1
|
Berra-Romani R, Brunetti V, Pellavio G, Soda T, Laforenza U, Scarpellino G, Moccia F. Allyl Isothiocianate Induces Ca 2+ Signals and Nitric Oxide Release by Inducing Reactive Oxygen Species Production in the Human Cerebrovascular Endothelial Cell Line hCMEC/D3. Cells 2023; 12:1732. [PMID: 37443764 PMCID: PMC10340171 DOI: 10.3390/cells12131732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/20/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
Nitric oxide (NO) represents a crucial mediator to regulate cerebral blood flow (CBF) in the human brain both under basal conditions and in response to somatosensory stimulation. An increase in intracellular Ca2+ concentrations ([Ca2+]i) stimulates the endothelial NO synthase to produce NO in human cerebrovascular endothelial cells. Therefore, targeting the endothelial ion channel machinery could represent a promising strategy to rescue endothelial NO signalling in traumatic brain injury and neurodegenerative disorders. Allyl isothiocyanate (AITC), a major active constituent of cruciferous vegetables, was found to increase CBF in non-human preclinical models, but it is still unknown whether it stimulates NO release in human brain capillary endothelial cells. In the present investigation, we showed that AITC evoked a Ca2+-dependent NO release in the human cerebrovascular endothelial cell line, hCMEC/D3. The Ca2+ response to AITC was shaped by both intra- and extracellular Ca2+ sources, although it was insensitive to the pharmacological blockade of transient receptor potential ankyrin 1, which is regarded to be among the main molecular targets of AITC. In accord, AITC failed to induce transmembrane currents or to elicit membrane hyperpolarization, although NS309, a selective opener of the small- and intermediate-conductance Ca2+-activated K+ channels, induced a significant membrane hyperpolarization. The AITC-evoked Ca2+ signal was triggered by the production of cytosolic, but not mitochondrial, reactive oxygen species (ROS), and was supported by store-operated Ca2+ entry (SOCE). Conversely, the Ca2+ response to AITC did not require Ca2+ mobilization from the endoplasmic reticulum, lysosomes or mitochondria. However, pharmacological manipulation revealed that AITC-dependent ROS generation inhibited plasma membrane Ca2+-ATPase (PMCA) activity, thereby attenuating Ca2+ removal across the plasma membrane and resulting in a sustained increase in [Ca2+]i. In accord, the AITC-evoked NO release was driven by ROS generation and required ROS-dependent inhibition of PMCA activity. These data suggest that AITC could be exploited to restore NO signalling and restore CBF in brain disorders that feature neurovascular dysfunction.
Collapse
Affiliation(s)
- Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico;
| | - Valentina Brunetti
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.B.); (G.S.)
| | - Giorgia Pellavio
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (G.P.); (U.L.)
| | - Teresa Soda
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy;
| | - Umberto Laforenza
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (G.P.); (U.L.)
| | - Giorgia Scarpellino
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.B.); (G.S.)
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.B.); (G.S.)
| |
Collapse
|
2
|
Moreno-Salgado A, Coyotl-Santiago N, Moreno-Vazquez R, Lopez-Teyssier M, Garcia-Carrasco M, Moccia F, Berra-Romani R. Alterations of the Ca 2+ clearing mechanisms by type 2 diabetes in aortic smooth muscle cells of Zucker diabetic fatty rat. Front Physiol 2023; 14:1200115. [PMID: 37250131 PMCID: PMC10213752 DOI: 10.3389/fphys.2023.1200115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/27/2023] [Indexed: 05/31/2023] Open
Abstract
Type 2 Diabetes Mellitus (T2DM) is a rapidly rising disease with cardiovascular complications constituting the most common cause of death among diabetic patients. Chronic hyperglycemia can induce vascular dysfunction through damage of the components of the vascular wall, such as vascular smooth muscle cells (VSMCs), which regulate vascular tone and contribute to vascular repair and remodeling. These functions are dependent on intracellular Ca2+ changes. The mechanisms by which T2DM affects Ca2+ handling in VSMCs still remain poorly understood. Therefore, the objective of this study was to determine whether and how T2DM affects Ca2+ homeostasis in VSMCs. We evaluated intracellular Ca2+ signaling in VSMCs from Zucker Diabetic Fatty rats using Ca2+ imaging with Fura-2/AM. Our results indicate that T2DM decreases Ca2+ release from the sarcoplasmic reticulum (SR) and increases the activity of store-operated channels (SOCs). Moreover, we were able to identify an enhancement of the activity of the main Ca2+ extrusion mechanisms (SERCA, PMCA and NCX) during the early stage of the decay of the ATP-induced Ca2+ transient. In addition, we found an increase in Ca2+ entry through the reverse mode of NCX and a decrease in SERCA and PMCA activity during the late stage of the signal decay. These effects were appreciated as a shortening of ATP-induced Ca2+ transient during the early stage of the decay, as well as an increase in the amplitude of the following plateau. Enhanced cytosolic Ca2+ activity in VSMCs could contribute to vascular dysfunction associated with T2DM.
Collapse
Affiliation(s)
- Adriana Moreno-Salgado
- Department of Biomedicine, School of Medicine, Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
| | - Nayeli Coyotl-Santiago
- Department of Biomedicine, School of Medicine, Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
| | - Roberto Moreno-Vazquez
- Department of Biomedicine, School of Medicine, Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
| | - Mayte Lopez-Teyssier
- Department of Biomedicine, School of Medicine, Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
| | - Mario Garcia-Carrasco
- Department of Immunology, School of Medicine, Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
| | - Francesco Moccia
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
| |
Collapse
|
3
|
Berra-Romani R, Guzmán-Silva A, Vargaz-Guadarrama A, Flores-Alonso JC, Alonso-Romero J, Treviño S, Sánchez-Gómez J, Coyotl-Santiago N, García-Carrasco M, Moccia F. Type 2 Diabetes Alters Intracellular Ca 2+ Handling in Native Endothelium of Excised Rat Aorta. Int J Mol Sci 2019; 21:ijms21010250. [PMID: 31905880 PMCID: PMC6982087 DOI: 10.3390/ijms21010250] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 12/24/2019] [Accepted: 12/25/2019] [Indexed: 02/03/2023] Open
Abstract
An increase in intracellular Ca2+ concentration ([Ca2+]i) plays a key role in controlling endothelial functions; however, it is still unclear whether endothelial Ca2+ handling is altered by type 2 diabetes mellitus, which results in severe endothelial dysfunction. Herein, we analyzed for the first time the Ca2+ response to the physiological autacoid ATP in native aortic endothelium of obese Zucker diabetic fatty (OZDF) rats and their lean controls, which are termed LZDF rats. By loading the endothelial monolayer with the Ca2+-sensitive fluorophore, Fura-2/AM, we found that the endothelial Ca2+ response to 20 µM and 300 µM ATP exhibited a higher plateau, a larger area under the curve and prolonged duration in OZDF rats. The “Ca2+ add-back” protocol revealed no difference in the inositol-1,4,5-trisphosphate-releasable endoplasmic reticulum (ER) Ca2+ pool, while store-operated Ca2+ entry was surprisingly down-regulated in OZDF aortae. Pharmacological manipulation disclosed that sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) activity was down-regulated by reactive oxygen species in native aortic endothelium of OZDF rats, thereby exaggerating the Ca2+ response to high agonist concentrations. These findings shed new light on the mechanisms by which type 2 diabetes mellitus may cause endothelial dysfunction by remodeling the intracellular Ca2+ toolkit.
Collapse
Affiliation(s)
- Roberto Berra-Romani
- Laboratory of Cardiovascular Physiology, Biomedicine School, Faculty of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico; (A.G.-S.); (J.A.-R.); (N.C.-S.)
- Correspondence: (R.B.-R.); (F.M.)
| | - Alejandro Guzmán-Silva
- Laboratory of Cardiovascular Physiology, Biomedicine School, Faculty of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico; (A.G.-S.); (J.A.-R.); (N.C.-S.)
| | - Ajelet Vargaz-Guadarrama
- Faculty of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico; (A.V.-G.); (J.S.-G.); (M.G.-C.)
| | - Juan Carlos Flores-Alonso
- Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Puebla 74360, Mexico;
| | - José Alonso-Romero
- Laboratory of Cardiovascular Physiology, Biomedicine School, Faculty of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico; (A.G.-S.); (J.A.-R.); (N.C.-S.)
| | - Samuel Treviño
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72540, Mexico;
| | - Josué Sánchez-Gómez
- Faculty of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico; (A.V.-G.); (J.S.-G.); (M.G.-C.)
| | - Nayeli Coyotl-Santiago
- Laboratory of Cardiovascular Physiology, Biomedicine School, Faculty of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico; (A.G.-S.); (J.A.-R.); (N.C.-S.)
| | - Mario García-Carrasco
- Faculty of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico; (A.V.-G.); (J.S.-G.); (M.G.-C.)
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy
- Correspondence: (R.B.-R.); (F.M.)
| |
Collapse
|
4
|
Pászty K, Caride AJ, Bajzer Ž, Offord CP, Padányi R, Hegedűs L, Varga K, Strehler EE, Enyedi A. Plasma membrane Ca2+-ATPases can shape the pattern of Ca2+transients induced by store-operated Ca2+entry. Sci Signal 2015; 8:ra19. [DOI: 10.1126/scisignal.2005672] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
5
|
Penniston JT, Padányi R, Pászty K, Varga K, Hegedus L, Enyedi A. Apart from its known function, the plasma membrane Ca²⁺ATPase can regulate Ca²⁺ signaling by controlling phosphatidylinositol 4,5-bisphosphate levels. J Cell Sci 2013; 127:72-84. [PMID: 24198396 DOI: 10.1242/jcs.132548] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasma membrane Ca(2+) ATPases (PMCAs, also known as ATP2B1-ATP2B4) are known targets of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P₂], but if and how they control the PtdIns(4,5)P₂ pool has not been considered. We demonstrate here that PMCAs protect PtdIns(4,5)P₂ in the plasma membrane from hydrolysis by phospholipase C (PLC). Comparison of active and inactive PMCAs indicates that the protection operates by two mechanisms; one requiring active PMCAs, the other not. It appears that the mechanism requiring activity is the removal of the Ca(2+) required for sustained PLC activity, whereas the mechanism not requiring activity is PtdIns(4,5)P₂ binding. We show that in PMCA overexpressing cells, PtdIns(4,5)P₂ binding can lead to less inositol 1,4,5-triphosphate (InsP₃) and diminished Ca(2+) release from intracellular Ca(2+) pools. Inspection of a homology model of PMCA suggests that PMCAs have a conserved cluster of basic residues forming a 'blue collar' at the interface between the membrane core and the cytoplasmic domains. By molecular dynamics simulation, we found that the blue collar forms four binding pockets for the phosphorylated inositol head group of PtdIns(4,5)P₂; these pockets bind PtdIns(4,5)P₂ strongly and frequently. Our studies suggest that by having the ability to bind PtdIns(4,5)P₂, PMCAs can control the accessibility of PtdIns(4,5)P₂ for PLC and other PtdIns(4,5)P₂-mediated processes.
Collapse
Affiliation(s)
- John T Penniston
- Institute of Molecular Pharmacology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1025 Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
6
|
Abstract
It has been known for more than 60 years, and suspected for over 100, that alveolar hypoxia causes pulmonary vasoconstriction by means of mechanisms local to the lung. For the last 20 years, it has been clear that the essential sensor, transduction, and effector mechanisms responsible for hypoxic pulmonary vasoconstriction (HPV) reside in the pulmonary arterial smooth muscle cell. The main focus of this review is the cellular and molecular work performed to clarify these intrinsic mechanisms and to determine how they are facilitated and inhibited by the extrinsic influences of other cells. Because the interaction of intrinsic and extrinsic mechanisms is likely to shape expression of HPV in vivo, we relate results obtained in cells to HPV in more intact preparations, such as intact and isolated lungs and isolated pulmonary vessels. Finally, we evaluate evidence regarding the contribution of HPV to the physiological and pathophysiological processes involved in the transition from fetal to neonatal life, pulmonary gas exchange, high-altitude pulmonary edema, and pulmonary hypertension. Although understanding of HPV has advanced significantly, major areas of ignorance and uncertainty await resolution.
Collapse
Affiliation(s)
- J T Sylvester
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, The Johns Hopkins University School ofMedicine, Baltimore, Maryland, USA.
| | | | | | | |
Collapse
|
7
|
Palmerini CA, Mazzoni M, Saccardi C, Arienti G. The cytosolic calcium concentration is affected by S-nitrosocysteine in human lymphomonocytes. J Biochem Mol Toxicol 2008; 22:35-40. [PMID: 18273907 DOI: 10.1002/jbt.20211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The homeostasis of cytosolic calcium [Ca2+](c) in mammalian cells is a complex phenomenon, requiring the contribution of many cellular and extracellular systems. Nitric oxide (NO) acts on [Ca2+](c), although the mechanism of this action is unknown. We study the release and the uptake of Ca2+ in the endoplasmic reticulum and its capacitative entry in human lymphomonocytes in the presence of the NO donor S-nitrosocysteine (CysNO) at low (16 microM) and at high (160 microM) concentrations by measuring the [Ca2+](c) by the Fura 2-AM method. Thapsigargin (TG), which inhibits sarco-endoplasmic reticulum Ca2+-ATPase (SERCA), and nifedipine (NIF), which blocks the Ca2+ release from intracellular stores, are used to clarify the effects of NO on calcium movements. In the absence of extracellular Ca2+, CysNO decreases basal [Ca2+](c), whereas TG increases it as the result of SERCA inhibition. This effect of TG diminishes in the presence of the NO donor. In the presence of extracellular Ca2+(capacitative entry conditions), CysNO does not influence Ca2+ entry but reduces the toxic effects of TG connected to the increase of [Ca2+](c) in these conditions. The effect of NIF is, up to a certain extent, similar to that of CysNO, although the mechanisms of action of the two agents do not seem related. We conclude that CysNO participates in [Ca2+](c) homeostasis by stimulating the movement of the ion from the cytosol to other compartments.
Collapse
Affiliation(s)
- Carlo A Palmerini
- Department of Internal Medicine, The Medical School, University of Perugia, Via del Giochetto, 06122 Perugia, Italy.
| | | | | | | |
Collapse
|
8
|
Chen J, McLean PA, Neel BG, Okunade G, Shull GE, Wortis HH. CD22 attenuates calcium signaling by potentiating plasma membrane calcium-ATPase activity. Nat Immunol 2004; 5:651-7. [PMID: 15133509 DOI: 10.1038/ni1072] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2004] [Accepted: 03/16/2004] [Indexed: 01/17/2023]
Abstract
Binding of antigen to the B cell receptor induces a calcium response, which is required for proliferation and antibody production. CD22, a B cell surface protein, inhibits this signal through mechanisms that have been obscure. We report here that CD22 augments calcium efflux after B cell receptor crosslinking. Inhibition of plasma membrane calcium-ATPase (PMCA) attenuated these effects, as did disruption by homologous recombination of the gene encoding PMCA4a and PMCA4b. PMCA coimmunoprecipitated with CD22 in an activation-dependent way. CD22 cytoplasmic tyrosine residues were required for association with PMCA and enhancement of calcium efflux. Moreover, CD22 regulation of efflux and the calcium response required the tyrosine phosphatase SHP-1. Thus, SHP-1 and PMCA provide a mechanism by which CD22, a tissue-specific negative regulator, can affect calcium responses.
Collapse
Affiliation(s)
- Jie Chen
- Department of Pathology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | | | |
Collapse
|
9
|
Schlatterer C, Happle K, Lusche DF, Sonnemann J. Cytosolic [Ca2+] transients in dictyostelium discoideum depend on the filling state of internal stores and on an active sarco/endoplasmic reticulum calcium ATPase (SERCA) Ca2+ pump. J Biol Chem 2004; 279:18407-14. [PMID: 14973132 DOI: 10.1074/jbc.m307096200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Stimulation of Dictyostelium discoideum with cAMP evokes a change of the cytosolic free Ca(2+) concentration ([Ca(2+)](i)). We analyzed the role of the filling state of Ca(2+) stores for the [Ca(2+)] transient. Parameters tested were the height of the [Ca(2+)](i) elevation and the percentage of responding amoebae. After loading stores with Ca(2+), cAMP induced a [Ca(2+)](i) transient in many cells. Without prior loading, cAMP evoked a [Ca(2+)](i) change in a few cells only. This indicates that the [Ca(2+)](i) elevation is not mediated exclusively by Ca(2+) influx but also by Ca(2+) release from stores. Reducing the Ca(2+) content of the stores by EGTA preincubation led to a cAMP-activated [Ca(2+)](i) increase even at low extracellular [Ca(2+)]. Moreover, the addition of Ca(2+) itself elicited a capacitative [Ca(2+)](i) elevation. This effect was not observed when stores were emptied by the standard technique of inhibiting internal Ca(2+) pumps with 2,5-di-(t-butyl)-1,4-hydroquinone. Therefore, in Dictyostelium, an active internal Ca(2+)-ATPase is absolutely required to allow for Ca(2+) entry. No influence of the filling state of stores on Ca(2+) influx characteristics was found by the Mn(2+)-quenching technique, which monitors the rate of Ca(2+) entry. Both basal and cAMP-activated Mn(2+) influx rates were similar in control cells and cells with empty stores. By contrast, determination of extracellular free Ca(2+) concentration ([Ca(2+)](e)) changes, which represent the sum of Ca(2+) influx and efflux, revealed a higher rate of [Ca(2+)](e) decrease in EGTA-treated than in control amoebae. We conclude that emptying of Ca(2+) stores does not change the rate of Ca(2+) entry but results in inhibition of the plasma membrane Ca(2+)-ATPase. Furthermore, the activities of the Ca(2+) transport ATPases of the stores are of crucial importance for the regulation of [Ca(2+)](i) changes.
Collapse
|
10
|
Wang J, Shimoda LA, Sylvester JT. Capacitative calcium entry and TRPC channel proteins are expressed in rat distal pulmonary arterial smooth muscle. Am J Physiol Lung Cell Mol Physiol 2003; 286:L848-58. [PMID: 14672922 DOI: 10.1152/ajplung.00319.2003] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mammalian homologs of transient receptor potential (TRP) genes in Drosophila encode TRPC proteins, which make up cation channels that play several putative roles, including Ca2+ entry triggered by depletion of Ca2+ stores in endoplasmic reticulum (ER). This capacitative calcium entry (CCE) is thought to replenish Ca2+ stores and contribute to signaling in many tissues, including smooth muscle cells from main pulmonary artery (PASMCs); however, the roles of CCE and TRPC proteins in PASMCs from distal pulmonary arteries, which are thought to be the major site of pulmonary vasoreactivity, remain uncertain. As an initial test of the possibility that TRPC channels contribute to CCE and Ca2+ signaling in distal PASMCs, we measured [Ca2+]i by fura-2 fluorescence in primary cultures of myocytes isolated from rat intrapulmonary arteries (>4th generation). In cells perfused with Ca2+-free media containing cyclopiazonic acid (10 microM) and nifedipine (5 microM) to deplete ER Ca2+ stores and block voltage-dependent Ca2+ channels, restoration of extracellular Ca2+ (2.5 mM) caused marked increases in [Ca2+]i whereas MnCl2 (200 microM) quenched fura-2 fluorescence, indicating CCE. SKF-96365, LaCl3, and NiCl2, blocked CCE at concentrations that did not alter Ca2+ responses to 60 mM KCl (IC50 6.3, 40.4, and 191 microM, respectively). RT-PCR and Western blotting performed on RNA and protein isolated from distal intrapulmonary arteries and PASMCs revealed mRNA and protein expression for TRPC1, -4, and -6, but not TRPC2, -3, -5, or -7. Our results suggest that CCE through TRPC-encoded Ca2+ channels could contribute to Ca2+ signaling in myocytes from distal intrapulmonary arteries.
Collapse
Affiliation(s)
- Jian Wang
- Div. of Pulmonary & Critical Care Medicine, The Johns Hopkins Asthma and Allergy Center, 5501 Hopkins Bayview Cir., Baltimore, MD 21224, USA
| | | | | |
Collapse
|
11
|
Baldi C, Vazquez G, Boland R. Capacitative calcium influx in human epithelial breast cancer and non-tumorigenic cells occurs through Ca2+ entry pathways with different permeabilities to divalent cations. J Cell Biochem 2003; 88:1265-72. [PMID: 12647308 DOI: 10.1002/jcb.10471] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The operation of capacitative Ca(2+) entry (CCE) in human breast cancer (SKBR3) and non-tumorigenic (HBL100) cell lines was investigated as an alternative Ca(2+) entry route in these cells. Ca(2+) readdition after thapsigargin-induced store depletion showed activation of CCE in both cell lines. SKBR3 cells exhibited retarded store depletion and CCE decay kinetics compared to the non-tumorigenic HBL100 cells, suggesting alterations in Ca(2+) homeostasis. CCE was also highly permeable to Mn(2+) and to a lesser extent to Sr(2+), but not to Ba(2+). In HBL100 cells, CCE is contributed (30%) by a Ca(2+)/Mn(2+) permeable route insensitive to low (1 microM) Gd(3+) and a Ca(2+)/Sr(2+)/Mn(2+) permeable non-selective pathway (70%) sensitive to 1 microM Gd(3+). In SKBR3 cells, the relative contribution to CCE of both routes was opposite to that in non-tumorigenic cells.
Collapse
Affiliation(s)
- Carolina Baldi
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur San Juan 670, (8000) Bahía Blanca, Argentina
| | | | | |
Collapse
|
12
|
Baldi C, Vazquez G, Boland R. Characterization of a 1,25(OH)2-vitamin D3-responsive capacitative Ca2+ entry pathway in rat osteoblast-like cells. J Cell Biochem 2003; 86:678-87. [PMID: 12210734 DOI: 10.1002/jcb.10255] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We investigated the existence of a capacitative Ca2+ entry (CCE) pathway in ROS 17/2.8 osteoblast-like cells and its responsiveness to 1,25-dihydroxy-vitamin D3 [1,25(OH)2D3]. Depletion of inner Ca2+ stores with thapsigargin or 1,25(OH)2D3 in the absence of extracellular Ca2+ transiently elevated cytosolic Ca2+ ([Ca2+]i); after recovery of basal values, Ca2+ re-addition to the medium markedly increased Ca2+ entry, reflecting pre-activation of a CCE pathway. Recovery of the Ca2+ overshoot that followed the induced CCE was mainly mediated by the plasma membrane Ca2+-ATPase. Addition of 1,25(OH)2D3 to the declining phase of the thapsigargin-induced CCE did not modify further [Ca2+]i, indicating that steroid activation of CCE was dependent on store depletion. Pre-treatment with 1 microM Gd3+ inhibited 30% both thapsigargin- and 1,25(OH)2D3-stimulated CCE, whereas 2.5 microM Gd3+ was required for maximal inhibition ( approximately 85%). The activated CCE was permeable to both Mn2+ and Sr2+. Mn2+ entry sensitivity to Gd3+ was the same as that of the CCE. However, 1-microM Gd3+ completely prevented capacitative Sr2+ influx, whereas subsequent Ca2+ re-addition was reduced only 30%. These results suggest that in ROS 17/2.8 cells CCE induced by thapsigargin or 1,25(OH)2D3 is contributed by at least two cation entry pathways: a Ca2+/Mn2+ permeable route insensitive to very low micromolar (1 microM) Gd3+ accounting for most of the CCE and a minor Ca2+/Sr2+/Mn2+ permeable route highly sensitive to 1 microM Gd3+. The Ca2+-mobilizing agonist ATP also stimulated CCE resembling the Ca2+/Sr2+/Mn2+ permeable entry activated by 1,25(OH)2D3. The data demonstrates for the first time, the presence of a hormone-responsive CCE pathway in an osteoblast cell model, raising the possibility that it could be an alternative Ca2+ influx route through which osteotropic agents influence osteoblast Ca2+ homeostasis.
Collapse
Affiliation(s)
- Carolina Baldi
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, (8000) Bahía Blanca, Argentina
| | | | | |
Collapse
|
13
|
Bautista DM, Hoth M, Lewis RS. Enhancement of calcium signalling dynamics and stability by delayed modulation of the plasma-membrane calcium-ATPase in human T cells. J Physiol 2002; 541:877-94. [PMID: 12068047 PMCID: PMC2290354 DOI: 10.1113/jphysiol.2001.016154] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In addition to its homeostatic role of maintaining low resting levels of intracellular calcium ([Ca2+](i)), the plasma-membrane calcium-ATPase (PMCA) may actively contribute to the generation of complex Ca2+ signals. We have investigated the role of the PMCA in shaping Ca2+ signals in Jurkat human leukaemic T cells using single-cell voltage-clamp and calcium-imaging techniques. Crosslinking the T-cell receptor with the monoclonal antibody OKT3 induces a biphasic elevation in [Ca2+](i) consisting of a rapid overshoot to a level > 1 microM, followed by a slow decay to a plateau of approximately 0.5 microM. A similar overshoot was triggered by a constant level of Ca2+ influx through calcium-release-activated Ca2+ (CRAC) channels in thapsigargin-treated cells, due to a delayed increase in the rate of Ca2+ clearance by the PMCA. Following a rise in [Ca2+](i), PMCA activity increased in two phases: a rapid increase followed by a further calcium-dependent increase of up to approximately fivefold over 10-60 s, termed modulation. After the return of [Ca2+](i) to baseline levels, the PMCA recovered slowly from modulation (tau approximately 4 min), effectively retaining a 'memory' of the previous [Ca2+](i) elevation. Using a Michaelis-Menten model with appropriate corrections for cytoplasmic Ca2+ buffering, we found that modulation extended the dynamic range of PMCA activity by increasing both the maximal pump rate and Ca2+ sensitivity (reduction of K(M)). A simple flux model shows how pump modulation and its reversal produce the initial overshoot of the biphasic [Ca2+](i) response. The modulation of PMCA activity enhanced the stability of Ca2+ signalling by adjusting the efflux rate to match influx through CRAC channels, even at high [Ca2+](i) levels that saturate the transport sites and would otherwise render the cell defenceless against additional Ca2+ influx. At the same time, the delay in modulation enables small Ca2+ fluxes to transiently elevate [Ca2+](i), thus enhancing Ca2+ signalling dynamics.
Collapse
Affiliation(s)
- Diana M Bautista
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, CA 94305, USA
| | | | | |
Collapse
|
14
|
Caride AJ, Penheiter AR, Filoteo AG, Bajzer Z, Enyedi A, Penniston JT. The plasma membrane calcium pump displays memory of past calcium spikes. Differences between isoforms 2b and 4b. J Biol Chem 2001; 276:39797-804. [PMID: 11514555 DOI: 10.1074/jbc.m104380200] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To understand how the plasma membrane Ca(2+) pump (PMCA) behaves under changing Ca(2+) concentrations, it is necessary to obtain information about the Ca(2+) dependence of the rate constants for calmodulin activation (k(act)) and for inactivation by calmodulin removal (k(inact)). Here we studied these constants for isoforms 2b and 4b. We measured the ATPase activity of these isoforms expressed in Sf9 cells. For both PMCA4b and 2b, k(act) increased with Ca(2+) along a sigmoidal curve. At all Ca(2+) concentrations, 2b showed a faster reaction with calmodulin than 4b but a slower off rate. On the basis of the measured rate constants, we simulated mathematically the behavior of these pumps upon repetitive changes in Ca(2+) concentration and also tested these simulations experimentally; PMCA was activated by 500 nm Ca(2+) and then exposed to 50 nm Ca(2+) for 10 to 150 s, and then Ca(2+) was increased again to 500 nm. During the second exposure to 500 nm Ca(2+), the activity reached steady state faster than during the first exposure at 500 nm Ca(2+). This memory effect is longer for PMCA2b than for 4b. In a separate experiment, a calmodulin-binding peptide from myosin light chain kinase, which has no direct interaction with the pump, was added during the second exposure to 500 nm Ca(2+). The peptide inhibited the activity of PMCA2b when the exposure to 50 nm Ca(2+) was 150 s but had little or no effect when this exposure was only 15 s. This suggests that the memory effect is due to calmodulin remaining bound to the enzyme during the period at low Ca(2+). The memory effect observed in PMCA2b and 4b will allow cells expressing either of them to remove Ca(2+) more quickly in subsequent spikes after an initial activating spike.
Collapse
Affiliation(s)
- A J Caride
- Department of Biochemistry and Molecular Biology, Mayo Foundation, 200 First St. SW, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
Elevation of intracellular free Ca(2+) is one of the key triggering signals for T-cell activation by antigen. A remarkable variety of Ca(2+) signals in T cells, ranging from infrequent spikes to sustained oscillations and plateaus, derives from the interactions of multiple Ca(2+) sources and sinks in the cell. Following engagement of the T cell receptor, intracellular channels (IP3 and ryanodine receptors) release Ca(2+) from intracellular stores, and by depleting the stores trigger prolonged Ca(2+) influx through store-operated Ca(2+) (CRAC) channels in the plasma membrane. The amplitude and dynamics of the Ca(2+) signal are shaped by several mechanisms, including K(+) channels and membrane potential, slow modulation of the plasma membrane Ca(2+)-ATPase, and mitochondria that buffer Ca(2+) and prevent the inactivation of CRAC channels. Ca(2+) signals have a number of downstream targets occurring on multiple time scales. At short times, Ca(2+) signals help to stabilize contacts between T cells and antigen-presenting cells through changes in motility and cytoskeletal reorganization. Over periods of minutes to hours, the amplitude, duration, and kinetic signature of Ca(2+) signals increase the efficiency and specificity of gene activation events. The complexity of Ca(2+) signals contains a wealth of information that may help to instruct lymphocytes to choose between alternate fates in response to antigenic stimulation.
Collapse
Affiliation(s)
- R S Lewis
- Department of Molecular and Cellular Physiology and Program in Immunology, Stanford University School of Medicine, Stanford, California 94305, USA.
| |
Collapse
|
16
|
Chen J, Wang Y, Nakajima T, Iwasawa K, Hikiji H, Sunamoto M, Choi DK, Yoshida Y, Sakaki Y, Toyo-Oka T. Autocrine action and its underlying mechanism of nitric oxide on intracellular Ca2+ homeostasis in vascular endothelial cells. J Biol Chem 2000; 275:28739-49. [PMID: 10852903 DOI: 10.1074/jbc.m000910200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The rise in cytosolic Ca(2+) concentration (Ca(2+)(i)) in vascular endothelial cells (ECs) activates the production and release of nitric oxide (NO). NO modifies Ca(2+)(i) homeostasis in many types of nonendothelial cells. However, its effect on endothelial Ca(2+)(i) homeostasis at basal and excited states remains unclear. In the present study, to elucidate the effect of NO on basal Ca(2+)(i), inositol 1,4,5-trisphosphate-induced Ca(2+)(i) release (IICR) was blocked by expressing an antisense against type-1 inositol 1,4,5-trisphosphate receptors or by microinjecting heparin to individual ECs, and the effects of NO that was released by and diffused from adjacent IICR-intact ECs were recorded. After ATP or bradykinin stimulation, IICR-inhibited ECs showed a marked reduction of basal Ca(2+)(i), which was abolished by N(G)-monomethyl-l-arginine monoacetate pretreatment. The reduction disappeared in sparsely seeded ECs. Exogenous NO gas mimicked the effect of ATP or bradykinin to reduce basal Ca(2+)(i). Blocking plasma membrane Ca(2+)-ATPase (PMCA), but not Na(+)-Ca(2+) exchange or sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase, suppressed the reduction, indicating that the reduction resulted from a NO-dependent potentiation of PMCA. To elucidate the effect of NO on elevated Ca(2+)(i), ATP-, bradykinin-, or thapsigargin-evoked Ca(2+)(i) response in the presence and absence of NO production was compared in adjacent IICR-intact ECs. NO was found to potentiate PMCA, which, in turn, greatly attenuated agonist-evoked Ca(2+)(i) elevation. NO also potentiated Ca(2+) influx, which markedly increased the sustained phase of Ca(2+)(i) elevation and possibly NO production. NO did not affect other Ca(2+)(i)-elevating and Ca(2+)(i)-sequestrating components. Thus, NO-dependent potentiation of PMCA is crucial for Ca(2+)(i) homeostasis over a wide Ca(2+)(i) range.
Collapse
Affiliation(s)
- J Chen
- Second Department of Internal Medicine, the Department of Oral and Maxillofacial Surgery, and the Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Qi Z, Murase K, Obata S, Sokabe M. Extracellular ATP-dependent activation of plasma membrane Ca(2+) pump in HEK-293 cells. Br J Pharmacol 2000; 131:370-4. [PMID: 10991933 PMCID: PMC1572318 DOI: 10.1038/sj.bjp.0703563] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. It is well known that extracellular ATP (ATP(o)) elevates the intracellular Ca(2+) concentration ([Ca(2+)](i)) by inducing Ca(2+) influx or mobilizing Ca(2+) from internal stores via activation of purinoceptors in the plasma membrane. This study shows that ATP(o) also activates the plasma membrane Ca(2+) pumps (PMCPs) to bring the elevated [Ca(2+)](i) back to the resting level in human embryonic kidney-293 (HEK-293) cells. 2. The duration of ATP(o)-induced intracellular Ca(2+) transients was significantly increased by PMCP blockers, La(3+) or orthovanadate. In contrast, replacement of extracellular Na(+) with NMDG(+), a membrane-impermeable cation, had no significant effect on duration, thus suggesting that Na(+)/Ca(2+) exchangers do not participate in the ATP(o)-induced Ca(2+) transient. 3. A rapid and significant decrease in [Ca(2+)](i), which was not dependent on extracellular Na(+), was induced by ATP(o) in cells pretreated with thapsigargin (TG). This decrease was blocked by orthovanadate, indicating that it was caused by PMCPs rather than sarco/endoplasmic reticulum Ca(2+) pumps (SERCPs). 4. UTP and ATPgammaS also caused a decrease in [Ca(2+)](i) in cells pretreated with TG, although they were less effective than ATP. The effect of UTP implies the involvement of both P2Y(1) and P2Y(2) receptors, while the effect of ATPgammaS implies no significant role of ectophosphorylation and agonist hydrolysis in the agonist-induced [Ca(2+)](i) decreases. 5. These results point to a role of PMCPs in shaping the Ca(2+) signal and in restoring the resting [Ca(2+)](i) level to maintain intracellular Ca(2+) homeostasis after agonist stimulation.
Collapse
Affiliation(s)
- Z Qi
- Department of Physiology, Nagoya University School of Medicine, 65 Tsurumai, Nagoya 466-8550, Japan
| | - K Murase
- Department of Physiology, Nagoya University School of Medicine, 65 Tsurumai, Nagoya 466-8550, Japan
| | - S Obata
- Department of Anatomy, Nagoya University School of Medicine, 65 Tsurumai, Nagoya 466-8550, Japan
| | - M Sokabe
- Department of Physiology, Nagoya University School of Medicine, 65 Tsurumai, Nagoya 466-8550, Japan
- Cell Mechanosensing Project, ICORP, JST, 65 Tsurumai, Nagoya 466-8550, Japan
- Author for correspondence:
| |
Collapse
|
18
|
Makowska A, Zablocki K, Duszyński J. The role of mitochondria in the regulation of calcium influx into Jurkat cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:877-84. [PMID: 10651826 DOI: 10.1046/j.1432-1327.2000.01066.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In electrically nonexcitable cells the activity of the plasma membrane calcium channels is controlled by events occurring in mitochondria, as well as in the lumen of the endoplasmic reticulum. Thapsigargin, a specific inhibitor of endoplasmic reticulum Ca2+-ATPase, produces the release of calcium from the endoplasmic reticulum and thus, activation of store-operated calcium channels in the plasma membrane. However, thapsigargin failed to produce significant activation of the channels in Jurkat cells that had been pretreated with mitochondria-directed agents: an uncoupler (carbonyl cyanide m-chlorophenylhydrazone) and oligomycin. This is in spite of the fact that Jurkat cells pretreated with carbonyl cyanide m-chlorophenylhydrazone plus oligomycin are otherwise energetically competent, due to a high rate of glycolysis and the inhibition of mitochondrial F1Fo-ATPase by oligomycin. The pool of intracellular ATP was found not to be influenced by the pretreatments of cells with oligomycin or with oligomycin plus carbonyl cyanide m-chlorophenylhydrazone. In the control cells, we found that the ATP pool amounted to 23.2 +/- 1.9 nmoles per 107 cells (n = 4). In cells pretreated with oligomycin the level of ATP was 21.8 +/- 1.9 nmoles per 107 cells (n = 4), and in cells pretreated with both oligomycin and an uncoupler the level of ATP was 22.1 +/- 0.2 nmoles per 107 cells (n = 3). Moreover, in cells pretreated with oligomycin plus carbonyl cyanide m-chlorophenylhydrazone and suspended in a nominally calcium-free medium, thapsigargin produces transient increases in cytosolic calcium identical to those in the control cells. Thus, this pretreatment does not modify either the content of intracellular calcium stores and/or the activity of calcium ATPase in the plasma membrane. Similar results were obtained when Jurkat cells were challenged by myxothiazol, a potent inhibitor of mitochondrial cytochrome bc1 oxidoreductase. Thapsigargin, although producing calcium release from intracellular stores, was ineffective in triggering the activation of calcium channels in the plasma membrane in the case of cells pretreated with myxothiazol and oligomycin. Our results suggest that coupled mitochondria participate directly in the control of calcium channel activity in the plasma membrane of Jurkat cells. When the mitochondrial protonmotive force is collapsed, either by carbonyl cyanide m-chlorophenylhydrazone or myxothiazol, the channel remains inactive even under conditions of empty intracellular calcium stores.
Collapse
Affiliation(s)
- A Makowska
- Department of Cellular Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | | |
Collapse
|