1
|
Liu N, Wang A, Xue M, Zhu X, Liu Y, Chen M. FOXA1 and FOXA2: the regulatory mechanisms and therapeutic implications in cancer. Cell Death Discov 2024; 10:172. [PMID: 38605023 PMCID: PMC11009302 DOI: 10.1038/s41420-024-01936-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
FOXA1 (Forkhead Box A1) and FOXA2 (Forkhead Box A2) serve as pioneering transcription factors that build gene expression capacity and play a central role in biological processes, including organogenesis and differentiation, glycolipid metabolism, proliferation, migration and invasion, and drug resistance. Notably, FOXA1 and FOXA2 may exert antagonistic, synergistic, or complementary effects in the aforementioned biological processes. This article focuses on the molecular mechanisms and clinical relevance of FOXA1 and FOXA2 in steroid hormone-induced malignancies and highlights potential strategies for targeting FOXA1 and FOXA2 for cancer therapy. Furthermore, the article describes the prospect of targeting upstream regulators of FOXA1/FOXA2 to regulate its expression for cancer therapy because of the drug untargetability of FOXA1/FOXA2.
Collapse
Affiliation(s)
- Na Liu
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China.
| | - Anran Wang
- Department of Radiotherapy and Oncology, Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Suzhou, 215300, Jiangsu Province, China
| | - Mengen Xue
- Department of Radiotherapy and Oncology, Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Suzhou, 215300, Jiangsu Province, China
| | - Xiaoren Zhu
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Yang Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minbin Chen
- Department of Radiotherapy and Oncology, Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Suzhou, 215300, Jiangsu Province, China.
| |
Collapse
|
2
|
Liu P, Jiang L, Kong W, Xie Q, Li P, Liu X, Zhang J, Liu M, Wang Z, Zhu L, Yang H, Zhou Y, Zou J, Liu X, Liu L. PXR activation impairs hepatic glucose metabolism partly via inhibiting the HNF4 α-GLUT2 pathway. Acta Pharm Sin B 2022; 12:2391-2405. [PMID: 35646519 PMCID: PMC9136535 DOI: 10.1016/j.apsb.2021.09.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/05/2021] [Accepted: 09/16/2021] [Indexed: 01/20/2023] Open
Abstract
Drug-induced hyperglycemia/diabetes is a global issue. Some drugs induce hyperglycemia by activating the pregnane X receptor (PXR), but the mechanism is unclear. Here, we report that PXR activation induces hyperglycemia by impairing hepatic glucose metabolism due to inhibition of the hepatocyte nuclear factor 4-alpha (HNF4α)‒glucose transporter 2 (GLUT2) pathway. The PXR agonists atorvastatin and rifampicin significantly downregulated GLUT2 and HNF4α expression, and impaired glucose uptake and utilization in HepG2 cells. Overexpression of PXR downregulated GLUT2 and HNF4α expression, while silencing PXR upregulated HNF4α and GLUT2 expression. Silencing HNF4α decreased GLUT2 expression, while overexpressing HNF4α increased GLUT2 expression and glucose uptake. Silencing PXR or overexpressing HNF4α reversed the atorvastatin-induced decrease in GLUT2 expression and glucose uptake. In human primary hepatocytes, atorvastatin downregulated GLUT2 and HNF4α mRNA expression, which could be attenuated by silencing PXR. Silencing HNF4α downregulated GLUT2 mRNA expression. These findings were reproduced with mouse primary hepatocytes. Hnf4α plasmid increased Slc2a2 promoter activity. Hnf4α silencing or pregnenolone-16α-carbonitrile (PCN) suppressed the Slc2a2 promoter activity by decreasing HNF4α recruitment to the Slc2a2 promoter. Liver-specific Hnf4α deletion and PCN impaired glucose tolerance and hepatic glucose uptake, and decreased the expression of hepatic HNF4α and GLUT2. In conclusion, PXR activation impaired hepatic glucose metabolism partly by inhibiting the HNF4α‒GLUT2 pathway. These results highlight the molecular mechanisms by which PXR activators induce hyperglycemia/diabetes.
Collapse
|
3
|
Kropp PA, Dunn JC, Carboneau BA, Stoffers DA, Gannon M. Cooperative function of Pdx1 and Oc1 in multipotent pancreatic progenitors impacts postnatal islet maturation and adaptability. Am J Physiol Endocrinol Metab 2018; 314:E308-E321. [PMID: 29351489 PMCID: PMC5966755 DOI: 10.1152/ajpendo.00260.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The transcription factors pancreatic and duodenal homeobox 1 (Pdx1) and onecut1 (Oc1) are coexpressed in multipotent pancreatic progenitors (MPCs), but their expression patterns diverge in hormone-expressing cells, with Oc1 expression being extinguished in the endocrine lineage and Pdx1 being maintained at high levels in β-cells. We previously demonstrated that cooperative function of these two factors in MPCs is necessary for proper specification and differentiation of pancreatic endocrine cells. In those studies, we observed a persistent decrease in expression of the β-cell maturity factor MafA. We therefore hypothesized that Pdx1 and Oc1 cooperativity in MPCs impacts postnatal β-cell maturation and function. Here our model of Pdx1-Oc1 double heterozygosity was used to investigate the impact of haploinsufficiency for both of these factors on postnatal β-cell maturation, function, and adaptability. Examining mice at postnatal day (P) 14, we observed alterations in pancreatic insulin content in both Pdx1 heterozygotes and double heterozygotes. Gene expression analysis at this age revealed significantly decreased expression of many genes important for glucose-stimulated insulin secretion (e.g., Glut2, Pcsk1/2, Abcc8) exclusively in double heterozygotes. Analysis of P14 islets revealed an increase in the number of mixed islets in double heterozygotes. We predicted that double-heterozygous β-cells would have an impaired ability to respond to stress. Indeed, we observed that β-cell proliferation fails to increase in double heterozygotes in response to either high-fat diet or placental lactogen. We thus report here the importance of cooperation between regulatory factors early in development for postnatal islet maturation and adaptability.
Collapse
Affiliation(s)
- Peter A Kropp
- Department of Molecular Physiology and Biophysics, Vanderbilt University , Nashville, Tennessee
| | - Jennifer C Dunn
- Department of Veterans Affairs, Tennessee Valley Health Authority, Vanderbilt University , Nashville, Tennessee
- Department of Medicine, Vanderbilt University , Nashville, Tennessee
| | - Bethany A Carboneau
- Department of Veterans Affairs, Tennessee Valley Health Authority, Vanderbilt University , Nashville, Tennessee
- Department of Molecular Physiology and Biophysics, Vanderbilt University , Nashville, Tennessee
| | - Doris A Stoffers
- Department of Medicine, Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Maureen Gannon
- Department of Veterans Affairs, Tennessee Valley Health Authority, Vanderbilt University , Nashville, Tennessee
- Department of Molecular Physiology and Biophysics, Vanderbilt University , Nashville, Tennessee
- Department of Medicine, Vanderbilt University , Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University , Nashville, Tennessee
| |
Collapse
|
4
|
Growth Hormone Mediates Its Protective Effect in Hepatic Apoptosis through Hnf6. PLoS One 2016; 11:e0167085. [PMID: 27936029 PMCID: PMC5147851 DOI: 10.1371/journal.pone.0167085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 11/07/2016] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND AIMS Growth hormone (GH) not only supports hepatic metabolism but also protects against hepatocyte cell death. Hnf6 (or Oc1) belonging to the Onecut family of hepatocyte transcription factors known to regulate differentiated hepatic function, is a GH-responsive gene. We evaluate if GH mediates Hnf6 activity to attenuate hepatic apoptotic injury. METHODS We used an animal model of hepatic apoptosis by bile duct ligation (BDL) with Hnf6 -/- (KO) mice in which hepatic Hnf6 was conditionally inactivated. GH was administered to adult wild type WT and KO mice for the 7 days of BDL to enhance Hnf6 expression. In vitro, primary hepatocytes derived from KO and WT liver were treated with LPS and hepatocyte apoptosis was assessed with and without GH treatment. RESULTS In WT mice, GH treatment enhanced Hnf6 expression during BDL, inhibited Caspase -3, -8 and -9 responses and diminished hepatic apoptotic and fibrotic injury. GH-mediated upregulation of Hnf6 expression and parallel suppression of apoptosis and fibrosis in WT BDL liver were abrogated in KO mice. LPS activated apoptosis and suppressed Hnf6 expression in primary hepatocytes. GH/LPS co-treatment enhanced Hnf6 expression with corresponding attenuation of apoptosis in WT-derived hepatocytes, but not in KO hepatocytes. ChiP-on-ChiP and electromobility shift assays of KO and WT liver nuclear extracts identified Ciap1 (or Birc2) as an Hnf6-bound target gene. Ciap1 expression patterns closely follow Hnf6 expression in the liver and in hepatocytes. CONCLUSION GH broad protective actions on hepatocytes during liver injury are effected through Hnf6, with Hnf6 transcriptional activation of Ciap1 as an underlying molecular mediator.
Collapse
|
5
|
New Tools for Molecular Therapy of Hepatocellular Carcinoma. Diseases 2015; 3:325-340. [PMID: 28943628 PMCID: PMC5548255 DOI: 10.3390/diseases3040325] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/15/2015] [Accepted: 10/22/2015] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver cancer, arising from neoplastic transformation of hepatocytes or liver precursor/stem cells. HCC is often associated with pre-existing chronic liver pathologies of different origin (mainly subsequent to HBV and HCV infections), such as fibrosis or cirrhosis. Current therapies are essentially still ineffective, due both to the tumor heterogeneity and the frequent late diagnosis, making necessary the creation of new therapeutic strategies to inhibit tumor onset and progression and improve the survival of patients. A promising strategy for treatment of HCC is the targeted molecular therapy based on the restoration of tumor suppressor proteins lost during neoplastic transformation. In particular, the delivery of master genes of epithelial/hepatocyte differentiation, able to trigger an extensive reprogramming of gene expression, could allow the induction of an efficient antitumor response through the simultaneous adjustment of multiple genetic/epigenetic alterations contributing to tumor development. Here, we report recent literature data supporting the use of members of the liver enriched transcription factor (LETF) family, in particular HNF4α, as tools for gene therapy of HCC.
Collapse
|
6
|
Tan Y, Xie Z, Ding M, Wang Z, Yu Q, Meng L, Zhu H, Huang X, Yu L, Meng X, Chen Y. Increased levels of FoxA1 transcription factor in pluripotent P19 embryonal carcinoma cells stimulate neural differentiation. Stem Cells Dev 2011; 19:1365-74. [PMID: 19916800 DOI: 10.1089/scd.2009.0386] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Transcription factor FoxA1 plays a critical role during embryonic development and is activated during retinoic acid (RA)-induced neural differentiation of pluripotent P19 embryonal carcinoma cells at the early stage, which is marked by decreased expression of Nanog and increased expression of neural stem cell marker Nestin. To further understand how FoxA1 mediates neural differentiation, we have overexpressed FoxA1 through an adenovirus vector in P19 cells and identified that early neurogenesis-related sonic hedgehog (Shh) gene is activated directly by FoxA1. Knockdown of FoxA1 expression during P19 cell neural differentiation results in prevention of Shh and Nestin induction. FoxA1 binds to Shh promoter at -486 to -462 bp region and activates the promoter in cotransfection assays. Furthermore, overexpression of FoxA1 alone in P19 cells stimulates expression of Nestin and results in decreased protein levels of Nanog. During RA-induced P19 cell differentiation, elevated levels of FoxA1 increase the population of neurons, evidenced by stimulated expression of neuron-specific Neurofilament-1 and Tubulin betaIII. Together, our results suggest a critical involvement of FoxA1 in stimulating neural differentiation of pluripotent stem cells at early stages.
Collapse
Affiliation(s)
- Yongjun Tan
- Biomedical Engineering Center and State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Tan Y, Chen Y, Yu L, Zhu H, Meng X, Huang X, Meng L, Ding M, Wang Z, Shan L. Two-fold elevation of expression of FoxM1 transcription factor in mouse embryonic fibroblasts enhances cell cycle checkpoint activity by stimulating p21 and Chk1 transcription. Cell Prolif 2010; 43:494-504. [PMID: 20887555 DOI: 10.1111/j.1365-2184.2010.00699.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES Forkhead Box M1 (FoxM1) transcription factor regulates expression of cell cycle effective genes and is stabilized by checkpoint kinase 2 (Chk2) to stimulate expression of DNA repair enzymes in response to DNA damage. This study intended to test whether FoxM1 is involved in cell cycle checkpoint pathways. MATERIALS AND METHODS Analysis of senescence and cell proliferation in FoxM1 transgenic (TG) mouse embryonic fibroblasts (MEFs) with 2-fold elevation of FoxM1, and overexpression or knockdown of FoxM1 in an inducible FoxM1 expression cell line, or FoxM1 siRNA. Chromatin immunoprecipitation (ChIP), electrophoretic mobility shift assays (EMSA), and cotransfection to determine FoxM1 transcription targets, as well as RNase protection assays and western blot analysis, were performed. RESULTS Two-fold elevation of FoxM1 in FoxM1-TG-MEFs resulted in low levels of cell proliferation and increase in permanent cell cycle arrest at early passages (from passage 6 to 9). These phenotypes correlated with increased phosphorylation of p53 on Ser15, elevated expression of cell cycle inhibitor p21 and Chk1 at passage 3. FoxM1 was stabilized in response to DNA damage in MEFs and FoxM1 overexpression induced p21. Knockdown of FoxM1 resulted in decrease in Chk1. ChIP, EMSA and cotransfection assays confirmed that FoxM1 stimulated promoters of p21 and Chk1. CONCLUSIONS Chk1 and p21 are direct transcription targets of FoxM1 and FoxM1 participates in transcriptional responses to stress in normal cells.
Collapse
Affiliation(s)
- Y Tan
- Biomedical Engineering Center and State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Transcriptional regulation of glucose sensors in pancreatic β-cells and liver: an update. SENSORS 2010; 10:5031-53. [PMID: 22399922 PMCID: PMC3292162 DOI: 10.3390/s100505031] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 05/07/2010] [Accepted: 05/13/2010] [Indexed: 01/17/2023]
Abstract
Pancreatic β-cells and the liver play a key role in glucose homeostasis. After a meal or in a state of hyperglycemia, glucose is transported into the β-cells or hepatocytes where it is metabolized. In the β-cells, glucose is metabolized to increase the ATP:ADP ratio, resulting in the secretion of insulin stored in the vesicle. In the hepatocytes, glucose is metabolized to CO(2), fatty acids or stored as glycogen. In these cells, solute carrier family 2 (SLC2A2) and glucokinase play a key role in sensing and uptaking glucose. Dysfunction of these proteins results in the hyperglycemia which is one of the characteristics of type 2 diabetes mellitus (T2DM). Thus, studies on the molecular mechanisms of their transcriptional regulations are important in understanding pathogenesis and combating T2DM. In this paper, we will review a recent update on the progress of gene regulation of glucose sensors in the liver and β-cells.
Collapse
|
9
|
Orphan nuclear receptor SHP interacts with and represses hepatocyte nuclear factor-6 (HNF-6) transactivation. Biochem J 2008; 413:559-69. [PMID: 18459945 DOI: 10.1042/bj20071637] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
SHP (small heterodimer partner; NR0B2) is an atypical orphan NR (nuclear receptor) that functions as a transcriptional co-repressor by interacting with a diverse set of NRs and transcriptional factors. HNF-6 (hepatocyte nuclear factor-6) is a key regulatory factor in pancreatic development, endocrine differentiation and the formation of the biliary tract, as well as glucose metabolism. In this study, we have investigated the function of SHP as a putative repressor of HNF-6. Using transient transfection assays, we have shown that SHP represses the transcriptional activity of HNF-6. Confocal microscopy revealed that both SHP and HNF-6 co-localize in the nuclei of cells. SHP physically interacted with HNF-6 in protein-protein association assays in vitro. EMSAs (electrophoretic mobility-shift assays) and ChIP (chromatin immunoprecipitation) assays demonstrated that SHP inhibits the DNA-binding activity of HNF-6 to an HNF-6-response element consensus sequence, and the HNF-6 target region of the endogenous G6Pase (glucose 6-phosphatase) promoter respectively. Northern blot analysis of HNF-6 target genes in cells infected with adenoviral vectors for SHP and SHP siRNAs (small inhibitory RNAs) indicated that SHP represses the expression of endogenous G6Pase and PEPCK (phosphoenolpyruvate carboxykinase). Our results suggest that HNF-6 is a novel target of SHP in the regulation of gluconeogenesis.
Collapse
|
10
|
Wang M, Chen M, Zheng G, Dillard B, Tallarico M, Ortiz Z, Holterman AX. Transcriptional activation by growth hormone of HNF-6-regulated hepatic genes, a potential mechanism for improved liver repair during biliary injury in mice. Am J Physiol Gastrointest Liver Physiol 2008; 295:G357-66. [PMID: 18511741 PMCID: PMC2519853 DOI: 10.1152/ajpgi.00581.2007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Growth hormone (GH) function is mediated through multiple endocrine pathways. In the liver, GH also transcriptionally activates hepatocyte nuclear factor-6 (HNF-6; OC-1), a liver-enriched transcription factor that regulates the expression of genes essential to hepatic function. We hypothesize that GH modulates hepatic function in the normal and injured liver through HNF-6 and HNF-6 target genes. CD1 mice received PBS or GH for the 1-, 7-, and 28-day course of Sham operation or bile duct ligation (BDL). Proliferation-, metabolic-, and profibrotic-specific hepatic functions were assessed with a focus on candidate HNF-6 transcriptional target genes. Confirmation of HNF-6 regulation was done by analysis of target gene expression in liver infected with recombinant adenovirus AdHNF-6 expression vectors. GH administration upregulated HNF-6 expression throughout the course of liver injury. This was associated with increased expression of HNF-6 proliferative target genes cyclin D1 and metabolic gene Cyp7A1 and downregulation of profibrogenic TGFb2R. Hepatic function improved such as enhanced hepatocyte proliferation, higher cholesterol clearance throughout the course of injury, and attenuated fibrogenic response at day 28 of BDL. GH treatment also transcriptionally increased albumin expression in an HNF-6-independent manner. This was associated with enhanced serum albumin levels. In conclusion, the GH/HNF-6 axis is a potential in vivo mechanism underlying GH diverse function in the liver to modulate the liver repair response to BDL.
Collapse
Affiliation(s)
- Minhua Wang
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago and Department of Surgery/Pediatric Surgery, Rush University Medical Center, Chicago, Illinois
| | - Michael Chen
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago and Department of Surgery/Pediatric Surgery, Rush University Medical Center, Chicago, Illinois
| | - Guoqiang Zheng
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago and Department of Surgery/Pediatric Surgery, Rush University Medical Center, Chicago, Illinois
| | - Barney Dillard
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago and Department of Surgery/Pediatric Surgery, Rush University Medical Center, Chicago, Illinois
| | - Mike Tallarico
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago and Department of Surgery/Pediatric Surgery, Rush University Medical Center, Chicago, Illinois
| | - Zorayda Ortiz
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago and Department of Surgery/Pediatric Surgery, Rush University Medical Center, Chicago, Illinois
| | - Ai-Xuan Holterman
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago and Department of Surgery/Pediatric Surgery, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
11
|
Hu Z, Hu B, Collins JF. Prediction of synergistic transcription factors by function conservation. Genome Biol 2008; 8:R257. [PMID: 18053230 PMCID: PMC2246259 DOI: 10.1186/gb-2007-8-12-r257] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Revised: 10/19/2007] [Accepted: 12/05/2007] [Indexed: 11/30/2022] Open
Abstract
A new strategy is proposed for identifying synergistic transcription factors by function conservation, leading to the identification of 51 homotypic transcription-factor combinations. Background Previous methods employed for the identification of synergistic transcription factors (TFs) are based on either TF enrichment from co-regulated genes or phylogenetic footprinting. Despite the success of these methods, both have limitations. Results We propose a new strategy to identify synergistic TFs by function conservation. Rather than aligning the regulatory sequences from orthologous genes and then identifying conserved TF binding sites (TFBSs) in the alignment, we developed computational approaches to implement the novel strategy. These methods include combinatorial TFBS enrichment utilizing distance constraints followed by enrichment of overlapping orthologous genes from human and mouse, whose regulatory sequences contain the enriched TFBS combinations. Subsequently, integration of function conservation from both TFBS and overlapping orthologous genes was achieved by correlation analyses. These techniques have been used for genome-wide promoter analyses, which have led to the identification of 51 homotypic TF combinations; the validity of these approaches has been exemplified by both known TF-TF interactions and function coherence analyses. We further provide computational evidence that our novel methods were able to identify synergistic TFs to a much greater extent than phylogenetic footprinting. Conclusion Function conservation based on the concordance of combinatorial TFBS enrichment along with enrichment of overlapping orthologous genes has been proven to be a successful means for the identification of synergistic TFs. This approach avoids the limitations of phylogenetic footprinting as it does not depend upon sequence alignment. It utilizes existing gene annotation data, such as those available in GO, thus providing an alternative method for functional TF discovery and annotation.
Collapse
Affiliation(s)
- Zihua Hu
- New York State Center of Excellence in Bioinformatics and Life Sciences, Department of Biostatistics, Department of Medicine, University at Buffalo, State University of New York (SUNY), Buffalo, NY 14260, USA.
| | | | | |
Collapse
|
12
|
Iyaguchi D, Yao M, Watanabe N, Nishihira J, Tanaka I. DNA Recognition Mechanism of the ONECUT Homeodomain of Transcription Factor HNF-6. Structure 2007; 15:75-83. [PMID: 17223534 DOI: 10.1016/j.str.2006.11.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 11/22/2006] [Accepted: 11/25/2006] [Indexed: 11/19/2022]
Abstract
Hepatocyte nuclear factor-6 (HNF-6), a liver-enriched transcription factor, controls the development of various tissues, such as the pancreas and liver, and regulates the expression of several hepatic genes. This protein belongs to the ONECUT class of homeodomain proteins and contains a bipartite DNA-binding domain composed of a single cut domain and a characteristic homeodomain. This transcription factor has two distinct modes of DNA binding and transcriptional activation that use different coactivators depending on the target gene. The crystal structure of the bipartite DNA-binding domain of HNF-6alpha complexed with the HNF-6-binding site of the TTR promoter revealed the DNA recognition mechanism of this protein. Comparing our structure with the DNA-free structure of HNF-6 or the structure of Oct-1, we discuss characteristic features associated with DNA binding and the structural basis for the dual mode of action of this protein, and we suggest a strategy for variability of transcriptional activation of the target gene.
Collapse
Affiliation(s)
- Daisuke Iyaguchi
- Faculty of Advanced Life Sciences, Hokkaido University, Kita-10, Nishi-8, Sapporo 060-0810, Japan
| | | | | | | | | |
Collapse
|
13
|
Tweedie E, Artner I, Crawford L, Poffenberger G, Thorens B, Stein R, Powers AC, Gannon M. Maintenance of hepatic nuclear factor 6 in postnatal islets impairs terminal differentiation and function of beta-cells. Diabetes 2006; 55:3264-70. [PMID: 17130469 DOI: 10.2337/db06-0090] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The Onecut homeodomain transcription factor hepatic nuclear factor 6 (Hnf6) is necessary for proper development of islet beta-cells. Hnf6 is initially expressed throughout the pancreatic epithelium but is downregulated in endocrine cells at late gestation and is not expressed in postnatal islets. Transgenic mice in which Hnf6 expression is maintained in postnatal islets (pdx1(PB)Hnf6) show overt diabetes and impaired glucose-stimulated insulin secretion (GSIS) at weaning. We now define the mechanism whereby maintenance of Hnf6 expression postnatally leads to beta-cell dysfunction. We provide evidence that continued expression of Hnf6 impairs GSIS by altering insulin granule biosynthesis, resulting in a reduced response to secretagogues. Sustained expression of Hnf6 also results in downregulation of the beta-cell-specific transcription factor MafA and a decrease in total pancreatic insulin. These results suggest that downregulation of Hnf6 expression in beta-cells during development is essential to achieve a mature, glucose-responsive beta-cell.
Collapse
Affiliation(s)
- Elizabeth Tweedie
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, 2220 Pierce Ave., 746 PRB, Nashville, TN 37232-6303, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Beaudry JB, Pierreux CE, Hayhurst GP, Plumb-Rudewiez N, Weiss MC, Rousseau GG, Lemaigre FP. Threshold levels of hepatocyte nuclear factor 6 (HNF-6) acting in synergy with HNF-4 and PGC-1alpha are required for time-specific gene expression during liver development. Mol Cell Biol 2006; 26:6037-46. [PMID: 16880515 PMCID: PMC1592803 DOI: 10.1128/mcb.02445-05] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
During liver development, hepatocytes undergo a maturation process that leads to the fully differentiated state. This relies at least in part on the coordinated action of liver-enriched transcription factors (LETFs), but little is known about the dynamics of this coordination. In this context we investigate here the role of the LETF hepatocyte nuclear factor 6 (HNF-6; also called Onecut-1) during hepatocyte differentiation. We show that HNF-6 knockout mouse fetuses have delayed expression of glucose-6-phosphatase (g6pc), which catalyzes the final step of gluconeogenesis and is a late marker of hepatocyte maturation. Using a combination of in vivo and in vitro gain- and loss-of-function approaches, we demonstrate that HNF-6 stimulates endogenous g6pc gene expression directly via a synergistic and interdependent action with HNF-4 and that it involves coordinate recruitment of the coactivator PGC-1alpha. The expression of HNF-6, HNF-4, and PGC-1alpha rises steadily during liver development and precedes that of g6pc. We provide evidence that threshold levels of HNF-6 are required to allow synergism between HNF-6, HNF-4, and PGC-1alpha to induce time-specific expression of g6pc. Our observations on the regulation of g6pc by HNF-6 provide a model whereby synergism, interdependency, and threshold concentrations of LETFs and coactivators determine time-specific expression of genes during liver development.
Collapse
|
15
|
Cheng A, Zhang M, Crosson SM, Bao ZQ, Saltiel AR. Regulation of the mouse protein targeting to glycogen (PTG) promoter by the FoxA2 forkhead protein and by 3',5'-cyclic adenosine 5'-monophosphate in H4IIE hepatoma cells. Endocrinology 2006; 147:3606-12. [PMID: 16627590 DOI: 10.1210/en.2005-1513] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The scaffolding protein, protein targeting to glycogen (PTG), orchestrates the signaling of several metabolic enzymes involved in glycogen synthesis. However, little is known concerning the regulation of PTG itself. In this study, we have cloned and characterized the mouse promoter of PTG. We identified multiple FoxA2 binding sites within this region. FoxA2 is a member of the forkhead family of transcription factors that has recently been implicated in the cAMP-dependent regulation of several genes involved in liver metabolism. Using luciferase reporter constructs, we demonstrate that FoxA2 transactivates the PTG promoter in H4IIE hepatoma cells. Nuclear extracts prepared from mouse liver and H4IIE cells were able to bind a FoxA2-specific probe derived within the PTG promoter region. Chromatin immunoprecipitation experiments further demonstrate that FoxA2 binds to the PTG promoter in vivo. Finally, we show that treatment with cAMP analogs activates the PTG promoter and significantly increases PTG levels in H4IIE cells. Our results provide a framework to investigate how additional transcription factors may regulate PTG expression in other cell types.
Collapse
Affiliation(s)
- Alan Cheng
- Department of Internal Medicine, Life Sciences Institute, University of Michigan, Ann Arbor, 48109, USA
| | | | | | | | | |
Collapse
|
16
|
Tan Y, Yoshida Y, Hughes DE, Costa RH. Increased expression of hepatocyte nuclear factor 6 stimulates hepatocyte proliferation during mouse liver regeneration. Gastroenterology 2006; 130:1283-300. [PMID: 16618419 PMCID: PMC1440887 DOI: 10.1053/j.gastro.2006.01.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Accepted: 12/21/2005] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS The hepatocyte nuclear factor 6 (HNF6 or ONECUT-1) protein is a cell-type specific transcription factor that regulates expression of hepatocyte-specific genes. Using hepatocytes for chromatin immunoprecipitation (ChIP) assays, the HNF6 protein was shown to associate with cell cycle regulatory promoters. Here, we examined whether increased levels of HNF6 stimulate hepatocyte proliferation during mouse liver regeneration. METHODS Tail vein injection of adenovirus expressing the HNF6 complementary DNA was used to increase hepatic HNF6 levels during mouse liver regeneration induced by partial hepatectomy, and DNA replication was determined by bromodeoxyuridine incorporation. Cotransfection and ChIP assays were used to determine transcriptional target promoters. RESULTS Elevated expression of HNF6 during mouse liver regeneration causes a significant increase in the number of hepatocytes entering DNA replication (S phase), and mouse hepatoma Hepa1-6 cells diminished for HNF6 levels by small interfering RNA transfection exhibit a 50% reduction in S phase following serum stimulation. This stimulation in hepatocyte S-phase progression was associated with increased expression of the hepatocyte mitogen tumor growth factor alpha and the cell cycle regulators cyclin D1 and Forkhead box m1 (Foxm1) transcription factor. Cotransfection and ChIP assays show that tumor growth factor alpha, cyclin D1, and HNF6 promoter regions are direct transcriptional targets of the HNF6 protein. Coimmunoprecipitation assays with regenerating mouse liver extracts reveal an association between HNF6 and FoxM1 proteins, and cotransfection assays show that HNF6 stimulates Foxm1 transcriptional activity. CONCLUSIONS These mouse liver regeneration studies show that increased HNF6 levels stimulate hepatocyte proliferation through transcriptional induction of cell cycle regulatory genes.
Collapse
Key Words
- hnf6, hepatocyte nuclear factor 6
- oc-1; onecut 1
- foxm1, forkhead box m1
- tgfα, tumor growth factor α
- adhnf6, adenovirus expressing hnf6
- adlacz, adenovirus expressing β-galactosidase
- chip, chromatin immunoprecipitation
- brdu, bromodeoxyuridine
- s-phase, dna replication
- phx, partial hepatectomy
- co-ip, co-immunoprecipitation
- sirna, small interfering rna
- gh, growth hormone
- creb, camp responsive element binding protein
- cbp, creb binding protein
- cdks, cyclin-dependent kinases
- cdki proteins, cdk inhibitor proteins
- rpa, rnase protection assays
Collapse
Affiliation(s)
- Yongjun Tan
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, College of Medicine, Chicago, IL 60607
| | - Yuichi Yoshida
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, College of Medicine, Chicago, IL 60607
| | - Douglas E. Hughes
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, College of Medicine, Chicago, IL 60607
| | - Robert H. Costa
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, College of Medicine, Chicago, IL 60607
- Corresponding author: Robert H. Costa, PhD, University of Illinois at Chicago, College of Medicine, Department of Biochemistry and Molecular Genetics (M/C 669) 900 S. Ashland Ave, MBRB Rm. 2220, Chicago, IL 60607-7170 Office Phone: (312) 996-0474; Lab FAX: (312) 355-4010; E-Mail:
| |
Collapse
|
17
|
Yoshida Y, Hughes DE, Rausa III FM, Kim IM, Tan Y, Darlington GJ, Costa RH. C/EBPalpha and HNF6 protein complex formation stimulates HNF6-dependent transcription by CBP coactivator recruitment in HepG2 cells. Hepatology 2006; 43:276-86. [PMID: 16440369 PMCID: PMC1360165 DOI: 10.1002/hep.21044] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We previously demonstrated that formation of complexes between the DNA-binding domains of hepatocyte nuclear factor 6 (HNF6) and forkhead box a2 (Foxa2) proteins stimulated Foxa2 transcriptional activity. Here, we used HepG2 cell cotransfection assays to demonstrate that HNF6 transcriptional activity was stimulated by CCAAT/enhancer-binding protein alpha (C/EBPalpha), but not by the related C/EBPbeta or C/EBPdelta proteins. Formation of the C/EBPalpha-HNF6 protein complex required the HNF6 cut domain and the C/EBPalpha activation domain (AD) 1/AD2 sequences. This C/EBPalpha-HNF6 transcriptional synergy required both the N-terminal HNF6 polyhistidine and serine/threonine/proline box sequences, as well as the C/EBPalpha AD1/AD2 sequences, the latter of which are known to recruit the CREB binding protein (CBP) transcriptional coactivator. Consistent with these findings, adenovirus E1A-mediated inhibition of p300/CBP histone acetyltransferase activity abrogated C/EBPalpha-HNF6 transcriptional synergy in cotransfection assays. Co-immunoprecipitation assays with liver protein extracts demonstrate an association between the HNF6 and C/EBPalpha transcription factors and the CBP coactivator protein in vivo. Furthermore, chromatin immunoprecipitation assays with hepatoma cells demonstrated that increased levels of both C/EBPalpha and HNF6 proteins were required to stimulate association of these transcription factors and the CBP coactivator protein with the endogenous mouse Foxa2 promoter region. In conclusion, formation of the C/EBPalpha-HNF6 protein complex stimulates recruitment of the CBP coactivator protein for expression of Foxa2, a transcription factor critical for regulating expression of hepatic gluconeogenic genes during fasting.
Collapse
Key Words
- basic leucine zipper
- cut-homeodomain
- hepatocyte nuclear factor
- creb binding protein
- one cut transcription factor
- mouse liver
- hnf6, hepatocyte nuclear factor 6
- oc-1, onecut-1 or hnf-6
- foxa2, forkhead box a2
- creb, camp binding protein
- cbp, creb binding protein
- ttr, transthyretin
- cmv, cytomegalovirus virus immediate early promoter
- c/ebpα, ccaat/enhancer binding protein α
- ad1, activation domain 1
- ad2, activation domain 2
- stp box, serine threonine and proline box
- ph, poly histidine
- gst, glutathione-s-transferase
- ivt, in vitro transcription and translation
- gfp, green fluorescent protein
- nmr, nuclear magnetic resonance
- pfu, plaque forming units
- ifu, infectious particle units
- ha, influenza hemagglutinin epitope tag
- bp, base pair
- adhnf6, adenovirus expressing hnf6 cdna
- cmvteto, 7 copies of the tetracycline operator sequence linked to the minimal cmv promoter
- adcmv-ta, adenovirus expressing tetracycline transcriptional activator
- adc/ebpα, adenovirus with inducible expression of ha-c/ebpα (cmv-teto ha-c/ebpα plus adcmvta)
- adgfp, adenovirus expressing gfp
- co-ip, co-immunoprecipitation
- chip, chromatin immunoprecipitation
Collapse
Affiliation(s)
- Yuichi Yoshida
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, College of Medicine, Chicago, IL 60607 and
| | - Douglas E. Hughes
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, College of Medicine, Chicago, IL 60607 and
| | - Francisco M. Rausa III
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, College of Medicine, Chicago, IL 60607 and
| | - Il-Man Kim
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, College of Medicine, Chicago, IL 60607 and
| | - Yongjun Tan
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, College of Medicine, Chicago, IL 60607 and
| | | | - Robert H. Costa
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, College of Medicine, Chicago, IL 60607 and
- Corresponding author: Dr. Robert H. Costa, Ph.D., Department of Biochemistry and Molecular Genetics (M/C 669), University of Illinois at Chicago, College of Medicine, 900 S. Ashland Ave, Rm. 2220 MBRB, Chicago, IL 60607-7170; Office Phone: (312) 996-0474; Lab FAX: (312) 355-4010;, E-Mail:
| |
Collapse
|
18
|
Rubins NE, Friedman JR, Le PP, Zhang L, Brestelli J, Kaestner KH. Transcriptional networks in the liver: hepatocyte nuclear factor 6 function is largely independent of Foxa2. Mol Cell Biol 2005; 25:7069-77. [PMID: 16055718 PMCID: PMC1190247 DOI: 10.1128/mcb.25.16.7069-7077.2005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A complex network of hepatocyte nuclear transcription factors, including HNF6 and Foxa2, regulates the expression of liver-specific genes. The current model, based on in vitro studies, suggests that HNF6 and Foxa2 interact physically. This interaction is thought to synergistically stimulate Foxa2-dependent transcription through the recruitment of p300/CBP by HNF6 and to inhibit HNF6-mediated transcription due to the interference of Foxa2 with DNA binding by HNF6. To test this model in vivo, we utilized hepatocyte-specific gene ablation to study the binding of HNF6 to its targets in the absence of Foxa2. Chromatin immunoprecipitation using anti-HNF6 antibodies was performed on chromatin isolated from Foxa2(loxP/loxP) Alfp.Cre and control mouse livers, and HNF6 binding to its target, Glut2, was determined by quantitative PCR. In contrast to the current model, we found no significant difference in HNF6 occupancy at the Glut2 promoter between Foxa2-deficient and control livers. In order to evaluate the Foxa2/HNF6 interaction model on a global scale, we performed a location analysis using a microarray with 7,000 mouse promoter fragments. Again, we found no evidence that HNF6 binding to its targets in chromatin is reduced in the presence of Foxa2. We also examined the mRNA levels of HNF6 targets in the liver using a cDNA array and found that their expression was similar in Foxa2-deficient and control mice. Overall, our studies demonstrate that HNF6 binds to and regulates its target promoters in vivo in the presence and absence of Foxa2.
Collapse
Affiliation(s)
- Nir E Rubins
- Department of Genetics, University of Pennsylvania, Philadelphia, 19104, USA
| | | | | | | | | | | |
Collapse
|
19
|
Porter MH, Paveglio SA, Zhang JA, Olson DE, Campbell AG, Thulé PM. Host Cells Reduce Glucose Uptake and Glycogen Deposition in Response to Hepatic Insulin Gene Therapy. J Investig Med 2005; 53:201-12. [PMID: 15974246 DOI: 10.2310/6650.2005.00404] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Hepatic insulin gene therapy (HIGT) restores weight gain and near-normal glycemia in rodent models of insulin-deficient diabetes mellitus. However, the effect of transgenic insulin on endogenous genes and recipient cell function is relatively unexplored. To investigate hepatocellular effects of transgenic insulin expression, we evaluated intermediary glucose metabolism in primary cultured hepatocytes treated with HIGT. METHODS Rat hepatocytes were transduced with adenovirus expressing a glucose-responsive human insulin transgene and cultured in high-glucose and high-insulin conditions. We determined glycogen content in cell cultures and intact liver directly. Glycogenolysis was compared using glucose production of cultured cells. Glucose uptake, oxidative, and glycolytic processing were determined by radiotracer analysis or direct end-product assessment. Quantitative real-time reverse transcriptase polymerase chain reaction was used to determine expression of glucose transporter 2 (GLUT2) and glucokinase genes. GLUT2 protein abundance was determined by Western blot analysis. RESULTS HIGT-treated hepatocytes contained significantly less glycogen than either untreated hepatocytes or those treated with an empty virus. Glucose release owing to glycogenolysis remained normal. However, HIGT treatment significantly impaired glucose uptake and processing. Metabolic synthetic processes were not generally inhibited, as indicated by enhanced beta-hydroxybutyrate secretion. While preserving cell viability, HIGT treatment diminished expression of both glucokinase and GLUT2. In HIGT-treated streptozocin-treated diabetic rats, total liver glycogen was intermediate between diabetic animals and normal controls. CONCLUSIONS These results suggest gene-specific effects in recipient hepatocytes following HIGT treatment and underscore the need for expanded studies examining host cell responses to the transfer of metabolically active transgenes.
Collapse
Affiliation(s)
- Marty H Porter
- Department of Internal Medicine and Metabolism Section, Veterans Administration Medical Center, Decatur, GA, USA
| | | | | | | | | | | |
Collapse
|
20
|
Plumb-Rudewiez N, Clotman F, Strick-Marchand H, Pierreux CE, Weiss MC, Rousseau GG, Lemaigre FP. Transcription factor HNF-6/OC-1 inhibits the stimulation of the HNF-3alpha/Foxa1 gene by TGF-beta in mouse liver. Hepatology 2004; 40:1266-74. [PMID: 15562441 DOI: 10.1002/hep.20459] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A network of liver-enriched transcription factors controls differentiation and morphogenesis of the liver. These factors interact via direct, feedback, and autoregulatory loops. Previous work has suggested that hepatocyte nuclear factor (HNF)-6/OC-1 and HNF-3alpha/FoxA1 participate coordinately in this hepatic network. We investigated how HNF-6 controls the expression of Foxa1. We observed that Foxa1 expression was upregulated in the liver of Hnf6(-/-) mouse embryos and in bipotential mouse embryonic liver (BMEL) cell lines derived from embryonic Hnf6(-/-) liver, suggesting that HNF-6 inhibits the expression of Foxa1. Because no evidence for a direct repression of Foxa1 by HNF-6 was found, we postulated the existence of an indirect mechanism. We found that the expression of a mediator and targets of the transforming growth factor beta (TGF-beta) signaling was increased both in Hnf6(-/-) liver and in Hnf6(-/-) BMEL cell lines. Using these cell lines, we demonstrated that TGF-beta signaling was increased in the absence of HNF-6, and that this resulted from upregulation of TGF-beta receptor II expression. We also found that TGF-beta can stimulate the expression of Foxa1 in Hnf6(+/+) cells and that inhibition of TGF-beta signaling in Hnf6(-/-) cells down-regulates the expression of Foxa1. In conclusion, we propose that Foxa1 upregulation in the absence of HNF-6 results from increased TGF-beta signaling via increased expression of the TGF-beta receptor II. We further conclude that HNF-6 inhibits Foxa1 by inhibiting the activity of the TGF-beta signaling pathway. This identifies a new mechanism of interaction between liver-enriched transcription factors whereby one factor indirectly controls another by modulating the activity of a signaling pathway.
Collapse
Affiliation(s)
- Nicolas Plumb-Rudewiez
- Hormone and Metabolic Research Unit, Institute of Cellular Pathology and Université Catholique de Louvain, Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
21
|
Rausa FM, Hughes DE, Costa RH. Stability of the Hepatocyte Nuclear Factor 6 Transcription Factor Requires Acetylation by the CREB-binding Protein Coactivator. J Biol Chem 2004; 279:43070-6. [PMID: 15304484 DOI: 10.1074/jbc.m407472200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We previously demonstrated that the formation of complexes between the DNA binding domains of the hepatocyte nuclear factor 6 (HNF6) and Forkhead Box a2 (Foxa2) transcription factors resulted in synergistic transcriptional activation of a Foxa2 target promoter. This Foxa2.HNF6 transcriptional synergy was mediated by the recruitment of CREB-binding protein (CBP) coactivator through the HNF6 Cut-Homeodomain sequences. Although the HNF6 DNA binding domain sequences are sufficient to recruit CBP coactivator for HNF6.Foxa2 transcriptional synergy, paradoxically these HNF6 Cut-Homeodomain sequences were unable to stimulate the transcription of an HNF6-dependent reporter gene. Here, we investigated whether the CBP coactivator protein played a different role in regulating HNF6 transcriptional activity. We showed that acetylation of the HNF6 protein by CBP increased both HNF6 protein stability and its ability to stimulate transcription of the glucose transporter 2 promoter. Mutation of the HNF6 Cut domain lysine 339 residue to an arginine residue abrogated CBP acetylation, which is required for HNF6 protein stability. Furthermore, the HNF6 K339R mutant protein, which failed to accumulate detected protein levels, was transcriptionally inactive and could not be stabilized by inhibiting the ubiquitin proteasome pathway. Finally, increased HNF6 protein levels stabilized the Foxa2 protein, presumably through the formation of the Foxa2.HNF6 complex. These studies show for the first time that HNF6 protein stability is controlled by CBP acetylation and provides a novel mechanism by which the activity of the CBP coactivator may regulate steady levels of two distinct liver-enriched transcription factors.
Collapse
Affiliation(s)
- Francisco M Rausa
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, College of Medicine, Chicago, Illinois 60607, USA
| | | | | |
Collapse
|
22
|
Wang M, Tan Y, Costa RH, Holterman AXL. In vivo regulation of murine CYP7A1 by HNF-6: a novel mechanism for diminished CYP7A1 expression in biliary obstruction. Hepatology 2004; 40:600-8. [PMID: 15349898 DOI: 10.1002/hep.20349] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Disruption of the enterohepatic bile acid circulation during biliary tract obstruction leads to profound perturbation of the cholesterol and bile acid metabolic pathways. Several families of nuclear receptor proteins have been shown to modulate this critical process by regulating hepatic cholesterol catabolism and bile acid synthesis through the transcriptional control of cholesterol 7-alpha hydroxylase (CYP7A1). Hepatocyte nuclear factor (HNF) 6 (also known as OC-1) is a member of the ONECUT family of transcription factors that activate numerous hepatic target genes essential to liver function. We have previously shown that hepatic expression of mouse HNF-6 messenger RNA (mRNA) and protein significantly decrease following bile duct ligation. Because CYP7A1 contains potential HNF-6 binding sites in its promoter region, we tested the hypothesis that HNF-6 transcriptionally regulates CYP7A1. Following bile duct ligation, we demonstrated that diminished HNF-6 mRNA levels correlate with a reduction in CYP7A1 mRNA expression. Increasing hepatic levels of HNF-6 either by infection with recombinant adenovirus vector expressing HNF-6 cDNA by growth hormone treatment leads to an induction of CYP7A1 mRNA. To directly evaluate if HNF-6 is a transcriptional activator for CYP7A1, we used deletional and mutational analyses of CYP7A1 promoter sequences and defined sequences -206/-194 to be critical for CYP7A1 transcriptional stimulation by HNF-6 in cotransfection assays. In conclusion, the HNF-6 protein is a component of the complex network of hepatic transcription factors that regulates the expression of hepatic genes essential for bile acid homeostasis and cholesterol/lipid metabolism in normal and pathological conditions.
Collapse
Affiliation(s)
- Minhua Wang
- Department of Surgery, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
23
|
Costa RH, Kalinichenko VV, Holterman AXL, Wang X. Transcription factors in liver development, differentiation, and regeneration. Hepatology 2003; 38:1331-47. [PMID: 14647040 DOI: 10.1016/j.hep.2003.09.034] [Citation(s) in RCA: 286] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Robert H Costa
- Department of Biochemistry and Molecular Genetics University of Illinois at Chicago, College of Medicine, Chicago, IL 60607-7170, USA.
| | | | | | | |
Collapse
|
24
|
Suzuki A, Iwama A, Miyashita H, Nakauchi H, Taniguchi H. Role for growth factors and extracellular matrix in controlling differentiation of prospectively isolated hepatic stem cells. Development 2003; 130:2513-24. [PMID: 12702664 DOI: 10.1242/dev.00459] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In liver development, a number of growth factors (GFs) and components of the extracellular matrix (ECMs) lead to differentiation of liver parenchymal cells. As the liver contains many cell types, specifically investigating their functional effects on hepatic stem cell populations is difficult. Prospective isolation and clonal assays for hepatic stem cells enable the examination of direct effects of GFs and ECMs on this rare cell fraction. Using previously purified cells that fulfill the criteria for hepatic stem cells, we examined how GFs and ECMs regulate differentiation in the developing liver. We show here that hepatocyte growth factor (HGF) induced early transition of albumin (ALB)-negative stem cells to ALB-positive hepatic precursors resembling hepatoblasts and then oncostatin M (OSM) promoted their differentiation to tryptophan-2, 3-dioxygenase (TO)-positive mature hepatocytes. During this transition, ECMs were necessary for the differentiation of stem cells and precursors, but their effects were only supportive. In the first step of stem cell differentiation induced by HGF, the expression of CCAAT/enhancer binding protein (C/EBP), a basic leucine zipper transcription factor, changed dramatically. When C/EBP function was inhibited in stem cells, they stopped differentiating to hepatocyte-lineage cells and proliferated actively. These are the first findings to illustrate the mechanism of hepatic stem cell differentiation in liver development.
Collapse
Affiliation(s)
- Atsushi Suzuki
- Department of Surgery, Institute of Clinical Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | | | | | | | | |
Collapse
|
25
|
Hughes DE, Stolz DB, Yu S, Tan Y, Reddy JK, Watkins SC, Diehl AM, Costa RH. Elevated hepatocyte levels of the Forkhead box A2 (HNF-3beta) transcription factor cause postnatal steatosis and mitochondrial damage. Hepatology 2003; 37:1414-24. [PMID: 12774021 DOI: 10.1053/jhep.2003.50253] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The Forkhead box (Fox) transcription factor Foxa2 (HNF-3beta) and related family members Foxa1 (HNF-3alpha) and Foxa3 (HNF-3gamma) act in concert with other hepatocyte nuclear factors (HNF) to coordinately regulate liver-specific gene expression. To circumvent the hepatic functional redundancy of the Foxa proteins, we used the T-77 transgenic (TG) mouse line in which the -3-kb transthyretin (TTR) promoter functioned to increase hepatocyte expression of the Foxa2 cDNA. Adult TG mice exhibited reduced hepatic glycogen and progressive liver injury, but maintained normal serum levels of glucose, insulin, and glucagon. In this study, we further characterized the postnatal liver defect in TTR-FoxA2 TG mice. The postnatal TG mice displayed significant reduction in serum glucose levels and in hepatocyte glycogen storage without increased serum levels of ketone bodies and free fatty acid suggesting that they are not undergoing a starvation response. We show that TG liver developed a substantial transient steatosis, which reached a maximum at postnatal day 5 and is associated with increased expression of hepatic genes involved in fatty acid and triglyceride synthesis, lipid beta-oxidation, and amino acid biosynthesis. Furthermore, transmission electron microscopy analysis of postnatal TG liver revealed extensive mitochondrial membrane damage, which is likely due to reactive oxygen species generated from lipid beta-oxidation. In conclusion, our model proposes that in response to reduction in hepatocyte glycogen storage, the TTR-Foxa2 TG mice survive by maintaining sufficient serum levels of glucose through gluconeogenesis using deaminated amino acids with dicarboxylate products of peroxisomal lipid beta-oxidation shuttled through the tricarboxylic acid cycle.
Collapse
Affiliation(s)
- Douglas E Hughes
- University of Illinois at Chicago, College of Medicine, Department of Molecular Genetics, Chicago, IL 60607-7170, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Houard N, Rousseau GG, Lemaigre FP. HNF-6-independent differentiation of mouse embryonic stem cells into insulin-producing cells. Diabetologia 2003; 46:378-85. [PMID: 12687336 DOI: 10.1007/s00125-003-1041-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2002] [Revised: 09/13/2002] [Indexed: 12/19/2022]
Abstract
AIMS/HYPOTHESIS Embryonic stem cells, when grown as embryoid bodies, spontaneously generate insulin-producing cells which could be used in therapy of diabetes mellitus, provided that their selection and differentiation are optimized. To achieve such optimization, one needs to know whether the differentiation of cells in embryoid bodies mimicks that of pancreatic beta cells in embryos. To address this question we verified if the differentiation of the insulin-producing cells in embryoid bodies requires Hepatocyte Nuclear Factor-6 (HNF-6), a transcription factor known to control pancreatic endocrine differentiation in embryos. METHODS We generated mouse Hnf6-/- embryonic stem cells and grew them as embryoid bodies. The expression of HNF-6, insulin, and transcription factors that are regulated by HNF-6 in developing pancreas was compared in wild-type and Hnf6-/- embryoid bodies. RESULTS No difference was observed in the expression of insulin between wild-type and Hnf6-/-embryoid bodies. In both cases insulin was expressed in the outer layer of cells, which is similar to the visceral endoderm. In wild-type embryoid bodies HNF-6 was transiently expressed in the outer layer of cells, but was not co-expressed with insulin. The expression of genes that are targets of HNF-6 in developing pancreas was unaffected in Hnf6-/-embryoid bodies. CONCLUSION/INTERPRETATION In contrast to the development of pancreatic beta cells, the differentiation of insulin-producing cells in embryoid bodies did not require HNF-6. Thus, the differentiation mechanism of insulin-producing cells in embryoid bodies differs from that of the beta cells and it is likely to resemble that of insulin-producing cells in the visceral endoderm.
Collapse
Affiliation(s)
- N Houard
- HORM Université Catholique de Lourain and Institute of Cellular Pathology, 75 Avenue Hippocrate, box 7529, 1200 Brussels, Belgium
| | | | | |
Collapse
|
27
|
Rausa FM, Tan Y, Costa RH. Association between hepatocyte nuclear factor 6 (HNF-6) and FoxA2 DNA binding domains stimulates FoxA2 transcriptional activity but inhibits HNF-6 DNA binding. Mol Cell Biol 2003; 23:437-49. [PMID: 12509444 PMCID: PMC151533 DOI: 10.1128/mcb.23.2.437-449.2003] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2002] [Revised: 08/06/2002] [Accepted: 10/18/2002] [Indexed: 01/04/2023] Open
Abstract
In previous studies we used transgenic mice or recombinant adenovirus infection to increase hepatic expression of forkhead box A2 (FoxA2, previously called hepatocyte nuclear factor 3beta [HNF-3beta]), which caused diminished hepatocyte glycogen levels and reduced expression of glucose homeostasis genes. Because this diminished expression of FoxA2 target genes was associated with reduced levels of the Cut-Homeodomain HNF-6 transcription factor, we conducted the present study to determine whether there is a functional interaction between HNF-6 and FoxA2. Human hepatoma (HepG2) cotransfection assays demonstrated that HNF-6 synergistically stimulated FoxA2 but not FoxA1 or FoxA3 transcriptional activity, and protein-binding assays showed that this protein interaction required the HNF-6 Cut-Homeodomain and FoxA2 winged-helix DNA binding domains. Furthermore, we show that the HNF-6 Cut-Homeodomain sequences were sufficient to synergistically stimulate FoxA2 transcriptional activation by recruiting the p300/CBP coactivator proteins. This was supported by the fact that FoxA2 transcriptional synergy with HNF-6 was dependent on retention of the HNF-6 Cut domain LXXLL sequence, which mediated recruitment of the p300/CBP proteins. Moreover, cotransfection and DNA binding assays demonstrated that increased FoxA2 levels caused a decrease in HNF-6 transcriptional activation of the glucose transporter 2 (Glut-2) promoter by interfering with the binding of HNF-6 to its target DNA sequence. These data suggest that at a FoxA-specific site, HNF-6 serves as a coactivator protein to enhance FoxA2 transcription, whereas at an HNF-6-specific site, FoxA2 represses HNF-6 transcription by inhibiting HNF-6 DNA binding activity. This is the first reported example of a liver-enriched transcription factor (HNF-6) functioning as a coactivator protein to potentiate the transcriptional activity of another liver factor, FoxA2.
Collapse
Affiliation(s)
- Francisco M Rausa
- Department of Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | | | | |
Collapse
|
28
|
Holterman AXL, Tan Y, Kim W, Yoo KW, Costa RH. Diminished hepatic expression of the HNF-6 transcription factor during bile duct obstruction. Hepatology 2002; 35:1392-9. [PMID: 12029624 DOI: 10.1053/jhep.2002.33680] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Hepatocyte nuclear factor 6 (HNF-6) is a member of the one cut family of transcription factors and potentially regulates expression of numerous target genes important for hepatocyte function. In the liver, HNF-6 is expressed not only in hepatocytes, but also in biliary epithelial cells (BEC). To evaluate the in vivo function of HNF-6, we examined the hepatic expression pattern of HNF-6 messenger RNA (mRNA) and protein after bile duct ligation (BDL)-mediated liver injury. We found that HNF-6 protein levels in BEC and hepatocytes were diminished within 15 hours of BDL injury and remained suppressed through the fifth day of injury. The onset of BEC proliferation in response to bile duct obstruction was associated with diminished HNF-6 protein levels. To maintain hepatic HNF-6 protein levels during BDL liver injury, we used mouse tail vein injections with recombinant adenovirus expressing HNF-6 complementary DNA (cDNA) (AdH6). We found that maintaining hepatic HNF-6 levels with AdH6 infection resulted in significant decreases in BEC proliferation at 15 and 24 hours after biliary obstruction compared with adenovirus control. Our results showed that HNF-6 expression is diminished in BEC and hepatocytes and that maintaining hepatic HNF-6 expression hinders the normal biliary proliferative response to bile duct injury. This suggests that diminished hepatic HNF-6 levels are required for repair in response to biliary injury and that it regulates expression of genes that possess differentiation-specific function that are inhibitory to proliferation. In conclusion, we propose a biologic role for diminished HNF-6 protein levels in bile duct disease.
Collapse
Affiliation(s)
- Ai-Xuan L Holterman
- Department of Surgery, Division of Pediatric Surgery, University of Illinois at Chicago, 60607-7170, USA.
| | | | | | | | | |
Collapse
|