1
|
Chen Y, Ye X, Zhong Y, Kang X, Tang Y, Zhu H, Pang C, Ning S, Liang S, Zhang F, Li C, Li J, Gu C, Cheng Y, Kuang Z, Qiu J, Jin J, Luo H, Fu M, Hui HX, Li L, Ruan D, Liu P, Chen X, Sun L, Ai S, Gao X. SP6 controls human cytotrophoblast fate decisions and trophoblast stem cell establishment by targeting MSX2 regulatory elements. Dev Cell 2024; 59:1506-1522.e11. [PMID: 38582082 DOI: 10.1016/j.devcel.2024.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/14/2023] [Accepted: 03/12/2024] [Indexed: 04/08/2024]
Abstract
The commitment and differentiation of human placental progenitor cytotrophoblast (CT) cells are crucial for a successful pregnancy, but the underlying mechanism remains poorly understood. Here, we identified the transcription factor (TF), specificity protein 6 (SP6), as a human species-specific trophoblast lineage TF expressed in human placental CT cells. Using pluripotent stem cells as a model, we demonstrated that SP6 controls CT generation and the establishment of trophoblast stem cells (TSCs) and identified msh homeobox 2 (MSX2) as the downstream effector in these events. Mechanistically, we showed that SP6 interacts with histone acetyltransferase P300 to alter the landscape of H3K27ac at targeted regulatory elements, thereby favoring transcriptional activation and facilitating CT cell fate decisions and TSC maintenance. Our results established SP6 as a regulator of the human trophoblast lineage and implied its role in placental development and the pathogenies of placental diseases.
Collapse
Affiliation(s)
- Yanglin Chen
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xianhua Ye
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yulong Zhong
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiangjin Kang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Yanqing Tang
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Haoyun Zhu
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Changmiao Pang
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shaoqiang Ning
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shiqing Liang
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Feifan Zhang
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Chao Li
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jie Li
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Chengtao Gu
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yuanxiong Cheng
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, Guangdong, China
| | - Zhanpeng Kuang
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jingyang Qiu
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jin Jin
- Department of Gynaecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Haisi Luo
- Department of Gynaecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Mingyu Fu
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hannah Xiaoyan Hui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Lei Li
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China; Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510515, China
| | - Degong Ruan
- School of Biomedical Sciences, Stem Cell, and Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Pentao Liu
- School of Biomedical Sciences, Stem Cell, and Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Xi Chen
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liangzhong Sun
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Shanshan Ai
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Xuefei Gao
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, Guangdong, China; Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
2
|
Vidal Jr S M, Enkhtuya R, Urrabaz-Garza R, Menon R. Placental Trophoblast Cell Isolation from the Term Placenta. Methods Mol Biol 2024; 2781:131-142. [PMID: 38502449 DOI: 10.1007/978-1-0716-3746-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Multiple cell lines have been utilized over time in studying placental biology. Still, most of them rely on choriocarcinoma cells or immortalized trophoblast cells that may not be entirely comparable with actual human placental trophoblast cells. Term placentas can be a source of primary villous trophoblasts. However, challenges remain in isolating them and maintaining them in extended culture. This manuscript describes our three-phase protocol utilizing enzymatic/mechanical digestion, modified Percoll gradient density separation, and immunopurification using magnetic beads. The resulting trophoblast culture remains viable for an extended period and highly pure after initial passaging.
Collapse
Affiliation(s)
- Manuel Vidal Jr S
- College of Medicine, University of the Philippines Manila, Manila, Philippines
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Radnaa Enkhtuya
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Rheanna Urrabaz-Garza
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, University of Texas Medical Branch at Galveston, Galveston, TX, USA.
| |
Collapse
|
3
|
Karahoda R, Zaugg J, Fuenzalida B, Kallol S, Moser-Haessig R, Staud F, Albrecht C. Trophoblast Differentiation Affects Crucial Nutritive Functions of Placental Membrane Transporters. Front Cell Dev Biol 2022; 10:820286. [PMID: 35273963 PMCID: PMC8901483 DOI: 10.3389/fcell.2022.820286] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/25/2022] [Indexed: 12/17/2022] Open
Abstract
Cytotrophoblasts are progenitor cells that proliferate and fuse to form the multinucleated syncytiotrophoblast layer, implicated in placental endocrine and transport functions. While membrane transporters play a critical role in the distribution of nutrients, hormones, and xenobiotics at the maternal-fetal interface, their selectivity to the syncytiotrophoblast layer is poorly characterized. We aimed to evaluate the regulation of placental transporters in response to trophoblast differentiation in vitro. Experiments were carried out in isolated primary human trophoblast cells before and after syncytialization. Gene expression of six molecular markers and thirty membrane transporters was investigated by qPCR analysis. Subsequently, functional expression was evaluated for proteins involved in the transplacental transfer of essential nutrients i.e., cholesterol (ABCA1, ABCG1), glucose (SLC2A1), leucine (SLC3A2, SLC7A5), and iron (transferrin receptor, TfR1). We identified that human chorionic gonadotropin, placental lactogen, endoglin, and cadherin-11 serve as optimal gene markers for the syncytialization process. We showed that trophoblast differentiation was associated with differential gene expression (mostly up-regulation) of several nutrient and drug transporters. Further, we revealed enhanced protein expression and activity of ABCG1, SLC3A2, SLC7A5, and TfR1 in syncytialized cells, with ABCA1 and GLUT1 displaying no change. Taken together, these results indicate that the syncytiotrophoblast has a dominant role in transporting essential nutrients cholesterol, leucine, and iron. Nonetheless, we present evidence that the cytotrophoblast cells may also be linked to transport functions that could be critical for the cell fusion processes. Our findings collectively yield new insights into the cellular functions associated with or altered by the trophoblast fusion. Importantly, defective syncytialization could lead to nutrient transfer imbalance, ultimately compromising fetal development and programming.
Collapse
Affiliation(s)
- Rona Karahoda
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Jonas Zaugg
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland.,Swiss National Centre of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland
| | - Barbara Fuenzalida
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Sampada Kallol
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland.,Swiss National Centre of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland
| | | | - Frantisek Staud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Christiane Albrecht
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland.,Swiss National Centre of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Li Y, Yan J, Chang HM, Chen ZJ, Leung PCK. Roles of TGF-β Superfamily Proteins in Extravillous Trophoblast Invasion. Trends Endocrinol Metab 2021; 32:170-189. [PMID: 33478870 DOI: 10.1016/j.tem.2020.12.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 01/17/2023]
Abstract
Following embryo implantation, extravillous trophoblasts (EVTs) invade the maternal decidua to a certain extent during early pregnancy, which is critical for normal placentation and successful pregnancy in humans. Although sharing a similar protein structure, the transforming growth factor-β (TGF-β) superfamily members exert divergent functions in regulating EVT invasion, which contributes to a relative balance of TGF-β superfamily proteins in precisely modulating this process at the maternal-fetal interface during the first trimester of pregnancy. This review details recent advances in our understanding of the functions of TGF-β superfamily members and their corresponding receptors, signaling pathways, and downstream molecular targets in regulating human EVT invasion from studies using various in vitro or ex vivo experimental models. Also, the relevance of these discoveries about TGF-β superfamily members to adverse pregnancy outcomes is summarized. The application of 3D culture trophoblast organoids, single-cell sequencing, and microfluidic assays in EVT invasion studies will help better reveal the molecular mechanisms through which TGF-β superfamily members regulate human EVT invasion, shedding light on the development of innovative strategies for predicting, diagnosing, treating, and preventing adverse human pregnancy outcomes related to EVT invasion dysfunction.
Collapse
Affiliation(s)
- Yan Li
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Reproductive Endocrinology of the Ministry of Education, Shandong University, Jinan, Shandong, 250012, China; School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Junhao Yan
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Reproductive Endocrinology of the Ministry of Education, Shandong University, Jinan, Shandong, 250012, China
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Reproductive Endocrinology of the Ministry of Education, Shandong University, Jinan, Shandong, 250012, China; School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200000, China; Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200000, China.
| | - Peter C K Leung
- Department of Obstetrics and Gynecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada.
| |
Collapse
|
5
|
Gene expression profiles of HTR8-S/Vneo cells after changes in ABCA1 expression. Funct Integr Genomics 2018; 18:725-735. [PMID: 29931611 DOI: 10.1007/s10142-018-0621-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 10/28/2022]
Abstract
ABCA1 is expressed in placental trophoblasts, such that when the expression level of ABCA1 changes, the function of trophoblasts dramatically changes. However, the mechanism by which ABCA1 affects the function of trophoblast cells remains unclear. Here, we used biochemical and transcriptomic to uncover the potential mechanism of the effect of ABCA1 on trophoblast function. HTR8/SVneo cells were either treated with the agonist T0901317 or transfected with siRNA to regulate ABCA1 expression levels. A human gene expression microarray was used to analyze the expression spectrum of ABCA1. Microarray results were confirmed by Western blotting and RT-PCR. Immunofluorescence allowed detection of the cellular localization of ABCA1, CCL8, CXCL10, CXCL11, and S1PR1 in HTR8/SVneo cells. Co-immunoprecipitation was used to test interactions among these proteins. Concomitant with an increase in ABCA1 expression, S1PR1 expression increased, whereas expression of CCL8, CXCL10, and CXCL11 decreased significantly; opposite effects were observed with a decrease in ABCA1 expression. Thus, changes in ABCA1 expression may lead to changes in downstream gene expression. Whereas the interaction between ABCA1 and S1PR1 was direct, interactions among ABCA1 and CCL8, CXCL10, and CXCL11 were indirect. We propose that, in conjunction with S1PR1, ABCA1 regulates expression levels of CCL8, CXCL10, and CXCL11; this may lead to changes in the immune function of trophoblastic cells. Thus, we suspect that the effect of ABCA1 on trophoblast function may involve many biological processes, molecular function changes, and the activation of multiple signaling pathways.
Collapse
|
6
|
Kataoka H, Kawaguchi M, Fukushima T, Shimomura T. Hepatocyte growth factor activator inhibitors (HAI-1 and HAI-2): Emerging key players in epithelial integrity and cancer. Pathol Int 2018; 68:145-158. [PMID: 29431273 DOI: 10.1111/pin.12647] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 01/09/2018] [Indexed: 02/06/2023]
Abstract
The growth, survival, and metabolic activities of multicellular organisms at the cellular level are regulated by intracellular signaling, systemic homeostasis and the pericellular microenvironment. Pericellular proteolysis has a crucial role in processing bioactive molecules in the microenvironment and thereby has profound effects on cellular functions. Hepatocyte growth factor activator inhibitor type 1 (HAI-1) and HAI-2 are type I transmembrane serine protease inhibitors expressed by most epithelial cells. They regulate the pericellular activities of circulating hepatocyte growth factor activator and cellular type II transmembrane serine proteases (TTSPs), proteases required for the activation of hepatocyte growth factor (HGF)/scatter factor (SF). Activated HGF/SF transduces pleiotropic signals through its receptor tyrosine kinase, MET (coded by the proto-oncogene MET), which are necessary for cellular migration, survival, growth and triggering stem cells for accelerated healing. HAI-1 and HAI-2 are also required for normal epithelial functions through regulation of TTSP-mediated activation of other proteases and protease-activated receptor 2, and also through suppressing excess degradation of epithelial junctional proteins. This review summarizes current knowledge regarding the mechanism of pericellular HGF/SF activation and highlights emerging roles of HAIs in epithelial development and integrity, as well as tumorigenesis and progression of transformed epithelial cells.
Collapse
Affiliation(s)
- Hiroaki Kataoka
- Section of Oncopathology and Regenerative Biology, Faculty of Medicine, Department of Pathology, University of Miyazaki, 5200 Kihara, Kiyotake, 889-1692 Miyazaki
| | - Makiko Kawaguchi
- Section of Oncopathology and Regenerative Biology, Faculty of Medicine, Department of Pathology, University of Miyazaki, 5200 Kihara, Kiyotake, 889-1692 Miyazaki
| | - Tsuyoshi Fukushima
- Section of Oncopathology and Regenerative Biology, Faculty of Medicine, Department of Pathology, University of Miyazaki, 5200 Kihara, Kiyotake, 889-1692 Miyazaki
| | - Takeshi Shimomura
- Section of Oncopathology and Regenerative Biology, Faculty of Medicine, Department of Pathology, University of Miyazaki, 5200 Kihara, Kiyotake, 889-1692 Miyazaki
| |
Collapse
|
7
|
Chengmao X, Li L, Yan L, Jie Y, Xiaoju W, Xiaohui C, Huimin G. ABCA1 affects placental function via trophoblast and macrophage. Life Sci 2017; 191:150-156. [DOI: 10.1016/j.lfs.2017.10.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/09/2017] [Accepted: 10/20/2017] [Indexed: 10/18/2022]
|
8
|
Isolation and characterization of trophoblasts from enzymatic explants of human term placenta. Hum Cell 2017; 30:249-257. [DOI: 10.1007/s13577-017-0174-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 04/20/2017] [Indexed: 01/30/2023]
|
9
|
Sagrillo-Fagundes L, Clabault H, Laurent L, Hudon-Thibeault AA, Salustiano EMA, Fortier M, Bienvenue-Pariseault J, Wong Yen P, Sanderson JT, Vaillancourt C. Human Primary Trophoblast Cell Culture Model to Study the Protective Effects of Melatonin Against Hypoxia/reoxygenation-induced Disruption. J Vis Exp 2016. [PMID: 27500522 DOI: 10.3791/54228] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
This protocol describes how villous cytotrophoblast cells are isolated from placentas at term by successive enzymatic digestions, followed by density centrifugation, media gradient isolation and immunomagnetic purification. As observed in vivo, mononucleated villous cytotrophoblast cells in primary culture differentiate into multinucleated syncytiotrophoblast cells after 72 hr. Compared to normoxia (8% O2), villous cytotrophoblast cells that undergo hypoxia/reoxygenation (0.5% / 8% O2) undergo increased oxidative stress and intrinsic apoptosis, similar to that observed in vivo in pregnancy complications such as preeclampsia, preterm birth, and intrauterine growth restriction. In this context, primary villous trophoblasts cultured under hypoxia/reoxygenation conditions represent a unique experimental system to better understand the mechanisms and signalling pathways that are altered in human placenta and facilitate the search for effective drugs that protect against certain pregnancy disorders. Human villous trophoblasts produce melatonin and express its synthesizing enzymes and receptors. Melatonin has been suggested as a treatment for preeclampsia and intrauterine growth restriction because of its protective antioxidant effects. In the primary villous cytotrophoblast cell model described in this paper, melatonin has no effect on trophoblast cells in normoxic state but restores the redox balance of syncytiotrophoblast cells disrupted by hypoxia/reoxygenation. Thus, human villous trophoblast cells in primary culture are an excellent approach to study the mechanisms behind the protective effects of melatonin on placental function during hypoxia/reoxygenation.
Collapse
|
10
|
Li L, Schust DJ. Isolation, purification and in vitro differentiation of cytotrophoblast cells from human term placenta. Reprod Biol Endocrinol 2015; 13:71. [PMID: 26156160 PMCID: PMC4497497 DOI: 10.1186/s12958-015-0070-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/26/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The syncytialization of cytotrophoblast cells to syncytiotrophoblast is central to human placental transport and hormone production. Many techniques for in vitro study of this process have been proposed and new investigators to the field may find the literature in the field daunting. Here, we present a straightforward and reliable method to establish this important model using modern but readily available tools and reagents. METHODS Villous cytotrophoblast cells are obtained from term placenta using mild enzymatic degradation, Percoll gradient centrifugation, negative magnetic cell sorting using an antibody against classical major histocompatibility complex molecules and in vitro culture on a matrix-coated growth surface. RESULTS The purity of isolated cytotrophoblast cells exceeds 98 % as assessed by cytokeratin-7 expression using flow cytometry. Contamination by mesenchymal cells, extravillous trophoblast cells, leukocytes, Hofbauer and endothelial cells is minimized (less than 2 % when analyzed for vimentin, HLA-G, CD45, CD163 and CD31 using flow cytometry). Isolated cytotrophoblast cells began to aggregate into monolayers of mononucleated cells within about 12 h of plating. By 72 h in culture, most cytotrophoblast cells have differentiated into syncytiotrophoblast as demonstrated by a loss of intercellular E-cadherin expression upon fusion into multinucleated syncytia. After 72 h in culture, nearly every cultured cell expresses syncytiotrophoblast markers, including cytokeratin-7, human chorionic gonadotropin-β (β-hCG) and the fusion-related proteins glial cell missing-1 (GCM-1) and syncytin. CONCLUSIONS We present an efficient and reliable method for isolating of cytotrophoblast cells with high purity and complete differentiation into syncytiotrophoblast in vitro.
Collapse
Affiliation(s)
- Liping Li
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, 500 N. Keene Street, Columbia, MO, USA.
- Department of Obstetrics and Gynecology, Guangzhou Medical University Affiliated Guangzhou First People's Hospital, 1 Panfu Road, Guangzhou, China.
| | - Danny J Schust
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, 500 N. Keene Street, Columbia, MO, USA.
| |
Collapse
|
11
|
Haider S, Meinhardt G, Velicky P, Otti GR, Whitley G, Fiala C, Pollheimer J, Knöfler M. Notch signaling plays a critical role in motility and differentiation of human first-trimester cytotrophoblasts. Endocrinology 2014; 155:263-74. [PMID: 24189144 DOI: 10.1210/en.2013-1455] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Failures in human extravillous trophoblast (EVT) development could be involved in the pathogenesis of pregnancy diseases. However, the underlying mechanisms have been poorly characterized. Here, we provide evidence that Notch signaling could represent a key regulatory pathway controlling trophoblast proliferation, motility, and differentiation. Immunofluorescence of first-trimester placental tissues revealed expression of Notch receptors (Notch2 and Notch3) and membrane-anchored ligands (delta-like ligand [DLL] 1 and -4 and Jagged [JAG] 1 and -2) in villous cytotrophoblasts (vCTBs), cell column trophoblasts (CCTs), and EVTs. Notch4 and Notch1 were exclusively expressed in vCTBs and in CCTs, respectively. Both proteins decreased in Western blot analyses of first-trimester, primary cytotrophoblasts (CTBs) differentiating on fibronectin. Luciferase reporter analyses suggested basal, canonical Notch activity in SGHPL-5 cells and primary cells that was increased upon seeding on DLL4-coated dishes and diminished in the presence of the Notch/γ-secretase inhibitors N-[N-(3,5-difluorophenacetyl-l-alanyl)]-S-phenylglycine t-butyl ester (DAPT) or L-685,458. Bromodeoxyuridine labeling, cyclin D1 mRNA expression, and cell counting indicated that chemical inhibition of Notch signaling elevated proliferation in the different primary trophoblast model systems. Notch inhibition also increased motility of SGHPL-5 cells through uncoated and fibronectin-coated Transwells, motility of primary CTBs, as well as migration in villous explant cultures on collagen I. Accordingly, small interfering RNA-mediated gene silencing of Notch1 also elevated SGHPL-5 cell migration. In contrast, motility of primary cultures and SGHPL-5 cells was diminished in the presence of DLL4. Moreover, DAPT increased markers of differentiated EVT, ie, human leukocyte antigen G1, integrin α5, and T-cell factor 4, whereas DLL4 provoked the opposite. In summary, the data suggest that canonical Notch signaling impairs motility and differentiation of first-trimester CTBs.
Collapse
Affiliation(s)
- Sandra Haider
- Department of Obstetrics and Fetal-Maternal Medicine (S.H., G.M., P.V., G.R.O., J.P., M.K.), Reproductive Biology Unit, Medical University of Vienna, A-1090 Vienna, Austria; Division of Biomedical Sciences (G.W.), St Georges's University of London, Londo SW17 0RE, United Kingdom; and Gynmed Clinic (C.F.), A-1150 Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Walton JR, Frey HA, Vandre DD, Kwiek JJ, Ishikawa T, Takizawa T, Robinson JM, Ackerman WE. Expression of flotillins in the human placenta: potential implications for placental transcytosis. Histochem Cell Biol 2012; 139:487-500. [PMID: 23064789 DOI: 10.1007/s00418-012-1040-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2012] [Indexed: 02/07/2023]
Abstract
A proteomics survey of human placental syncytiotrophoblast (ST) apical plasma membranes revealed peptides corresponding to flotillin-1 (FLOT1) and flotillin-2 (FLOT2). The flotillins belong to a class of lipid microdomain-associated integral membrane proteins that have been implicated in clathrin- and caveolar-independent endocytosis. In the present study, we characterized the expression of the flotillin proteins within the human placenta. FLOT1 and FLOT2 were coexpressed in placental lysates and BeWo human trophoblast cells. Immunofluorescence microscopy of first-trimester and term placentas revealed that both proteins were more prominent in villous endothelial cells and cytotrophoblasts (CTs) than the ST. Correspondingly, forskolin-induced fusion in BeWo cells resulted in a decrease in FLOT1 and FLOT2, suggesting that flotillin protein expression is reduced following trophoblast syncytialization. The flotillin proteins co-localized with a marker of fluid-phase pinocytosis, and knockdown of FLOT1 and/or FLOT2 expression resulted in decreased endocytosis of cholera toxin B subunit. We conclude that FLOT1 and FLOT2 are abundantly coexpressed in term villous placental CTs and endothelial cells, and in comparison, expression of these proteins in the ST is reduced. These findings suggest that flotillin-dependent endocytosis is unlikely to be a major pathway in the ST, but may be important in the CT and endothelium.
Collapse
Affiliation(s)
- Janelle R Walton
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Syncytins expression in cultured trophoblast cells according to differentiation status. Open Life Sci 2011. [DOI: 10.2478/s11535-011-0073-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Collapse
|
14
|
Le Bellego F, Vaillancourt C, Lafond J. Isolation and culture of term human cytotrophoblast cells and in vitro methods for studying human cytotrophoblast cells' calcium uptake. Methods Mol Biol 2009; 550:73-87. [PMID: 19495697 DOI: 10.1007/978-1-60327-009-0_4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Human primary cytotrophoblast cell culture is a very useful model to study the endocrine and immunological functions of syncytiotrophoblasts, as well as the ion exchange between the mother and her fetus, like calcium. In this chapter, we expose the procedure to (1) isolate and purify the cytotrophoblast cells from human term placenta and (2) study syncytiotrophoblast calcium uptake. First, the methodology is based on the enzymatic dissociation of villous placental tissue, followed by Percoll gradient separation. Purity is assessed by flow cytometry using staining against cytokeratin-7, protein specific for trophoblast cells. Cell proliferation is evaluated by a Thiazolyl Blue Tetrazolium Bromide (MTT) assay, hormonal secretion is measured by enzyme-linked immunosorbent assay (ELISA), and fusion is estimated by immunofluorescence using staining against desmosomal proteins. Second, we describe the calcium uptake experiment using the cytotrophoblast cells in culture.
Collapse
Affiliation(s)
- Frédérique Le Bellego
- Institut National de la Recherche Scientifique (INRS) - Institut Armand Frappier, Université du Québec, Laval, Québec, Canada
| | | | | |
Collapse
|
15
|
Stenqvist AC, Chen T, Hedlund M, Dimova T, Nagaeva O, Kjellberg L, Innala E, Mincheva-Nilsson L. ORIGINAL ARTICLE: An Efficient Optimized Method for Isolation of Villous Trophoblast Cells from Human Early Pregnancy Placenta Suitable for Functional and Molecular Studies. Am J Reprod Immunol 2008; 60:33-42. [DOI: 10.1111/j.1600-0897.2008.00588.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
16
|
Hayward MD, Pötgens AJG, Drewlo S, Kaufmann P, Rasko JEJ. Distribution of human endogenous retrovirus type W receptor in normal human villous placenta. Pathology 2007; 39:406-12. [PMID: 17676482 DOI: 10.1080/00313020701444572] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND The fusion of trophoblast cells into the villous syncytiotrophoblast is crucial for appropriate placental function and fetal development. Fusion occurs following the interaction of syncytin-1, an envelope protein of the endogenous retrovirus HERV-W, and the RD114/mammalian type D retrovirus receptor (RDR/ASCT2) on adjacent cell membranes. This process must be tightly regulated in order to maintain the proliferative pool of cytotrophoblast cells as well as the function of the syncytia. AIM We sought to investigate whether syncytial fusion of placental cytotrophoblast cells may be regulated via modulation of RDR/ASCT2 expression. METHODS Expression of RDR/ASCT2 in term and first trimester villous placenta was assessed along with a number of molecular markers using immunofluorescent staining. In a complementary approach, Western blotting was used to investigate RDR/ASCT2 expression in a panel of choriocarcinoma cell lines before and after stimulation of fusion. RESULTS Villous placental RDR/ASCT2 expression was found to be restricted to the cytotrophoblast compartment, being largely absent in the syncytiotrophoblast. Local variations in RDR/ASCT2 expression were not associated with the proliferative status of cytotrophoblast cells. RDR/ASCT2 expression was also shown to be down-regulated in BeWo choriocarcinoma cells after stimulation of syncytial fusion. CONCLUSION This first report of the localisation and distribution of RDR/ASCT2 in human placental villi suggests that the fusion of placental trophoblast cells is not regulated by local or temporal variations of RDR/ASCT2 expression in villous cytotrophoblast cells.
Collapse
Affiliation(s)
- M D Hayward
- Gene and Stem Cell Therapy Program, Centenary Institute of Cancer Medicine and Cell Biology, University of Sydney, NSW, Australia
| | | | | | | | | |
Collapse
|
17
|
Mori M, Ishikawa G, Luo SS, Mishima T, Goto T, Robinson JM, Matsubara S, Takeshita T, Kataoka H, Takizawa T. The cytotrophoblast layer of human chorionic villi becomes thinner but maintains its structural integrity during gestation. Biol Reprod 2006; 76:164-72. [PMID: 17035639 DOI: 10.1095/biolreprod.106.056127] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Chorionic villi in the human placenta serve as essential structures in fetomaternal exchanges. According to the embryology and placentology literature, during the first trimester, the cytotrophoblast (CTB) layer that is subjacent to the syncytiotrophoblast (STB) and supported by a basal lamina is nearly complete, but later, it becomes discontinuous. In the present study, we investigated the structural integrity of the CTB layer in the normal villous tree by advanced microscopy techniques using an antibody to hepatocyte growth factor (HGF) activator inhibitor type 1 (SPINT1), a potent inhibitor of HGF activators expressed exclusively on villous CTB. In full-term placenta, the cell surface of the CTB layer was spread over the basal lamina but was not interrupted. Morphometric analysis showed that throughout the villous tree, 80% of the continuity of the CTB layer of full-term placenta and 90% of that of first-trimester placenta were preserved. Gestation was accompanied by unique structural change in the basal domain of the trophoblast layer. The initially cuboidal-shaped CTB cells were transformed to flat cells with many cellular processes that, together with those of the adjacent STB, eventually covered the trophoblast basal lamina in a complex network of interdigitations. In addition, the expression levels of SPINT1, ST14, HGF, and MET mRNAs in the villous tree increased over the course of gestation. These results suggest that the structural integrity of the SPINT1-positive CTB layer may play an important role in villous differentiation and in maintenance of the villous tree via the HGF signaling system during gestation.
Collapse
Affiliation(s)
- Miki Mori
- Department of Molecular Anatomy, Nippon Medical School, Tokyo 113-8602, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Hallikas OK, Aaltonen JM, von Koskull H, Lindberg LA, Valmu L, Kalkkinen N, Wahlström T, Kataoka H, Andersson L, Lindholm D, Schröder J. Identification of antibodies against HAI-1 and integrin alpha6beta4 as immunohistochemical markers of human villous cytotrophoblast. J Histochem Cytochem 2006; 54:745-52. [PMID: 16495474 DOI: 10.1369/jhc.5a6816.2006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Syncytiotrophoblast and invasive extravillous trophoblast arise from a common stem cell, namely villous cytotrophoblast, but have very different characteristics. The study of the differentiation process relies on the availability of suitable markers for these different cell types of developing placenta. In this work, we have produced monoclonal antibodies that are specific to human villous cytotrophoblast. Monoclonal antibody (MAb) MG2 was specific to villous cytotrophoblast across gestation, and recognizes hepatocyte growth factor activator inhibitor type 1. MAb MD10 stained villous cytotrophoblast across gestation and also some endothelial cells, particularly in the second or third trimester. MAb MD10 recognizes human integrin alpha6beta4. As a test for specificity, the novel MAbs were also used for staining of frozen tissue from human colon carcinoma. The results show that the two antibodies can be used as tools to study human villous cytotrophoblasts and also human tumors. The MG2 antibody seems most specific and promising for the study of various aspects of human villous cytotrophoblast.
Collapse
Affiliation(s)
- Outi K Hallikas
- Department of Biological and Environmental Sciences, Division of Genetics, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Tanaka H, Nagaike K, Takeda N, Itoh H, Kohama K, Fukushima T, Miyata S, Uchiyama S, Uchinokura S, Shimomura T, Miyazawa K, Kitamura N, Yamada G, Kataoka H. Hepatocyte growth factor activator inhibitor type 1 (HAI-1) is required for branching morphogenesis in the chorioallantoic placenta. Mol Cell Biol 2005; 25:5687-98. [PMID: 15964823 PMCID: PMC1157006 DOI: 10.1128/mcb.25.13.5687-5698.2005] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hepatocyte growth factor activator inhibitor type 1 (HAI-1) is a membrane-associated Kunitz-type serine proteinase inhibitor that was initially identified as a potent inhibitor of hepatocyte growth factor activator. HAI-1 is also a cognate inhibitor of matriptase, a membrane-associated serine proteinase. HAI-1 is expressed predominantly in epithelial cells in the human body. Its mRNA is also abundant in human placenta, with HAI-1 specifically expressed by villous cytotrophoblasts. In order to address the precise roles of HAI-1 in vivo, we generated HAI-1 mutant mice by homozygous recombination. Heterozygous HAI-1+/- mice underwent normal organ development. However, homozygous HAI-1-/- mice experienced embryonic lethality which became evident at embryonic day 10.5 postcoitum (E10.5). As early as E9.5, HAI-1-/- embryos showed growth retardation that did not reflect impaired cell proliferation but resulted instead from failed placental development and function. Histological analysis revealed severely impaired formation of the labyrinth layer, in contrast all other placental layers, such as the spongiotrophoblast layer and giant cell layer, which were formed. Our results indicate that mouse HAI-1 is essential for branching morphogenesis in the chorioallantoic placenta and lack of HAI-1 function may result in placental failure.
Collapse
Affiliation(s)
- Hiroyuki Tanaka
- Second Department of Pathology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|