1
|
Beck CL, Kunze A. Parallelized Mechanical Stimulation of Neuronal Calcium Through Cell-Internal Nanomagnetic Forces Provokes Lasting Shifts in the Network Activity State. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406678. [PMID: 39460486 DOI: 10.1002/smll.202406678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/14/2024] [Indexed: 10/28/2024]
Abstract
Neurons differentiate mechanical stimuli force and rate to elicit unique functional responses, driving the need for further tools to generate various mechanical stimuli. Here, cell-internal nanomagnetic forces (iNMF) are introduced by manipulating internalized magnetic nanoparticles with an external magnetic field across cortical neuron networks in vitro. Under iNMF, cortical neurons exhibit calcium (Ca2+) influx, leading to modulation of activity observed through Ca2+ event rates. Inhibiting particle uptake or altering nanoparticle exposure time reduced the neuronal response to nanomagnetic forces, exposing the requirement of nanoparticle uptake to induce the Ca2+ response. In highly active cortical networks, iNMF robustly modulates synchronous network activity, which is lasting and repeatable. Using pharmacological blockers, it is shown that iNMF activates mechanosensitive ion channels to induce the Ca2+ influx. Then, in contrast to transient mechanically evoked neuronal activity, iNMF activates Ca2+-activated potassium (KCa) channels to stabilize the neuronal membrane potential and induce network activity shifts. The findings reveal the potential of magnetic nanoparticle-mediated mechanical stimulation to modulate neuronal circuit dynamics, providing insights into the biophysics of neuronal computation.
Collapse
Affiliation(s)
- Connor L Beck
- Department of Electrical and Computer Engineering, Montana State University, Bozeman, MT, 59717, USA
| | - Anja Kunze
- Department of Electrical and Computer Engineering, Montana State University, Bozeman, MT, 59717, USA
- Montana Nanotechnology Facility, Montana State University, Bozeman, MT, 59717, USA
- Optical Technology Center, Montana State University, Bozeman, MT, 59717, USA
| |
Collapse
|
2
|
Fesharaki-Zadeh A, Datta D. An overview of preclinical models of traumatic brain injury (TBI): relevance to pathophysiological mechanisms. Front Cell Neurosci 2024; 18:1371213. [PMID: 38682091 PMCID: PMC11045909 DOI: 10.3389/fncel.2024.1371213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/20/2024] [Indexed: 05/01/2024] Open
Abstract
Background Traumatic brain injury (TBI) is a major cause of morbidity and mortality, affecting millions annually worldwide. Although the majority of TBI patients return to premorbid baseline, a subset of patient can develop persistent and often debilitating neurocognitive and behavioral changes. The etiology of TBI within the clinical setting is inherently heterogenous, ranging from sport related injuries, fall related injuries and motor vehicle accidents in the civilian setting, to blast injuries in the military setting. Objective Animal models of TBI, offer the distinct advantage of controlling for injury modality, duration and severity. Furthermore, preclinical models of TBI have provided the necessary temporal opportunity to study the chronic neuropathological sequelae of TBI, including neurodegenerative sequelae such as tauopathy and neuroinflammation within the finite experimental timeline. Despite the high prevalence of TBI, there are currently no disease modifying regimen for TBI, and the current clinical treatments remain largely symptom based. The preclinical models have provided the necessary biological substrate to examine the disease modifying effect of various pharmacological agents and have imperative translational value. Methods The current review will include a comprehensive survey of well-established preclinical models, including classic preclinical models including weight drop, blast injury, fluid percussion injury, controlled cortical impact injury, as well as more novel injury models including closed-head impact model of engineered rotational acceleration (CHIMERA) models and closed-head projectile concussive impact model (PCI). In addition to rodent preclinical models, the review will include an overview of other species including large animal models and Drosophila. Results There are major neuropathological perturbations post TBI captured in various preclinical models, which include neuroinflammation, calcium dysregulation, tauopathy, mitochondrial dysfunction and oxidative stress, axonopathy, as well as glymphatic system disruption. Conclusion The preclinical models of TBI continue to offer valuable translational insight, as well as essential neurobiological basis to examine specific disease modifying therapeutic regimen.
Collapse
Affiliation(s)
- Arman Fesharaki-Zadeh
- Department of Neurology and Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Dibyadeep Datta
- Division of Aging and Geriatric Psychiatry, Alzheimer’s Disease Research Unit, Department of Psychiatry, New Haven, CT, United States
| |
Collapse
|
3
|
Harris JP, Mietus CJ, Browne KD, Wofford KL, Keating CE, Brown DP, Johnson BN, Wolf JA, Smith DH, Cohen AS, Duda JE, Cullen DK. Neuronal somatic plasmalemmal permeability and dendritic beading caused by head rotational traumatic brain injury in pigs-An exploratory study. Front Cell Neurosci 2023; 17:1055455. [PMID: 37519631 PMCID: PMC10381956 DOI: 10.3389/fncel.2023.1055455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 06/23/2023] [Indexed: 08/01/2023] Open
Abstract
Closed-head traumatic brain injury (TBI) is induced by rapid motion of the head, resulting in diffuse strain fields throughout the brain. The injury mechanism(s), loading thresholds, and neuroanatomical distribution of affected cells remain poorly understood, especially in the gyrencephalic brain. We utilized a porcine model to explore the relationships between rapid head rotational acceleration-deceleration loading and immediate alterations in plasmalemmal permeability within cerebral cortex, sub-cortical white matter, and hippocampus. To assess plasmalemmal compromise, Lucifer yellow (LY), a small cell-impermeant dye, was delivered intraventricularly and diffused throughout the parenchyma prior to injury in animals euthanized at 15-min post-injury; other animals (not receiving LY) were survived to 8-h or 7-days. Plasmalemmal permeability preferentially occurred in neuronal somata and dendrites, but rarely in white matter axons. The burden of LY+ neurons increased based on head rotational kinematics, specifically maximum angular velocity, and was exacerbated by repeated TBI. In the cortex, LY+ cells were prominent in both the medial and lateral gyri. Neuronal membrane permeability was observed within the hippocampus and entorhinal cortex, including morphological changes such as beading in dendrites. These changes correlated with reduced fiber volleys and synaptic current alterations at later timepoints in the hippocampus. Further histological observations found decreased NeuN immunoreactivity, increased mitochondrial fission, and caspase pathway activation in both LY+ and LY- cells, suggesting the presence of multiple injury phenotypes. This exploratory study suggests relationships between plasmalemmal disruptions in neuronal somata and dendrites within cortical and hippocampal gray matter as a primary response in closed-head rotational TBI and sets the stage for future, traditional hypothesis-testing experiments.
Collapse
Affiliation(s)
- James P. Harris
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Constance J. Mietus
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Kevin D. Browne
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Kathryn L. Wofford
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Carolyn E. Keating
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Daniel P. Brown
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Brian N. Johnson
- Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Research Institute, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - John A. Wolf
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Douglas H. Smith
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Akiva S. Cohen
- Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Research Institute, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - John E. Duda
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - D. Kacy Cullen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
4
|
Collins HE, Zhang D, Chatham JC. STIM and Orai Mediated Regulation of Calcium Signaling in Age-Related Diseases. FRONTIERS IN AGING 2022; 3:876785. [PMID: 35821821 PMCID: PMC9261457 DOI: 10.3389/fragi.2022.876785] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/30/2022] [Indexed: 01/19/2023]
Abstract
Tight spatiotemporal regulation of intracellular Ca2+ plays a critical role in regulating diverse cellular functions including cell survival, metabolism, and transcription. As a result, eukaryotic cells have developed a wide variety of mechanisms for controlling Ca2+ influx and efflux across the plasma membrane as well as Ca2+ release and uptake from intracellular stores. The STIM and Orai protein families comprising of STIM1, STIM2, Orai1, Orai2, and Orai3, are evolutionarily highly conserved proteins that are core components of all mammalian Ca2+ signaling systems. STIM1 and Orai1 are considered key players in the regulation of Store Operated Calcium Entry (SOCE), where release of Ca2+ from intracellular stores such as the Endoplasmic/Sarcoplasmic reticulum (ER/SR) triggers Ca2+ influx across the plasma membrane. SOCE, which has been widely characterized in non-excitable cells, plays a central role in Ca2+-dependent transcriptional regulation. In addition to their role in Ca2+ signaling, STIM1 and Orai1 have been shown to contribute to the regulation of metabolism and mitochondrial function. STIM and Orai proteins are also subject to redox modifications, which influence their activities. Considering their ubiquitous expression, there has been increasing interest in the roles of STIM and Orai proteins in excitable cells such as neurons and myocytes. While controversy remains as to the importance of SOCE in excitable cells, STIM1 and Orai1 are essential for cellular homeostasis and their disruption is linked to various diseases associated with aging such as cardiovascular disease and neurodegeneration. The recent identification of splice variants for most STIM and Orai isoforms while complicating our understanding of their function, may also provide insight into some of the current contradictions on their roles. Therefore, the goal of this review is to describe our current understanding of the molecular regulation of STIM and Orai proteins and their roles in normal physiology and diseases of aging, with a particular focus on heart disease and neurodegeneration.
Collapse
Affiliation(s)
- Helen E. Collins
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Dingguo Zhang
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at Birmingham, Birmingham, AL, United States
| | - John C. Chatham
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at Birmingham, Birmingham, AL, United States,*Correspondence: John C. Chatham,
| |
Collapse
|
5
|
Keating CE, Browne KD, Cullen DK. Dietary manipulation of vulnerability to traumatic brain injury-induced neuronal plasma membrane permeability. Exp Neurol 2021; 340:113649. [PMID: 33600812 DOI: 10.1016/j.expneurol.2021.113649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/22/2021] [Accepted: 02/12/2021] [Indexed: 01/22/2023]
Abstract
Traumatic brain injury (TBI) can produce physical disruptions in the plasma membranes of neurons, referred to as mechanoporation, which lead to increased cell permeability. We suspect that such trauma-induced membrane disruptions may be influenced by the physical properties of the plasma membrane, such as elasticity or rigidity. These membrane properties are influenced by lipid composition, which can be modulated via diet, leading to the intriguing possibility of prophylactically altering diet to confer resiliency to this mechanism of acute neuronal damage in TBI. In this proof-of-concept study, we used three different diets-one high in polyunsaturated fatty acids suggested to increase elasticity (Fish Oil), one high in saturated fatty acids and cholesterol suggested to increase rigidity (High Fat), and one standard rat chow (Control)-to alter brain plasma membrane lipid composition before subjecting rats to lateral fluid percussion injury (FPI). Lipid analysis (n = 12 rats) confirmed that diets altered brain fatty acid composition after 4 weeks of feeding, with the Fish Oil diet increasing unsaturated fatty acids, and interestingly, the High Fat diet increasing omega-6 docosapentaenoic acid. One cohort of animals (n = 34 rats) was assessed immediately after FPI or sham injury for acute changes in neuronal membrane permeability in the injury-adjacent cortex. Surprisingly, sham animals fed Fish Oil had increased membrane permeability, suggesting altered passive membrane properties. In contrast, injured animals fed the High Fat diet displayed less intense uptake of permeability marker, suggesting a reduced extent of injury-induced plasma membrane disruption, although the density of affected cells matched the other diet groups. In a separate cohort survived for 7 days after FPI (n = 48 rats), animals fed the High Fat diet exhibited a reduced lesion area. At both time points there were no statistically significant differences in inflammation. Unexpectedly, these results indicate that the High Fat diet, as opposed to the Fish Oil diet, beneficially modulated acute plasma membrane permeability and resulted in a smaller lesion size at 7 days post-injury. Additional studies are necessary to determine the impact of these various diets on behavioral outcomes post-TBI. Further investigation is also needed to understand the physical properties in neuronal plasma membranes that may underlie increased resiliency to trauma-induced disruptions and, importantly, to understand how these properties may be influenced by targeted dietary modifications for vulnerable populations.
Collapse
Affiliation(s)
- Carolyn E Keating
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz VA Medical Center, 19104, USA.
| | - Kevin D Browne
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz VA Medical Center, 19104, USA.
| | - D Kacy Cullen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz VA Medical Center, 19104, USA.
| |
Collapse
|
6
|
Abstract
After a concussion, a series of complex, overlapping, and disruptive events occur within the brain, leading to symptoms and behavioral dysfunction. These events include ionic shifts, damaged neuronal architecture, higher concentrations of inflammatory chemicals, increased excitatory neurotransmitter release, and cerebral blood flow disruptions, leading to a neuronal crisis. This review summarizes the translational aspects of the pathophysiologic cascade of postconcussion events, focusing on the role of excitatory neurotransmitters and ionic fluxes, and their role in neuronal disruption. We review the relationship between physiologic disruption and behavioral alterations, and proposed treatments aimed to restore the balance of disrupted processes.
Collapse
Affiliation(s)
- David R Howell
- Sports Medicine Center, Children's Hospital Colorado, 13123 East 16th Avenue, B060, Aurora, CO 80045, USA; Department of Orthopedics, University of Colorado School of Medicine, Aurora, CO, USA.
| | - Julia Southard
- Sports Medicine Center, Children's Hospital Colorado, 13123 East 16th Avenue, B060, Aurora, CO 80045, USA; Department of Psychology and Neuroscience, Regis University, 3333 Regis Boulevard, Denver, CO 80221, USA
| |
Collapse
|
7
|
Berry JAD, Elia C, Sweiss R, Lawandy S, Bowen I, Zampella B, Saini H, Brazdzionis J, Miulli D. Pathophysiologic Mechanisms of Concussion, Development of Chronic Traumatic Encephalopathy, and Emerging Diagnostics: A Narrative Review. J Osteopath Med 2020; 120:2765225. [PMID: 32789487 DOI: 10.7556/jaoa.2020.074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Pathophysiological mechanisms and cascades take place after a mild traumatic brain injury (mTBI) that can cause long-term sequelae, including chronic traumatic encephalopathy in patients with multiple concurrent TBIs. As diagnostic imaging has become more advanced, microanatomical changes present after mTBI may now be more readily visible. In this narrative review, the authors discuss emerging diagnostics and findings in mTBI through advanced imaging, electroencephalograms, neurophysiologic processes, Q2 biochemical markers, and clinical tissue tests in an effort to help osteopathic physicians to understand, diagnose, and manage the pathophysiology behind mTBI, which is increasingly prevalent in the United States.
Collapse
|
8
|
Bailey ZS, Nilson E, Bates JA, Oyalowo A, Hockey KS, Sajja VSSS, Thorpe C, Rogers H, Dunn B, Frey AS, Billings MJ, Sholar CA, Hermundstad A, Kumar C, VandeVord PJ, Rzigalinski BA. Cerium Oxide Nanoparticles Improve Outcome after In Vitro and In Vivo Mild Traumatic Brain Injury. J Neurotrauma 2020; 37:1452-1462. [PMID: 27733104 PMCID: PMC7249477 DOI: 10.1089/neu.2016.4644] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mild traumatic brain injury results in aberrant free radical generation, which is associated with oxidative stress, secondary injury signaling cascades, mitochondrial dysfunction, and poor functional outcome. Pharmacological targeting of free radicals with antioxidants has been examined as an approach to treatment, but has met with limited success in clinical trials. Conventional antioxidants that are currently available scavenge a single free radical before they are destroyed in the process. Here, we report for the first time that a novel regenerative cerium oxide nanoparticle antioxidant reduces neuronal death and calcium dysregulation after in vitro trauma. Further, using an in vivo model of mild lateral fluid percussion brain injury in the rat, we report that cerium oxide nanoparticles also preserve endogenous antioxidant systems, decrease macromolecular free radical damage, and improve cognitive function. Taken together, our results demonstrate that cerium oxide nanoparticles are a novel nanopharmaceutical with potential for mitigating neuropathological effects of mild traumatic brain injury and modifying the course of recovery.
Collapse
Affiliation(s)
- Zachary S. Bailey
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, USA
| | - Eric Nilson
- Department of Pharmacology, Edward Via College of Osteopathic Medicine, Blacksburg, Virginia, USA
| | - John A. Bates
- Department of Pharmacology, Edward Via College of Osteopathic Medicine, Blacksburg, Virginia, USA
| | - Adewole Oyalowo
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, USA
| | - Kevin S. Hockey
- Department of Pharmacology, Edward Via College of Osteopathic Medicine, Blacksburg, Virginia, USA
| | | | - Chevon Thorpe
- Department of Pharmacology, Edward Via College of Osteopathic Medicine, Blacksburg, Virginia, USA
| | - Heidi Rogers
- Department of Pharmacology, Edward Via College of Osteopathic Medicine, Blacksburg, Virginia, USA
| | - Bryce Dunn
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, USA
| | - Aaron S. Frey
- Department of Pharmacology, Edward Via College of Osteopathic Medicine, Blacksburg, Virginia, USA
| | - Marc J. Billings
- Department of Pharmacology, Edward Via College of Osteopathic Medicine, Blacksburg, Virginia, USA
| | - Christopher A. Sholar
- Department of Pharmacology, Edward Via College of Osteopathic Medicine, Blacksburg, Virginia, USA
| | - Amy Hermundstad
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, USA
| | - Challa Kumar
- Integrated Mesoscale Architectures for Sustainable Catalysis, Rowland Institute of Science, Harvard University, Cambridge, Massachusetts, USA
| | - Pamela J. VandeVord
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, USA
| | - Beverly A. Rzigalinski
- Department of Pharmacology, Edward Via College of Osteopathic Medicine, Blacksburg, Virginia, USA
| |
Collapse
|
9
|
Keating CE, Browne KD, Duda JE, Cullen DK. Neurons in Subcortical Oculomotor Regions Are Vulnerable to Plasma Membrane Damage after Repetitive Diffuse Traumatic Brain Injury in Swine. J Neurotrauma 2020; 37:1918-1932. [PMID: 32178582 DOI: 10.1089/neu.2019.6738] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Oculomotor deficits, such as insufficiencies in accommodation, convergence, and saccades, are common following traumatic brain injury (TBI). Previous studies in patients with mild TBI attributed these deficits to insufficient activation of subcortical oculomotor nuclei, although the exact mechanism is unknown. A possible cause for neuronal dysfunction in these regions is biomechanically induced plasma membrane permeability. We used our established porcine model of head rotational TBI to investigate whether cell permeability changes occurred in subcortical oculomotor areas following single or repetitive TBI, with repetitive injuries separated by 15 min, 3 days, or 7 days. Swine were subjected to sham conditions or head rotational acceleration in the sagittal plane using a HYGE pneumatic actuator. Two hours prior to the final injury, the cell-impermeant dye Lucifer Yellow was injected into the ventricles to diffuse throughout the interstitial space to assess plasmalemmal permeability. Animals were sacrificed 15 min after the final injury for immunohistological analysis. Brain regions examined for cell membrane permeability included caudate, substantia nigra pars reticulata, superior colliculus, and cranial nerve oculomotor nuclei. We found that the distribution of permeabilized neurons varied depending on the number and spacing of injuries. Repetitive injuries separated by 15 min or 3 days resulted in the most permeability. Many permeabilized cells lost neuron-specific nuclear protein reactivity, although no neuronal loss occurred acutely after injury. Microglia contacted and appeared to begin phagocytosing permeabilized neurons in repetitively injured animals. These pathologies within oculomotor areas may mediate transient dysfunction and/or degeneration that may contribute to oculomotor deficits following diffuse TBI.
Collapse
Affiliation(s)
- Carolyn E Keating
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA.,Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kevin D Browne
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA.,Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John E Duda
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA.,Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - D Kacy Cullen
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA.,Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
10
|
Bianchi F, Malboubi M, George JH, Jerusalem A, Thompson MS, Ye H. Ion current and action potential alterations in peripheral neurons subject to uniaxial strain. J Neurosci Res 2019; 97:744-751. [PMID: 30927386 PMCID: PMC6519351 DOI: 10.1002/jnr.24408] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/26/2019] [Accepted: 02/20/2019] [Indexed: 12/23/2022]
Abstract
Peripheral nerves, subject to continuous elongation and compression during everyday movement, contain neuron fibers vital for movement and sensation. At supraphysiological strains resulting from trauma, chronic conditions, aberrant limb positioning, or surgery, conduction blocks occur which may result in chronic or temporary loss of function. Previous in vitro stretch models, mainly focused on traumatic brain injury modelling, have demonstrated altered electrophysiological behavior during localized deformation applied by pipette suction. Our aim was to evaluate the changes in voltage‐activated ion channel function during uniaxial straining of neurons applied by whole‐cell deformation, more physiologically relevant model of peripheral nerve trauma. Here, we quantified experimentally the changes in inwards and outwards ion currents and action potential (AP) firing in dorsal root ganglion‐derived neurons subject to uniaxial strains, using a custom‐built device allowing simultaneous cell deformation and patch clamp recording. Peak inwards sodium currents and rectifying potassium current magnitudes were found to decrease in cells under stretch, channel reversal potentials were found to be left‐shifted, and half‐maximum activation potentials right‐shifted. The threshold for AP firing was increased in stretched cells, although neurons retained the ability to fire induced APs. Overall, these results point to ion channels being damaged directly and immediately by uniaxial strain, affecting cell electrophysiological activity, and can help develop prevention and treatment strategies for peripheral neuropathies caused by mechanical trauma.
Collapse
Affiliation(s)
- Fabio Bianchi
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Majid Malboubi
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Julian H George
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Antoine Jerusalem
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Mark S Thompson
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Hua Ye
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
11
|
Abstract
Neuroinflammation is initiated as a result of traumatic brain injury and can exacerbate evolving tissue pathology. Immune cells respond to acute signals from damaged cells, initiate neuroinflammation, and drive the pathological consequences over time. Importantly, the mechanism(s) of injury, the location of the immune cells within the brain, and the animal species all contribute to immune cell behavior following traumatic brain injury. Understanding the signals that initiate neuroinflammation and the context in which they appear may be critical for understanding immune cell contributions to pathology and regeneration. Within this paper, we review a number of factors that could affect immune cell behavior acutely following traumatic brain injury.
Collapse
Affiliation(s)
- Kathryn L Wofford
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center; School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - David J Loane
- Department of Anesthesiology and Shock, Trauma, and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA; School of Biochemistry and Immunology and Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - D Kacy Cullen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
12
|
Wegierski T, Kuznicki J. Neuronal calcium signaling via store-operated channels in health and disease. Cell Calcium 2018; 74:102-111. [DOI: 10.1016/j.ceca.2018.07.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 06/20/2018] [Accepted: 07/06/2018] [Indexed: 12/20/2022]
|
13
|
Wofford KL, Harris JP, Browne KD, Brown DP, Grovola MR, Mietus CJ, Wolf JA, Duda JE, Putt ME, Spiller KL, Cullen DK. Rapid neuroinflammatory response localized to injured neurons after diffuse traumatic brain injury in swine. Exp Neurol 2017; 290:85-94. [PMID: 28081963 DOI: 10.1016/j.expneurol.2017.01.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/23/2016] [Accepted: 01/06/2017] [Indexed: 01/22/2023]
Abstract
Despite increasing appreciation of the critical role that neuroinflammatory pathways play in brain injury and neurodegeneration, little is known about acute microglial reactivity following diffuse traumatic brain injury (TBI) - the most common clinical presentation that includes all concussions. Therefore, we investigated acute microglial reactivity using a porcine model of closed-head rotational velocity/acceleration-induced TBI that closely mimics the biomechanical etiology of inertial TBI in humans. We observed rapid microglial reactivity within 15min of both mild and severe TBI. Strikingly, microglial activation was restrained to regions proximal to individual injured neurons - as denoted by trauma-induced plasma membrane disruption - which served as epicenters of acute reactivity. Single-cell quantitative analysis showed that in areas free of traumatically permeabilized neurons, microglial density and morphology were similar between sham or following mild or severe TBI. However, microglia density increased and morphology shifted to become more reactive in proximity to injured neurons. Microglial reactivity around injured neurons was exacerbated following repetitive TBI, suggesting further amplification of acute neuroinflammatory responses. These results indicate that neuronal trauma rapidly activates microglia in a highly localized manner, and suggest that activated microglia may rapidly influence neuronal stability and/or pathophysiology after diffuse TBI.
Collapse
Affiliation(s)
- Kathryn L Wofford
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, 3900 Woodland Avenue, Philadelphia, PA 19104, USA; School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA; Center for Brain Injury & Repair, Department of Neurosurgery, University of Pennsylvania, 105 Hayden Hall, 3320 Smith Walk, Philadelphia, PA 19104, USA.
| | - James P Harris
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, 3900 Woodland Avenue, Philadelphia, PA 19104, USA; Center for Brain Injury & Repair, Department of Neurosurgery, University of Pennsylvania, 105 Hayden Hall, 3320 Smith Walk, Philadelphia, PA 19104, USA.
| | - Kevin D Browne
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, 3900 Woodland Avenue, Philadelphia, PA 19104, USA; Center for Brain Injury & Repair, Department of Neurosurgery, University of Pennsylvania, 105 Hayden Hall, 3320 Smith Walk, Philadelphia, PA 19104, USA.
| | - Daniel P Brown
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, 3900 Woodland Avenue, Philadelphia, PA 19104, USA; Center for Brain Injury & Repair, Department of Neurosurgery, University of Pennsylvania, 105 Hayden Hall, 3320 Smith Walk, Philadelphia, PA 19104, USA.
| | - Michael R Grovola
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, 3900 Woodland Avenue, Philadelphia, PA 19104, USA; Center for Brain Injury & Repair, Department of Neurosurgery, University of Pennsylvania, 105 Hayden Hall, 3320 Smith Walk, Philadelphia, PA 19104, USA.
| | - Constance J Mietus
- Center for Brain Injury & Repair, Department of Neurosurgery, University of Pennsylvania, 105 Hayden Hall, 3320 Smith Walk, Philadelphia, PA 19104, USA.
| | - John A Wolf
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, 3900 Woodland Avenue, Philadelphia, PA 19104, USA; Center for Brain Injury & Repair, Department of Neurosurgery, University of Pennsylvania, 105 Hayden Hall, 3320 Smith Walk, Philadelphia, PA 19104, USA.
| | - John E Duda
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, 3900 Woodland Avenue, Philadelphia, PA 19104, USA; Department of Neurology, University of Pennsylvania, 300 Dulles Building, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| | - Mary E Putt
- Department of Biostatistics and Epidemiology, Hospital of the University of Pennsylvania, 621 Blockley Hall, 423 Guardian Drive, Philadelphia, PA 19104, USA.
| | - Kara L Spiller
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA.
| | - D Kacy Cullen
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, 3900 Woodland Avenue, Philadelphia, PA 19104, USA; Center for Brain Injury & Repair, Department of Neurosurgery, University of Pennsylvania, 105 Hayden Hall, 3320 Smith Walk, Philadelphia, PA 19104, USA.
| |
Collapse
|
14
|
Cullen DK, Harris JP, Browne KD, Wolf JA, Duda JE, Meaney DF, Margulies SS, Smith DH. A Porcine Model of Traumatic Brain Injury via Head Rotational Acceleration. Methods Mol Biol 2016; 1462:289-324. [PMID: 27604725 DOI: 10.1007/978-1-4939-3816-2_17] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Unique from other brain disorders, traumatic brain injury (TBI) generally results from a discrete biomechanical event that induces rapid head movement. The large size and high organization of the human brain makes it particularly vulnerable to traumatic injury from rotational accelerations that can cause dynamic deformation of the brain tissue. Therefore, replicating the injury biomechanics of human TBI in animal models presents a substantial challenge, particularly with regard to addressing brain size and injury parameters. Here we present the historical development and use of a porcine model of head rotational acceleration. By scaling up the rotational forces to account for difference in brain mass between swine and humans, this model has been shown to produce the same tissue deformations and identical neuropathologies found in human TBI. The parameters of scaled rapid angular accelerations applied for the model reproduce inertial forces generated when the human head suddenly accelerates or decelerates in falls, collisions, or blunt impacts. The model uses custom-built linkage assemblies and a powerful linear actuator designed to produce purely impulsive non-impact head rotation in different angular planes at controlled rotational acceleration levels. Through a range of head rotational kinematics, this model can produce functional and neuropathological changes across the spectrum from concussion to severe TBI. Notably, however, the model is very difficult to employ, requiring a highly skilled team for medical management, biomechanics, neurological recovery, and specialized outcome measures including neuromonitoring, neurophysiology, neuroimaging, and neuropathology. Nonetheless, while challenging, this clinically relevant model has proven valuable for identifying mechanisms of acute and progressive neuropathologies as well as for the evaluation of noninvasive diagnostic techniques and potential neuroprotective treatments following TBI.
Collapse
Affiliation(s)
- D Kacy Cullen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 105E Hayden Hall/3320 Smith Walk, Philadelphia, PA, 19104, USA. .,Department of Neurology, Perelman School of Medicine, Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, USA. .,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - James P Harris
- Department of Neurology, Perelman School of Medicine, Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, USA.,Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 105 Hayden Hall/3320 Smith Walk, Philadelphia, PA, USA
| | - Kevin D Browne
- Department of Neurology, Perelman School of Medicine, Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, USA.,Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 105 Hayden Hall/3320 Smith Walk, Philadelphia, PA, USA
| | - John A Wolf
- Department of Neurology, Perelman School of Medicine, Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, USA.,Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 371 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA, USA
| | - John E Duda
- Department of Neurology, Perelman School of Medicine, Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - David F Meaney
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 105C Hayden Hall/3320 Smith Walk, Philadelphia, PA, USA
| | - Susan S Margulies
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA.,Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 105D Hayden Hall/3320 Smith Walk, Philadelphia, PA, USA
| | - Douglas H Smith
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, 105E Hayden Hall/3320 Smith Walk, Philadelphia, PA, 19104, USA
| |
Collapse
|
15
|
Salvador E, Burek M, Förster CY. Stretch and/or oxygen glucose deprivation (OGD) in an in vitro traumatic brain injury (TBI) model induces calcium alteration and inflammatory cascade. Front Cell Neurosci 2015; 9:323. [PMID: 26347611 PMCID: PMC4543908 DOI: 10.3389/fncel.2015.00323] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 08/03/2015] [Indexed: 11/13/2022] Open
Abstract
The blood-brain barrier (BBB), made up of endothelial cells of capillaries in the brain, maintains the microenvironment of the central nervous system. During ischemia and traumatic brain injury (TBI), cellular disruption leading to mechanical insult results to the BBB being compromised. Oxygen glucose deprivation (OGD) is the most commonly used in vitro model for ischemia. On the other hand, stretch injury is currently being used to model TBI in vitro. In this paper, the two methods are used alone or in combination, to assess their effects on cerebrovascular endothelial cells cEND in the presence or absence of astrocytic factors. Applying severe stretch and/or OGD to cEND cells in our experiments resulted to cell swelling and distortion. Damage to the cells induced release of lactate dehydrogenase enzyme (LDH) and nitric oxide (NO) into the cell culture medium. In addition, mRNA expression of inflammatory markers interleukin (I L)-6, IL-1α, chemokine (C-C motif) ligand 2 (CCL2) and tumor necrosis factor (TNF)-α also increased. These events could lead to the opening of calcium ion channels resulting to excitotoxicity. This could be demonstrated by increased calcium level in OGD-subjected cEND cells incubated with astrocyte-conditioned medium. Furthermore, reduction of cell membrane integrity decreased tight junction proteins claudin-5 and occludin expression. In addition, permeability of the endothelial cell monolayer increased. Also, since cell damage requires an increased uptake of glucose, expression of glucose transporter glut1 was found to increase at the mRNA level after OGD. Overall, the effects of OGD on cEND cells appear to be more prominent than that of stretch with regards to TJ proteins, NO, glut1 expression, and calcium level. Astrocytes potentiate these effects on calcium level in cEND cells. Combining both methods to model TBI in vitro shows a promising improvement to currently available models.
Collapse
Affiliation(s)
- Ellaine Salvador
- Klinik und Poliklinik für Anästhesiologie, Zentrum für Operative Medizin der Universität Würzburg Würzburg, Germany
| | - Malgorzata Burek
- Klinik und Poliklinik für Anästhesiologie, Zentrum für Operative Medizin der Universität Würzburg Würzburg, Germany
| | - Carola Y Förster
- Klinik und Poliklinik für Anästhesiologie, Zentrum für Operative Medizin der Universität Würzburg Würzburg, Germany
| |
Collapse
|
16
|
Augustine C, Cepinskas G, Fraser DD. Traumatic injury elicits JNK-mediated human astrocyte retraction in vitro. Neuroscience 2014; 274:1-10. [PMID: 24838066 DOI: 10.1016/j.neuroscience.2014.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/06/2014] [Accepted: 05/06/2014] [Indexed: 02/08/2023]
Abstract
Brain injury causes dysfunction of the blood-brain barrier (BBB). The BBB is comprised of perivascular astrocytes whose end-feet ensheath brain microvascular endothelial cells. We investigated trauma-induced morphological changes of human astrocytes (HA) and human cerebral microvascular endothelial cells (hCMEC/D3) in vitro, including the potential role of mitogen-activated protein kinase (MAPK) signal-transduction pathways. HA or hCMEC/D3 were grown on flexible culture membranes and subjected to single traumatic injury normalized to 20%, 30% or 55% membrane deformation. Cells were assayed for morphological changes (i.e. retraction) and MAPK phosphorylation and/or expression (c-Jun NH2-terminal kinase (JNK)1/2, extracellular signal-regulated kinase (ERK)1/2, and p38). HA retraction was rapidly elicited with a single traumatic injury (55% membrane deformation; p<0.01). Morphological recovery of HA was observed within 2h (p<0.05). Traumatic injuries increased phospho-JNK1/2 (p<0.05) in HA, indicating MAPK activation. Pre-treatment of HA with structurally distinct JNK inhibitors (25μM), either SP600125 or SU3327, reduced JNK phosphorylation (p<0.05) and trauma-induced HA retraction (P<0.05). In contrast to HA, traumatic injury failed to induce either morphological changes or MAPK activation in hCMEC/D3. In summary, traumatic injury induces JNK-mediated HA retraction in vitro, while sparing morphological changes in cerebral microvascular endothelial cells. Astrocyte retraction from microvascular endothelial cells in vivo may occur after brain trauma, resulting in cellular uncoupling and BBB dysfunction. JNK may represent a potential therapeutic target for traumatic brain injuries.
Collapse
Affiliation(s)
- C Augustine
- Department of Physiology and Pharmacology, Western University, London, ON, Canada; Children's Health Research Institute, London, ON, Canada; Center for Critical Illness Research, London, ON, Canada
| | - G Cepinskas
- Center for Critical Illness Research, London, ON, Canada; Department of Medical Biophysics, Western University, London, ON, Canada; Department of Medicine, Western University, London, ON, Canada
| | - D D Fraser
- Department of Physiology and Pharmacology, Western University, London, ON, Canada; Children's Health Research Institute, London, ON, Canada; Center for Critical Illness Research, London, ON, Canada; Department of Paediatrics, Western University, London, ON, Canada; Department of Clinical Neurological Sciences, Western University, London, ON, Canada.
| | | |
Collapse
|
17
|
Yu GX, Mueller M, Hawkins BE, Mathew BP, Parsley MA, Vergara LA, Hellmich HL, Prough DS, Dewitt DS. Traumatic brain injury in vivo and in vitro contributes to cerebral vascular dysfunction through impaired gap junction communication between vascular smooth muscle cells. J Neurotrauma 2014; 31:739-48. [PMID: 24341563 PMCID: PMC4047850 DOI: 10.1089/neu.2013.3187] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Gap junctions (GJs) contribute to cerebral vasodilation, vasoconstriction, and, perhaps, to vascular compensatory mechanisms, such as autoregulation. To explore the effects of traumatic brain injury (TBI) on vascular GJ communication, we assessed GJ coupling in A7r5 vascular smooth muscle (VSM) cells subjected to rapid stretch injury (RSI) in vitro and VSM in middle cerebral arteries (MCAs) harvested from rats subjected to fluid percussion TBI in vivo. Intercellular communication was evaluated by measuring fluorescence recovery after photobleaching (FRAP). In VSM cells in vitro, FRAP increased significantly (p<0.05 vs. sham RSI) after mild RSI, but decreased significantly (p<0.05 vs. sham RSI) after moderate or severe RSI. FRAP decreased significantly (p<0.05 vs. sham RSI) 30 min and 2 h, but increased significantly (p<0.05 vs. sham RSI) 24 h after RSI. In MCAs harvested from rats 30 min after moderate TBI in vivo, FRAP was reduced significantly (p<0.05), compared to MCAs from rats after sham TBI. In VSM cells in vitro, pretreatment with the peroxynitrite (ONOO(-)) scavenger, 5,10,15,20-tetrakis(4-sulfonatophenyl)prophyrinato iron[III], prevented RSI-induced reductions in FRAP. In isolated MCAs from rats treated with the ONOO(-) scavenger, penicillamine, GJ coupling was not impaired by fluid percussion TBI. In addition, penicillamine treatment improved vasodilatory responses to reduced intravascular pressure in MCAs harvested from rats subjected to moderate fluid percussion TBI. These results indicate that TBI reduced GJ coupling in VSM cells in vitro and in vivo through mechanisms related to generation of the potent oxidant, ONOO(-).
Collapse
Affiliation(s)
- Guang-Xiang Yu
- Charles R. Allen Research Laboratories, Department of Anesthesiology, University of Texas Medical Branch , Galveston, Texas
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Calcium signaling is involved in a multitude of physiological and pathophysiological mechanisms. Over the last decade, it has been increasingly recognized as an important factor in epileptogenesis, and it is becoming obvious that the excess synchronization of neurons that is characteristic for seizures can be linked to various calcium signaling pathways. These include immediate effects on membrane excitability by calcium influx through ion channels as well as delayed mechanisms that act through G-protein coupled pathways. Calcium signaling is able to cause hyperexcitability either by direct modulation of neuronal activity or indirectly through calcium-dependent gliotransmission. Furthermore, feedback mechanisms between mitochondrial calcium signaling and reactive oxygen species are able to cause neuronal cell death and seizures. Unravelling the complexity of calcium signaling in epileptogenesis is a daunting task, but it includes the promise to uncover formerly unknown targets for the development of new antiepileptic drugs.
Collapse
|
19
|
Salvador E, Neuhaus W, Foerster C. Stretch in brain microvascular endothelial cells (cEND) as an in vitro traumatic brain injury model of the blood brain barrier. J Vis Exp 2013:e50928. [PMID: 24193450 PMCID: PMC3964201 DOI: 10.3791/50928] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Due to the high mortality incident brought about by traumatic brain injury (TBI), methods that would enable one to better understand the underlying mechanisms involved in it are useful for treatment. There are both in vivo and in vitro methods available for this purpose. In vivo models can mimic actual head injury as it occurs during TBI. However, in vivo techniques may not be exploited for studies at the cell physiology level. Hence, in vitro methods are more advantageous for this purpose since they provide easier access to the cells and the extracellular environment for manipulation. Our protocol presents an in vitro model of TBI using stretch injury in brain microvascular endothelial cells. It utilizes pressure applied to the cells cultured in flexible-bottomed wells. The pressure applied may easily be controlled and can produce injury that ranges from low to severe. The murine brain microvascular endothelial cells (cEND) generated in our laboratory is a well-suited model for the blood brain barrier (BBB) thus providing an advantage to other systems that employ a similar technique. In addition, due to the simplicity of the method, experimental set-ups are easily duplicated. Thus, this model can be used in studying the cellular and molecular mechanisms involved in TBI at the BBB.
Collapse
Affiliation(s)
- Ellaine Salvador
- Klinik und Poliklinik für Anästhesiologie, Zentrum für operative Medizin der Universität Würzburg
| | | | | |
Collapse
|
20
|
Gurkoff G, Shahlaie K, Lyeth B, Berman R. Voltage-gated calcium channel antagonists and traumatic brain injury. Pharmaceuticals (Basel) 2013; 6:788-812. [PMID: 24276315 PMCID: PMC3816709 DOI: 10.3390/ph6070788] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 06/06/2013] [Accepted: 06/06/2013] [Indexed: 01/17/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability in the United States. Despite more than 30 years of research, no pharmacological agents have been identified that improve neurological function following TBI. However, several lines of research described in this review provide support for further development of voltage gated calcium channel (VGCC) antagonists as potential therapeutic agents. Following TBI, neurons and astrocytes experience a rapid and sometimes enduring increase in intracellular calcium ([Ca2+]i). These fluxes in [Ca2+]i drive not only apoptotic and necrotic cell death, but also can lead to long-term cell dysfunction in surviving cells. In a limited number of in vitro experiments, both L-type and N-type VGCC antagonists successfully reduced calcium loads as well as neuronal and astrocytic cell death following mechanical injury. In rodent models of TBI, administration of VGCC antagonists reduced cell death and improved cognitive function. It is clear that there is a critical need to find effective therapeutics and rational drug delivery strategies for the management and treatment of TBI, and we believe that further investigation of VGCC antagonists should be pursued before ruling out the possibility of successful translation to the clinic.
Collapse
Affiliation(s)
- Gene Gurkoff
- Department of Neurological Surgery, One Shields Avenue, University of California, Davis, CA 95616, USA; E-Mails: (K.S.); (B.L.); (R.B.)
- NSF Center for Biophotonics Science and Technology, Suite 2700 Stockton Blvd, Suite 1400, Sacramento, CA, 95817, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-530-754-7501; Fax: +1-530-754-5125
| | - Kiarash Shahlaie
- Department of Neurological Surgery, One Shields Avenue, University of California, Davis, CA 95616, USA; E-Mails: (K.S.); (B.L.); (R.B.)
| | - Bruce Lyeth
- Department of Neurological Surgery, One Shields Avenue, University of California, Davis, CA 95616, USA; E-Mails: (K.S.); (B.L.); (R.B.)
| | - Robert Berman
- Department of Neurological Surgery, One Shields Avenue, University of California, Davis, CA 95616, USA; E-Mails: (K.S.); (B.L.); (R.B.)
| |
Collapse
|
21
|
Li Y, Song J, Liu X, Zhang M, An J, Sun P, Li D, Jin T, Wang J. High expression of STIM1 in the early stages of diffuse axonal injury. Brain Res 2012; 1495:95-102. [PMID: 23261659 DOI: 10.1016/j.brainres.2012.12.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 10/31/2012] [Accepted: 12/05/2012] [Indexed: 12/20/2022]
Abstract
Increased intracellular calcium ([Ca(2+)](i)) is a key pathological mechanism involved in secondary neuronal injury and cell death due to diffuse axonal injury (DAI). To date, this increased [Ca(2+)](i) is believed to be mainly caused by dysfunction of voltage-gated sodium channels and mechanoporation of the plasma membrane. Store-operated calcium entry (SOCE) is another source of Ca(2+) influx, and stromal interaction molecule 1 (STIM1) is considered as a sensor and a regulator of SOCE. In this study, we established a DAI in vivo model in rats by lateral head rotation. Using immunohistochemistry, real-time RT-PCR and Western blot, we investigated STIM1 expression levels in the cerebral cortex of rats after lateral head rotational injury. Results revealed notably high STIM1 expression in neurons in the early stages (within 24 h) of DAI. STIM1 began to increase at 6 h post-injury (PI) peaked at 12 h PI, and then gradually decreased. At 2 days PI, STIM1 expression in the injury group showed no significant difference compared with that of the control group. These results indicate that abnormal SOCE may participate in Ca(2+) overload of neurons in the early stages after DAI via enhanced STIM1 expression.
Collapse
Affiliation(s)
- Yu Li
- Department of Neurosurgery, The First Affiliated Hospital of the Medical College of Xi'an Jiaotong University, Xi'an 710061, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Cullen DK, Vernekar VN, LaPlaca MC. Trauma-induced plasmalemma disruptions in three-dimensional neural cultures are dependent on strain modality and rate. J Neurotrauma 2012; 28:2219-33. [PMID: 22023556 DOI: 10.1089/neu.2011.1841] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Traumatic brain injury (TBI) results from cell dysfunction or death following supra-threshold physical loading. Neural plasmalemma compromise has been observed following traumatic neural insults; however, the biomechanical thresholds and time-course of such disruptions remain poorly understood. In order to investigate trauma-induced membrane disruptions, we induced dynamic strain fields (0.50 shear or compressive strain at 1, 10, or 30?sec(?1) strain rate) in 3-D neuronal-astrocytic co-cultures (>500??m thick). Impermeant dyes were present during mechanical loading and entered cells in a strain rate-dependent manner for both shear and compression. Real-time imaging revealed increased membrane permeability in a sub-population of cells immediately upon deformation. Alterations in cell membrane permeability, however, were transient and biphasic over the ensuing hour post-insult, suggesting initial membrane damage and rapid repair, followed by a phase of secondary membrane degradation. At 48?h post-insult, cell death increased significantly in the high-strain-rate group, but not after quasi-static loading, suggesting that cell survival relates to the initial extent of transient structural compromise. Cells were more sensitive to bulk shear deformation than compression with respect to acute permeability changes and subsequent cell survival. These results provide insight into the temporally varying alterations in membrane stability following traumatic loading and provide a basis for elucidating physical cellular tolerances.
Collapse
Affiliation(s)
- D Kacy Cullen
- Department of Neurosurgery, Center for Brain Injury and Repair, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
23
|
Gurkoff GG, Shahlaie K, Lyeth BG. In vitro mechanical strain trauma alters neuronal calcium responses: Implications for posttraumatic epilepsy. Epilepsia 2012; 53 Suppl 1:53-60. [DOI: 10.1111/j.1528-1167.2012.03475.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Weber JT. Altered calcium signaling following traumatic brain injury. Front Pharmacol 2012; 3:60. [PMID: 22518104 PMCID: PMC3324969 DOI: 10.3389/fphar.2012.00060] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Accepted: 03/24/2012] [Indexed: 01/10/2023] Open
Abstract
Cell death and dysfunction after traumatic brain injury (TBI) is caused by a primary phase, related to direct mechanical disruption of the brain, and a secondary phase which consists of delayed events initiated at the time of the physical insult. Arguably, the calcium ion contributes greatly to the delayed cell damage and death after TBI. A large, sustained influx of calcium into cells can initiate cell death signaling cascades, through activation of several degradative enzymes, such as proteases and endonucleases. However, a sustained level of intracellular free calcium is not necessarily lethal, but the specific route of calcium entry may couple calcium directly to cell death pathways. Other sources of calcium, such as intracellular calcium stores, can also contribute to cell damage. In addition, calcium-mediated signal transduction pathways in neurons may be perturbed following injury. These latter types of alterations may contribute to abnormal physiology in neurons that do not necessarily die after a traumatic episode. This review provides an overview of experimental evidence that has led to our current understanding of the role of calcium signaling in death and dysfunction following TBI.
Collapse
Affiliation(s)
- John T. Weber
- School of Pharmacy and Division of BioMedical Sciences, Faculty of Medicine, Memorial University of NewfoundlandSt. John’s, NL, Canada
| |
Collapse
|
25
|
von Reyn CR, Mott RE, Siman R, Smith DH, Meaney DF. Mechanisms of calpain mediated proteolysis of voltage gated sodium channel α-subunits following in vitro dynamic stretch injury. J Neurochem 2012; 121:793-805. [PMID: 22428606 DOI: 10.1111/j.1471-4159.2012.07735.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although enhanced calpain activity is well documented after traumatic brain injury (TBI), the pathways targeting specific substrate proteolysis are less defined. Our past work demonstrated that calpain cleaves voltage gated sodium channel (NaCh) α-subunits in an in vitro TBI model. In this study, we investigated the pathways leading to NaCh cleavage utilizing our previously characterized in vitro TBI model, and determined the location of calpain activation within neuronal regions following stretch injury to micropatterned cultures. Calpain specific breakdown products of α-spectrin appeared within axonal, dendritic, and somatic regions 6 h after injury, concurrent with the appearance of NaCh α-subunit proteolysis in both whole cell or enriched axonal preparations. Direct pharmacological activation of either NMDA receptors (NMDArs) or NaChs resulted in NaCh proteolysis. Likewise, a chronic (6 h) dual inhibition of NMDArs/NaChs but not L-type voltage gated calcium channels significantly reduced NaCh proteolysis 6 h after mechanical injury. Interestingly, an early, transient (30 min) inhibition of NMDArs alone significantly reduced NaCh proteolysis. Although a chronic inhibition of calpain significantly reduced proteolysis, a transient inhibition of calpain immediately after injury failed to significantly attenuate NaCh proteolysis. These data suggest that both NMDArs and NaChs are key contributors to calpain activation after mechanical injury, and that a larger temporal window of sustained calpain activation needs consideration in developing effective treatments for TBI.
Collapse
|
26
|
Berrout J, Jin M, O'Neil RG. Critical role of TRPP2 and TRPC1 channels in stretch-induced injury of blood-brain barrier endothelial cells. Brain Res 2011; 1436:1-12. [PMID: 22192412 DOI: 10.1016/j.brainres.2011.11.044] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 11/14/2011] [Accepted: 11/19/2011] [Indexed: 12/23/2022]
Abstract
The microvessels of the brain are very sensitive to mechanical stresses such as observed in traumatic brain injury (TBI). Such stresses can quickly lead to dysfunction of the microvessel endothelial cells, including disruption of blood-brain barrier (BBB). It is now evident that elevation of cytosolic calcium levels ([Ca2+]i) can compromise the BBB integrity, however the mechanism by which mechanical injury can produce a [Ca2+]i increase in brain endothelial cells is unclear. To assess the effects of mechanical/stretch injury on [Ca2+]i signaling, mouse brain microvessel endothelial cells (bEnd3) were grown to confluency on elasticized membranes and [Ca2+]i monitored using fura 2 fluorescence imaging. Application of an injury, using a pressure/stretch pulse of 50 ms, induced a rapid transient increase in [Ca2+]i. In the absence of extracellular Ca2+, the injury-induced [Ca2+]i transient was greatly reduced, but not fully eliminated, while unloading of Ca2+ stores by thapsigargin treatment in the absence of extracellular Ca2+ abolished the injury transient. Application of LOE-908 and amiloride, TRPC and TRPP2 channel blockers, respectively, both reduced the transient [Ca2+]i increase. Further, siRNA knockdown assays directed at TRPC1 and TRPP2 expression also resulted in a reduction of the injury-induced [Ca2+]i response. In addition, stretch injury induced increases of NO production and actin stress fiber formation, both of which were markedly reduced upon treatment with LOE908 and/or amiloride. We conclude that mechanical injury of brain endothelial cells induces a rapid influx of calcium, mediated by TRPC1 and TRPP2 channels, which leads to NO synthesis and actin cytoskeletal rearrangement.
Collapse
Affiliation(s)
- Jonathan Berrout
- Department of Integrative Biology & Pharmacology, The University of Texas Health Science Center, Houston, TX 77030, USA
| | | | | |
Collapse
|
27
|
Abstract
The rising awareness of the long-term health problems associated with concussions re-emphasizes the need for understanding the mechanical etiology of concussions. This article reviews past studies defining the common mechanisms for mild traumatic brain injury and summarizes efforts to convert the external input to the head (force, acceleration, and velocity) into estimates of motions and deformations of the brain that occur during mild traumatic brain injury. Studies of how these mechanical conditions contribute to the cellular mechanisms of damage in mild traumatic brain injury are reviewed. Finally, future directions for improving understanding concussion biomechanics are discussed.
Collapse
|
28
|
Gladman SJ, Ward RE, Michael-Titus AT, Knight MM, Priestley JV. The effect of mechanical strain or hypoxia on cell death in subpopulations of rat dorsal root ganglion neurons in vitro. Neuroscience 2010; 171:577-87. [PMID: 20674687 DOI: 10.1016/j.neuroscience.2010.07.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 07/01/2010] [Accepted: 07/04/2010] [Indexed: 12/22/2022]
Abstract
Spinal nerves and their associated dorsal root ganglion (DRG) cells can be subject to mechanical deformation and hypoxia associated with pathology such as disc herniation, spinal stenosis and spine trauma. There is very limited information on the response of adult DRG neurons to such stressors. In this study we used an in vitro approach to examine the response of adult DRG cells to (a) mechanical, hypoxic, and combined injuries; and (b) to compare the effects on injury on nociceptive and non-nociceptive neurons, as well as on non-neuronal cells. Mechanical injury (20% tensile strain) led to significant neuronal cell death (assessed by ethidium homodimer-1 labelling), which was proportional to strain duration (5 min, 1 h, 6 h or 18 h). Hypoxia (2% O(2) for 24 h) also promoted death of DRG neurons, and was further enhanced when mechanical strain and hypoxia were combined. Both mechanical strain and hypoxia significantly decreased the maximum neurite length. Conversely, death of non-neuronal cells was only increased by hypoxia and not by mechanical strain. Total cell death in response to mechanical injury or hypoxia was similar in both non-nociceptive (neurofilament, NF-200 immunoreactive) and nociceptive (calcitonin gene-related peptide, CGRP immunoreactive) neurons, but apoptosis (assessed by activated caspase-3 immunostaining) was significantly higher in CGRP than NF-200 neurons. Surprisingly, cell death of non-peptidergic nociceptors (identified by Griffonia simplicifolia IB4 lectin binding) was already high in control cultures, and was not increased further by either mechanical stretch or hypoxia. These results provide detailed information on the response of adult DRG subpopulations to hypoxia and mechanical strain, and describe in vitro models that could be useful for screening potential neuroprotective agents.
Collapse
Affiliation(s)
- S J Gladman
- Centre for Neuroscience and Trauma, Blizard Institute of Cell and Molecular Science, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK.
| | | | | | | | | |
Collapse
|
29
|
Gibson CJ, Meyer RC, Hamm RJ. Traumatic brain injury and the effects of diazepam, diltiazem, and MK-801 on GABA-A receptor subunit expression in rat hippocampus. J Biomed Sci 2010; 17:38. [PMID: 20482789 PMCID: PMC2893123 DOI: 10.1186/1423-0127-17-38] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 05/18/2010] [Indexed: 02/07/2023] Open
Abstract
Background Excitatory amino acid release and subsequent biochemical cascades following traumatic brain injury (TBI) have been well documented, especially glutamate-related excitotoxicity. The effects of TBI on the essential functions of inhibitory GABA-A receptors, however, are poorly understood. Methods We used Western blot procedures to test whether in vivo TBI in rat altered the protein expression of hippocampal GABA-A receptor subunits α1, α2, α3, α5, β3, and γ2 at 3 h, 6 h, 24 h, and 7 days post-injuy. We then used pre-injury injections of MK-801 to block calcium influx through the NMDA receptor, diltiazem to block L-type voltage-gated calcium influx, or diazepam to enhance chloride conductance, and re-examined the protein expressions of α1, α2, α3, and γ2, all of which were altered by TBI in the first study and all of which are important constituents in benzodiazepine-sensitive GABA-A receptors. Results Western blot analysis revealed no injury-induced alterations in protein expression for GABA-A receptor α2 or α5 subunits at any time point post-injury. Significant time-dependent changes in α1, α3, β3, and γ2 protein expression. The pattern of alterations to GABA-A subunits was nearly identical after diltiazem and diazepam treatment, and MK-801 normalized expression of all subunits 24 hours post-TBI. Conclusions These studies are the first to demonstrate that GABA-A receptor subunit expression is altered by TBI in vivo, and these alterations may be driven by calcium-mediated cascades in hippocampal neurons. Changes in GABA-A receptors in the hippocampus after TBI may have far-reaching consequences considering their essential importance in maintaining inhibitory balance and their extensive impact on neuronal function.
Collapse
Affiliation(s)
- Cynthia J Gibson
- Department of Psychology, Washington College, Chestertown, MD 21620, USA.
| | | | | |
Collapse
|
30
|
Shahlaie K, Lyeth BG, Gurkoff GG, Muizelaar JP, Berman RF. Neuroprotective effects of selective N-type VGCC blockade on stretch-injury-induced calcium dynamics in cortical neurons. J Neurotrauma 2010; 27:175-87. [PMID: 19772476 DOI: 10.1089/neu.2009.1003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Acute elevation in intracellular calcium ([Ca(2+)](i)) following traumatic brain injury (TBI) can trigger cellular mechanisms leading to neuronal dysfunction and death. The mechanisms underlying these processes are not completely understood, but calcium influx through N-type voltage-gated calcium channels (VGCCs) appears to play a central role. The present study examined the time course of [Ca(2+)](i) flux, glutamate release, and loss of cell viability following injury using an in vitro neuronal-glial cortical cell-culture model of TBI. The effects of N-channel blockade with SNX-185 (e.g. omega-conotoxin TVIA) before or after injury were also examined. Neuronal injury produced a transient elevation in [Ca(2+)](i), increased glutamate release, and resulted in neuronal and glial death. SNX-185 administered before or immediately after cell injury reduced glutamate release and increased the survival of neurons and astrocytes, whereas delayed treatment did not improve cell survival but significantly facilitated the return of [Ca(2+)](i) to baseline levels. The new findings that N-type VGCCs are critically involved in injury-induced glutamate release and recovery of [Ca(2+)](i) argue for continued investigation of this treatment strategy for the clinical management of TBI. In particular, SNX-185 may represent an effective class of drugs that can significantly protect injured neurons from the secondary insults that commonly occur after TBI.
Collapse
Affiliation(s)
- Kiarash Shahlaie
- Department of Neurological Surgery, School of Medicine, University of California, Davis, Sacramento, California 95817, USA.
| | | | | | | | | |
Collapse
|
31
|
Pape HC, Pare D. Plastic synaptic networks of the amygdala for the acquisition, expression, and extinction of conditioned fear. Physiol Rev 2010; 90:419-63. [PMID: 20393190 DOI: 10.1152/physrev.00037.2009] [Citation(s) in RCA: 766] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The last 10 years have witnessed a surge of interest for the mechanisms underlying the acquisition and extinction of classically conditioned fear responses. In part, this results from the realization that abnormalities in fear learning mechanisms likely participate in the development and/or maintenance of human anxiety disorders. The simplicity and robustness of this learning paradigm, coupled with the fact that the underlying circuitry is evolutionarily well conserved, make it an ideal model to study the basic biology of memory and identify genetic factors and neuronal systems that regulate the normal and pathological expressions of learned fear. Critical advances have been made in determining how modified neuronal functions upon fear acquisition become stabilized during fear memory consolidation and how these processes are controlled in the course of fear memory extinction. With these advances came the realization that activity in remote neuronal networks must be coordinated for these events to take place. In this paper, we review these mechanisms of coordinated network activity and the molecular cascades leading to enduring fear memory, and allowing for their extinction. We will focus on Pavlovian fear conditioning as a model and the amygdala as a key component for the acquisition and extinction of fear responses.
Collapse
Affiliation(s)
- Hans-Christian Pape
- Institute of Physiology, Westfaelische Wilhelms-University, Muenster, Germany; and Rutgers State University, Newark, New Jersey, USA.
| | | |
Collapse
|
32
|
LaPlaca MC, Prado GR. Neural mechanobiology and neuronal vulnerability to traumatic loading. J Biomech 2010; 43:71-8. [DOI: 10.1016/j.jbiomech.2009.09.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2009] [Indexed: 10/20/2022]
|
33
|
Staal JA, Dickson TC, Gasperini R, Liu Y, Foa L, Vickers JC. Initial calcium release from intracellular stores followed by calcium dysregulation is linked to secondary axotomy following transient axonal stretch injury. J Neurochem 2009; 112:1147-55. [PMID: 19968758 DOI: 10.1111/j.1471-4159.2009.06531.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Acute axonal shear and stretch in the brain induces an evolving form of axonopathy and is a major cause of ongoing motor, cognitive and emotional dysfunction. We have utilized an in vitro model of mild axon bundle stretch injury, in cultured primary cortical neurons, to determine potential early critical cellular alterations leading to secondary axonal degeneration. We determined that transient axonal stretch injury induced an initial acute increase in intracellular calcium, principally derived from intracellular stores, which was followed by a delayed increase in calcium over 48 h post-injury (PI). This progressive and persistent increase in intracellular calcium was also associated with increased frequency of spontaneous calcium fluxes as well as cytoskeletal abnormalities. Additionally, at 48 h post-injury, stretch-injured axon bundles demonstrated filopodia-like sprout formation that preceded secondary axotomy and degeneration. Pharmacological inhibition of the calcium-activated phosphatase, calcineurin, resulted in reduced secondary axotomy (p < 0.05) and increased filopodial sprout length. In summary, these results demonstrate that stretch injury of axons induced an initial substantial release of calcium from intracellular stores with elevated intracellular calcium persisting over 2 days. These long-lasting calcium alterations may provide new insight into the earliest neuronal abnormalities that follow traumatic brain injury as well as the key cellular changes that lead to the development of diffuse axonal injury and secondary degeneration.
Collapse
Affiliation(s)
- Jerome A Staal
- NeuroRepair Group and Wicking Dementia Research and Education Centre, Menzies Research Institute, University of Tasmania, Hobart, Tasmania, Australia.
| | | | | | | | | | | |
Collapse
|
34
|
Yu Z, Morrison B. Experimental mild traumatic brain injury induces functional alteration of the developing hippocampus. J Neurophysiol 2009; 103:499-510. [PMID: 19923245 DOI: 10.1152/jn.00775.2009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It is estimated that approximately 1.5 million Americans suffer a traumatic brain injury (TBI) every year, of which approximately 80% are considered mild injuries. Because symptoms caused by mild TBI last less than half an hour by definition and apparently resolve without treatment, the study of mild TBI is often neglected resulting in a significant knowledge gap for this wide-spread problem. In this work, we studied functional (electrophysiological) alterations of the neonatal/juvenile hippocampus after experimental mild TBI. Our previous work reported significant cell death after in vitro injury >10% biaxial deformation. Here we report that biaxial deformation as low as 5% affected neuronal function during the first week after in vitro mild injury of hippocampal slice cultures. These results suggest that even very mild mechanical events may lead to a quantifiable neuronal network dysfunction. Furthermore, our results highlight that safe limits of mechanical deformation or tolerance criteria may be specific to a particular outcome measure and that neuronal function is a more sensitive measure of injury than cell death. In addition, the age of the tissue at injury was found to be an important factor affecting posttraumatic deficits in electrophysiological function, indicating a relationship between developmental status and vulnerability to mild injury. Our findings suggest that mild pediatric TBI could result in functional deficits that are more serious than currently appreciated.
Collapse
Affiliation(s)
- Zhe Yu
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Ave., 351 Engineering Terrace, New York, NY 10027, USA
| | | |
Collapse
|
35
|
Chen YC, Smith DH, Meaney DF. In-vitro approaches for studying blast-induced traumatic brain injury. J Neurotrauma 2009; 26:861-76. [PMID: 19397424 DOI: 10.1089/neu.2008.0645] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Traumatic brain injury caused by explosive or blast events is currently divided into four phases: primary, secondary, tertiary, and quaternary blast injury. These phases of blast-induced traumatic brain injury (bTBI) are biomechanically distinct, and can be modeled in both in-vivo and in-vitro systems. The purpose of this review is to consider the mechanical phases of bTBI, how these phases are reproduced with in-vitro models, and to review findings from these models to assess how each phase of bTBI can be examined in more detail. Highlighted are some important gaps in the literature that may be addressed in the future to better identify the exact contributing mechanisms for bTBI. These in-vitro models, viewed in combination with in-vivo models and clinical studies, can be used to assess both the mechanisms and possible treatments for this type of trauma.
Collapse
Affiliation(s)
- Yung Chia Chen
- Departments of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
36
|
Spaethling JM, Klein DM, Singh P, Meaney DF. Calcium-permeable AMPA receptors appear in cortical neurons after traumatic mechanical injury and contribute to neuronal fate. J Neurotrauma 2009; 25:1207-16. [PMID: 18986222 DOI: 10.1089/neu.2008.0532] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) is one of the most disabling injuries in the population, with 1.5 million Americans new cases each year and 5.3 million Americans overall requiring long-term daily care as a result of their injuries. One critical aspect in developing effective treatments for TBI is determining if new, specific receptor populations emerge in the early phase after injury that can subsequently be targeted to reduce neuronal death after injury. One specific glutamate receptor subtype, the calcium-permeable AMPA receptor (CP-AMPAR), is becoming increasingly recognized for its role in physiological and pathophysiological processes. Although present in relatively low levels in the mature brain, recent studies show that CP-AMPARs can appear following ischemic brain injury or status epilepticus, and the mechanisms that regulate the appearance of these receptors include alterations in transcription, RNA editing, and receptor trafficking. In this report, we use an in vitro model of TBI to show a gradual appearance of CP-AMPARs four hours following injury to cortical neurons. Moreover, the appearance of these receptors is mediated by the phosphorylation of CaMKIIalpha following injury. Selectively blocking CP-AMPARs after mechanical injury leads to a significant reduction in the cell death that occurs 24 h following injury in untreated controls, and is similar in protection offered by broad-spectrum NMDA and AMPA receptor antagonists. These data point to a potentially new and more targeted therapeutic approach for treating TBI.
Collapse
Affiliation(s)
- Jennifer M Spaethling
- Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6321, USA
| | | | | | | |
Collapse
|
37
|
Slemmer JE, Zhu C, Landshamer S, Trabold R, Grohm J, Ardeshiri A, Wagner E, Sweeney MI, Blomgren K, Culmsee C, Weber JT, Plesnila N. Causal role of apoptosis-inducing factor for neuronal cell death following traumatic brain injury. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:1795-805. [PMID: 18988795 DOI: 10.2353/ajpath.2008.080168] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Traumatic brain injury (TBI) consists of two phases: an immediate phase in which damage is caused as a direct result of the mechanical impact; and a late phase of altered biochemical events that results in delayed tissue damage and is therefore amenable to therapeutic treatment. Because the molecular mechanisms of delayed post-traumatic neuronal cell death are still poorly understood, we investigated whether apoptosis-inducing factor (AIF), a pro-apoptotic mitochondrial molecule and the key factor in the caspase-independent, cell death signaling pathway, plays a causal role in neuronal death following TBI. Using an in vitro model of neuronal stretch injury, we demonstrated that AIF translocated from mitochondria to the nucleus of neurons displaying axonal disruption, chromatin condensation, and nuclear pyknosis in a caspase-independent manner, whereas astrocytes remained unaffected. Similar findings were observed following experimental TBI in mice, where AIF translocation to the nucleus coincided with delayed neuronal cell death in both cortical and hippocampal neurons. Down-regulation of AIF in vitro by siRNA significantly reduced stretch-induced neuronal cell death by 67%, a finding corroborated in vivo using AIF-deficient harlequin mutant mice, where secondary contusion expansion was significantly reduced by 44%. Hence, our current findings demonstrate that caspase-independent, AIF-mediated signaling pathways significantly contribute to post-traumatic neuronal cell death and may therefore represent novel therapeutic targets for the treatment of TBI.
Collapse
Affiliation(s)
- Jennifer E Slemmer
- Department of Biology, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
SINGH NEERAJ, COHEN COURTNEYA, RZIGALINSKI BEVERLYA. Treatment of Neurodegenerative Disorders with Radical Nanomedicine. Ann N Y Acad Sci 2007; 1122:219-30. [DOI: 10.1196/annals.1403.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
39
|
Spaethling JM, Geddes-Klein DM, Miller WJ, von Reyn CR, Singh P, Mesfin M, Bernstein SJ, Meaney DF. Linking impact to cellular and molecular sequelae of CNS injury: modeling in vivo complexity with in vitro simplicity. PROGRESS IN BRAIN RESEARCH 2007; 161:27-39. [PMID: 17618968 DOI: 10.1016/s0079-6123(06)61003-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Traumatic brain injury (TBI) represents one of most common disorders to the central nervous system (CNS). Despite significant efforts, though, an effective clinical treatment for TBI is not yet available. The complexity of human TBI is modeled with a broad group of experimental models, with each model matching some aspect of the human condition. In the past 15 years, these in vivo models were complemented with a group of in vitro models, with these in vitro models allowing investigators to more precisely identify the mechanism(s) of TBI, the different intracellular events that occur in acute period following injury, and the possible treatment of this injury in vitro. In this paper, we review the available in vitro models to study TBI, discuss their biomechanical basis for human TBI, and review the findings from these in vitro models. Finally, we synthesize the current knowledge and point out possible future directions for this group of models, especially in the effort toward developing new therapies for the traumatically brain injured patient.
Collapse
Affiliation(s)
- Jennifer M Spaethling
- Department of Bioengineering, University of Pennsylvania, 3320 Smith Walk, Philadelphia, PA 19104-6392, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Bell JD, Ai J, Chen Y, Baker AJ. Mild in vitro trauma induces rapid Glur2 endocytosis, robustly augments calcium permeability and enhances susceptibility to secondary excitotoxic insult in cultured Purkinje cells. ACTA ACUST UNITED AC 2007; 130:2528-42. [PMID: 17664176 DOI: 10.1093/brain/awm164] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mild brain trauma results in a wide range of neurological symptoms that are not easily explained by the primary pathology. Purkinje neurons of the cerebellum are selectively vulnerable to brain trauma, including indirect remote trauma to the forebrain. This vulnerability manifests itself as a selective and delayed cell loss, for which the underlying mechanisms are poorly understood. Alterations to the surface expression of calcium impermeable AMPA receptors (GluR2-containing) may mediate post-traumatic calcium overload, and initiate biochemical cascades that ultimately cause progressive cell death. Our current study examined this hypothesis using an in vitro model of mild Purkinje trauma, delivered by an elastic stretch at 2.5-2.9 pounds per square inch (psi). This mild trauma alone did not increase cell loss as measured by propidium iodide (PI) uptake (at 20 h) compared to uninjured controls. However, there was a marked increase in cell loss, when cells following mild trauma, were exposed to 10 microM AMPA for 1 h compared to either mild trauma or AMPA exposure alone. Mild injury rendered Purkinje neurons significantly more permeable to AMPA-stimulated (4 microM) calcium influx at 15 min post-injury, including a sustained calcium plateau. This effect was eliminated by inhibiting protein kinase C-dependent GluR2 endocytosis with 2 microM Go6976 or blocking the calcium pore of GluR1/3 containing AMPARs with 500 nM 1-naphthylacetyl spermine (Naspm). Nifedipine (2 microM) eliminated the calcium plateau following mild injury but not the initial spike of Ca2+ increase. These results suggest that mild injuries resulted in a rapid AMPA receptor subtype switch (GluR2 was replaced by GluR1/3), which in turn resulted in an enhanced Ca2+ permeability. We further confirmed this by immunocytochemistry. Dendritic GluR2 co-localization with the pre-synaptic marker synaptophysin was markedly down-regulated at 15 min following mild stretch (P < 0.01), indicative of a rapid decrease in the synaptic expression of receptors containing this subunit. Carboxyfluorescence (CBF) assays revealed that mild stretch did not alter membrane integrity. Finally, we demonstrated that the combination of 500 nM Naspm and 5 nM Go6976 conferred a powerful neuroprotective effect on Purkinje cells by effectively eliminating the effects of mild stretch combined with AMPA in 95% of cells. These results represent a newly described mechanism rendering neurons susceptible to secondary injuries following trauma. Prevention of GluR2 endocytosis may be critical in the development of pharmacotherapies aimed at mild, seemingly inconsequential trauma, to avoid ensuing secondary damage.
Collapse
Affiliation(s)
- Joshua D Bell
- Cara Phelan Center for Trauma Research, St Michaels Hospital, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
41
|
Ellis EF, Willoughby KA, Sparks SA, Chen T. S100B protein is released from rat neonatal neurons, astrocytes, and microglia by in vitro trauma and anti-S100 increases trauma-induced delayed neuronal injury and negates the protective effect of exogenous S100B on neurons. J Neurochem 2007; 101:1463-70. [PMID: 17403138 DOI: 10.1111/j.1471-4159.2007.04515.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
S100B protein is found in brain, has been used as a marker for brain injury and is neurotrophic. Using a well-characterized in vitro model of brain cell trauma, we have previously shown that strain injury causes S100B release from neonatal rat neuronal plus glial cultures and that exogenous S100B reduces delayed post-traumatic neuronal damage even when given at 6 or 24 h post-trauma. The purpose of the current studies was to measure post-traumatic S100B release by specific brain cell types and to examine the effect of an antibody to S100 on post-traumatic delayed (48 h) neuronal injury and the protective effect of exogenous S100B. Neonatal rat cortical cells grown on a deformable elastic membrane were subjected to a strain (stretch) injury produced by a 50 ms displacement of the membrane. S100B was measured with an ELISA kit. Trauma released S100B from pure cultures of astrocytes, microglia, and neurons. Anti-S100 reduced released S100B to below detectable levels, increased delayed neuronal injury in traumatized cells and negated the protective effect of exogenous S100B on injured cells. Heat denatured anti-S100 did not exacerbate injury. These studies provide further evidence for a protective role for S100B following neuronal trauma.
Collapse
Affiliation(s)
- Earl F Ellis
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298-0613, USA.
| | | | | | | |
Collapse
|
42
|
Floyd CL, Lyeth BG. Astroglia: important mediators of traumatic brain injury. PROGRESS IN BRAIN RESEARCH 2007; 161:61-79. [PMID: 17618970 DOI: 10.1016/s0079-6123(06)61005-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Traumatic brain injury (TBI) research to date has focused almost exclusively on the pathophysiology of injured neurons with very little attention paid to non-neuronal cells. However in the past decade, exciting discoveries have challenged this century-old view of passive glial cells and have led to a reinterpretation of the role of glial cells in central nervous system (CNS) biology and pathology. In this chapter we review several lines of evidence, indicating that glial cells, particularly astrocytes, are active partners to neurons in the brain, and summarize recent findings that detail the significance of astrocyte pathology in traumatic brain injury.
Collapse
Affiliation(s)
- Candace L Floyd
- Department of Physical Medicine and Rehabilitation, Center for Glial Biology in Medicine, 547 Spain Rehabilitation Center, University of Alabama at Birmingham, Birmingham, AL 35249, USA.
| | | |
Collapse
|
43
|
Cohen AS, Pfister BJ, Schwarzbach E, Grady MS, Goforth PB, Satin LS. Injury-induced alterations in CNS electrophysiology. PROGRESS IN BRAIN RESEARCH 2007; 161:143-69. [PMID: 17618975 DOI: 10.1016/s0079-6123(06)61010-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mild to moderate cases of traumatic brain injury (TBI) are very common, but are not always associated with the overt pathophysiogical changes seen following severe trauma. While neuronal death has been considered to be a major factor, the pervasive memory, cognitive and motor function deficits suffered by many mild TBI patients do not always correlate with cell loss. Therefore, we assert that functional impairment may result from alterations in surviving neurons. Current research has begun to explore CNS synaptic circuits after traumatic injury. Here we review significant findings made using in vivo and in vitro models of TBI that provide mechanistic insight into injury-induced alterations in synaptic electrophysiology. In the hippocampus, research now suggests that TBI regionally alters the delicate balance between excitatory and inhibitory neurotransmission in surviving neurons, disrupting the normal functioning of synaptic circuits. In another approach, a simplified model of neuronal stretch injury in vitro, has been used to directly explore how injury impacts the physiology and cell biology of neurons in the absence of alterations in blood flow, blood brain barrier integrity, or oxygenation associated with in vivo models of brain injury. This chapter discusses how these two models alter excitatory and inhibitory synaptic transmission at the receptor, cellular and circuit levels and how these alterations contribute to cognitive impairment and a reduction in seizure threshold associated with human concussive brain injury.
Collapse
Affiliation(s)
- Akiva S Cohen
- Department of Pediatrics, University of Pennsylvania, School of Medicine and Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Chang DTW, Reynolds IJ. Mitochondrial trafficking and morphology in healthy and injured neurons. Prog Neurobiol 2006; 80:241-68. [PMID: 17188795 DOI: 10.1016/j.pneurobio.2006.09.003] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Revised: 09/14/2006] [Accepted: 09/18/2006] [Indexed: 12/21/2022]
Abstract
Mitochondria are the primary generators of ATP and are important regulators of intracellular calcium homeostasis. These organelles are dynamically transported along lengthy neuronal processes, presumably for appropriate distribution to cellular regions of high metabolic demand and elevated intracellular calcium, such as synapses. The removal of damaged mitochondria that produce harmful reactive oxygen species and promote apoptosis is also thought to be mediated by transport of mitochondria to autophagosomes. Mitochondrial trafficking is therefore important for maintaining neuronal and mitochondrial health while cessation of movement may lead to neuronal and mitochondrial dysfunction. Mitochondrial morphology is also dynamic and is remodeled during neuronal injury and disease. Recent studies reveal different manifestations and mechanisms of impaired mitochondrial movement and altered morphology in injured neurons. These are likely to cause varied courses toward neuronal degeneration and death. The goal of this review is to provide an appreciation of the full range of mitochondrial function, morphology and trafficking, and the critical role these parameters play in neuronal physiology and pathophysiology.
Collapse
Affiliation(s)
- Diane T W Chang
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
45
|
Lapanantasin S, Chongthammakun S, Floyd CL, Berman RF. Effects of 17beta-estradiol on intracellular calcium changes and neuronal survival after mechanical strain injury in neuronal-glial cultures. Synapse 2006; 60:406-10. [PMID: 16856173 DOI: 10.1002/syn.20308] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The neuroprotective effects of 17beta-estradiol (E2) were investigated using an in vitro model of traumatic brain injury in which cortical neuronal cultures were subjected to mechanical strain-injury. The rise in intracellular calcium ([Ca(2+)](i)) following neuronal injury was reduced by addition of 10 or 100 nM E2 to the cultures immediately following injury. Neuronal damage was measured 24 h after injury by propidium iodide uptake and cell viability by carboxyfluorescein diacetate uptake. Addition of 1, 10, or 100 nM E2 to cell cultures immediately following injury decreased neuronal damage and increased neuronal viability compared to vehicle-treated neurons. These results demonstrate the neuroprotective activity of E2 in an in vitro model of neuronal injury, and suggest that such effects may be related to the ability of E2 to modulate [Ca(2+)](i).
Collapse
Affiliation(s)
- Saitida Lapanantasin
- Department of Anatomy and Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | | | | |
Collapse
|
46
|
Cherng JM, Lin HJ, Hung MS, Lin YR, Chan MH, Lin JC. Inhibition of nuclear factor κB is associated with neuroprotective effects of glycyrrhizic acid on glutamate-induced excitotoxicity in primary neurons. Eur J Pharmacol 2006; 547:10-21. [PMID: 16952351 DOI: 10.1016/j.ejphar.2006.06.080] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Revised: 06/26/2006] [Accepted: 06/27/2006] [Indexed: 01/04/2023]
Abstract
Glycyrrhizic acid is an herbal drug with a broad spectrum of antiviral activities and pharmacological effects and multiple sites of action. We investigated whether glycyrrhizic acid protects against glutamate-induced excitotoxicity and the underlying mechanisms. We found that glycyrrhizic acid protected against neurotoxicity in rat primary neuronal cultures and hippocampal slices by suppression of the glutamate-induced apoptosis. Glycyrrhizic acid conferred neuroprotective properties in a concentration-dependent manner, as determined by cell survival, apoptosis, and Ca(2+) influx. Glycyrrhizic acid selectively inhibited the Ca(2+) influx activated through N-methyl-D-aspartate (NMDA) receptor by glutamate, but not through membrane depolarization elicited by high K(+) induction. Glycyrrhizic acid treatment also diminished glutamate-induced DNA fragmentation and cleavage of poly (ADP-ribose) polymerase (PARP). Electrophoretic mobility shift assay (EMSA) indicated that glycyrrhizic acid inhibited the binding activity of nuclear factor kappaB (NF-kappaB) to its target elements. Western blot analysis of NF-kappaB inhibitor (IkappaBalpha) protein revealed that the inhibitory effect of glycyrrhizic acid on glutamate-induced activation of NF-kappaB activity was attributable to the inhibition of IkappaB kinase activity. Thus, the site of action of glycyrrhizic acid could be a downstream consequence of Ca(2+)entry through NMDA receptors and that NF-kappaB may be one downstream target in this process. These observations suggest that glycyrrhizic acid may be of therapeutic value for the prevention of cerebral damage elicited by the glutamate.
Collapse
Affiliation(s)
- Jaw-Ming Cherng
- Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
47
|
Lea PM, Faden AI. Metabotropic glutamate receptor subtype 5 antagonists MPEP and MTEP. CNS DRUG REVIEWS 2006; 12:149-66. [PMID: 16958988 PMCID: PMC6494124 DOI: 10.1111/j.1527-3458.2006.00149.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Glutamate regulates the function of central nervous system (CNS), in part, through the cAMP and/or IP3/DAG second messenger-associated metabotropic glutamate receptors (mGluRs). The mGluR5 antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) has been extensively used to elucidate potential physiological and pathophysiological functions of mGluR5. Unfortunately, recent evidence indicates significant non-specific actions of MPEP, including inhibition of NMDA receptors. In contrast, in vivo and in vitro characterization of the newer mGluR5 antagonist 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine (MTEP) indicates that it is more highly selective for mGluR5 over mGluR1, has no effect on other mGluR subtypes, and has fewer off-target effects than MPEP. This article reviews literature on both of these mGluR5 antagonists, which suggests their possible utility in neurodegeneration, addiction, anxiety and pain management.
Collapse
Affiliation(s)
| | - Alan I. Faden
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
48
|
Geddes-Klein DM, Schiffman KB, Meaney DF. Mechanisms and consequences of neuronal stretch injury in vitro differ with the model of trauma. J Neurotrauma 2006; 23:193-204. [PMID: 16503803 DOI: 10.1089/neu.2006.23.193] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The deformation to the brain that occurs during traumatic brain injury (TBI) results in a complex strain distribution throughout the brain tissue. Recently, many in vitro models of neuronal injury have been developed to simplify the mechanics which occur during TBI. We hypothesized that the type of mechanical insult imparted onto neurons would significantly alter both the mechanism and severity of the neuronal response to injury. In this study, primary cortical neurons were cultured on an elastic substrate and subjected to graded levels (0%, 10%, 30%, 50%) of either uniaxial (cells stretched in one direction only) or biaxial (cells simultaneously stretched in two directions) stretch. We found that neurons stretched in either injury paradigm exhibited immediate increases in intracellular free calcium ([Ca2+]i), but the magnitude of the ([Ca2+]i) rise was nearly an order of magnitude higher in biaxially stretched neurons compared to uniaxially stretched neurons. Moreover, while the ([Ca2+]i) transient after uniaxial stretch was blocked with specific channel antagonists (APV, CNQX, nimodipine, TTX), a substantial ([Ca2+]i) transient persisted in biaxially stretched neurons. We theorized that the additional calcium influx after biaxial stretch entered through nonspecific pores/tears formed in the membrane, since biaxially stretched neurons exhibited significant uptake of carboxyfluorescein, a molecule typically impermeant to cell membranes. Despite the large ([Ca2+]i) transients, neither injury profile resulted in death within 24 h of injury. Interestingly, though, uniaxially stretched neurons exhibited enhanced [Ca+2]i influx following NMDA stimulation 24 h after trauma, compared to both control and biaxially stretched neurons. These data point out that the type of mechanical insult will influence the acute mechanisms of injury in vitro, can cause differences in the response to potential secondary excitotoxic injury mechanisms, and emphasizes the need to further study how these mechanical conditions can separately affect cell fate following mechanical injury.
Collapse
Affiliation(s)
- Donna M Geddes-Klein
- Department of Bioengineering. University of Pennsylvania, Philadelphia, Pennsylvania 19104-6392, USA.
| | | | | |
Collapse
|
49
|
Geddes-Klein DM, Serbest G, Mesfin MN, Cohen AS, Meaney DF. Pharmacologically induced calcium oscillations protect neurons from increases in cytosolic calcium after trauma. J Neurochem 2006; 97:462-74. [PMID: 16539664 DOI: 10.1111/j.1471-4159.2006.03761.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Increases in cytosolic calcium ([Ca(2+)](i)) following mechanical injury are often considered a major contributing factor to the cellular sequelae in traumatic brain injury (TBI). However, very little is known on how developmental changes may affect the calcium signaling in mechanically injured neurons. One key feature in the developing brain that may directly impact its sensitivity to stretch is the reduced inhibition which results in spontaneous [Ca(2+)](i) oscillations. In this study, we examined the mechanism of stretch-induced [Ca(2+)](i) transients in 18-days in vitro (DIV) neurons exhibiting bicuculline-induced [Ca(2+)](i) oscillations. We used an in vitro model of mechanical trauma to apply a defined uniaxial strain to cultured cortical neurons and used increases in [Ca(2+)](i) as a measure of the neuronal response to the stretch insult. We found that stretch-induced increases in [Ca(2+)](i) in 18-DIV neurons were inhibited by pretreatment with either the NMDA receptor antagonist, APV [D(-)-2-Amino-5-phosphonopentanoic acid], or by depolymerizing the actin cytoskeleton prior to stretch. Blocking synaptic NMDA receptors prior to stretch significantly attenuated most of the [Ca(2+)](i) transient. In comparison, cultures with pharmacologically induced [Ca(2+)](i) oscillations showed a substantially reduced [Ca(2+)](i) peak after stretch. We provide evidence showing that a contributing factor to this mechanical desensitization from induced [Ca(2+)](i) oscillations is the PKC-mediated uncoupling of NMDA receptors (NMDARs) from spectrin, an actin-associated protein, thereby rendering neurons insensitive to stretch. These results provide novel insights into how the [Ca(2+)](i) response to stretch is initiated, and how reduced inhibition - a feature of the developing brain - may affect the sensitivity of the immature brain to trauma.
Collapse
Affiliation(s)
- Donna M Geddes-Klein
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, USA.
| | | | | | | | | |
Collapse
|
50
|
FLOYD CANDACEL, GORIN FREDRICA, LYETH BRUCEG. Mechanical strain injury increases intracellular sodium and reverses Na+/Ca2+ exchange in cortical astrocytes. Glia 2005; 51:35-46. [PMID: 15779085 PMCID: PMC2996279 DOI: 10.1002/glia.20183] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Traditionally, astrocytes have been considered less susceptible to injury than neurons. Yet, we have recently shown that astrocyte death precedes neuronal death in a rat model of traumatic brain injury (TBI) (Zhao et al.: Glia 44:140-152, 2003). A main mechanism hypothesized to contribute to cellular injury and death after TBI is elevated intracellular calcium ([Ca2+]i). Since calcium regulation is also influenced by regulation of intracellular sodium ([Na+]i), we used an in vitro model of strain-induced traumatic injury and live-cell fluorescent digital imaging to investigate alterations in [Na+]i in cortical astrocytes after injury. Changes in [Na+]i, or [Ca2+]i were monitored after mechanical injury or L-glutamate exposure by ratiometric imaging of sodium-binding benzofuran isophthalate (SBFI-AM), or Fura-2-AM, respectively. Mechanical strain injury or exogenous glutamate application produced increases in [Na+]i that were dependent on the severity of injury or concentration. Injury-induced increases in [Na+]i were significantly reduced, but not completely eliminated, by inhibition of glutamate uptake by DL-threo-beta-benzyloxyaspartate (TBOA). Blockade of sodium-dependent calcium influx through the sodium-calcium exchanger with 2-[2-[4-(4-Nitrobenzyloxy)phenyl]ethyl]isothiourea mesylate (KB-R7943) reduced [Ca2+]i after injury. KB-R7943 also reduced astrocyte death after injury. These findings suggest that in astrocytes subjected to mechanical injury or glutamate excitotoxicity, increases in intracellular Na+ may be a critical component in the injury cascade and a therapeutic target for reduction of lasting deficits after traumatic brain injury.
Collapse
Affiliation(s)
- CANDACE L. FLOYD
- Department of Neurological Surgery, Center for Neuroscience, University of California, Davis, California
| | - FREDRIC A. GORIN
- Department of Neurology, Center for Neuroscience, University of California, Davis, California
| | - BRUCE G. LYETH
- Department of Neurological Surgery, Center for Neuroscience, University of California, Davis, California
- Correspondence to: Bruce G. Lyeth, Department of Neurological Surgery, University of California at Davis, 1515 Newton Court, One Shields Avenue, Davis, CA 95616-8797.
| |
Collapse
|