1
|
Zhao X, Wang F, Kam C, Wu MY, Zhang J, Xu C, Bao K, He Q, Ye R, Tang BZ, Chen S. Fluorescent Nanocable as a Biomedical Tool: Intracellular Self-Assembly Formed by a Natural Product Interconnects and Synchronizes Mitochondria. ACS NANO 2024; 18:21447-21458. [PMID: 39080909 PMCID: PMC11328177 DOI: 10.1021/acsnano.4c06186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2024]
Abstract
Self-assembly processes commonly occur in various biological contexts to form functional biological structures. However, the self-assembly of nanofibers within cells by heterologous molecules showing a biological function is rare. In this work, we reported the intracellular formation of fluorescent nanofibers by a natural small molecule, lycobetaine (LBT), which facilitated the direct physical connection between mitochondria and synchronized their membrane potential oscillations. The luminescent properties of LBT enabled the real-time observation of nanofiber formation, while the semiconductive nature of the LBT nanofiber facilitated electrical signal transduction among the connected mitochondria. This study introduces an approach to modulate mitochondrial connectivity within cells using "nano-cables" which facilitate studies on synchronized mitochondrial operations and the underlying mechanisms of drug action.
Collapse
Affiliation(s)
- Xueqian Zhao
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong 999077, China
| | - Fei Wang
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong 999077, China
| | - Chuen Kam
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong 999077, China
| | - Ming-Yu Wu
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong 999077, China
| | - Jianyu Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Changhuo Xu
- Ministry of Education Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, University of Macau, Macao 999078, China
| | - Kai Bao
- Department of Materials Science and Engineering, Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Qiyuan He
- Department of Materials Science and Engineering, Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Ruquan Ye
- Department of Materials Science and Engineering, Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Hong Kong 999077, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Sijie Chen
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong 999077, China
| |
Collapse
|
2
|
Desai S, Grefte S, van de Westerlo E, Lauwen S, Paters A, Prehn JHM, Gan Z, Keijer J, Adjobo-Hermans MJW, Koopman WJH. Performance of TMRM and Mitotrackers in mitochondrial morphofunctional analysis of primary human skin fibroblasts. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149027. [PMID: 38109971 DOI: 10.1016/j.bbabio.2023.149027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/30/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023]
Abstract
Mitochondrial membrane potential (Δψ) and morphology are considered key readouts of mitochondrial functional state. This morphofunction can be studied using fluorescent dyes ("probes") like tetramethylrhodamine methyl ester (TMRM) and Mitotrackers (MTs). Although these dyes are broadly used, information comparing their performance in mitochondrial morphology quantification and Δψ-sensitivity in the same cell model is still scarce. Here we applied epifluorescence microscopy of primary human skin fibroblasts to evaluate TMRM, Mitotracker Red CMXros (CMXros), Mitotracker Red CMH2Xros (CMH2Xros), Mitotracker Green FM (MG) and Mitotracker Deep Red FM (MDR). All probes were suited for automated quantification of mitochondrial morphology parameters when Δψ was normal, although they did not deliver quantitatively identical results. The mitochondrial localization of TMRM and MTs was differentially sensitive to carbonyl cyanide-4-phenylhydrazone (FCCP)-induced Δψ depolarization, decreasing in the order: TMRM ≫ CHM2Xros = CMXros = MDR > MG. To study the effect of reversible Δψ changes, the impact of photo-induced Δψ "flickering" was studied in cells co-stained with TMRM and MG. During a flickering event, individual mitochondria displayed subsequent TMRM release and uptake, whereas this phenomenon was not observed for MG. Spatiotemporal and computational analysis of the flickering event provided evidence that TMRM redistributes between adjacent mitochondria by a mechanism dependent on Δψ and TMRM concentration. In summary, this study demonstrates that: (1) TMRM and MTs are suited for automated mitochondrial morphology quantification, (2) numerical data obtained with different probes is not identical, and (3) all probes are sensitive to FCCP-induced Δψ depolarization, with TMRM and MG displaying the highest and lowest sensitivity, respectively. We conclude that TMRM is better suited for integrated analysis of Δψ and mitochondrial morphology than the tested MTs under conditions that Δψ is not substantially depolarized.
Collapse
Affiliation(s)
- Shruti Desai
- Department of Medical BioSciences, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sander Grefte
- Department of Physiology and Medical Physics and SFI FutureNeuro Centre, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Els van de Westerlo
- Department of Medical BioSciences, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Susette Lauwen
- Department of Medical BioSciences, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Angela Paters
- Department of Medical BioSciences, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jochen H M Prehn
- Department of Physiology and Medical Physics and SFI FutureNeuro Centre, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Zhuohui Gan
- Human and Animal Physiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Merel J W Adjobo-Hermans
- Department of Medical BioSciences, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Werner J H Koopman
- Human and Animal Physiology, Wageningen University & Research, Wageningen, the Netherlands; Department of Pediatrics, Amalia Children's Hospital, Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
3
|
Nir Sade A, Levy G, Schokoroy Trangle S, Elad Sfadia G, Bar E, Ophir O, Fischer I, Rokach M, Atzmon A, Parnas H, Rosenberg T, Marco A, Elroy Stein O, Barak B. Neuronal Gtf2i deletion alters mitochondrial and autophagic properties. Commun Biol 2023; 6:1269. [PMID: 38097729 PMCID: PMC10721858 DOI: 10.1038/s42003-023-05612-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023] Open
Abstract
Gtf2i encodes the general transcription factor II-I (TFII-I), with peak expression during pre-natal and early post-natal brain development stages. Because these stages are critical for proper brain development, we studied at the single-cell level the consequences of Gtf2i's deletion from excitatory neurons, specifically on mitochondria. Here we show that Gtf2i's deletion resulted in abnormal morphology, disrupted mRNA related to mitochondrial fission and fusion, and altered autophagy/mitophagy protein expression. These changes align with elevated reactive oxygen species levels, illuminating Gtf2i's importance in neurons mitochondrial function. Similar mitochondrial issues were demonstrated by Gtf2i heterozygous model, mirroring the human condition in Williams syndrome (WS), and by hemizygous neuronal Gtf2i deletion model, indicating Gtf2i's dosage-sensitive role in mitochondrial regulation. Clinically relevant, we observed altered transcript levels related to mitochondria, hypoxia, and autophagy in frontal cortex tissue from WS individuals. Our study reveals mitochondrial and autophagy-related deficits shedding light on WS and other Gtf2i-related disorders.
Collapse
Affiliation(s)
- Ariel Nir Sade
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Gilad Levy
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Sari Schokoroy Trangle
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Galit Elad Sfadia
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ela Bar
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Omer Ophir
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Inbar Fischer
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - May Rokach
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Andrea Atzmon
- The Shmunis School of Biomedicine & Cancer Research, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Hadar Parnas
- Neuro-Epigenetics Laboratory, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Tali Rosenberg
- Neuro-Epigenetics Laboratory, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Asaf Marco
- Neuro-Epigenetics Laboratory, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Orna Elroy Stein
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- The Shmunis School of Biomedicine & Cancer Research, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Boaz Barak
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
- The School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
4
|
Bola S, Subramanian P, Calzia D, Dahl A, Panfoli I, Funk RHW, Roehlecke C. Analysis of Electric Field Stimulation in Blue Light Stressed 661W Cells. Int J Mol Sci 2023; 24:ijms24043433. [PMID: 36834840 PMCID: PMC9965974 DOI: 10.3390/ijms24043433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/11/2023] Open
Abstract
Though electrical stimulation is used as a therapeutic approach to treat retinal and spinal injuries, many protective mechanisms at cellular level have not been elucidated. We performed a detailed analysis of cellular events in blue light (Li) stressed 661W cells, which were subjected to direct current electric field (EF) stimulation. Our findings revealed that EF stimulation induced protective effects in 661W cells from Li-induced stress by multiple defense mechanisms, such as increase in mitochondrial activity, gain in mitochondrial potential, increase in superoxide levels, and the activation of unfolded protein response (UPR) pathways, all leading to an enhanced cell viability and decreased DNA damage. Here, our genetic screen results revealed the UPR pathway to be a promising target to ameliorate Li-induced stress by EF stimulation. Thus, our study is important for a knowledgeable transfer of EF stimulation into clinical application.
Collapse
Affiliation(s)
- Sharanya Bola
- Institute of Anatomy, TU Dresden, D-01304 Dresden, Germany
| | - Pallavi Subramanian
- Institute of Clinical Chemistry and Laboratory Medicine, TU Dresden, D-01069 Dresden, Germany
| | - Daniela Calzia
- Department of Pharmacy—DIFAR, Biochemistry and Physiology Lab., University of Genoa, 16126 Genova, Italy
| | - Andreas Dahl
- Deep Sequencing Group SFB 655, Biotechnology Center, TU Dresden, D-01069 Dresden, Germany
| | - Isabella Panfoli
- Department of Pharmacy—DIFAR, Biochemistry and Physiology Lab., University of Genoa, 16126 Genova, Italy
| | - Richard H. W. Funk
- Institute of Anatomy, TU Dresden, D-01304 Dresden, Germany
- Correspondence:
| | - Cora Roehlecke
- Institute of Anatomy, TU Dresden, D-01304 Dresden, Germany
| |
Collapse
|
5
|
Yoon Y, Lee H, Federico M, Sheu SS. Non-conventional mitochondrial permeability transition: Its regulation by mitochondrial dynamics. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148914. [PMID: 36063902 PMCID: PMC9729414 DOI: 10.1016/j.bbabio.2022.148914] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/21/2022] [Accepted: 08/29/2022] [Indexed: 11/21/2022]
Abstract
Mitochondrial permeability transition (MPT) is a phenomenon that the inner mitochondrial membrane (IMM) loses its selective permeability, leading to mitochondrial dysfunction and cell injury. Electrophysiological evidence indicates the presence of a mega-channel commonly called permeability transition pore (PTP) whose opening is responsible for MPT. However, the molecular identity of the PTP is still under intensive investigations and debates, although cyclophilin D that is inhibited by cyclosporine A (CsA) is the established regulatory component of the PTP. PTP can also open transiently and functions as a rapid mitochondrial Ca2+ releasing mechanism. Mitochondrial fission and fusion, the main components of mitochondrial dynamics, control the number and size of mitochondria, and have been shown to play a role in regulating MPT directly or indirectly. Studies by us and others have indicated the potential existence of a form of transient MPT that is insensitive to CsA. This "non-conventional" MPT is regulated by mitochondrial dynamics and may serve a protective role possibly by decreasing the susceptibility for a frequent or sustained PTP opening; hence, it may have a therapeutic value in many disease conditions involving MPT.
Collapse
Affiliation(s)
- Yisang Yoon
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta 30912, GA, USA.
| | - Hakjoo Lee
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta 30912, GA, USA
| | - Marilen Federico
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Shey-Shing Sheu
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
6
|
Urbisz AZ, Chajec Ł, Małota K, Student S, Sawadro MK, Śliwińska MA, Świątek P. All for one - changes in mitochondrial morphology and activity during syncytial oogenesis. Biol Reprod 2022; 106:1232-1253. [PMID: 35156116 DOI: 10.1093/biolre/ioac035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 12/23/2021] [Accepted: 02/10/2022] [Indexed: 11/14/2022] Open
Abstract
The syncytial groups of germ cells (germ-line cysts) forming in ovaries of clitellate annelids are an attractive model to study mitochondrial stage-specific changes. Using transmission electron microscopy, serial block-face scanning electron microscopy, and fluorescent microscopy, we analyzed the mitochondria distribution and morphology and the state of membrane potential in female cysts in Enchytraeus albidus. We visualized in 3D at the ultrastructural level mitochondria in cysts at successive stages: 2-celled, 4-celled, 16-celled cysts, and cyst in advanced oogenesis. We found that mitochondria form extensive aggregates - they are fused and connected into large and branched mitochondrial networks. The most extensive networks are formed with up to 10,000 fused mitochondria, whereas individual organelles represent up to 2% of the total mitochondrial volume. We classify such morphology of mitochondria as a dynamic hyperfusion state, and suggest that it can maintain their high activity and intensifies the process of cellular respiration within the syncytial cysts. We found some individual mitochondria undergoing degradation, which implies that damaged mitochondria are removed from networks for their final elimination. As it was shown that growing oocytes possess less active mitochondria than the nurse cells, it suggests that the high activity of mitochondria in the nurse cells and their dynamic hyperfusion state serve the needs of the growing oocyte. Additionally, we measured by calorimetry the total antioxidant capacity of germ-line cysts in comparison to somatic tissue, and it suggests that antioxidative defense systems, together with mitochondrial networks, can effectively protect germ-line mitochondria from damage.
Collapse
Affiliation(s)
- Anna Z Urbisz
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Łukasz Chajec
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Karol Małota
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Sebastian Student
- Institute of Automatic Control, Silesian University of Technology, Gliwice, Poland
| | - Marta K Sawadro
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Małgorzata A Śliwińska
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, Laboratory of Imaging Tissue Structure and Function, Warsaw, Poland
| | - Piotr Świątek
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
7
|
Padilla-Gainza V, Rodríguez-Tobías H, Morales G, Ledezma-Pérez A, Alvarado-Canché C, Loera-Valencia R, Rodríguez C, Gilkerson R, De Leo CT, Lozano K. Development of zinc oxide/hydroxyapatite/poly(D,L-lactic acid) fibrous scaffold for tissue engineering applications. BIOMATERIALS ADVANCES 2022; 133:112594. [PMID: 35527150 DOI: 10.1016/j.msec.2021.112594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/02/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Scaffolds based on polymeric fibers represent an engaging biomedical device due to their particular morphology and similarity with extracellular matrices. The biggest challenge to use fibrous materials in the biomedical field is related to their favorable platform for the adhesion of pathogenic microorganisms. Therefore, their optimum performance not only depends on their bioactive potential but also on their antimicrobial properties. The aim of this work was the design of antimicrobial (zinc oxide, ZnO) and bioactive (hydroxyapatite, Hap) fibrous materials using poly(D, L-lactic acid) (PDLLA) as the polymer fiber substrate. Fiber based composite scaffolds were developed using the Forcespinning® technique. For analysis purposes, the morphological, thermal, antimicrobial and biological properties of the fibrous hybrid system obtained at a concentration of 5 wt% of ZnO and 5 wt% of Hap were studied. The incorporation of the aforementioned nanoparticles (NPs) mixture in PDLLA led to an increase in viscosity and a pseudo-plastic tendency of the precursor solution, which caused an increase in fiber diameters and their dispersion of values. Small cavities and certain roughness were the main surface morphology observed on the fibers before and after NPs incorporation. The fiber thermal stability decreased due to the presence of the NPs. The antimicrobial properties of the hybrid fibrous scaffold presented a growth inhibition (GI) of 70 and 85% for E. coli and S. aureus strains, respectively. Concerning the osteoblast-cell compatibility, PDLLA and hybrid PDLLA scaffold showed low toxicity (cell viabilities above 80%), allowing cell growth inside its three-dimension structure and favorable cell morphology extended along the fibers. This behavior suggests a promising potential of this hybrid PDLLA scaffold for bone application.
Collapse
Affiliation(s)
- Victoria Padilla-Gainza
- Synthesis and Advanced Materials Departments, Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna 140, Saltillo CP 25294, Coah, Mexico; Mechanical Engineering Department, University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA.
| | - Heriberto Rodríguez-Tobías
- Synthesis and Advanced Materials Departments, Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna 140, Saltillo CP 25294, Coah, Mexico
| | - Graciela Morales
- Synthesis and Advanced Materials Departments, Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna 140, Saltillo CP 25294, Coah, Mexico.
| | - Antonio Ledezma-Pérez
- Synthesis and Advanced Materials Departments, Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna 140, Saltillo CP 25294, Coah, Mexico.
| | - Carmen Alvarado-Canché
- Synthesis and Advanced Materials Departments, Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna 140, Saltillo CP 25294, Coah, Mexico.
| | - Raúl Loera-Valencia
- Synthesis and Advanced Materials Departments, Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna 140, Saltillo CP 25294, Coah, Mexico.
| | - Cristóbal Rodríguez
- Biology Department, University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA
| | - Robert Gilkerson
- Biology Department, University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA.
| | - Carlos Trevino De Leo
- Department of Physics and Astronomy, The University of Texas Rio Grande Valley, 1 W. University Blvd., Brownsville, TX 78500, USA
| | - Karen Lozano
- Mechanical Engineering Department, University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA.
| |
Collapse
|
8
|
Single-Particle Tracking Method in Fluorescence Microscopy to Monitor Bioenergetic Responses of Individual Mitochondria. Methods Mol Biol 2021. [PMID: 34060039 DOI: 10.1007/978-1-0716-1266-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The spectroscopic methods commonly used to study mitochondria bioenergetics do not show the diversity of responses within a population of mitochondria (isolated or in a cell), and/or cannot measure individual dynamics. New methodological developments are necessary in order to improve quantitative and kinetic resolutions and eventually gain further insights on individual mitochondrial responses, such as studying activities of the mitochondrial permeability transition pore (mPTP ). The work reported herein is devoted to study responses of single mitochondria within a large population after isolation from cardiomyocytes. Mitochondria were preloaded with a commonly used membrane potential sensitive dye (TMRM), they are then deposited on a plasma-treated glass coverslip and subsequently energized or inhibited by additions of usual bioenergetics effectors. Responses were analyzed by fluorescence microscopy over few thousands of mitochondria simultaneously with a single organelle resolution. We report an automatic method to analyze each image of time-lapse stacks based on the TrackMate-ImageJ plug-in and specially made Python scripts. Images are processed to eliminate defects of illumination inhomogeneity, improving by at least two orders of magnitude the signal/noise ratio. This method enables us to follow the track of each mitochondrion within the observed field and monitor its fluorescence changes, with a time resolution of 400 ms, uninterrupted over the course of the experiment. Such methodological improvement is a prerequisite to further study the role of mPTP in single mitochondria during calcium transient loading.
Collapse
|
9
|
Sambri I, Massa F, Gullo F, Meneghini S, Cassina L, Carraro M, Dina G, Quattrini A, Patanella L, Carissimo A, Iuliano A, Santorelli F, Codazzi F, Grohovaz F, Bernardi P, Becchetti A, Casari G. Impaired flickering of the permeability transition pore causes SPG7 spastic paraplegia. EBioMedicine 2020; 61:103050. [PMID: 33045469 PMCID: PMC7553352 DOI: 10.1016/j.ebiom.2020.103050] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/14/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
Background Mutations of the mitochondrial protein paraplegin cause hereditary spastic paraplegia type 7 (SPG7), a so-far untreatable degenerative disease of the upper motoneuron with still undefined pathomechanism. The intermittent mitochondrial permeability transition pore (mPTP) opening, called flickering, is an essential process that operates to maintain mitochondrial homeostasis by reducing intra-matrix Ca2+ and reactive oxygen species (ROS) concentration, and is critical for efficient synaptic function. Methods We use a fluorescence-based approach to measure mPTP flickering in living cells and biochemical and molecular biology techniques to dissect the pathogenic mechanism of SPG7. In the SPG7 animal model we evaluate the potential improvement of the motor defect, neuroinflammation and neurodegeneration by means of an mPTP inducer, the benzodiazepine Bz-423. Findings We demonstrate that paraplegin is required for efficient transient opening of the mPTP, that is impaired in both SPG7 patients-derived fibroblasts and primary neurons from Spg7−/− mice. We show that dysregulation of mPTP opening at the pre-synaptic terminal impairs neurotransmitter release leading to ineffective synaptic transmission. Lack of paraplegin impairs mPTP flickering by a mechanism involving increased expression and activity of sirtuin3, which promotes deacetylation of cyclophilin D, thus hampering mPTP opening. Pharmacological treatment with Bz-423, which bypasses the activity of CypD, normalizes synaptic transmission and rescues the motor impairment of the SPG7 mouse model. Interpretation mPTP targeting opens a new avenue for the potential therapy of this form of spastic paraplegia. Funding Telethon Foundation grant (TGMGCSBX16TT); Dept. of Defense, US Army, grant W81XWH-18–1–0001
Collapse
Affiliation(s)
- Irene Sambri
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli-Naples, Italy
| | - Filomena Massa
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli-Naples, Italy
| | | | | | | | | | | | | | - Lorenzo Patanella
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli-Naples, Italy
| | - Annamaria Carissimo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli-Naples, Italy; Institute for Applied Mathematics 'Mauro Picone', National Research Council, Naples, Italy
| | - Antonella Iuliano
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli-Naples, Italy
| | | | | | | | | | | | - Giorgio Casari
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli-Naples, Italy; Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
10
|
Morphology of Mitochondria in Syncytial Annelid Female Germ-Line Cyst Visualized by Serial Block-Face SEM. Int J Cell Biol 2020; 2020:7483467. [PMID: 32395131 PMCID: PMC7199535 DOI: 10.1155/2020/7483467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/11/2019] [Accepted: 08/04/2019] [Indexed: 11/23/2022] Open
Abstract
Mitochondria change their morphology and distribution depending on the metabolism and functional state of a cell. Here, we analyzed the mitochondria and selected structures in female germ-line cysts in a representative of clitellate annelids – the white worm Enchytraeus albidus in which each germ cell has one cytoplasmic bridge that connects it to a common cytoplasmic mass. Using serial block-face scanning electron microscopy (SBEM), we prepared three-dimensional ultrastructural reconstructions of the entire selected compartments of a cyst at the advanced stage of oogenesis, i.e. the nurse cell, cytophore, and cytoplasmic bridges of all 16 cells (15 nurse cells and oocyte). We revealed extensive mitochondrial networks in the nurse cells, cytophore and mitochondria that pass through the cytoplasmic bridges, which indicates that a mitochondrial network can extend throughout the entire cyst. The dynamic hyperfusion state was suggested for such mitochondrial aggregations. We measured the mitochondria distribution and revealed their polarized distribution in the nurse cells and more abundant accumulation within the cytophore compared to the nurse cell. A close association of mitochondrial networks with dispersed nuage material, which seems to be the structural equivalent of a Balbiani body, not described in clitellate annelids so far, was also revealed.
Collapse
|
11
|
Kim S, Song J, Ernst P, Latimer MN, Ha CM, Goh KY, Ma W, Rajasekaran NS, Zhang J, Liu X, Prabhu SD, Qin G, Wende AR, Young ME, Zhou L. MitoQ regulates redox-related noncoding RNAs to preserve mitochondrial network integrity in pressure-overload heart failure. Am J Physiol Heart Circ Physiol 2020; 318:H682-H695. [PMID: 32004065 PMCID: PMC7099446 DOI: 10.1152/ajpheart.00617.2019] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 01/04/2023]
Abstract
Evidence suggests that mitochondrial network integrity is impaired in cardiomyocytes from failing hearts. While oxidative stress has been implicated in heart failure (HF)-associated mitochondrial remodeling, the effect of mitochondrial-targeted antioxidants, such as mitoquinone (MitoQ), on the mitochondrial network in a model of HF (e.g., pressure overload) has not been demonstrated. Furthermore, the mechanism of this regulation is not completely understood with an emerging role for posttranscriptional regulation via long noncoding RNAs (lncRNAs). We hypothesized that MitoQ preserves mitochondrial fusion proteins (i.e., mitofusin), likely through redox-sensitive lncRNAs, leading to improved mitochondrial network integrity in failing hearts. To test this hypothesis, 8-wk-old C57BL/6J mice were subjected to ascending aortic constriction (AAC), which caused substantial left ventricular (LV) chamber remodeling and remarkable contractile dysfunction in 1 wk. Transmission electron microscopy and immunostaining revealed defective intermitochondrial and mitochondrial-sarcoplasmic reticulum ultrastructure in AAC mice compared with sham-operated animals, which was accompanied by elevated oxidative stress and suppressed mitofusin (i.e., Mfn1 and Mfn2) expression. MitoQ (1.36 mg·day-1·mouse-1, 7 consecutive days) significantly ameliorated LV dysfunction, attenuated Mfn2 downregulation, improved interorganellar contact, and increased metabolism-related gene expression. Moreover, our data revealed that MitoQ alleviated the dysregulation of an Mfn2-associated lncRNA (i.e., Plscr4). In summary, the present study supports a unique mechanism by which MitoQ improves myocardial intermitochondrial and mitochondrial-sarcoplasmic reticulum (SR) ultrastructural remodeling in HF by maintaining Mfn2 expression via regulation by an lncRNA. These findings underscore the important role of lncRNAs in the pathogenesis of HF and the potential of targeting them for effective HF treatment.NEW & NOTEWORTHY We have shown that MitoQ improves cardiac mitochondrial network integrity and mitochondrial-SR alignment in a pressure-overload mouse heart-failure model. This may be occurring partly through preventing the dysregulation of a redox-sensitive lncRNA-microRNA pair (i.e., Plscr4-miR-214) that results in an increase in mitofusin-2 expression.
Collapse
Affiliation(s)
- Seulhee Kim
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jiajia Song
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Patrick Ernst
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mary N Latimer
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Chae-Myeong Ha
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kah Yong Goh
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Wenxia Ma
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Xiaoguang Liu
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| | - Sumanth D Prabhu
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Gangjian Qin
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| | - Adam R Wende
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Martin E Young
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lufang Zhou
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
12
|
Song Z, Xie LH, Weiss JN, Qu Z. A Spatiotemporal Ventricular Myocyte Model Incorporating Mitochondrial Calcium Cycling. Biophys J 2019; 117:2349-2360. [PMID: 31623883 PMCID: PMC6990377 DOI: 10.1016/j.bpj.2019.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/19/2019] [Accepted: 09/09/2019] [Indexed: 12/27/2022] Open
Abstract
Intracellular calcium (Ca2+) cycling dynamics in cardiac myocytes are spatiotemporally generated by stochastic events arising from a spatially distributed network of coupled Ca2+ release units that interact with an intertwined mitochondrial network. In this study, we developed a spatiotemporal ventricular myocyte model that integrates mitochondria-related Ca2+ cycling components into our previously developed ventricular myocyte model consisting of a three-dimensional Ca2+ release unit network. Mathematical formulations of mitochondrial membrane potential, mitochondrial Ca2+ cycling, mitochondrial permeability transition pore stochastic opening and closing, intracellular reactive oxygen species signaling, and oxidized Ca2+/calmodulin-dependent protein kinase II signaling were incorporated into the model. We then used the model to simulate the effects of mitochondrial depolarization on mitochondrial Ca2+ cycling, Ca2+ spark frequency, and Ca2+ amplitude, which agree well with experimental data. We also simulated the effects of the strength of mitochondrial Ca2+ uniporters and their spatial localization on intracellular Ca2+ cycling properties, which substantially affected diastolic and systolic Ca2+ levels in the mitochondria but exhibited only a small effect on sarcoplasmic reticulum and cytosolic Ca2+ levels under normal conditions. We show that mitochondrial depolarization can cause Ca2+ waves and Ca2+ alternans, which agrees with previous experimental observations. We propose that this new, to our knowledge, spatiotemporal ventricular myocyte model, incorporating properties of mitochondrial Ca2+ cycling and reactive-oxygen-species-dependent signaling, will be useful for investigating the effects of mitochondria on intracellular Ca2+ cycling and action potential dynamics in ventricular myocytes.
Collapse
Affiliation(s)
- Zhen Song
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.
| | - Lai-Hua Xie
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, New Jersey
| | - James N Weiss
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Zhilin Qu
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; Department of Biomathematics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
13
|
Abstract
Mitochondria are customarily acknowledged as the powerhouse of the cell by virtue of their indispensable role in cellular energy production. In addition, it plays an important role in pluripotency, differentiation, and reprogramming. This review describes variation in the stem cells and their mitochondrial heterogeneity. The mitochondrial variation can be described in terms of structure, function, and subcellular distribution. The mitochondria cristae development status and their localization patterns determine the oxygen consumption rate and ATP production which is a central controller of stem cell maintenance and differentiation. Generally, stem cells show spherical, immature mitochondria with perinuclear distribution. Such mitochondria are metabolically less energetic and low polarized. Moreover, mostly glycolytic energy production is found in pluripotent stem cells with a variation in naïve stem cells which perform oxidative phosphorylation (OXPHOS). This article also describes the structural and functional journey of mitochondria during development. Future insight into underlying mechanisms associated with such alternation in mitochondria of stem cells during embryonic stages could uncover mitochondrial adaptability on cellular demands. Moreover, investigating the importance of mitochondria in pluripotency maintenance might unravel the cause of mitochondrial diseases, aging, and regenerative therapies.
Collapse
|
14
|
Wilson C, Lee MD, Heathcote HR, Zhang X, Buckley C, Girkin JM, Saunter CD, McCarron JG. Mitochondrial ATP production provides long-range control of endothelial inositol trisphosphate-evoked calcium signaling. J Biol Chem 2019; 294:737-758. [PMID: 30498088 PMCID: PMC6341391 DOI: 10.1074/jbc.ra118.005913] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 11/27/2018] [Indexed: 01/09/2023] Open
Abstract
Endothelial cells are reported to be glycolytic and to minimally rely on mitochondria for ATP generation. Rather than providing energy, mitochondria in endothelial cells may act as signaling organelles that control cytosolic Ca2+ signaling or modify reactive oxygen species (ROS). To control Ca2+ signaling, these organelles are often observed close to influx and release sites and may be tethered near Ca2+ transporters. In this study, we used high-resolution, wide-field fluorescence imaging to investigate the regulation of Ca2+ signaling by mitochondria in large numbers of endothelial cells (∼50 per field) in intact arteries from rats. We observed that mitochondria were mostly spherical or short-rod structures and were distributed widely throughout the cytoplasm. The density of these organelles did not increase near contact sites with smooth muscle cells. However, local inositol trisphosphate (IP3)-mediated Ca2+ signaling predominated near these contact sites and required polarized mitochondria. Of note, mitochondrial control of Ca2+ signals occurred even when mitochondria were far from Ca2+ release sites. Indeed, the endothelial mitochondria were mobile and moved throughout the cytoplasm. Mitochondrial control of Ca2+ signaling was mediated by ATP production, which, when reduced by mitochondrial depolarization or ATP synthase inhibition, eliminated local IP3-mediated Ca2+ release events. ROS buffering did not significantly alter local Ca2+ release events. These results highlight the importance of mitochondrial ATP production in providing long-range control of endothelial signaling via IP3-evoked local Ca2+ release in intact endothelium.
Collapse
Affiliation(s)
- Calum Wilson
- From the Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, SIPBS Building, 161 Cathedral Street, Glasgow G4 0RE, Scotland, United Kingdom and
| | - Matthew D Lee
- From the Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, SIPBS Building, 161 Cathedral Street, Glasgow G4 0RE, Scotland, United Kingdom and
| | - Helen R Heathcote
- From the Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, SIPBS Building, 161 Cathedral Street, Glasgow G4 0RE, Scotland, United Kingdom and
| | - Xun Zhang
- From the Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, SIPBS Building, 161 Cathedral Street, Glasgow G4 0RE, Scotland, United Kingdom and
| | - Charlotte Buckley
- From the Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, SIPBS Building, 161 Cathedral Street, Glasgow G4 0RE, Scotland, United Kingdom and
| | - John M Girkin
- the Centre for Advanced Instrumentation, Biophysical Sciences Institute, Department of Physics, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Christopher D Saunter
- the Centre for Advanced Instrumentation, Biophysical Sciences Institute, Department of Physics, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - John G McCarron
- From the Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, SIPBS Building, 161 Cathedral Street, Glasgow G4 0RE, Scotland, United Kingdom and
| |
Collapse
|
15
|
Panchal K, Tiwari AK. Mitochondrial dynamics, a key executioner in neurodegenerative diseases. Mitochondrion 2018; 47:151-173. [PMID: 30408594 DOI: 10.1016/j.mito.2018.11.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 10/08/2018] [Accepted: 11/02/2018] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases (NDs) are the group of disorder that includes brain, peripheral nerves, spinal cord and results in sensory and motor neuron dysfunction. Several studies have shown that mitochondrial dynamics and their axonal transport play a central role in most common NDs such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and Amyotrophic Lateral Sclerosis (ALS) etc. In normal physiological condition, there is a balance between mitochondrial fission and fusion process while any alteration to these processes cause defect in ATP (Adenosine Triphosphate) biogenesis that lead to the onset of several NDs. Also, mitochondria mediated ROS may induce lipid and protein peroxidation, energy deficiency environment in the neurons and results in cell death and defective neurotransmission. Though, mitochondria is a well-studied cell organelle regulating the cellular energy demands but still, its detail role or association in NDs is under observation. In this review, we have summarized an updated mitochondria and their possible role in different NDs with the therapeutic strategy to improve the mitochondrial functions.
Collapse
Affiliation(s)
- Komal Panchal
- Genetics & Developmental Biology Laboratory, School of Biological Sciences & Biotechnology, Institute of Advanced Research (IAR), Koba, Institutional Area, Gandhinagar 382426, India
| | - Anand Krishna Tiwari
- Genetics & Developmental Biology Laboratory, School of Biological Sciences & Biotechnology, Institute of Advanced Research (IAR), Koba, Institutional Area, Gandhinagar 382426, India.
| |
Collapse
|
16
|
Rosselin M, Santo-Domingo J, Bermont F, Giacomello M, Demaurex N. L-OPA1 regulates mitoflash biogenesis independently from membrane fusion. EMBO Rep 2017; 18:451-463. [PMID: 28174208 PMCID: PMC5331265 DOI: 10.15252/embr.201642931] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 12/19/2016] [Accepted: 12/21/2016] [Indexed: 11/09/2022] Open
Abstract
Mitochondrial flashes mediated by optic atrophy 1 (OPA1) fusion protein are bioenergetic responses to stochastic drops in mitochondrial membrane potential (Δψm) whose origin is unclear. Using structurally distinct genetically encoded pH‐sensitive probes, we confirm that flashes are matrix alkalinization transients, thereby establishing the pH nature of these events, which we renamed “mitopHlashes”. Probes located in cristae or intermembrane space as verified by electron microscopy do not report pH changes during Δψm drops or respiratory chain inhibition. Opa1 ablation does not alter Δψm fluctuations but drastically decreases the efficiency of mitopHlash/Δψm coupling, which is restored by re‐expressing fusion‐deficient OPA1K301A and preserved in cells lacking the outer‐membrane fusion proteins MFN1/2 or the OPA1 proteases OMA1 and YME1L, indicating that mitochondrial membrane fusion and OPA1 proteolytic processing are dispensable. pH/Δψm uncoupling occurs early during staurosporine‐induced apoptosis and is mitigated by OPA1 overexpression, suggesting that OPA1 maintains mitopHlash competence during stress conditions. We propose that OPA1 stabilizes respiratory chain supercomplexes in a conformation that enables respiring mitochondria to compensate a drop in Δψm by an explosive matrix pH flash.
Collapse
Affiliation(s)
- Manon Rosselin
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Jaime Santo-Domingo
- Nestlé Institute of Health Sciences SA, EPFL Innovation Park, Lausanne, Switzerland
| | - Flavien Bermont
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | | | - Nicolas Demaurex
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| |
Collapse
|
17
|
Scholkmann F. Long range physical cell-to-cell signalling via mitochondria inside membrane nanotubes: a hypothesis. Theor Biol Med Model 2016; 13:16. [PMID: 27267202 PMCID: PMC4896004 DOI: 10.1186/s12976-016-0042-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/27/2016] [Indexed: 02/07/2023] Open
Abstract
Coordinated interaction of single cells by cell-to-cell communication (signalling) enables complex behaviour necessary for the functioning of multicellular organisms. A quite newly discovered cell-to-cell signalling mechanism relies on nanotubular cell-co-cell connections, termed "membrane nanotubes" (MNTs). The present paper presents the hypothesis that mitochondria inside MNTs can form a connected structure (mitochondrial network) which enables the exchange of energy and signals between cells. It is proposed that two modes of energy and signal transmission may occur: electrical/electrochemical and electromagnetic (optical). Experimental work supporting the hypothesis is reviewed, and suggestions for future research regarding the discussed topic are given.
Collapse
Affiliation(s)
- Felix Scholkmann
- Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zurich, University of Zurich, Frauenklinikstr. 10, 8091, Zurich, Switzerland.
- Research Office for Complex Physical and Biological Systems (ROCoS), Mutschellenstr. 179, 8038, Zurich, Switzerland.
| |
Collapse
|
18
|
Darbandi S, Darbandi M, Khorshid HRK, Sadeghi MR, Al-Hasani S, Agarwal A, Shirazi A, Heidari M, Akhondi MM. Experimental strategies towards increasing intracellular mitochondrial activity in oocytes: A systematic review. Mitochondrion 2016; 30:8-17. [PMID: 27234976 DOI: 10.1016/j.mito.2016.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/04/2016] [Accepted: 05/20/2016] [Indexed: 12/19/2022]
Abstract
PURPOSE The mitochondrial complement is critical in sustaining the earliest stages of life. To improve the Assisted Reproductive Technology (ART), current methods of interest were evaluated for increasing the activity and copy number of mitochondria in the oocyte cell. METHODS This covered the researches from 1966 to September 2015. RESULTS The results provided ten methods that can be studied individually or simultaneously. CONCLUSION Though the use of these techniques generated great concern about heteroplasmy observation in humans, it seems that with study on these suggested methods there is real hope for effective treatments of old oocyte or oocytes containing mitochondrial problems in the near future.
Collapse
Affiliation(s)
- Sara Darbandi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | - Mahsa Darbandi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | | | - Mohammad Reza Sadeghi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | - Safaa Al-Hasani
- Reproductive Medicine Unit, University of Schleswig-Holstein, Luebeck, Germany.
| | - Ashok Agarwal
- Center for Reproductive Medicine, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Abolfazl Shirazi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | - Mahnaz Heidari
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran. M.@avicenna.ar.ir
| | - Mohammad Mehdi Akhondi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| |
Collapse
|
19
|
Gortat A. Analysis of CDK Inhibitor Action on Mitochondria-Mediated Apoptosis. Methods Mol Biol 2016; 1336:95-109. [PMID: 26231711 DOI: 10.1007/978-1-4939-2926-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The role of cyclin-dependent kinase inhibitors (CDKIs) is to negatively regulate cyclin-dependent kinases as a mechanism of control of cell proliferation. As such, CDKIs are being used to induce apoptosis in cancer cells to prevent their excessive reproduction. This chapter describes procedures to study apoptosis induction upon treatment with any CDKI through the evaluation of morphological and functional mitochondrial alterations, in particular, how to measure the mitochondrial membrane potential (ΔΨm) using TMRE dye, determine the content of intracellular ATP, observe mitochondrial network morphology using HeLa cells stably expressing fluorescent reporter DsRed targeting mitochondrial matrix, observe ultrastructure of the organelle using transmission electron microscopy, and, finally, assure that mitochondrial outer membrane permeabilization takes place by assessing the subcellular localization of cyt C in HeLa cells stably expressing fluorescent cyt C-GFP.
Collapse
Affiliation(s)
- Anna Gortat
- Department of Anatomical Pathology, Pharmacology and Microbiology, University of Barcelona, Casanova 143, Barcelona, 08036, Spain,
| |
Collapse
|
20
|
Chalmers S, Saunter CD, Girkin JM, McCarron JG. Age decreases mitochondrial motility and increases mitochondrial size in vascular smooth muscle. J Physiol 2016; 594:4283-95. [PMID: 26959407 PMCID: PMC4967731 DOI: 10.1113/jp271942] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/26/2016] [Indexed: 01/08/2023] Open
Abstract
KEY POINTS Age is proposed to be associated with altered structure and function of mitochondria; however, in fully-differentiated cells, determining the structure of more than a few mitochondria at a time is challenging. In the present study, the structures of the entire mitochondrial complements of cells were resolved from a pixel-by-pixel covariance analysis of fluctuations in potentiometric fluorophore intensity during 'flickers' of mitochondrial membrane potential. Mitochondria are larger in vascular myocytes from aged rats compared to those in younger adult rats. A subpopulation of mitochondria in myocytes from aged, but not younger, animals is highly-elongated. Some mitochondria in myocytes from younger, but not aged, animals are highly-motile. Mitochondria that are motile are located more peripherally in the cell than non-motile mitochondria. ABSTRACT Mitochondrial function, motility and architecture are each central to cell function. Age-associated mitochondrial dysfunction may contribute to vascular disease. However, mitochondrial changes in ageing remain ill-defined because of the challenges of imaging in native cells. We determined the structure of mitochondria in live native cells, demarcating boundaries of individual organelles by inducing stochastic 'flickers' of membrane potential, recorded as fluctuations in potentiometric fluorophore intensity (flicker-assisted localization microscopy; FaLM). In freshly-isolated myocytes from rat cerebral resistance arteries, FaLM showed a range of mitochondrial X-Y areas in both young adult (3 months; 0.05-6.58 μm(2) ) and aged rats (18 months; 0.05-13.4 μm(2) ). In cells from young animals, most mitochondria were small (mode area 0.051 μm(2) ) compared to aged animals (0.710 μm(2) ). Cells from older animals contained a subpopulation of highly-elongated mitochondria (5.3% were >2 μm long, 4.2% had a length:width ratio >3) that was rare in younger animals (0.15% of mitochondria >2 μm long, 0.4% had length:width ratio >3). The extent of mitochondrial motility also varied. 1/811 mitochondria observed moved slightly (∼0.5 μm) in myocytes from older animals, whereas, in the younger animals, directed and Brownian-like motility occurred regularly (215 of 1135 mitochondria moved within 10 min, up to distance of 12 μm). Mitochondria positioned closer to the cell periphery showed a greater tendency to move. In conclusion, cerebral vascular myocytes from young rats contained small, motile mitochondria. In aged rats, mitochondria were larger, immobile and could be highly-elongated. These age-associated alterations in mitochondrial behaviour may contribute to alterations in cell signalling, energy supply or the onset of proliferation.
Collapse
Affiliation(s)
- Susan Chalmers
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, G4 ONR, UK
| | | | - John M Girkin
- Department of Physics, Durham University, South Road, Durham, DH1 3LE, UK
| | - John G McCarron
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, G4 ONR, UK
| |
Collapse
|
21
|
Gonçalves IO, Passos E, Diogo CV, Rocha-Rodrigues S, Santos-Alves E, Oliveira PJ, Ascensão A, Magalhães J. Exercise mitigates mitochondrial permeability transition pore and quality control mechanisms alterations in nonalcoholic steatohepatitis. Appl Physiol Nutr Metab 2016; 41:298-306. [DOI: 10.1139/apnm-2015-0470] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Mitochondrial quality control and apoptosis have been described as key components in the pathogenesis of nonalcoholic steatohepatitis (NASH); exercise is recognized as a nonpharmacological strategy to counteract NASH-associated consequences. We aimed to analyze the effect of voluntary physical activity (VPA) and endurance training (ET) against NASH-induced mitochondrial permeability transition pore (mPTP) opening and mitochondrial and cellular quality control deleterious alterations. Forty-eight male Sprague–Dawley rats were divided into standard-diet sedentary (SS, n = 16), standard-diet VPA (n = 8), high-fat diet sedentary (HS, n = 16), and high-fat diet VPA (n = 8). After 9 weeks of diet treatment, half of the SS and HS groups were engaged in an ET program for 8 weeks, 5 days/week, 1 h/day. Liver mPTP susceptibility through osmotic swelling, mPTP-related proteins (cyclophilin D, Sirtuin3, Cofilin-1), markers of mitochondrial biogenesis ((mitochondrial transcription factor A (Tfam) and peroxisome proliferator-activated receptor gamma co-activator protein (PGC-1α)), dynamics (Mitofusin 1 (Mfn1), Mitofusin 2 (Mfn2), Dynamin related protein 1, and Optic atrophy 1)), auto/mitophagy (Beclin-1, microtubule-associated protein 1 light chain 3, p62, PINK1, and Parkin), and apoptotic signaling (Bax, Bcl-2) and caspases-like activities were assessed. HS animals showed an increased susceptibility to mPTP, compromised expression of Tfam, Mfn1, PINK1, and Parkin and an increase in Bax content (HS vs. SS). ET and VPA improved biogenesis-related proteins (PGC-1α) and autophagy signaling (Beclin-1 and Beclin-1/Bcl-2 ratio) and decreased apoptotic signaling (caspases 8 activity, Bax content, and Bax/Bcl-2 ratio). However, only ET decreased mPTP susceptibility and positively modulated Bcl-2, Tfam, Mfn1, Mfn2, PINK1, and Parkin content. In conclusion, exercise reduces the increased susceptibility to mPTP induced by NASH and promotes the increase of auto/mitophagy and mitochondrial fusion towards a protective phenotype.
Collapse
Affiliation(s)
- Inês O. Gonçalves
- Research Center in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Rua Dr. Plácido Costa, n° 91 4200-450 Porto, Portugal
| | - Emanuel Passos
- Department of Biochemistry, Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Cátia V. Diogo
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga Faculty of Medicine, Pólo I, 3004-504 Coimbra, Portugal
| | - Sílvia Rocha-Rodrigues
- Research Center in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Rua Dr. Plácido Costa, n° 91 4200-450 Porto, Portugal
| | - Estela Santos-Alves
- Research Center in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Rua Dr. Plácido Costa, n° 91 4200-450 Porto, Portugal
| | - Paulo J. Oliveira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga Faculty of Medicine, Pólo I, 3004-504 Coimbra, Portugal
| | - António Ascensão
- Research Center in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Rua Dr. Plácido Costa, n° 91 4200-450 Porto, Portugal
| | - José Magalhães
- Research Center in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Rua Dr. Plácido Costa, n° 91 4200-450 Porto, Portugal
| |
Collapse
|
22
|
Flicker-assisted localization microscopy reveals altered mitochondrial architecture in hypertension. Sci Rep 2015; 5:16875. [PMID: 26593883 PMCID: PMC4655370 DOI: 10.1038/srep16875] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 10/21/2015] [Indexed: 12/18/2022] Open
Abstract
Mitochondrial morphology is central to normal physiology and disease development. However, in many live cells and tissues, complex mitochondrial structures exist and morphology has been difficult to quantify. We have measured the shape of electrically-discrete mitochondria, imaging them individually to restore detail hidden in clusters and demarcate functional boundaries. Stochastic “flickers” of mitochondrial membrane potential were visualized with a rapidly-partitioning fluorophore and the pixel-by-pixel covariance of spatio-temporal fluorescence changes analyzed. This Flicker-assisted Localization Microscopy (FaLM) requires only an epifluorescence microscope and sensitive camera. In vascular myocytes, the apparent variation in mitochondrial size was partly explained by densely-packed small mitochondria. In normotensive animals, mitochondria were small spheres or rods. In hypertension, mitochondria were larger, occupied more of the cell volume and were more densely clustered. FaLM provides a convenient tool for increased discrimination of mitochondrial architecture and has revealed mitochondrial alterations that may contribute to hypertension.
Collapse
|
23
|
Li Y, Honda S, Iwami K, Ohta Y, Umeda N. Analysis of mitochondrial mechanical dynamics using a confocal fluorescence microscope with a bent optical fibre. J Microsc 2015; 260:140-51. [PMID: 26249642 DOI: 10.1111/jmi.12277] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 05/26/2015] [Indexed: 01/09/2023]
Abstract
The cells in the cardiovascular system are constantly subjected to mechanical forces created by blood flow and the beating heart. The effect of forces on cells has been extensively investigated, but their effect on cellular organelles such as mitochondria remains unclear. We examined the impact of nano-Newton forces on mitochondria using a bent optical fibre (BOF) with a flat-ended tip (diameter exceeding 2 μm) and a confocal fluorescence microscope. By indenting a single mitochondrion with the BOF tip, we found that the mitochondrial elastic modulus was proportional to the (-1/2) power of the mitochondrial radius in the 9.6-115 kPa range. We stained the mitochondria with a potential-metric dye (TMRE) and measured the changes in TMRE fluorescence intensity. We confirmed that more active mitochondria exhibit a higher frequency of repetitive transient depolarization. The same trend was observed at forces lower than 50 nN. We further showed that the depolarization frequency of mitochondria decreases under an extremely large force (nearly 100 nN). We conclude that mitochondrial function is affected by physical environmental factors, such as external forces at the nano-Newton level.
Collapse
Affiliation(s)
- Yongbo Li
- Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Satoshi Honda
- Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Kentaro Iwami
- Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Yoshihiro Ohta
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Norihiro Umeda
- Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
24
|
Abstract
SIGNIFICANCE Cardiac function is energetically demanding, reliant on efficient well-coupled mitochondria to generate adenosine triphosphate and fulfill the cardiac demand. Predictably then, mitochondrial dysfunction is associated with cardiac pathologies, often related to metabolic disease, most commonly diabetes. Diabetic cardiomyopathy (DCM), characterized by decreased left ventricular function, arises independently of coronary artery disease and atherosclerosis. Dysregulation of Ca(2+) handling, metabolic changes, and oxidative stress are observed in DCM, abnormalities reflected in alterations in mitochondrial energetics. Cardiac tissue from DCM patients also presents with altered mitochondrial morphology, suggesting a possible role of mitochondrial dynamics in its pathological progression. RECENT ADVANCES Abnormal mitochondrial morphology is associated with pathologies across diverse tissues, suggesting that this highly regulated process is essential for proper cell maintenance and physiological homeostasis. Highly structured cardiac myofibers were hypothesized to limit alterations in mitochondrial morphology; however, recent work has identified morphological changes in cardiac tissue, specifically in DCM. CRITICAL ISSUES Mitochondrial dysfunction has been reported independently from observations of altered mitochondrial morphology in DCM. The temporal relationship and causative nature between functional and morphological changes of mitochondria in the establishment/progression of DCM is unclear. FUTURE DIRECTIONS Altered mitochondrial energetics and morphology are not only causal for but also consequential to reactive oxygen species production, hence exacerbating oxidative damage through reciprocal amplification, which is integral to the progression of DCM. Therefore, targeting mitochondria for DCM will require better mechanistic characterization of morphological distortion and bioenergetic dysfunction.
Collapse
Affiliation(s)
- Chad A Galloway
- 1Department of Anesthesiology, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Yisang Yoon
- 2Department of Physiology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| |
Collapse
|
25
|
McFall-Ngai MJ. Giving microbes their due – animal life in a microbially dominant world. J Exp Biol 2015; 218:1968-73. [DOI: 10.1242/jeb.115121] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
ABSTRACT
The new technology of next-generation sequencing is changing our perceptions of the form and function of the biological world. The emerging data reveal an array of microbes that is more vast and more central to all biological processes than previously appreciated. Further, evidence is accumulating that the alliances of microbes with one another and with constituents of the macrobiological world are critical for the health of the biosphere. This contribution summarizes the basic arguments as to why, when considering the biochemical adaptations of animals, we should integrate the roles of their microbial partners.
Collapse
|
26
|
Blanchet L, Grefte S, Smeitink JAM, Willems PHGM, Koopman WJH. Photo-induction and automated quantification of reversible mitochondrial permeability transition pore opening in primary mouse myotubes. PLoS One 2014; 9:e114090. [PMID: 25423172 PMCID: PMC4244163 DOI: 10.1371/journal.pone.0114090] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 11/04/2014] [Indexed: 11/19/2022] Open
Abstract
Opening of the mitochondrial permeability transition pore (mPTP) is involved in various cellular processes including apoptosis induction. Two distinct states of mPTP opening have been identified allowing the transfer of molecules with a molecular weight <1500 Da or <300 Da. The latter state is considered to be reversible and suggested to play a role in normal cell physiology. Here we present a strategy combining live-cell imaging and computer-assisted image processing allowing spatial visualization and quantitative analysis of reversible mPTP openings ("ΔΨ flickering") in primary mouse myotubes. The latter were stained with the photosensitive cation TMRM, which partitions between the cytosol and mitochondrial matrix as a function of mitochondrial membrane potential (ΔΨ). Controlled illumination of TMRM-stained primary mouse myotubes induced ΔΨ flickering in particular parts of the cell ("flickering domains"). A novel quantitative automated analysis was developed and validated to detect and quantify the frequency, size, and location of individual ΔΨ flickering events in myotubes.
Collapse
Affiliation(s)
- Lionel Blanchet
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Institute for Molecules and Materials, Analytical Chemistry/Chemometrics, Radboud University Nijmegen, Nijmegen, The Netherlands
- Centre for Systems Biology and Bioenergetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sander Grefte
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Centre for Systems Biology and Bioenergetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan A. M. Smeitink
- Department of Paediatrics, Nijmegen Centre for Mitochondrial disorders, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter H. G. M. Willems
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Centre for Systems Biology and Bioenergetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Werner J. H. Koopman
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Centre for Systems Biology and Bioenergetics, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
27
|
Ong SB, Samangouei P, Kalkhoran SB, Hausenloy DJ. The mitochondrial permeability transition pore and its role in myocardial ischemia reperfusion injury. J Mol Cell Cardiol 2014; 78:23-34. [PMID: 25446182 DOI: 10.1016/j.yjmcc.2014.11.005] [Citation(s) in RCA: 241] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 10/30/2014] [Accepted: 11/03/2014] [Indexed: 12/27/2022]
Abstract
Ischemic heart disease (IHD) remains the leading cause of death and disability worldwide. For patients presenting with an acute myocardial infarction, the most effective treatment for limiting myocardial infarct (MI) size is timely reperfusion. However, in addition to the injury incurred during acute myocardial ischemia, the process of reperfusion can itself induce myocardial injury and cardiomyocyte death, termed 'myocardial reperfusion injury', the combination of which can be referred to as acute ischemia-reperfusion injury (IRI). Crucially, there is currently no effective therapy for preventing this form of injury, and novel cardioprotective therapies are therefore required to protect the heart against acute IRI in order to limit MI size and preserve cardiac function. The opening of the mitochondrial permeability transition pore (MPTP) in the first few minutes of reperfusion is known to be a critical determinant of IRI, contributing up to 50% of the final MI size. Importantly, preventing its opening at this time using MPTP inhibitors, such as cyclosporin-A, has been reported in experimental and clinical studies to reduce MI size and preserve cardiac function. However, more specific and novel MPTP inhibitors are required to translate MPTP inhibition as a cardioprotective strategy into clinical practice. In this article, we review the role of the MPTP as a mediator of acute myocardial IRI and as a therapeutic target for cardioprotection. This article is part of a Special Issue entitled "Mitochondria: From Basic Mitochondrial Biology to Cardiovascular Disease".
Collapse
Affiliation(s)
- Sang-Bing Ong
- Hatter Cardiovascular Institute, Institute of Cardiovascular Science, NIHR University College London Hospitals Biomedical Research Centre, University College London Hospital & Medical School, 67 Chenies Mews, London WC1E 6HX, UK
| | - Parisa Samangouei
- Hatter Cardiovascular Institute, Institute of Cardiovascular Science, NIHR University College London Hospitals Biomedical Research Centre, University College London Hospital & Medical School, 67 Chenies Mews, London WC1E 6HX, UK
| | - Siavash Beikoghli Kalkhoran
- Hatter Cardiovascular Institute, Institute of Cardiovascular Science, NIHR University College London Hospitals Biomedical Research Centre, University College London Hospital & Medical School, 67 Chenies Mews, London WC1E 6HX, UK
| | - Derek J Hausenloy
- Hatter Cardiovascular Institute, Institute of Cardiovascular Science, NIHR University College London Hospitals Biomedical Research Centre, University College London Hospital & Medical School, 67 Chenies Mews, London WC1E 6HX, UK; Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School, Singapore.
| |
Collapse
|
28
|
Lee H, Yoon Y. Transient contraction of mitochondria induces depolarization through the inner membrane dynamin OPA1 protein. J Biol Chem 2014; 289:11862-11872. [PMID: 24627489 DOI: 10.1074/jbc.m113.533299] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Dynamin-related membrane remodeling proteins regulate mitochondrial morphology by mediating fission and fusion. Although mitochondrial morphology is considered an important factor in maintaining mitochondrial function, a direct mechanistic link between mitochondrial morphology and function has not been defined. We report here a previously unrecognized cellular process of transient contraction of the mitochondrial matrix. Importantly, we found that this transient morphological contraction of mitochondria is accompanied by a reversible loss or decrease of inner membrane potential. Fission deficiency greatly amplified this phenomenon, which functionally exhibited an increase of inner membrane proton leak. We found that electron transport activity is necessary for the morphological contraction of mitochondria. Furthermore, we discovered that silencing the inner membrane-associated dynamin optic atrophy 1 (OPA1) in fission deficiency prevented mitochondrial depolarization and decreased proton leak without blocking mitochondrial contraction, indicating that OPA1 is a factor in coupling matrix contraction to mitochondrial depolarization. Our findings show that transient matrix contraction is a novel cellular mechanism regulating mitochondrial activity through the function of the inner membrane dynamin OPA1.
Collapse
Affiliation(s)
- Hakjoo Lee
- Department of Physiology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia 30912
| | - Yisang Yoon
- Department of Physiology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia 30912.
| |
Collapse
|
29
|
Qu Z. Network Dynamics in Cardiac Electrophysiology. SYSTEMS BIOLOGY OF METABOLIC AND SIGNALING NETWORKS 2014. [DOI: 10.1007/978-3-642-38505-6_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
30
|
McCarron JG, Wilson C, Sandison ME, Olson ML, Girkin JM, Saunter C, Chalmers S. From structure to function: mitochondrial morphology, motion and shaping in vascular smooth muscle. J Vasc Res 2013; 50:357-71. [PMID: 23887139 PMCID: PMC3884171 DOI: 10.1159/000353883] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/07/2013] [Accepted: 05/07/2013] [Indexed: 12/29/2022] Open
Abstract
The diversity of mitochondrial arrangements, which arise from the organelle being static or moving, or fusing and dividing in a dynamically reshaping network, is only beginning to be appreciated. While significant progress has been made in understanding the proteins that reorganise mitochondria, the physiological significance of the various arrangements is poorly understood. The lack of understanding may occur partly because mitochondrial morphology is studied most often in cultured cells. The simple anatomy of cultured cells presents an attractive model for visualizing mitochondrial behaviour but contrasts with the complexity of native cells in which elaborate mitochondrial movements and morphologies may not occur. Mitochondrial changes may take place in native cells (in response to stress and proliferation), but over a slow time-course and the cellular function contributed is unclear. To determine the role mitochondrial arrangements play in cell function, a crucial first step is characterisation of the interactions among mitochondrial components. Three aspects of mitochondrial behaviour are described in this review: (1) morphology, (2) motion and (3) rapid shape changes. The proposed physiological roles to which various mitochondrial arrangements contribute and difficulties in interpreting some of the physiological conclusions are also outlined.
Collapse
Affiliation(s)
- John G. McCarron
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, UK
| | - Calum Wilson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, UK
- Department of Biomedical Engineering, University of Strathclyde Wolfson Centre, Glasgow, UK
| | - Mairi E. Sandison
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, UK
| | - Marnie L. Olson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, UK
| | - John M. Girkin
- Centre for Advanced Instrumentation, Department of Physics, Durham University, Durham, UK
| | - Christopher Saunter
- Centre for Advanced Instrumentation, Department of Physics, Durham University, Durham, UK
| | - Susan Chalmers
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, UK
| |
Collapse
|
31
|
OPA1 promotes pH flashes that spread between contiguous mitochondria without matrix protein exchange. EMBO J 2013; 32:1927-40. [PMID: 23714779 PMCID: PMC3981180 DOI: 10.1038/emboj.2013.124] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 04/19/2013] [Indexed: 01/13/2023] Open
Abstract
The chemical nature and functional significance of mitochondrial flashes associated with fluctuations in mitochondrial membrane potential is unclear. Using a ratiometric pH probe insensitive to superoxide, we show that flashes reflect matrix alkalinization transients of ∼0.4 pH units that persist in cells permeabilized in ion-free solutions and can be evoked by imposed mitochondrial depolarization. Ablation of the pro-fusion protein Optic atrophy 1 specifically abrogated pH flashes and reduced the propagation of matrix photoactivated GFP (paGFP). Ablation or invalidation of the pro-fission Dynamin-related protein 1 greatly enhanced flash propagation between contiguous mitochondria but marginally increased paGFP matrix diffusion, indicating that flashes propagate without matrix content exchange. The pH flashes were associated with synchronous depolarization and hyperpolarization events that promoted the membrane potential equilibration of juxtaposed mitochondria. We propose that flashes are energy conservation events triggered by the opening of a fusion pore between two contiguous mitochondria of different membrane potentials, propagating without matrix fusion to equilibrate the energetic state of connected mitochondria. Mitochondrial fusion events and transient changes in matrix pH linked to membrane depolarization are found to underlie mitochondrial flashes, whose propagation may help equilibrate energy states between connected mitochondria.
Collapse
|
32
|
Santo-Domingo J, Demaurex N. Perspectives on: SGP symposium on mitochondrial physiology and medicine: the renaissance of mitochondrial pH. ACTA ACUST UNITED AC 2013; 139:415-23. [PMID: 22641636 PMCID: PMC3362525 DOI: 10.1085/jgp.201110767] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jaime Santo-Domingo
- Department of Cell Physiology and Metabolism, University of Geneva, CH-1211 Geneva, Switzerland
| | | |
Collapse
|
33
|
Pédeboscq S, Gravier D, Casadebaig F, Hou G, Gissot A, Rey C, Ichas F, Giorgi FD, Lartigue L, Pometan JP. Synthesis and evaluation of apoptosis induction of thienopyrimidine compounds on KRAS and BRAF mutated colorectal cancer cell lines. Bioorg Med Chem 2012; 20:6724-31. [DOI: 10.1016/j.bmc.2012.09.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 09/05/2012] [Accepted: 09/11/2012] [Indexed: 11/26/2022]
|
34
|
Bioenergetic role of mitochondrial fusion and fission. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1833-8. [DOI: 10.1016/j.bbabio.2012.02.033] [Citation(s) in RCA: 432] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 02/24/2012] [Accepted: 02/25/2012] [Indexed: 11/22/2022]
|
35
|
Galloway CA, Lee H, Nejjar S, Jhun BS, Yu T, Hsu W, Yoon Y. Transgenic control of mitochondrial fission induces mitochondrial uncoupling and relieves diabetic oxidative stress. Diabetes 2012; 61:2093-104. [PMID: 22698920 PMCID: PMC3402299 DOI: 10.2337/db11-1640] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Mitochondria are the essential eukaryotic organelles that produce most cellular energy. The energy production and supply by mitochondria appear closely associated with the continuous shape change of mitochondria mediated by fission and fusion, as evidenced not only by the hereditary diseases caused by mutations in fission/fusion genes but also by aberrant mitochondrial morphologies associated with numerous pathologic insults. However, how morphological change of mitochondria is linked to their energy-producing activity is poorly understood. In this study, we found that perturbation of mitochondrial fission induces a unique mitochondrial uncoupling phenomenon through a large-scale fluctuation of a mitochondrial inner membrane potential. Furthermore, by genetically controlling mitochondrial fission and thereby inducing mild proton leak in mice, we were able to relieve these mice from oxidative stress in a hyperglycemic model. These findings provide mechanistic insight into how mitochondrial fission participates in regulating mitochondrial activity. In addition, these results suggest a potential application of mitochondrial fission to control mitochondrial reactive oxygen species production and oxidative stress in many human diseases.
Collapse
Affiliation(s)
- Chad A. Galloway
- Department of Anesthesiology, University of Rochester School of Medicine and Dentistry, Rochester, New York
- Mitochondrial Research and Innovation Group, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Hakjoo Lee
- Department of Anesthesiology, University of Rochester School of Medicine and Dentistry, Rochester, New York
- Mitochondrial Research and Innovation Group, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Souad Nejjar
- Department of Anesthesiology, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Bong Sook Jhun
- Department of Anesthesiology, University of Rochester School of Medicine and Dentistry, Rochester, New York
- Mitochondrial Research and Innovation Group, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Tianzheng Yu
- Department of Anesthesiology, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Wei Hsu
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, New York
- Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York
- James P. Wilmot Cancer Center, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Yisang Yoon
- Department of Anesthesiology, University of Rochester School of Medicine and Dentistry, Rochester, New York
- Mitochondrial Research and Innovation Group, University of Rochester School of Medicine and Dentistry, Rochester, New York
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, New York
- Corresponding author: Yisang Yoon,
| |
Collapse
|
36
|
Lee JS, Yoon YG, Yoo SH, Jeong NY, Jeong SH, Lee SY, Jung DI, Jeong SY, Yoo YH. Histone deacetylase inhibitors induce mitochondrial elongation. J Cell Physiol 2012; 227:2856-69. [PMID: 21928346 DOI: 10.1002/jcp.23027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Although various stimuli-inducing cell demise are known to alter mitochondrial morphology, it is currently debated whether alteration of mitochondrial morphology is per se responsible for apoptosis execution or prevention. This study was undertaken to examine the effect of histone deacetylase (HDAC) inhibitors on mitochondrial fusion-fission equilibrium. The mechanism underlying HDAC inhibitor-induced alteration of mitochondrial morphology was examined in various cells including primary cultured cells and untransformed and cancer cell lines treated with seven different HDAC inhibitors. Suberoylanilide hydroxamic acid (SAHA)-induced mitochondrial elongation in both Hep3B and Bcl-2-overexpressing Hep3B cells, apart from its apoptosis induction function. SAHA significantly decreased the expression of mitochondrial fission protein Fis1 and reduced the translocation of Drp1 to the mitochondria. Fis1 overexpression attenuated SAHA-induced mitochondrial elongation. In addition, depletion of mitochondrial fusion proteins, Mfn1 or Opa1, by RNA interference also attenuated SAHA-induced mitochondrial elongation. All of the HDAC inhibitors we examined induced mitochondrial elongation in all the cell types tested at both subtoxic and toxic concentrations. These results indicate that HDAC inhibitors induce mitochondrial elongation, irrespective of the induction of apoptosis, which may be linked to alterations of mitochondrial dynamics regulated by mitochondrial morphology-regulating proteins. Since mitochondria have recently emerged as attractive targets for cancer therapy, our findings that HDAC inhibitors altered mitochondrial morphology may support the rationale for these agents as novel therapeutic approaches against cancer. Further, the present study may provide insight into a valuable experimental strategy for simple manipulation of mitochondrial morphology.
Collapse
Affiliation(s)
- Jee Suk Lee
- Department of Anatomy and Cell Biology and Mitochondria Hub Regulation Center, College of Medicine, Dong-A University, Busan, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Zhou L, O'Rourke B. Cardiac mitochondrial network excitability: insights from computational analysis. Am J Physiol Heart Circ Physiol 2012; 302:H2178-89. [PMID: 22427517 DOI: 10.1152/ajpheart.01073.2011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the heart, mitochondria form a regular lattice and function as a coordinated, nonlinear network to continuously produce ATP to meet the high-energy demand of the cardiomyocytes. Cardiac mitochondria also exhibit properties of an excitable system: electrical or chemical signals can spread within or among cells in the syncytium. The detailed mechanisms by which signals pass among individual elements (mitochondria) across the network are still not completely understood, although emerging studies suggest that network excitability might be mediated by the local diffusion and autocatalytic release of messenger molecules such as reactive oxygen species and/or Ca(2+). In this short review, we have attempted to described recent advances in the field of cardiac mitochondrial network excitability. Specifically, we have focused on how mitochondria communicate with each other through the diffusion and regeneration of messenger molecules to initiate and propagate waves or oscillations, as revealed by computational models of mitochondrial network.
Collapse
Affiliation(s)
- Lufang Zhou
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, 35294, USA.
| | | |
Collapse
|
38
|
Azarias G, Chatton JY. Selective ion changes during spontaneous mitochondrial transients in intact astrocytes. PLoS One 2011; 6:e28505. [PMID: 22145050 PMCID: PMC3228761 DOI: 10.1371/journal.pone.0028505] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 11/09/2011] [Indexed: 01/11/2023] Open
Abstract
The bioenergetic status of cells is tightly regulated by the activity of cytosolic enzymes and mitochondrial ATP production. To adapt their metabolism to cellular energy needs, mitochondria have been shown to exhibit changes in their ionic composition as the result of changes in cytosolic ion concentrations. Individual mitochondria also exhibit spontaneous changes in their electrical potential without altering those of neighboring mitochondria. We recently reported that individual mitochondria of intact astrocytes exhibit spontaneous transient increases in their Na+ concentration. Here, we investigated whether the concentration of other ionic species were involved during mitochondrial transients. By combining fluorescence imaging methods, we performed a multiparameter study of spontaneous mitochondrial transients in intact resting astrocytes. We show that mitochondria exhibit coincident changes in their Na+ concentration, electrical potential, matrix pH and mitochondrial reactive oxygen species production during a mitochondrial transient without involving detectable changes in their Ca2+ concentration. Using widefield and total internal reflection fluorescence imaging, we found evidence for localized transient decreases in the free Mg2+ concentration accompanying mitochondrial Na+ spikes that could indicate an associated local and transient enrichment in the ATP concentration. Therefore, we propose a sequential model for mitochondrial transients involving a localized ATP microdomain that triggers a Na+-mediated mitochondrial depolarization, transiently enhancing the activity of the mitochondrial respiratory chain. Our work provides a model describing ionic changes that could support a bidirectional cytosol-to-mitochondria ionic communication.
Collapse
Affiliation(s)
- Guillaume Azarias
- Department of Cell Biology and Morphology, University of Lausanne, Lausanne, Switzerland
| | - Jean-Yves Chatton
- Department of Cell Biology and Morphology, University of Lausanne, Lausanne, Switzerland
- Cellular Imaging Facility, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
39
|
Linking flickering to waves and whole-cell oscillations in a mitochondrial network model. Biophys J 2011; 101:2102-11. [PMID: 22067147 DOI: 10.1016/j.bpj.2011.09.038] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 09/21/2011] [Accepted: 09/23/2011] [Indexed: 11/22/2022] Open
Abstract
It has been shown that transient single mitochondrial depolarizations, known as flickers, tend to occur randomly in space and time. On the other hand, many studies have shown that mitochondrial depolarization waves and whole-cell oscillations occur under oxidative stress. How single mitochondrial flickering events and whole-cell oscillations are mechanistically linked remains unclear. In this study, we developed a Markov model of the inner membrane anion channel in which reactive-oxidative-species (ROS)-induced opening of the inner membrane anion channel causes transient mitochondrial depolarizations in a single mitochondrion that occur in a nonperiodic manner, simulating flickering. We then coupled the individual mitochondria into a network, in which flickers occur randomly and sparsely when a small number of mitochondria are in the state of high superoxide production. As the number of mitochondria in the high-superoxide-production state increases, short-lived or abortive waves due to ROS-induced ROS release coexist with flickers. When the number of mitochondria in the high-superoxide-production state reaches a critical number, recurring propagating waves are observed. The origins of the waves occur randomly in space and are self-organized as a consequence of random flickering and local synchronization. We show that at this critical state, the depolarization clusters exhibit a power-law distribution, a signature of self-organized criticality. In addition, the whole-cell mitochondrial membrane potential changes from exhibiting small random fluctuations to more periodic oscillations as the superoxide production rate increases. These simulation results may provide mechanistic insight into the transition from random mitochondrial flickering to the waves and whole-cell oscillations observed in many experimental studies.
Collapse
|
40
|
Chang CW, Su YC, Her GM, Ken CF, Hong JR. Betanodavirus induces oxidative stress-mediated cell death that prevented by anti-oxidants and zfcatalase in fish cells. PLoS One 2011; 6:e25853. [PMID: 21991373 PMCID: PMC3185053 DOI: 10.1371/journal.pone.0025853] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 09/12/2011] [Indexed: 12/21/2022] Open
Abstract
The role of oxidative stress in the pathogenesis of RNA nervous necrosis virus infection is still unknown. Red-spotted grouper nervous necrosis virus (RGNNV) induced free radical species (ROS) production at 12-24 h post-infection (pi; early replication stage) in fish GF-1 cells, and then at middle replication stage (24-48 h pi), this ROS signal may upregulate some expressions of the anti-oxidant enzymes Cu/Zn SOD and catalase, and eventually expression of the transcription factor Nrf2. Furthermore, both antioxidants diphenyliodonium and N-acetylcysteine or overexpression of zebrafish catalase in GF-1 cells also reduced ROS production and protected cells for enhancing host survival rate due to RGNNV infection. Furthermore, localization of ROS production using esterase activity and Mitotracker staining assays found that the ROS generated can affect mitochondrial morphology changes and causes ΔΨ loss, both of which can be reversed by antioxidant treatment. Taken together, our data suggest that RGNNV induced oxidative stress response for playing dual role that can initiate the host oxidative stress defense system to upregulate expression of antioxidant enzymes and induces cell death via disrupting the mitochondrial morphology and inducing ΔΨ loss, which can be reversed by anti-oxidants and zfcatalase, which provide new insight into betanodavirus-induced ROS-mediated pathogenesis.
Collapse
Affiliation(s)
- Chih-Wei Chang
- Laboratory of Molecular Virology and Biotechnology, Institute of Biotechnology, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Yu-Chin Su
- Laboratory of Molecular Virology and Biotechnology, Institute of Biotechnology, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Guor-Mour Her
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan, Republic of China
| | - Chuian-Fu Ken
- The Department of Biotechnology, National Changhua University of Education, Changhua, Taiwan, Republic of China
| | - Jiann-Ruey Hong
- Laboratory of Molecular Virology and Biotechnology, Institute of Biotechnology, National Cheng Kung University, Tainan, Taiwan, Republic of China
| |
Collapse
|
41
|
Patergnani S, Suski JM, Agnoletto C, Bononi A, Bonora M, De Marchi E, Giorgi C, Marchi S, Missiroli S, Poletti F, Rimessi A, Duszynski J, Wieckowski MR, Pinton P. Calcium signaling around Mitochondria Associated Membranes (MAMs). Cell Commun Signal 2011; 9:19. [PMID: 21939514 PMCID: PMC3198985 DOI: 10.1186/1478-811x-9-19] [Citation(s) in RCA: 278] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 09/22/2011] [Indexed: 11/10/2022] Open
Abstract
Calcium (Ca2+) homeostasis is fundamental for cell metabolism, proliferation, differentiation, and cell death. Elevation in intracellular Ca2+ concentration is dependent either on Ca2+ influx from the extracellular space through the plasma membrane, or on Ca2+ release from intracellular Ca2+ stores, such as the endoplasmic/sarcoplasmic reticulum (ER/SR). Mitochondria are also major components of calcium signalling, capable of modulating both the amplitude and the spatio-temporal patterns of Ca2+ signals. Recent studies revealed zones of close contact between the ER and mitochondria called MAMs (Mitochondria Associated Membranes) crucial for a correct communication between the two organelles, including the selective transmission of physiological and pathological Ca2+ signals from the ER to mitochondria. In this review, we summarize the most up-to-date findings on the modulation of intracellular Ca2+ release and Ca2+ uptake mechanisms. We also explore the tight interplay between ER- and mitochondria-mediated Ca2+ signalling, covering the structural and molecular properties of the zones of close contact between these two networks.
Collapse
Affiliation(s)
- Simone Patergnani
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Rodrigues RM, Macko P, Palosaari T, Whelan MP. Autofluorescence microscopy: a non-destructive tool to monitor mitochondrial toxicity. Toxicol Lett 2011; 206:281-8. [PMID: 21864658 DOI: 10.1016/j.toxlet.2011.06.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 06/08/2011] [Accepted: 06/18/2011] [Indexed: 01/22/2023]
Abstract
Visualization of NADH by fluorescence microscopy makes it possible to distinguish mitochondria inside living cells, allowing structure analysis of these organelles in a non-invasive way. Mitochondrial morphology is determined by the occurrence of mitochondrial fission and fusion. During normal cell function mitochondria appear as elongated tubular structures. However, cellular malfunction induces mitochondria to fragment into punctiform, vesicular structures. This change in morphology is associated with the generation of reactive oxygen species (ROS) and early apoptosis. The aim of this study is to demonstrate that autofluorescence imaging of mitochondria in living eukaryotic cells provides structural and morphological information that can be used to assess mitochondrial health. We firstly established the illumination conditions that do not affect mitochondrial structure and calculated the maximum safe light dose to which the cells can be exposed. Subsequently, sequential recording of mitochondrial fluorescence was performed and changes in mitochondrial morphology were monitored in a continuous non-destructive way. This approach was then used to assess mitochondrial toxicity induced by potential toxicants exposed to mammalian cells. Both mouse and human cells were used to evaluate mitochondrial toxicity of different compounds with different toxicities. This technique constitutes a novel and promising approach to explore chemical induced toxicity because of its reliability to monitor mitochondrial morphology changes and corresponding toxicity in a non-invasive way.
Collapse
Affiliation(s)
- Robim M Rodrigues
- European Commission Joint Research Centre, Institute for Health and Customer Protection, Via E. Fermi 2749, 21027 Ispra (Varese), Italy.
| | | | | | | |
Collapse
|
43
|
Pereira Lopes JEF, Barbosa MR, Stella CN, Santos WA, Pereira EM, Nogueira-Neto J, Augusto EM, Silva LV, Smaili SS, Gomes LF. In vivo anti-angiogenic effects further support the promise of the antineoplasic activity of methyl jasmonate. BRAZ J BIOL 2010; 70:443-9. [PMID: 20549071 DOI: 10.1590/s1519-69842010000200029] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Accepted: 04/03/2009] [Indexed: 11/22/2022] Open
Abstract
Molecular plant components have long been aimed at the angiogenesis and anti-angiogenesis pathways, and have been tested as sources for antineoplasic drugs with promising success. The present work deals with the anti-angiogenic effects of Methyl Jasmonate. Jasmonate derivatives were demonstrated to selectively damage the mitochondria of cancer cells. In vitro, 1-10 mM Methyl Jasmonate induced the cell death of the human umbilical vein endothelial cells (HUVEC) and the Murine melanoma cells (B16F10), while micromolar concentrations were ineffective. In vivo, comparable concentrations were toxic and reduced the vessel density of the Chorioallantoic Membrane of the Chicken Embryo (CAM). However, 1-10 microM concentrations produced a complex effect. There was increased capillary budding, but the new vessels were leakier and less organised than corresponding controls. It is suggested that not only direct toxicity, but also the drug effects upon angiogenesis are relevant to the antineoplasic effects of Methyl Jasmonate.
Collapse
Affiliation(s)
- J E F Pereira Lopes
- Departamento de Análises Clínicas e Toxicológicas, Universidade de São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Hausenloy DJ, Lim SY, Ong SG, Davidson SM, Yellon DM. Mitochondrial cyclophilin-D as a critical mediator of ischaemic preconditioning. Cardiovasc Res 2010; 88:67-74. [PMID: 20400621 PMCID: PMC2936122 DOI: 10.1093/cvr/cvq113] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 04/12/2010] [Accepted: 04/14/2010] [Indexed: 01/22/2023] Open
Abstract
AIMS It has been suggested that mitochondrial reactive oxygen species (ROS), Akt and Erk1/2 and more recently the mitochondrial permeability transition pore (mPTP) may act as mediators of ischaemic preconditioning (IPC), although the actual interplay between these mediators is unclear. The aim of the present study is to determine whether the cyclophilin-D (CYPD) component of the mPTP is required by IPC to generate mitochondrial ROS and subsequently activate Akt and Erk1/2. METHODS AND RESULTS Mice lacking CYPD (CYPD-/-) and B6Sv129 wild-type (WT) mice were used throughout. We have demonstrated that under basal conditions, non-pathological mPTP opening occurs (indicated by the percent reduction in mitochondrial calcein fluorescence). This effect was greater in WT cardiomyocytes compared with CYPD-/- ones (53 ± 2% WT vs. 17 ± 3% CYPD-/-; P < 0.01) and was augmented by hypoxic preconditioning (HPC) (70 ± 9% WT vs. 56 ± 1% CYPD-/-; P < 0.01). HPC reduced cell death following simulated ischaemia-reperfusion injury in WT (23.2 ± 3.5% HPC vs. 43.7 ± 3.2% WT; P < 0.05) but not CYPD-/- cardiomyocytes (19.6 ± 1.4% HPC vs. 24.4 ± 2.6% control; P > 0.05). HPC generated mitochondrial ROS in WT (four-fold increase; P < 0.05) but not CYPD-/- cardiomyocytes. HPC induced significant Akt phosphorylation in WT cardiomyocytes (two-fold increase; P < 0.05), an effect which was abrogated by ciclosporin-A (a CYPD inhibitor) and N-2-mercaptopropionyl glycine (a ROS scavenger). Finally, in vivo IPC of adult murine hearts resulted in significant phosphorylation of Akt and Erk1/2 in WT but not CYPD-/- hearts. CONCLUSION The CYPD component of the mPTP is required by IPC to generate mitochondrial ROS and phosphorylate Akt and Erk1/2, major steps in the IPC signalling pathway.
Collapse
Affiliation(s)
- Derek J Hausenloy
- The Hatter Cardiovascular Institute, University College London Hospital and Medical School, London WC1E 6HX, UK.
| | | | | | | | | |
Collapse
|
45
|
Pédeboscq S, Gravier D, Casadebaig F, Hou G, Gissot A, De Giorgi F, Ichas F, Cambar J, Pometan JP. Synthesis and study of antiproliferative activity of novel thienopyrimidines on glioblastoma cells. Eur J Med Chem 2010; 45:2473-9. [DOI: 10.1016/j.ejmech.2010.02.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 02/10/2010] [Accepted: 02/12/2010] [Indexed: 10/19/2022]
|
46
|
Bereiter-Hahn J, Jendrach M. Mitochondrial dynamics. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 284:1-65. [PMID: 20875628 DOI: 10.1016/s1937-6448(10)84001-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondrial dynamics is a key feature for the interaction of mitochondria with other organelles within a cell and also for the maintenance of their own integrity. Four types of mitochondrial dynamics are discussed: Movement within a cell and interactions with the cytoskeleton, fusion and fission events which establish coherence within the chondriome, the dynamic behavior of cristae and their components, and finally, formation and disintegration of mitochondria (mitophagy). Due to these essential functions, disturbed mitochondrial dynamics are inevitably connected to a variety of diseases. Localized ATP gradients, local control of calcium-based messaging, production of reactive oxygen species, and involvement of other metabolic chains, that is, lipid and steroid synthesis, underline that physiology not only results from biochemical reactions but, in addition, resides on the appropriate morphology and topography. These events and their molecular basis have been established recently and are the topic of this review.
Collapse
Affiliation(s)
- Jürgen Bereiter-Hahn
- Center of Excellence Macromolecular Complexes, Institute for Cell Biology and Neurosciences, Goethe University, Frankfurt am Main, Germany
| | | |
Collapse
|
47
|
What can mitochondrial heterogeneity tell us about mitochondrial dynamics and autophagy? Int J Biochem Cell Biol 2009; 41:1914-27. [PMID: 19549572 DOI: 10.1016/j.biocel.2009.06.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2008] [Revised: 06/13/2009] [Accepted: 06/16/2009] [Indexed: 01/19/2023]
Abstract
A growing body of evidence shows that mitochondria are heterogeneous in terms of structure and function. Increased heterogeneity has been demonstrated in a number of disease models including ischemia-reperfusion and nutrient-induced beta cell dysfunction and diabetes. Subcellular location and proximity to other organelles, as well as uneven distribution of respiratory components have been considered as the main contributors to the basal level of heterogeneity. Recent studies point to mitochondrial dynamics and autophagy as major regulators of mitochondrial heterogeneity. While mitochondrial fusion mixes the content of the mitochondrial network, fission dissects the mitochondrial network and generates depolarized segments. These depolarized mitochondria are segregated from the networking population, forming a pre-autophagic pool contributing to heterogeneity. The capacity of a network to yield a depolarized daughter mitochondrion by a fission event is fundamental to the generation of heterogeneity. Several studies and data presented here provide a potential explanation, suggesting that protein and membranous structures are unevenly distributed within the individual mitochondrion and that inner membrane components do not mix during a fusion event to the same extent as the matrix components do. In conclusion, mitochondrial subcellular heterogeneity is a reflection of the mitochondrial lifecycle that involves frequent fusion events in which components may be unevenly mixed and followed by fission events generating disparate daughter mitochondria, some of which may fuse again, others will remain solitary and join a pre-autophagic pool.
Collapse
|
48
|
Heterogeneity of mitochondria and mitochondrial function within cells as another level of mitochondrial complexity. Int J Mol Sci 2009; 10:1911-1929. [PMID: 19468346 PMCID: PMC2680654 DOI: 10.3390/ijms10041911] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 04/14/2009] [Accepted: 04/21/2009] [Indexed: 12/21/2022] Open
Abstract
Beyond their fundamental role in energy metabolism, mitochondria perform a great variety of other important cellular functions. However, the interplay among these various roles of mitochondria is still poorly understood, and the underlying mechanisms can be related to system level properties. Importantly, mitochondria localized in different regions of a cell may display different morphology, dissimilar biochemical properties, or may differently interact with other intracellular structures. Recent advances in live imaging techniques have also revealed a functional heterogeneity of mitochondria with respect to mitochondrial redox state, membrane potential, respiratory activity, uncoupling proteins, mitochondrial ROS and calcium. An important and still unresolved question is how the heterogeneity of mitochondrial function and the regional specializations of mitochondria are mechanistically realized in the cell and to what extent this could be dependent on environmental aspects. Distinct mitochondrial subsets may also exhibit different responses to substrates and inhibitors and may vary in their sensitivity to pathology, resistance to apoptosis, oxidative stress, thus also demonstrating heterogeneous behavior. All these observations strongly suggest that the intracellular position, organization and the specific surroundings of mitochondria within the cell define their functional features, while also implying that different mitochondrial subpopulations, clusters or even single mitochondrion may execute diverse processes in a cell. The heterogeneity of mitochondrial function demonstrates an additional level of mitochondrial complexity and is a new, challenging area in mitochondrial research that potentially leads to the integration of mitochondrial bioenergetics and cell physiology with various physiological and pathophysiological implications.
Collapse
|
49
|
Kuznetsov AV, Hermann M, Saks V, Hengster P, Margreiter R. The cell-type specificity of mitochondrial dynamics. Int J Biochem Cell Biol 2009; 41:1928-39. [PMID: 19703655 DOI: 10.1016/j.biocel.2009.03.007] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 02/26/2009] [Accepted: 03/07/2009] [Indexed: 12/22/2022]
Abstract
Recent advances in mitochondrial imaging have revealed that in many cells mitochondria can be highly dynamic. They can undergo fission/fusion processes modulated by various mitochondria-associated proteins and also by conformational transitions in the inner mitochondrial membrane. Moreover, precise mitochondrial distribution can be achieved by their movement along the cytoskeleton, recruiting various connector and motor proteins. Such movement is evident in various cell types ranging from yeast to mammalian cells and serves to direct mitochondria to cellular regions of high ATP demand or to transport mitochondria destined for elimination. Existing data also demonstrate that many aspects of mitochondrial dynamics, morphology, regulation and intracellular organization can be cell type-/tissue-specific. In many cells like neurons, pancreatic cells, HL-1 cells, etc., complex dynamics of mitochondria include fission, fusion, small oscillatory movements of mitochondria, larger movements like filament extension, retraction, fast branching in the mitochondrial network and rapid long-distance intracellular translocation of single mitochondria. Alternatively, mitochondria can be rather fixed in other cells and tissues like adult cardiomyocytes or skeletal muscles with a very regular organelle organization between myofibrils, providing the bioenergetic basis for contraction. Adult cardiac cells show no displacement of mitochondria with only very small-amplitude rapid vibrations, demonstrating remarkable, cell type-dependent differences in the dynamics and spatial arrangement of mitochondria. These variations and the cell-type specificity of mitochondrial dynamics could be related to specific cellular functions and demands, also indicating a significant role of integrations of mitochondria with other intracellular systems like the cytoskeleton, nucleus and endoplasmic reticulum (ER).
Collapse
Affiliation(s)
- Andrey V Kuznetsov
- Daniel Swarovski Research Laboratory, Center of Operative Medicine, Department of Visceral, Transplant and Thoracic Surgery, Innsbruck Medical University (IMU), Innrain 66, A-6020 Innsbruck, Austria.
| | | | | | | | | |
Collapse
|
50
|
Kuznetsov AV, Hermann M, Troppmair J, Margreiter R, Hengster P. Complex patterns of mitochondrial dynamics in human pancreatic cells revealed by fluorescent confocal imaging. J Cell Mol Med 2009; 14:417-25. [PMID: 19382913 PMCID: PMC3837585 DOI: 10.1111/j.1582-4934.2009.00750.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Mitochondrial morphology and intracellular organization are tightly controlled by the processes of mitochondrial fission-fusion. Moreover, mitochondrial movement and redistribution provide a local ATP supply at cellular sites of particular demands. Here we analysed mitochondrial dynamics in isolated primary human pancreatic cells. Using real time confocal microscopy and mitochondria-specific fluorescent probes tetramethylrhodamine methyl ester and MitoTracker Green we documented complex and novel patterns of spatial and temporal organization of mitochondria, mitochondrial morphology and motility. The most commonly observed types of mitochondrial dynamics were (i) fast fission and fusion; (ii) small oscillating movements of the mitochondrial network; (iii) larger movements, including filament extension, retraction, fast (0.1-0.3 mum/sec.) and frequent oscillating (back and forth) branching in the mitochondrial network; (iv) as well as combinations of these actions and (v) long-distance intracellular translocation of single spherical mitochondria or separated mitochondrial filaments with velocity up to 0.5 mum/sec. Moreover, we show here for the first time, a formation of unusual mitochondrial shapes like rings, loops, and astonishingly even knots created from one or more mitochondrial filaments. These data demonstrate the presence of extensive heterogeneity in mitochondrial morphology and dynamics in living cells under primary culture conditions. In summary, this study reports new patterns of morphological changes and dynamic motion of mitochondria in human pancreatic cells, suggesting an important role of integrations of mitochondria with other intracellular structures and systems.
Collapse
Affiliation(s)
- Andrey V Kuznetsov
- Daniel Swarovski Research Laboratory, Center of Operative Medicine, Department of Visceral, Transplant and Thoracic Surgery, Innsbruck Medical University, Innrain, Innsbruck, Austria.
| | | | | | | | | |
Collapse
|