1
|
Araújo JR, Keating E, Martel F. Impact of gestational diabetes mellitus in the maternal-to-fetal transport of nutrients. Curr Diab Rep 2015; 15:569. [PMID: 25620402 DOI: 10.1007/s11892-014-0569-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Gestational diabetes mellitus (GDM) is a metabolic disorder prevalent among pregnant women. This disease increases the risk of adverse perinatal outcomes and diseases in the offspring later in life. The human placenta, the main interface between the maternal and fetal blood circulations, is responsible for the maternal-to-fetal transfer of nutrients essential for fetal growth and development. In this context, the aim of this article is to review the latest advances in the placental transport of macro and micronutrients and how they are affected by GDM and its associated conditions, such as elevated levels of glucose, insulin, leptin, inflammation, and oxidative stress. Data analyzed in this article suggest that GDM and its associated conditions, particularly high levels of glucose, leptin, and oxidative stress, disturb placental nutrient transport and, consequently, fetal nutrient supply. As a consequence, this disturbance may contribute to the fetal and postnatal adverse health outcomes associated with GDM.
Collapse
Affiliation(s)
- João Ricardo Araújo
- Department of Biochemistry, Faculty of Medicine of Porto, University of Porto, 4200-319, Porto, Portugal,
| | | | | |
Collapse
|
2
|
Gaccioli F, Lager S, Powell TL, Jansson T. Placental transport in response to altered maternal nutrition. J Dev Orig Health Dis 2013; 4:101-15. [PMID: 25054676 PMCID: PMC4237017 DOI: 10.1017/s2040174412000529] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The mechanisms linking maternal nutrition to fetal growth and programming of adult disease remain to be fully established. We review data on changes in placental transport in response to altered maternal nutrition, including compromized utero-placental blood flow. In human intrauterine growth restriction and in most animal models involving maternal undernutrition or restricted placental blood flow, the activity of placental transporters, in particular for amino acids, is decreased in late pregnancy. The effect of maternal overnutrition on placental transport remains largely unexplored. However, some, but not all, studies in women with diabetes giving birth to large babies indicate an upregulation of placental transporters for amino acids, glucose and fatty acids. These data support the concept that the placenta responds to maternal nutritional cues by altering placental function to match fetal growth to the ability of the maternal supply line to allocate resources to the fetus. On the other hand, some findings in humans and mice suggest that placental transporters are regulated in response to fetal demand signals. These observations are consistent with the idea that fetal signals regulate placental function to compensate for changes in nutrient availability. We propose that the placenta integrates maternal and fetal nutritional cues with information from intrinsic nutrient sensors. Together, these signals regulate placental growth and nutrient transport to balance fetal demand with the ability of the mother to support pregnancy. Thus, the placenta plays a critical role in modulating maternal-fetal resource allocation, thereby affecting fetal growth and the long-term health of the offspring.
Collapse
Affiliation(s)
- F Gaccioli
- Department of Obstetrics and Gynecology, Center for Pregnancy and Newborn Research, University of Texas Health Science Center, San Antonio, TX, USA
| | - S Lager
- Department of Obstetrics and Gynecology, Center for Pregnancy and Newborn Research, University of Texas Health Science Center, San Antonio, TX, USA
| | - T L Powell
- Department of Obstetrics and Gynecology, Center for Pregnancy and Newborn Research, University of Texas Health Science Center, San Antonio, TX, USA
| | - T Jansson
- Department of Obstetrics and Gynecology, Center for Pregnancy and Newborn Research, University of Texas Health Science Center, San Antonio, TX, USA
| |
Collapse
|
3
|
Iruloh CG, D'Souza SW, Fergusson WD, Baker PN, Sibley CP, Glazier JD. Amino acid transport systems beta and A in fetal T lymphocytes in intrauterine growth restriction and with tumor necrosis factor-alpha treatment. Pediatr Res 2009; 65:51-6. [PMID: 18703994 PMCID: PMC3087423 DOI: 10.1203/pdr.0b013e31818a0793] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Intrauterine growth restriction (IUGR) is associated with reduced activity of placental amino acid transport systems beta and A. Whether this phenotype is maintained in fetal cells outside the placenta is unknown. In IUGR, cord blood tumor necrosis factor (TNF)-alpha concentrations are raised, potentially influencing amino acid transport in fetal cells. We used fetal T lymphocytes as a model to study systems beta and A amino acid transporters in IUGR compared with normal pregnancy. We also studied the effect of TNF-alpha on amino acid transporter activity. In fetal lymphocytes from IUGR pregnancies, taurine transporter mRNA expression encoding system beta transporter was reduced, but there was no change in system beta activity. No significant differences were observed in system A mRNA expression (encoding SNAT1 and SNAT2) or system A activity between the two groups. After 24 or 48 h TNF-alpha treatment, fetal T lymphocytes from normal pregnancies showed no significant change in system A or system beta activity, although cell viability was compromised. This study represents the first characterization of amino acid transport in a fetal cell outside the placenta in IUGR. We conclude that the reduced amino acid transporter activity found in placenta in IUGR is not a feature of all fetal cells.
Collapse
Affiliation(s)
- Chibuike G Iruloh
- Maternal and Fetal Health Research Group, University of Manchester, St Mary's Hospital, Manchester M13 0JH, United Kingdom
| | | | | | | | | | | |
Collapse
|
4
|
Marini M, Vichi D, Toscano A, Thyrion GDZ, Bonaccini L, Parretti E, Gheri G, Pacini A, Sgambati E. Effect of impaired glucose tolerance during pregnancy on the expression of VEGF receptors in human placenta. Reprod Fertil Dev 2008; 20:789-801. [PMID: 18842181 DOI: 10.1071/rd08032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Accepted: 06/02/2008] [Indexed: 12/19/2022] Open
Abstract
The aim of the present study was to determine the expression of vascular endothelial growth factor (VEGF) receptors VEGFR-1, VEGFR-2 and VEGFR-3 in placentas from pregnancies complicated by altered glycaemia. Placentas from women with physiological pregnancies (Group 1), pregnancies complicated by minor degree of glucose intolerance (MDGI, Group 2) and by gestational diabetes mellitus (GDM) treated with insulin (Group 3) were collected. Immunohistochemistry, RT-PCR and western blot were employed to evaluate receptor expression. In the three study groups, VEGFR-1 immunoreactivity was detected in all the placental components. VEGFR-2 immunoreactivity was observed in the vessels of all the placentas from Groups 1 and 2, but only in some placentas of Group 3. VEGFR-3 reactivity was observed in all the components of Group 1; in Groups 2 and 3 reactivity was observed in some portions of the trophoblast or the whole trophoblast, and in the stroma. VEGFR-1 and VEGFR-2 mRNA levels in Groups 2 and 3 were significantly higher compared with Group 1, whereas those of VEGFR-3 were significantly lower. Receptor protein levels were significantly lower in Groups 2 and 3 compared with Group 1. These findings demonstrated dysregulation of expression of the three placental receptors, both in GDM and in MDGI.
Collapse
Affiliation(s)
- M Marini
- Department of Anatomy Histology and Forensic Medicine, University of Florence, Policlinic of Careggi, Viale Morgagni, 85, 50134, Florence, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Sgambati E, Marini M, Vichi D, Zappoli Thyrion GD, Parretti E, Mello G, Gheri G. Distribution of the glycoconjugate oligosaccharides in the human placenta from pregnancies complicated by altered glycemia: lectin histochemistry. Histochem Cell Biol 2007; 128:263-73. [PMID: 17653755 DOI: 10.1007/s00418-007-0312-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Accepted: 06/25/2007] [Indexed: 10/23/2022]
Abstract
The aim of this study was to investigate the distribution of the oligosaccharides of the glycoconjugates in placentas from pregnancies complicated by different degree of altered glycaemia. Placentas from women with physiological pregnancies (group 1), with pregnancies complicated by minor degree of glucose intolerance (group 2) and with pregnancies complicated by gestational diabetes mellitus (GDM) treated with insulin (group 3) were collected. Ten lectins were used (ConA, WGA, PNA, SBA, DBA, LTA, UEA I, GSL II, MAL II and SNA) in combination with chemical and enzymatic treatments. The data showed a decrease of sialic acid linked alpha(2-6) to galactose/N-acetyl-D-galactosamine and an increase of N-acetyl-D-glucosamine in the placentas of the pathological groups, in particular the group 3, comparing to the group 1. A decrease of L-fucose (LTA) and D-galactose-(beta1-3)-N-acetyl-D-galactosamine, and an increase and/or appearance of L-fucose (UEA I) and N-acetyl-D-galactosamine were observed in both the pathological groups, particularly in the group 2, with respect to the group 1. In GDM, and even in pregnancies with a simple alteration of maternal glycaemia, the changes in the distribution of oligosaccharides could be related to alteration of the structure and functionality of the placenta.
Collapse
Affiliation(s)
- Eleonora Sgambati
- Department of Anatomy, Histology and Forensic Medicine, Policlinic of Careggi, University of Florence, Viale Morgagni, 85, 50134, Florence, Italy.
| | | | | | | | | | | | | |
Collapse
|
6
|
Jansson T, Powell TL. Role of the placenta in fetal programming: underlying mechanisms and potential interventional approaches. Clin Sci (Lond) 2007; 113:1-13. [PMID: 17536998 DOI: 10.1042/cs20060339] [Citation(s) in RCA: 355] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Adverse influences during fetal life alter the structure and function of distinct cells, organ systems or homoeostatic pathways, thereby ‘programming’ the individual for an increased risk of developing cardiovascular disease and diabetes in adult life. Fetal programming can be caused by a number of different perturbations in the maternal compartment, such as altered maternal nutrition and reduced utero–placental blood flow; however, the underlying mechanisms remain to be fully established. Perturbations in the maternal environment must be transmitted across the placenta in order to affect the fetus. Here, we review recent insights into how the placenta responds to changes in the maternal environment and discuss possible mechanisms by which the placenta mediates fetal programming. In IUGR (intrauterine growth restriction) pregnancies, the increased placental vascular resistance subjects the fetal heart to increased work load, representing a possible direct link between altered placental structure and fetal programming of cardiovascular disease. A decreased activity of placental 11β-HSD-2 (type 2 isoform of 11β-hydroxysteroid dehydrogenase) activity can increase fetal exposure to maternal cortisol, which programmes the fetus for later hypertension and metabolic disease. The placenta appears to function as a nutrient sensor regulating nutrient transport according to the ability of the maternal supply line to deliver nutrients. By directly regulating fetal nutrient supply and fetal growth, the placenta plays a central role in fetal programming. Furthermore, perturbations in the maternal compartment may affect the methylation status of placental genes and increase placental oxidative/nitrative stress, resulting in changes in placental function. Intervention strategies targeting the placenta in order to prevent or alleviate altered fetal growth and/or fetal programming include altering placental growth and nutrient transport by maternally administered IGFs (insulin-like growth factors) and altering maternal levels of methyl donors.
Collapse
Affiliation(s)
- Thomas Jansson
- Department of Obstetrics and Gynecology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA.
| | | |
Collapse
|
7
|
Shibata E, Powers RW, Rajakumar A, von Versen-Höynck F, Gallaher MJ, Lykins DL, Roberts JM, Hubel CA. Angiotensin II decreases system A amino acid transporter activity in human placental villous fragments through AT1 receptor activation. Am J Physiol Endocrinol Metab 2006; 291:E1009-16. [PMID: 16787961 DOI: 10.1152/ajpendo.00134.2006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reduced transport of amino acids from mother to fetus can lead to fetal intrauterine growth restriction (IUGR). The activities of several amino acid transport systems, including system A, are decreased in placental syncytiotrophoblast of IUGR pregnancies. Na(+)-K(+)-ATPase activity provides an essential driving force for Na(+)-coupled system A transport, is decreased in the placenta of IUGR pregnancies, and is decreased by angiotensin II in several tissues. Several reports have shown activation of the fetoplacental renin-angiotensin system (RAS) in IUGR. We investigated the effect of angiotensin II on placental system A transport and Na(+)-K(+)-ATPase activity in placental villi. Placental system A activity in single primary villous fragments was measured as the Na(+)-dependent uptake of alpha-(methylamino)isobutyric acid, and Na(+)/K(+) ATPase activity was measured as ouabain-sensitive uptake of (86)rubidium. Angiotensin II decreased system A activity in a concentration-dependent fashion (10-500 nmol/l). Angiotensin II type 1 receptor (AT1-R) antagonists losartan and AT1-R anti-peptide blocked the angiotensin II effect, but the angiotensin II type 2 receptor antagonist PD-123319 was without effect. System A activity was not altered by preincubation with AT1-R-independent vasoconstrictors, and antioxidants did not prevent the decrease in activity mediated by angiotensin II. Angiotensin II decreased Na(+)-K(+)-ATPase activity by an AT1-R dependent mechanism, and inhibition of Na(+)-K(+)-ATPase activity decreased system A activity in a dose-response fashion. These data suggest that angiotensin II, via AT1-R signaling, decreases system A activity by suppressing Na(+)-K(+)-ATPase in human placental villi, consistent with possible adverse effects of enhanced placental RAS on fetal growth.
Collapse
Affiliation(s)
- Eiji Shibata
- Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Sibley CP, Turner MA, Cetin I, Ayuk P, Boyd CAR, D'Souza SW, Glazier JD, Greenwood SL, Jansson T, Powell T. Placental phenotypes of intrauterine growth. Pediatr Res 2005; 58:827-32. [PMID: 16183820 DOI: 10.1203/01.pdr.0000181381.82856.23] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The placenta is essential to nutrition before birth. Recent work has shown that a range of clearly defined alterations can be found in the placentas of infants with intrauterine growth restriction (IUGR). In the mouse, a placental specific knockout of a single imprinted gene, encoding IGF-2, results in one pattern of alterations in placenta structure and function which leads to IUGR. We speculate that the alterations in the human placenta can also be grouped into patterns, or phenotypes, that are associated with specific patterns of fetal growth. Identifying the placental phenotypes of different fetal growth patterns will improve the ability of clinicians to recognize high-risk patients, of laboratory scientists to disentangle the complexities of IUGR, and of public health teams to target interventions aimed at ameliorating the long-term adverse effects of inadequate intrauterine growth.
Collapse
Affiliation(s)
- Colin P Sibley
- Division of Human Development, Acadamic Unit of Child Health, The Medical School, University of Manchester, St. Mary's Hospital, Manchester M13 OJH, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Ericsson A, Hamark B, Powell TL, Jansson T. Glucose transporter isoform 4 is expressed in the syncytiotrophoblast of first trimester human placenta. Hum Reprod 2005; 20:521-30. [PMID: 15528266 DOI: 10.1093/humrep/deh596] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Placental glucose transport mechanisms in early pregnancy are poorly understood. The aims of this study were to investigate the expression of glucose transporter (GLUT) isoforms 1, 3 and 4 in first trimester villous tissue, to assess the effects of insulin on glucose uptake and compare them with term. METHODS The expression of GLUT isoforms was investigated using immunohistochemistry, Western blot and reverse transcription (RT)-PCR in trophoblast tissue from terminations at 6-13 weeks gestation and term. The effects of insulin (300 ng/ml, 1 h) on glucose uptake were studied in villous fragments. RESULTS In the first trimester, GLUT1 and GLUT3 were present in the microvillous membrane and the cytotrophoblast, and GLUT4 in perinuclear membranes in the cytosol of the syncytiotrophoblast (ST). GLUT4 protein (48 kDa) and mRNA were identified in trophoblast homogenates. Whereas GLUT1 was expressed abundantly in term placenta, the expression of GLUT3 and 4 was markedly lower at term compared with first trimester. Insulin increased glucose uptake by 182% (n=6, P<0.05) in first trimester fragments, but not in term fragments. CONCLUSIONS The insulin-regulatable GLUT4 is expressed in the cytosol of first trimester ST compatible with a role for GLUT4 in placental glucose transport in early pregnancy. The placental expression pattern of GLUT isoforms in early pregnancy is distinct from that later in pregnancy.
Collapse
Affiliation(s)
- A Ericsson
- Department of Physiology and Pharmacology, Perinatal Center, Göteborg University, 405 30 Göteborg, Sweden.
| | | | | | | |
Collapse
|