Bermudez Sanchez S, Pilla R, Sarawichitr B, Gramenzi A, Marsilio F, Steiner JM, Lidbury JA, Woods GRT, German AJ, Suchodolski JS. Fecal microbiota in client-owned obese dogs changes after weight loss with a high-fiber-high-protein diet. PeerJ 2020; 8:e9706. [PMID: 33083100 PMCID: PMC7543742 DOI: 10.7717/peerj.9706] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/22/2020] [Indexed: 12/17/2022] Open
Abstract
Background The fecal microbiota from obese individuals can induce obesity in animal models. In addition, studies in humans, animal models and dogs have revealed that the fecal microbiota of subjects with obesity is different from that of lean subjects and changes after weight loss. However, the impact of weight loss on the fecal microbiota in dogs with obesity has not been fully characterized. Methods In this study, we used 16S rRNA gene sequencing to investigate the differences in the fecal microbiota of 20 pet dogs with obesity that underwent a weight loss program. The endpoint of the weight loss program was individually tailored to the ideal body weight of each dog. In addition, we evaluated the qPCR based Dysbiosis Index before and after weight loss. Results After weight loss, the fecal microbiota structure of dogs with obesity changed significantly (weightedANOSIM; p = 0.016, R = 0.073), showing an increase in bacterial richness (p = 0.007), evenness (p = 0.007) and the number of bacterial species (p = 0.007). The fecal microbiota composition of obese dogs after weight loss was characterized by a decrease in Firmicutes (92.3% to 78.2%, q = 0.001), and increase in Bacteroidetes (1.4% to 10.1%, q = 0.002) and Fusobacteria (1.6% to 6.2%, q = 0.040). The qPCR results revealed an overall decrease in the Dysbiosis Index, driven mostly due to a significant decrease in E. coli (p = 0.030), and increase in Fusobacterium spp. (p = 0.017). Conclusion The changes observed in the fecal microbiota of dogs with obesity after weight loss with a weight loss diet rich in fiber and protein were in agreement with previous studies in humans, that reported an increase of bacterial biodiversity and a decrease of the ratio Firmicutes/Bacteroidetes.
Collapse
Affiliation(s)
- Sandra Bermudez Sanchez
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy.,Gastrointestinal Laboratory, Texas A&M University, College Station, TX, United States of America
| | - Rachel Pilla
- Gastrointestinal Laboratory, Texas A&M University, College Station, TX, United States of America
| | - Benjamin Sarawichitr
- Gastrointestinal Laboratory, Texas A&M University, College Station, TX, United States of America
| | | | - Fulvio Marsilio
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Joerg M Steiner
- Gastrointestinal Laboratory, Texas A&M University, College Station, TX, United States of America
| | - Jonathan A Lidbury
- Gastrointestinal Laboratory, Texas A&M University, College Station, TX, United States of America
| | - Georgiana R T Woods
- Institute of Ageing and Chronic Disease, University of Liverpool, Leahurst Neston, United Kingdom
| | - Alexander J German
- Institute of Ageing and Chronic Disease, University of Liverpool, Leahurst Neston, United Kingdom.,School of Veterinary Science, University of Liverpool, Leahurst Neston, United Kingdom
| | - Jan S Suchodolski
- Gastrointestinal Laboratory, Texas A&M University, College Station, TX, United States of America
| |
Collapse
|
37
|
Moinard A, Payen C, Ouguerram K, André A, Hernandez J, Drut A, Biourge VC, Suchodolski JS, Flanagan J, Nguyen P, Leray V. Effects of High-Fat Diet at Two Energetic Levels on Fecal Microbiota, Colonic Barrier, and Metabolic Parameters in Dogs. Front Vet Sci 2020; 7:566282. [PMID: 33102570 PMCID: PMC7545960 DOI: 10.3389/fvets.2020.566282] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/21/2020] [Indexed: 12/22/2022] Open
Abstract
Increased consumption of energy-rich foods is a key factor in overweight, obesity, and associated metabolic disorders. This would be, at least in part, related to microbiota disturbance. In rodent models of obesity, microbiota disruption has been associated with alteration of the intestinal barrier, endotoxemia, inflammation grade, and insulin sensitivity. The aim of the present study was to assess the effects of a high-fat diet (HFD), fed at two energetic levels, on microbiota, intestinal barrier, and inflammatory and metabolic parameters in dogs. A HFD (33% fat as fed, 4,830 kcal/kg) was given to 24 healthy Beagle dogs at 100% (HF-100; n = 8) and at 150% (HF-150; n = 16) of their maintenance energy requirements for 8 weeks. Analysis of similarity revealed a significant difference in gut microbiota β-diversity following the diet compared to week 0 in both groups while α-diversity was lower only in the HF-150 group. Firmicutes/Bacteroidetes ratio was higher in the HF-150 group compared to the HF-100 group at weeks 2 and 8. A reduction in insulin sensitivity was observed over time in the HF150 group. Neither endotoxemia nor inflammation was observed in either group, did not find supporting data for the hypothesis that the microbiota is involved in the decline of insulin sensitivity through metabolic endotoxemia and low-grade inflammation. Colonic permeability was increased at week 4 in both groups and returned to initial levels at week 8, and was associated with modifications to the expression of genes involved in colonic barrier function. The increase in intestinal permeability may have been caused by the altered intestinal microbiota and increased expression of genes encoding tight junction proteins might indicate a compensatory mechanism to restore normal permeability. Although simultaneous changes to the microbiota, barrier permeability, inflammatory, and metabolic status have not been observed, such a causal link cannot be excluded in dogs overfed on a HFD. Further studies are necessary to better understand the link between HFD, intestinal microbiota and the host.
Collapse
Affiliation(s)
- Alex Moinard
- Nutrition, PhysioPathology and Pharmacology Unit (NP3), Oniris, College of Veterinary Medicine, Food Sciences and Engineering, CRNH, Nantes, France
| | - Cyrielle Payen
- Nutrition, PhysioPathology and Pharmacology Unit (NP3), Oniris, College of Veterinary Medicine, Food Sciences and Engineering, CRNH, Nantes, France
| | - Khadija Ouguerram
- UMR 1280 Physiopathology of Nutritional Adaptations (PhAN), INRAE, CRNH, West Human Nutrition Research Center, CHU, Nantes, France
| | - Agnès André
- Nutrition, PhysioPathology and Pharmacology Unit (NP3), Oniris, College of Veterinary Medicine, Food Sciences and Engineering, CRNH, Nantes, France
| | - Juan Hernandez
- USC 1383 Cellular and Molecular Immunoendocrinology (IECM), INRAE, Oniris, College of Veterinary Medicine, Food Sciences and Engineering, Nantes, France
| | - Amandine Drut
- Nutrition, PhysioPathology and Pharmacology Unit (NP3), Oniris, College of Veterinary Medicine, Food Sciences and Engineering, CRNH, Nantes, France
| | | | - Jan S Suchodolski
- Gastrointestinal Laboratory, Texas A&M University, College Station, TX, United States
| | | | - Patrick Nguyen
- Nutrition, PhysioPathology and Pharmacology Unit (NP3), Oniris, College of Veterinary Medicine, Food Sciences and Engineering, CRNH, Nantes, France
| | - Véronique Leray
- Nutrition, PhysioPathology and Pharmacology Unit (NP3), Oniris, College of Veterinary Medicine, Food Sciences and Engineering, CRNH, Nantes, France
| |
Collapse
|
38
|
Wang J, Zhang C, Zhao Q, Li C, Jin S, Gu X. Metabolic Profiling of Plasma in Different Calving Body Condition Score Cows Using an Untargeted Liquid Chromatography-Mass Spectrometry Metabolomics Approach. Animals (Basel) 2020; 10:E1709. [PMID: 32967218 PMCID: PMC7552654 DOI: 10.3390/ani10091709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 12/03/2022] Open
Abstract
This study was undertaken to identify metabolite differences in plasma of dairy cows with a normal or high calving body condition score (CBCS), using untargeted liquid chromatography-mass spectrometry (LC-MS) metabolomics. Sixteen multiparous dairy cows were assigned to one of two groups based on CBCS (0 to 5 scale): Normal group (NBCS, 3.25 ≤ BCS ≤ 3.5, n = 8), and high BCS group (HBCS, BCS ≥ 4, n = 8). Plasma samples were collected for metabolomics analysis and evaluation of biomarkers of lipid metabolism (nonesterified fatty acid (NEFA) and β-hydroxybutyrate (BHB)), and cytokines (leptin, adiponectin, tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6)). A total of 23 differential metabolites were identified, and functional analyses were performed using the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Among these metabolites, the concentrations of six lysophosphatidylcholines and one phosphatidylethanolamine, were lower in the HBCS group than in the NBCS group (p < 0.01). Furthermore, these metabolites were involved in these four pathways, among others: glycerophospholipid metabolism, retrograde endocannabinoid signaling, autophagy, and glycosylphosphatidylinositol (GPI)-anchor biosynthesis (p < 0.05). In addition, plasma concentrations of leptin (p = 0.06) and TNF-α (p = 0.08) tended to be greater while adiponectin (p = 0.09) lower in HBCS cows than in NBCS cows. The concentrations of NEFA, BHB, or IL-6 did not differ between NBCS and HBCS groups. More importantly, based on the results of the Spearman's correlation analysis, the seven important metabolites were negatively correlated with indices of lipid metabolisms, proinflammatory cytokines, and leptin, but positively correlated with adiponectin. These results demonstrate that CBCS has a measurable impact on the plasma metabolic profile, even when NEFA and BHB are not different. In addition, the identified differential metabolites were significantly correlated to lipid metabolism and inflammation in the over-conditioned fresh cows, which are expected to render a metabolic basis for the diseases associated with over-conditioned dry cows.
Collapse
Affiliation(s)
| | | | | | | | | | - Xianhong Gu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.W.); (C.Z.); (Q.Z.); (C.L.); (S.J.)
| |
Collapse
|
39
|
Lyu Y, Su C, Verbrugghe A, Van de Wiele T, Martos Martinez-Caja A, Hesta M. Past, Present, and Future of Gastrointestinal Microbiota Research in Cats. Front Microbiol 2020; 11:1661. [PMID: 32793152 PMCID: PMC7393142 DOI: 10.3389/fmicb.2020.01661] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/25/2020] [Indexed: 12/17/2022] Open
Abstract
The relationship between microbial community and host has profound effects on the health of animals. A balanced gastrointestinal (GI) microbial population provides nutritional and metabolic benefits to its host, regulates the immune system and various signaling molecules, protects the intestine from pathogen invasion, and promotes a healthy intestinal structure and an optimal intestinal function. With the fast development of next-generation sequencing, molecular techniques have become standard tools for microbiota research, having been used to demonstrate the complex intestinal ecosystem. Similarly to other mammals, the vast majority of GI microbiota in cats (over 99%) is composed of the predominant bacterial phyla Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria. Many nutritional and clinical studies have shown that cats' microbiota can be affected by several different factors including body condition, age, diet, and inflammatory diseases. All these factors have different size effects, and some of these may be very minor, and it is currently unknown how important these are. Further research is needed to determine the functional variations in the microbiome in disease states and in response to environmental and/or dietary modulations. Additionally, further studies are also needed to explain the intricate relationship between GI microbiota and the genetics and immunity of its host. This review summarizes past and present knowledge of the feline GI microbiota and looks into the future possibilities and challenges of the field.
Collapse
Affiliation(s)
- Yang Lyu
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Chunxia Su
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Adronie Verbrugghe
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Tom Van de Wiele
- Center of Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Ana Martos Martinez-Caja
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Myriam Hesta
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
40
|
Wernimont SM, Radosevich J, Jackson MI, Ephraim E, Badri DV, MacLeay JM, Jewell DE, Suchodolski JS. The Effects of Nutrition on the Gastrointestinal Microbiome of Cats and Dogs: Impact on Health and Disease. Front Microbiol 2020; 11:1266. [PMID: 32670224 PMCID: PMC7329990 DOI: 10.3389/fmicb.2020.01266] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal (GI) microbiome of cats and dogs is increasingly recognized as a metabolically active organ inextricably linked to pet health. Food serves as a substrate for the GI microbiome of cats and dogs and plays a significant role in defining the composition and metabolism of the GI microbiome. The microbiome, in turn, facilitates the host's nutrient digestion and the production of postbiotics, which are bacterially derived compounds that can influence pet health. Consequently, pet owners have a role in shaping the microbiome of cats and dogs through the food they choose to provide. Yet, a clear understanding of the impact these food choices have on the microbiome, and thus on the overall health of the pet, is lacking. Pet foods are formulated to contain the typical nutritional building blocks of carbohydrates, proteins, and fats, but increasingly include microbiome-targeted ingredients, such as prebiotics and probiotics. Each of these categories, as well as their relative proportions in food, can affect the composition and/or function of the microbiome. Accumulating evidence suggests that dietary components may impact not only GI disease, but also allergies, oral health, weight management, diabetes, and kidney disease through changes in the GI microbiome. Until recently, the focus of microbiome research was to characterize alterations in microbiome composition in disease states, while less research effort has been devoted to understanding how changes in nutrition can influence pet health by modifying the microbiome function. This review summarizes the impact of pet food nutritional components on the composition and function of the microbiome and examines evidence for the role of nutrition in impacting host health through the microbiome in a variety of disease states. Understanding how nutrition can modulate GI microbiome composition and function may reveal new avenues for enhancing the health and resilience of cats and dogs.
Collapse
Affiliation(s)
| | | | | | - Eden Ephraim
- Hill’s Pet Nutrition, Inc., Topeka, KS, United States
| | | | | | - Dennis E. Jewell
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, United States
| | - Jan S. Suchodolski
- Texas A&M College of Veterinary Medicine & Biomedical Sciences, College Station, TX, United States
| |
Collapse
|
41
|
Urinary proteome and metabolome in dogs (Canis lupus familiaris): The effect of chronic kidney disease. J Proteomics 2020; 222:103795. [PMID: 32335294 DOI: 10.1016/j.jprot.2020.103795] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/14/2020] [Accepted: 04/20/2020] [Indexed: 02/06/2023]
Abstract
Chronic kidney disease (CKD) is a progressive and irreversible disease. Although urine is an ideal biological sample for proteomics and metabolomics studies, sensitive and specific biomarkers are currently lacking in dogs. This study characterised dog urine proteome and metabolome aiming to identify and possibly quantify putative biomarkers of CKD in dogs. Twenty-two healthy dogs and 28 dogs with spontaneous CKD were selected and urine samples were collected. Urinary proteome was separated by SDS-PAGE and analysed by mass spectrometry, while urinary metabolome was analysed in protein-depleted samples by 1D 1H NMR spectra. The most abundant proteins in urine samples from healthy dogs were uromodulin, albumin and, in entire male dogs, arginine esterase. In urine samples from CKD dogs, the concentrations of uromodulin and albumin were significantly lower and higher, respectively, than in healthy dogs. In addition, these samples were characterised by a more complex protein pattern indicating mixed glomerular (protein bands ≥65 kDa) and tubular (protein bands <65 kDa) proteinuria. Urine spectra acquired by NMR allowed the identification of 86 metabolites in healthy dogs, belonging to 49 different pathways mainly involved in amino acid metabolism, purine and aminoacyl-tRNA biosynthesis or tricarboxylic acid cycle. Seventeen metabolites showed significantly different concentrations when comparing healthy and CKD dogs. In particular, carnosine, trigonelline, and cis-aconitate, might be suggested as putative biomarkers of CKD in dogs. SIGNIFICANCE: Urine is an ideal biological sample, however few proteomics and metabolomics studies investigated this fluid in dogs and in the context of CKD (chronic kidney disease). In this research, applying a multi-omics approach, new insights were gained regarding the molecular changes triggered by this disease in canine urinary proteome and metabolome. In particular, the involvement of the tubular component was highlighted, suggesting uromodulin, trigonelline and carnosine as possible biomarkers of CKD in dogs.
Collapse
|
42
|
Torp Austvoll C, Gallo V, Montag D. Health impact of the Anthropocene: the complex relationship between gut microbiota, epigenetics, and human health, using obesity as an example. Glob Health Epidemiol Genom 2020; 5:e2. [PMID: 32363032 PMCID: PMC7176587 DOI: 10.1017/gheg.2020.2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 12/13/2019] [Accepted: 02/17/2020] [Indexed: 02/06/2023] Open
Abstract
The growing prevalence of obesity worldwide poses a public health challenge in the current geological epoch, the Anthropocene. Global changes caused by urbanisation, loss of biodiversity, industrialisation, and land-use are happening alongside microbiota dysbiosis and increasing obesity prevalence. How alterations of the gut microbiota are associated with obesity and the epigenetic mechanism mediating this and other health outcome associations are in the process of being unveiled. Epigenetics is emerging as a key mechanism mediating the interaction between human body and the environment in producing disease. Evidence suggests that the gut microbiota plays a role in obesity as it contributes to different mechanisms, such as metabolism, body weight and composition, inflammatory responses, insulin signalling, and energy extraction from food. Consistently, obese people tend to have a different epigenetic profile compared to non-obese. However, evidence is usually scattered and there is a growing need for a structured framework to conceptualise this complexity and to help shaping complex solutions. In this paper, we propose a framework to analyse the observed associations between the alterations of microbiota and health outcomes and the role of epigenetic mechanisms underlying them using obesity as an example, in the current context of global changes within the Anthropocene.
Collapse
Affiliation(s)
- Cecilie Torp Austvoll
- Centre for Primary Care and Public Health, Queen Mary University of London, London, UK
| | - Valentina Gallo
- Centre for Primary Care and Public Health, Queen Mary University of London, London, UK
- London School of Hygiene and Tropical Medicine, London, UK
- School of Public Health, Imperial College London, London, UK
| | - Doreen Montag
- Centre for Primary Care and Public Health, Queen Mary University of London, London, UK
| |
Collapse
|
43
|
Garcia-Mazcorro JF, Minamoto Y, Kawas JR, Suchodolski JS, de Vos WM. Akkermansia and Microbial Degradation of Mucus in Cats and Dogs: Implications to the Growing Worldwide Epidemic of Pet Obesity. Vet Sci 2020; 7:vetsci7020044. [PMID: 32326394 PMCID: PMC7355976 DOI: 10.3390/vetsci7020044] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 02/07/2023] Open
Abstract
Akkermansia muciniphila is a mucin-degrading bacterium that has shown the potential to provide anti-inflammatory and anti-obesity effects in mouse and man. We here focus on companion animals, specifically cats and dogs, and evaluate the microbial degradation of mucus and its health impact in the context of the worldwide epidemic of pet obesity. A literature survey revealed that the two presently known Akkermansia spp., A. muciniphila and A. glycaniphila, as well as other members of the phylum of Verrucomicrobia seem to be neither very prevalent nor abundant in the digestive tract of cats and dog. While this may be due to methodological aspects, it suggests that bacteria related to Akkermansia are not the major mucus degraders in these pets and hence other mucus-utilizing taxa may deserve attention. Hence, we will discuss the potential of these endogenous mucus utilizers and dietary interventions to boost these as well as the use of Akkermansia spp. related bacteria or their components as strategies to target feline and canine obesity.
Collapse
Affiliation(s)
- Jose F. Garcia-Mazcorro
- Research and Development, MNA de Mexico, San Nicolas de los Garza, Nuevo Leon 66477, Mexico
- Correspondence: ; Tel.: +52-81-8850-5204
| | | | - Jorge R. Kawas
- Faculty of Agronomy, Universidad Autonoma de Nuevo Leon, General Escobedo, Nuevo Leon 66050, Mexico;
| | - Jan S. Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4474, USA;
| | - Willem M. de Vos
- Laboratory of Microbiology, Wageningen University, 6708 WE Wageningen, The Netherlands;
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, P.O. Box 63, 00014 Helsinki, Finland
| |
Collapse
|
44
|
Abstract
INTRODUCTION Canis lupus familiaris is a domestic dog and many owners consider their pets as a family member. Medical bills with dogs are overcame only by the health care received by humans. Medical care is constantly progressing, and so is veterinary care. Metabolomics is the ''omic" technique aimed to the study of metabolome, low-molecular weight molecules, through biofluids or tissue samples. And it also allows to evaluate disease diagnosis and prognosis, therapeutic evaluation and toxicological studies. OBJECTIVES The goal of this paper is to review the current and potential applications of metabolomics in domestic dogs. METHOD ScienceDirect, Scopus, Reaxys and PubMed were searched for papers that performed canine metabolomics in any research area. RESULTS We analysed 38 papers, published until April 2019 in canine metabolomics approach. Metabolomic research in dogs so far can be divided into three areas: (a) Metabolomics studies in veterinary science, such as improving pet dogs health and welfare. (b) Diet, breeds and species discrimination. (c) Use of dogs as animal model in different diseases and drug development (evaluation toxicity and effect). CONCLUSIONS The results of this review showed that interest in metabolomics is growing in veterinary research. Several canine diseases have been evaluated with some promise for potential biomarker and/or disease mechanism discovery. Because canine metabolomics is a relatively new area, the researches spread across different research areas and with few studies in each area.
Collapse
Affiliation(s)
- Graciela Carlos
- Post Graduation Program in Pharmaceutical Sciences, School of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90610-000, Brazil.
| | | | - Pedro Eduardo Fröehlich
- Post Graduation Program in Pharmaceutical Sciences, School of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90610-000, Brazil
| |
Collapse
|
45
|
Tryptophan metabolism is differently regulated between large and small dogs. GeroScience 2019; 42:881-896. [PMID: 31784886 PMCID: PMC7286990 DOI: 10.1007/s11357-019-00114-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/02/2019] [Indexed: 01/05/2023] Open
Abstract
Companion dogs have recently been promoted as an animal model for the study of aging due to their similar disease profile to humans, the sophistication of health assessment and disease diagnosis, and the shared environments with their owners. In addition, dogs show an interesting life history trait pattern where smaller individuals are up to two-fold longer lived than their larger counterparts. While some of the mechanisms underlying this size and longevity trade-off are strongly suspected (i.e., growth hormone/IGF-I), there are likely a number of undiscovered mechanisms as well. Accordingly, we have completed a large-scale global metabolomic profiling of dogs encompassing a range of sizes and ages from three cities across the USA. We found a surprisingly strong location signal in the metabolome, stronger in fact than any signal related to age, breed, or sex. However, after controlling for the effects of location, tryptophan metabolism emerged as significantly associated with weight of the dogs, with small dogs having significantly higher levels of tryptophan pathway metabolites. Overall, our results point toward novel, testable hypotheses about the underlying physiological mechanisms that influence size and longevity in the companion dog and suggest that dogs may be useful in sorting out the complexities of the tryptophan metabolic network.
Collapse
|
46
|
Mori A, Goto A, Kibe R, Oda H, Kataoka Y, Sako T. Comparison of the effects of four commercially available prescription diet regimens on the fecal microbiome in healthy dogs. J Vet Med Sci 2019; 81:1783-1790. [PMID: 31611485 PMCID: PMC6943313 DOI: 10.1292/jvms.19-0055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The effects of prescription diets on canine intestinal microbiota are unknown. In this
study, we used next generation sequencing to investigate the impact of four commercially
available prescription diet regimens on the fecal microbiome in six healthy dogs. The diet
regimens used were as follows: weight-loss diet, low-fat diet, renal diet, and
anallergenic diet. We found a significantly decreased proportion of phylum Actinobacteria
with the weight-loss diet compared to the anallergenic diet. There were no significant
differences in the proportion of phylum Bacteroidetes between the four diets. The
proportion of phylum Firmicutes was significantly decreased with the weight-loss diet
compared to the anallergenic diet. The proportion of phylum Fusobacteria was significantly
increased with the weight-loss diet compared to the anallergenic diet. There were no
significant differences in the proportion of phylum Proteobacteria after consumption of
the four diets. We therefore demonstrated that commercial prescription diet influences the
fecal microbiome in healthy dogs. These results might be useful when choosing a
prescription diet for targeting a disease.
Collapse
Affiliation(s)
- Akihiro Mori
- School of Veterinary Nursing & Technology, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan, Musashino, Tokyo 180-8602, Japan
| | - Ai Goto
- School of Veterinary Nursing & Technology, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan, Musashino, Tokyo 180-8602, Japan
| | - Ryoko Kibe
- School of Veterinary Science, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan, Musashino, Tokyo 180-8602, Japan
| | - Hitomi Oda
- School of Veterinary Nursing & Technology, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan, Musashino, Tokyo 180-8602, Japan
| | - Yasushi Kataoka
- School of Veterinary Science, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan, Musashino, Tokyo 180-8602, Japan
| | - Toshinori Sako
- School of Veterinary Nursing & Technology, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan, Musashino, Tokyo 180-8602, Japan
| |
Collapse
|
47
|
Söder J, Wernersson S, Dicksved J, Hagman R, Östman JR, Moazzami AA, Höglund K. Indication of metabolic inflexibility to food intake in spontaneously overweight Labrador Retriever dogs. BMC Vet Res 2019; 15:96. [PMID: 30894172 PMCID: PMC6425671 DOI: 10.1186/s12917-019-1845-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/14/2019] [Indexed: 12/17/2022] Open
Abstract
Background Obesity in dogs is an increasing problem associated with morbidity, shortened life span and poor life quality. Overweight dogs exhibit postprandial hyperlipidaemia, highlighting the need to identify potential dysregulations in lipid metabolism. This study investigated metabolites related to lipid metabolism (i.e. acylcarnitines and taurine) and phospholipids in a feed-challenge test and aimed to identify metabolic variations in spontaneously overweight dogs. Twenty-eight healthy male Labrador Retriever dogs were included, 12 of which were classified as lean (body condition score (BCS) 4–5 on a 9-point scale) and 16 as overweight (BCS 6–8). After overnight fasting (14–17 h), fasting blood samples were collected and dogs were fed a high-fat meal followed by postprandial blood sample collection hourly for 4 h. Liquid chromatography-time of flight mass spectrometry (LC-TOFMS) was used to identify plasma metabolites and phospholipids. Multivariate models, mixed model repeated measures and linear regression analyses were used for data interpretation. Results In all dogs, propionylcarnitine, stearoylcarnitine and nine phospholipids increased in response to food intake, while vaccenylcarnitine decreased (P ≤ 0.005 for all). Overall, carnitine and acetylcarnitine signal areas in the feed-challenge test were lower in overweight dogs (P ≤ 0.004). Notably, fasting plasma acetylcarnitine was lower in overweight dogs than in lean dogs (P = 0.001) and it did not change in response to feeding. The latter finding was in contrast to the decreased acetylcarnitine signal area found in lean dogs at one hour postprandially (P < 0.0001). One fasting phosphatidylcholine (PCaa C38:4) was higher in prominently overweight dogs (BCS > 6) than in lean dogs (P < 0.05). Conclusions Plasma carnitine status was overall lower in spontaneously overweight dogs than in lean dogs in this cohort of healthy Labrador Retriever dogs, indicating a potential carnitine insufficiency in the overweight group. The acetylcarnitine response in overweight dogs indicated decreased fatty acid oxidation at fasting and metabolic inflexibility to food intake. Further studies on metabolic inflexibility and its potential role in the metabolism of overweight dogs are warranted. Electronic supplementary material The online version of this article (10.1186/s12917-019-1845-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Josefin Söder
- Department of Anatomy, Physiology and Biochemistry, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Box 7011, 75007, Uppsala, Sweden.
| | - Sara Wernersson
- Department of Anatomy, Physiology and Biochemistry, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Box 7011, 75007, Uppsala, Sweden
| | - Johan Dicksved
- Department of Animal Nutrition and Management, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Box 7024, 75007, Uppsala, Sweden
| | - Ragnvi Hagman
- Department of Clinical Sciences, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Box 7054, 75007, Uppsala, Sweden
| | - Johnny R Östman
- Department of Molecular Sciences, Faculty of Natural Resources and Agricultural Sciences, Swedish University of Agricultural Sciences, Box 7015, 75007, Uppsala, Sweden
| | - Ali A Moazzami
- Department of Molecular Sciences, Faculty of Natural Resources and Agricultural Sciences, Swedish University of Agricultural Sciences, Box 7015, 75007, Uppsala, Sweden
| | - Katja Höglund
- Department of Anatomy, Physiology and Biochemistry, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Box 7011, 75007, Uppsala, Sweden
| |
Collapse
|
48
|
Söder J, Höglund K, Dicksved J, Hagman R, Eriksson Röhnisch H, Moazzami AA, Wernersson S. Plasma metabolomics reveals lower carnitine concentrations in overweight Labrador Retriever dogs. Acta Vet Scand 2019; 61:10. [PMID: 30808390 PMCID: PMC6390349 DOI: 10.1186/s13028-019-0446-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 02/18/2019] [Indexed: 12/20/2022] Open
Abstract
Background The prevalence of overweight is increasing in dogs, but the metabolic events related to this condition are still poorly understood. The purpose of the study was to investigate the postprandial response of plasma metabolites using a meal-challenge test and to identify metabolic variations related to spontaneous overweightness in privately owned dogs. Results Twenty-eight healthy male intact Labrador Retriever dogs were included, 12 of which were classified as lean (body condition score (BCS) 4–5 on a 9-point scale) and 16 as overweight (BCS 6–8). After an overnight fast (14–17 h), blood samples were collected and dogs were thereafter fed a high-fat meal. Postprandial blood samples were collected hourly four times. Plasma metabolites were identified by nuclear magnetic resonance. Postprandial metabolomes differed from the fasting metabolome in multivariate discriminant analysis (PLS-DA: Q2Y = 0.31–0.63, cross-validated ANOVA: P ≤ 0.00014) Eleven metabolites, all amino acids, contributed to the separations. Carnitine was identified as a metabolite related to overweight (stepwise logistic regression analysis P ≤ 0.03) and overweight dogs had overall lower carnitine response (mixed model repeated measures analysis P = 0.005) than lean dogs. Notably, mean fasting carnitine concentration in overweight dogs (9.4 ± 4.2 µM) was close to a proposed reference limit for carnitine insufficiency. Conclusions A postprandial amino acid response was detected but no time-dependent variations with regards to body condition groups were found. Lower carnitine concentrations were found in overweight compared to lean dogs. The latter finding could indicate a carnitine insufficiency related to spontaneous adiposity and altered lipid metabolism in overweight dogs in this cohort of otherwise healthy Labrador Retrievers. Electronic supplementary material The online version of this article (10.1186/s13028-019-0446-4) contains supplementary material, which is available to authorized users.
Collapse
|