1
|
Carrascosa AJ, Navarrete F, Saldaña R, García-Gutiérrez MS, Montalbán B, Navarro D, Gómez-Guijarro FM, Gasparyan A, Murcia-Sánchez E, Torregrosa AB, Pérez-Doblado P, Gutiérrez L, Manzanares J. Cannabinoid Analgesia in Postoperative Pain Management: From Molecular Mechanisms to Clinical Reality. Int J Mol Sci 2024; 25:6268. [PMID: 38892456 PMCID: PMC11172912 DOI: 10.3390/ijms25116268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Postoperative pain (POP) is a challenging clinical phenomenon that affects the majority of surgical patients and demands effective management to mitigate adverse outcomes such as persistent pain. The primary goal of POP management is to alleviate suffering and facilitate a seamless return to normal function for the patient. Despite compelling evidence of its drawbacks, opioid analgesia remains the basis of POP treatment. Novel therapeutic approaches rely on multimodal analgesia, integrating different pharmacological strategies to optimize efficacy while minimizing adverse effects. The recognition of the imperative role of the endocannabinoid system in pain regulation has prompted the investigation of cannabinoid compounds as a new therapeutic avenue. Cannabinoids may serve as adjuvants, enhancing the analgesic effects of other drugs and potentially replacing or at least reducing the dependence on other long-term analgesics in pain management. This narrative review succinctly summarizes pertinent information on the molecular mechanisms, clinical therapeutic benefits, and considerations associated with the plausible use of various cannabinoid compounds in treating POP. According to the available evidence, cannabinoid compounds modulate specific molecular mechanisms intimately involved in POP. However, only two of the eleven clinical trials that evaluated the efficacy of different cannabinoid interventions showed positive results.
Collapse
Affiliation(s)
- Antonio J. Carrascosa
- Servicio de Anestesiologia y Reanimación, Hospital Universitario 12 de Octubre, Avda. Córdoba s/n, 28041 Madrid, Spain; (A.J.C.); (R.S.); (B.M.); (F.M.G.-G.); (E.M.-S.); (P.P.-D.)
| | - Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (D.N.); (A.G.); (A.B.T.); (L.G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Raquel Saldaña
- Servicio de Anestesiologia y Reanimación, Hospital Universitario 12 de Octubre, Avda. Córdoba s/n, 28041 Madrid, Spain; (A.J.C.); (R.S.); (B.M.); (F.M.G.-G.); (E.M.-S.); (P.P.-D.)
| | - María S. García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (D.N.); (A.G.); (A.B.T.); (L.G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Belinda Montalbán
- Servicio de Anestesiologia y Reanimación, Hospital Universitario 12 de Octubre, Avda. Córdoba s/n, 28041 Madrid, Spain; (A.J.C.); (R.S.); (B.M.); (F.M.G.-G.); (E.M.-S.); (P.P.-D.)
| | - Daniela Navarro
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (D.N.); (A.G.); (A.B.T.); (L.G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Fernando M. Gómez-Guijarro
- Servicio de Anestesiologia y Reanimación, Hospital Universitario 12 de Octubre, Avda. Córdoba s/n, 28041 Madrid, Spain; (A.J.C.); (R.S.); (B.M.); (F.M.G.-G.); (E.M.-S.); (P.P.-D.)
| | - Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (D.N.); (A.G.); (A.B.T.); (L.G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Elena Murcia-Sánchez
- Servicio de Anestesiologia y Reanimación, Hospital Universitario 12 de Octubre, Avda. Córdoba s/n, 28041 Madrid, Spain; (A.J.C.); (R.S.); (B.M.); (F.M.G.-G.); (E.M.-S.); (P.P.-D.)
| | - Abraham B. Torregrosa
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (D.N.); (A.G.); (A.B.T.); (L.G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Paloma Pérez-Doblado
- Servicio de Anestesiologia y Reanimación, Hospital Universitario 12 de Octubre, Avda. Córdoba s/n, 28041 Madrid, Spain; (A.J.C.); (R.S.); (B.M.); (F.M.G.-G.); (E.M.-S.); (P.P.-D.)
| | - Luisa Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (D.N.); (A.G.); (A.B.T.); (L.G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (D.N.); (A.G.); (A.B.T.); (L.G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| |
Collapse
|
2
|
Miklós Z, Wafa D, Nádasy GL, Tóth ZE, Besztercei B, Dörnyei G, Laska Z, Benyó Z, Ivanics T, Hunyady L, Szekeres M. Angiotensin II-Induced Cardiac Effects Are Modulated by Endocannabinoid-Mediated CB 1 Receptor Activation. Cells 2021; 10:724. [PMID: 33805075 PMCID: PMC8064086 DOI: 10.3390/cells10040724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/13/2021] [Accepted: 03/21/2021] [Indexed: 12/02/2022] Open
Abstract
Angiotensin II (Ang II) has various cardiac effects and causes vasoconstriction. Ang II activates the type-1 angiotensin receptor-Gq/11 signaling pathway resulting in the release of 2-arachidonoylglycerol (2-AG). We aimed to investigate whether cardiac Ang II effects are modulated by 2-AG-release and to identify the role of type-1 cannabinoid receptors (CB1R) in these effects. Expression of CB1R in rat cardiac tissue was confirmed by immunohistochemistry. To characterize short-term Ang II effects, increasing concentrations of Ang II (10-9-10-7 M); whereas to assess tachyphylaxis, repeated infusions of Ang II (10-7 M) were administered to isolated Langendorff-perfused rat hearts. Ang II infusions caused a decrease in coronary flow and ventricular inotropy, which was more pronounced during the first administration. CB agonist 2-AG and WIN55,212-2 administration to the perfusate enhanced coronary flow. The flow-reducing effect of Ang II was moderated in the presence of CB1R blocker O2050 and diacylglycerol-lipase inhibitor Orlistat. Our findings indicate that Ang II-induced cardiac effects are modulated by simultaneous CB1R-activation, most likely due to 2-AG-release during Ang II signalling. In this combined effect, the response to 2-AG via cardiac CB1R may counteract the positive inotropic effect of Ang II, which may decrease metabolic demand and augment Ang II-induced coronary vasoconstriction.
Collapse
Affiliation(s)
- Zsuzsanna Miklós
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (D.W.); (B.B.); (Z.L.); (Z.B.); (T.I.)
| | - Dina Wafa
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (D.W.); (B.B.); (Z.L.); (Z.B.); (T.I.)
| | - György L. Nádasy
- Department of Physiology, Semmelweis University, 1094 Budapest, Hungary; (G.L.N.); (L.H.)
| | - Zsuzsanna E. Tóth
- Department of Anatomy, Histology and Embryology, Semmelweis University, 1094 Budapest, Hungary;
| | - Balázs Besztercei
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (D.W.); (B.B.); (Z.L.); (Z.B.); (T.I.)
| | - Gabriella Dörnyei
- Department of Morphology and Physiology, Semmelweis University, 1088 Budapest, Hungary;
| | - Zsófia Laska
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (D.W.); (B.B.); (Z.L.); (Z.B.); (T.I.)
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (D.W.); (B.B.); (Z.L.); (Z.B.); (T.I.)
| | - Tamás Ivanics
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (D.W.); (B.B.); (Z.L.); (Z.B.); (T.I.)
| | - László Hunyady
- Department of Physiology, Semmelweis University, 1094 Budapest, Hungary; (G.L.N.); (L.H.)
- Laboratory of Molecular Physiology, Semmelweis University and Hungarian Academy of Sciences, 1094 Budapest, Hungary
| | - Mária Szekeres
- Department of Physiology, Semmelweis University, 1094 Budapest, Hungary; (G.L.N.); (L.H.)
- Department of Morphology and Physiology, Semmelweis University, 1088 Budapest, Hungary;
- Laboratory of Molecular Physiology, Semmelweis University and Hungarian Academy of Sciences, 1094 Budapest, Hungary
| |
Collapse
|
3
|
Zhang X, Ye L, Huang Y, Ding X, Wang L. The potential role of TRPV1 in pulmonary hypertension: Angel or demon? Channels (Austin) 2020; 13:235-246. [PMID: 31189399 PMCID: PMC6602577 DOI: 10.1080/19336950.2019.1631106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pulmonary hypertension (PH) is a pathological state defined by increased pulmonary artery pressure, the pathogenesis of which is related to genetic mutations, intracellular calcium ([Ca2+]i), inflammation and proliferation. Transient receptor potential vanilloid subfamily member 1 (TRPV1) is a nonselective cation channel expressed in neural and nonneural cells, including pulmonary vessels and nerves. As a calcium channel, TRPV1 can make vessels contracted, and promote smooth muscle cells proliferation through calcium-dependent transcription factors. Activation of TRPV1 in sensory nerves can release neuropeptides, including calcitonin gene-related peptide (CGRP), substance P (SP), and somatostatin (SST), which can regulate inflammation via transcription factor NF-kB. Considering the increased level of [Ca2+]i and inflammation in the pathogenesis of PH, our review summarizes the role of TRPV1 in PH with regard to [Ca2+]i, neuropeptides, and inflammation. In view of the limited research illustrating the relationship between TRPV1 and PH directly, our review also considers the role of TRPV1 in other types of vascular inflammation. Through this review, we hope to raise awareness about the function of TRPV1 in PH.
Collapse
Affiliation(s)
- Xin Zhang
- a The Second Clinical Medical College, Zhejiang Chinese Medical University , Hangzhou , China.,b Department of Cardiovascular Medicine , Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College , Hangzhou , China
| | - Lifang Ye
- b Department of Cardiovascular Medicine , Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College , Hangzhou , China
| | - Yu Huang
- b Department of Cardiovascular Medicine , Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College , Hangzhou , China
| | - Xueyan Ding
- b Department of Cardiovascular Medicine , Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College , Hangzhou , China
| | - Lihong Wang
- a The Second Clinical Medical College, Zhejiang Chinese Medical University , Hangzhou , China.,b Department of Cardiovascular Medicine , Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College , Hangzhou , China
| |
Collapse
|
4
|
Walsh SK, Hepburn CY, Keown O, Åstrand A, Lindblom A, Ryberg E, Hjorth S, Leslie SJ, Greasley PJ, Wainwright CL. Pharmacological profiling of the hemodynamic effects of cannabinoid ligands: a combined in vitro and in vivo approach. Pharmacol Res Perspect 2015; 3:e00143. [PMID: 26236485 PMCID: PMC4492759 DOI: 10.1002/prp2.143] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/14/2015] [Indexed: 11/24/2022] Open
Abstract
The receptors mediating the hemodynamic responses to cannabinoids are not clearly defined due to the multifarious pharmacology of many commonly used cannabinoid ligands. While both CB1 and TRPV1 receptors are implicated, G protein-coupled receptor 55 (GPR55) may also mediate some of the hemodynamic effects of several atypical cannabinoid ligands. The present studies attempted to unravel the pharmacology underlying the in vivo hemodynamic responses to ACEA (CB1 agonist), O-1602 (GPR55 agonist), AM251 (CB1 antagonist), and cannabidiol (CBD; GPR55 antagonist). Agonist and antagonist profiles of each ligand were determined by ligand-induced GTPγS binding in membrane preparations expressing rat and mouse CB1 and GPR55 receptors. Blood pressure responses to ACEA and O-1602 were recorded in anesthetized and conscious mice (wild type, CB1−/− and GPR55−/−) and rats in the absence and presence of AM251 and CBD. ACEA demonstrated GTPγS activation at both receptors, while O-1602 only activated GPR55. AM251 exhibited antagonist activity at CB1 and agonist activity at GPR55, while CBD demonstrated selective antagonist activity at GPR55. The depressor response to ACEA was blocked by AM251 and attenuated by CBD, while O-1602 did not induce a depressor response. AM251 caused a depressor response that was absent in GPR55−/− mice but enhanced by CBD, while CBD caused a small vasodepressor response that persisted in GPR55−/− mice. Our findings show that assessment of the pharmacological profile of receptor activation by cannabinoid ligands in in vitro studies alongside in vivo functional studies is essential to understand the role of cannabinoids in hemodynamic control.
Collapse
Affiliation(s)
- Sarah K Walsh
- Institute for Health & Wellbeing Research, Robert Gordon University Riverside East, Aberdeen, AB10 7GJ, United Kingdom
| | - Claire Y Hepburn
- Institute for Health & Wellbeing Research, Robert Gordon University Riverside East, Aberdeen, AB10 7GJ, United Kingdom
| | - Oliver Keown
- Institute for Health & Wellbeing Research, Robert Gordon University Riverside East, Aberdeen, AB10 7GJ, United Kingdom ; Cardiac Unit, Raigmore Hospital Old Perth Road, Inverness, IV2 3UJ, United Kingdom
| | - Annika Åstrand
- Cardiovascular & Metabolic Disease IMED, AstraZeneca R&D Mölndal, Sweden
| | - Anna Lindblom
- Cardiovascular & Metabolic Disease IMED, AstraZeneca R&D Mölndal, Sweden
| | - Erik Ryberg
- Cardiovascular & Metabolic Disease IMED, AstraZeneca R&D Mölndal, Sweden
| | - Stephan Hjorth
- Cardiovascular & Metabolic Disease IMED, AstraZeneca R&D Mölndal, Sweden
| | - Stephan J Leslie
- Cardiac Unit, Raigmore Hospital Old Perth Road, Inverness, IV2 3UJ, United Kingdom
| | - Peter J Greasley
- Cardiovascular & Metabolic Disease IMED, AstraZeneca R&D Mölndal, Sweden
| | - Cherry L Wainwright
- Institute for Health & Wellbeing Research, Robert Gordon University Riverside East, Aberdeen, AB10 7GJ, United Kingdom
| |
Collapse
|
5
|
Zelasko S, Arnold WR, Das A. Endocannabinoid metabolism by cytochrome P450 monooxygenases. Prostaglandins Other Lipid Mediat 2014; 116-117:112-23. [PMID: 25461979 DOI: 10.1016/j.prostaglandins.2014.11.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 11/11/2014] [Accepted: 11/13/2014] [Indexed: 01/01/2023]
Abstract
The endogenous cannabinoid system was first uncovered following studies of the recreational drug Cannabis sativa. It is now recognized as a vital network of signaling pathways that regulate several physiological processes. Following the initial discovery of the cannabinoid receptors 1 (CB1) and 2 (CB2), activated by Cannabis-derived analogs, many endogenous fatty acids termed "endocannabinoids" are now known to be partial agonists of the CB receptors. At present, the most thoroughly studied endocannabinoid signaling molecules are anandamide (AEA) and 2-arachidonylglycerol (2-AG), which are both derived from arachidonic acid. Both AEA and 2-AG are also substrates for the eicosanoid-synthesizing pathways, namely, certain cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP) enzymes. In the past, research in the endocannabinoid field focused on the interaction of AEA and 2-AG with the COX and LOX enzymes, but accumulating evidence also points to the involvement of CYPs in modulating endocannabinoid signaling. The focus of this review is to explore the current understanding of CYP-mediated metabolism of endocannabinoids.
Collapse
Affiliation(s)
- Susan Zelasko
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, United States
| | - William R Arnold
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61802, United States
| | - Aditi Das
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, United States; Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61802, United States; Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61802, United States; Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61802, United States.
| |
Collapse
|
6
|
Szekeres M, Nádasy GL, Turu G, Soltész-Katona E, Tóth ZE, Balla A, Catt KJ, Hunyady L. Angiotensin II induces vascular endocannabinoid release, which attenuates its vasoconstrictor effect via CB1 cannabinoid receptors. J Biol Chem 2012; 287:31540-50. [PMID: 22787147 DOI: 10.1074/jbc.m112.346296] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the vascular system angiotensin II (Ang II) causes vasoconstriction via the activation of type 1 angiotensin receptors. Earlier reports have shown that in cellular expression systems diacylglycerol produced during type 1 angiotensin receptor signaling can be converted to 2-arachidonoylglycerol, an important endocannabinoid. Because activation of CB(1) cannabinoid receptors (CB(1)R) induces vasodilation and reduces blood pressure, we have tested the hypothesis that Ang II-induced 2-arachidonoylglycerol release can modulate its vasoconstrictor action in vascular tissue. Rat and mouse skeletal muscle arterioles and mouse saphenous arteries were isolated, pressurized, and subjected to microangiometry. Vascular expression of CB(1)R was demonstrated using Western blot and RT-PCR. In accordance with the functional relevance of these receptors WIN55212, a CB(1)R agonist, caused vasodilation, which was absent in CB(1)R knock-out mice. Inhibition of CB(1)Rs using O2050, a neutral antagonist, enhanced the vasoconstrictor effect of Ang II in wild type but not in CB(1)R knock-out mice. Inverse agonists of CB(1)R (SR141716 and AM251) and inhibition of diacylglycerol lipase using tetrahydrolipstatin also augmented the Ang II-induced vasoconstriction, suggesting that endocannabinoid release modulates this process via CB(1)R activation. This effect was independent of nitric-oxide synthase activity and endothelial function. These data demonstrate that Ang II stimulates vascular endocannabinoid formation, which attenuates its vasoconstrictor effect, suggesting that endocannabinoid release from the vascular wall and CB(1)R activation reduces the vasoconstrictor and hypertensive effects of Ang II.
Collapse
Affiliation(s)
- Mária Szekeres
- Department of Physiology, Semmelweis University, H-1444 Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
The selective regulation of total peripheral circulation in hypovolemic crisis offers a unique approach for treating and preventing hemorrhagic shock. Ideally, such a therapeutic intervention would require targeting of the striated muscle vascular beds without altering the vascular resistance in vital organ vascular beds. We discovered that a combination of cannabinoid receptor agonist, THC (Δ-tetrahydrocannabinol), and cyclooxygenase 2 inhibitor, NS-398, caused selective microvascular constriction in the mouse cremaster muscle manifested by a pronounced and significant 27.4% ± 7.9% decrease in vessel diameter relative to control (P < 0.01). This observation, and the reported lack of microvascular response in the mesentery and brain, led us to hypothesize that the drug combination could favorably redistribute blood volume in hypovolemia and prolong survival. To test the hypothesis, male Sprague-Dawley rats were subjected to a pressure-controlled hemorrhage (mean arterial pressure reduced to 30 ± 13.73 mmHg) then randomly assigned to one of six treatment groups (n = 6 per group). The untreated, NS-398-treated, and THC-treated groups manifested an insignificant difference in survival between groups after shock. The group treated with a combination of THC and NS-398 manifested a significant increase in mean survival from 53 ± 12 to 227 ± 23 min after shock (P < 0.001). The drug combination significantly reduced IL-1α, IL-1β, IFN-γ, and IL-10 production compared with the group resuscitated with normal saline. In addition, histological evaluation indicated that the therapy protects the lungs and liver against hemorrhagic shock-induced damage. The combination of cannabinoid receptor agonist and cyclooxygenase 2 inhibitor represents a potentially new approach to low-volume therapeutic intervention for hypovolemia.
Collapse
|
8
|
Abstract
PURPOSE The generation of hyperpolarising vasorelaxant endothelial cytochrome P450 epoxygenase (CYP)-derived metabolites of arachidonic may provide beneficial effects for the treatment of cardiovascular diseases in which the bioavailability of NO is impaired. The cannabinoid methanandamide has vasodilatory properties linked to hyperpolarisation. The aim of the present work was to investigate the vasorelaxant effects of methanandamide in rat aorta, focusing on the role of cytochrome P450 pathway. METHODS Changes in isometric tension in response to a cumulative concentration-response curve of methanandamide (1 nM-100 μM) were recorded in aortic rings from male Wistar rats. The involvement of cannabinoid receptors, endothelial nitric oxide (NO)-, prostacyclin- and some hyperpolarising-mediated pathways were investigated. The activation of large-conductance Ca(2+)-activated K(+) (BKCa) channels have also been evaluated. RESULTS Methanandamide provoked an endothelium-dependent vasorelaxation in rat aorta, reaching a maximal effect (Rmax) of 67% ± 2.6%. This vasorelaxation was clearly inhibited by the combination of CB(1) and CB(2) cannabinoid antagonists (Rmax: 21.6% ± 1.3%) and by the combination of guanylate cyclase and CYP inhibitors (Rmax: 16.7% ± 1.1%). The blockade induced separately by guanylate cyclase (31.3% ± 2.8%) or CYP (36.3% ± 6.6%) inhibitors on methanandamide vasorelaxation was not significantly modified by either CB(1) or CB(2) inhibition. BKCa channels inhibition caused a partial and significant inhibition of the methanandamide vasorelaxation (Rmax: 39.9% ± 3.3%). CONCLUSIONS Methanandamide endothelium-dependent vasorelaxation is mediated by CB(1) and CB(2) cannabinoid receptors. The NO- and CYP-mediated pathways contribute in a concurrent manner in this vascular effect. Stimulation of both cannabinoid receptor subtypes is indistinctly linked to NO or CYP routes to cause vasorelaxation.
Collapse
|
9
|
Ciborowski M, Martin-Ventura JL, Meilhac O, Michel JB, Ruperez FJ, Tuñon J, Egido J, Barbas C. Metabolites Secreted by Human Atherothrombotic Aneurysms Revealed through a Metabolomic Approach. J Proteome Res 2011; 10:1374-82. [DOI: 10.1021/pr101138m] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michal Ciborowski
- Centro de Excelencia en Metabolómica y Bioanálisis (CEMBIO), Faculty of Pharmacy, University San Pablo-CEU, Campus Montepríncipe, Boadilla del Monte, 28668 Madrid, Spain
- Department of Physical Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland
| | - Jose L. Martin-Ventura
- IIS-Vascular Research Laboratory, Fundación Jiménez Díaz, Madrid, Spain
- Autónoma University, Madrid, Spain
| | - Olivier Meilhac
- INSERM U698, Paris, F-75018, France; Université Denis Diderot, UMR-S698, Paris, F-75018, France
| | - Jean-Baptiste Michel
- INSERM U698, Paris, F-75018, France; Université Denis Diderot, UMR-S698, Paris, F-75018, France
| | - F. Javier Ruperez
- Centro de Excelencia en Metabolómica y Bioanálisis (CEMBIO), Faculty of Pharmacy, University San Pablo-CEU, Campus Montepríncipe, Boadilla del Monte, 28668 Madrid, Spain
| | - Jose Tuñon
- IIS-Vascular Research Laboratory, Fundación Jiménez Díaz, Madrid, Spain
- Autónoma University, Madrid, Spain
| | - Jesus Egido
- IIS-Vascular Research Laboratory, Fundación Jiménez Díaz, Madrid, Spain
- Autónoma University, Madrid, Spain
| | - Coral Barbas
- Centro de Excelencia en Metabolómica y Bioanálisis (CEMBIO), Faculty of Pharmacy, University San Pablo-CEU, Campus Montepríncipe, Boadilla del Monte, 28668 Madrid, Spain
| |
Collapse
|
10
|
Deng H. Recent advances in the discovery and evaluation of fatty acid amide hydrolase inhibitors. Expert Opin Drug Discov 2010; 5:961-93. [PMID: 22823990 DOI: 10.1517/17460441.2010.513378] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD Cannabis has been used for both medicinal and recreational purposes since ancient times. Although cannabinoid-based medicines hold great promise in several challenging therapeutic areas such as pain management and mode control, their development has been hampered by psychoactive and other CNS-related side effects. The identification of fatty acid amide hydrolase (FAAH), a key enzyme responsible for the degradation of endocannabinoids, has brought in tremendous opportunities in that inhibition of FAAH leads to local elevation of endocannabinoids under certain stimuli, thus, avoiding the side effects from global activation of cannabinoid receptors by exogenous cannabimimetic compounds. The search for selective FAAH inhibitors has thus become a strong focus in current drug discovery. AREAS COVERED IN THIS REVIEW This review summarizes our current understanding of FAAH including its structure, catalytic mechanism and biological functions with emphases on its role in the regulation of endocannabinoids and other signaling lipids. The review then highlights the most recent discovery and biological activities of different classes of FAAH inhibitors. Last, the review discusses challenges and potential drawbacks in the development of FAAH inhibitor-based therapy. WHAT THE READER WILL GAIN Readers will have an overview of FAAH and obtain a rationale on FAAH as an attractive therapeutic target for the development of medicines for treating pain, inflammation, anxiety and other diseases. More importantly, readers will gain knowledge on various newly established FAAH inhibitor scaffolds and their development potentials, and such information will hopefully stimulate ideas for the designing of new inhibitors with superior activity profiles. The discussions on the potential challenges in developing FAAH inhibitors will impose more caution in the decision-making process, thus, lowering the possibility of late stage failure. TAKE HOME MESSAGE FAAH is an attractive target for modulating the endocannabinoid system, thus, treating many disease conditions including pain and mode control without the CNS side effects associated with cannabis usage. In recent years, tremendous effort has been focused in the FAAH inhibitor research field, and consequently many novel chemical templates have been discovered. FAAH hydrolyzes several important signaling lipids, but the long-term effects of FAAH inhibition in humans remain to be seen. While it is challenging to identify the right molecule with the right level of intervention of the FAAH function for treating a disease condition, it is possible to avoid mechanism-related undesired effects. With the entry of several compounds into clinical trials, FAAH inhibitor-based medicines are on the horizon.
Collapse
Affiliation(s)
- Hongfeng Deng
- GlaxoSmithKline, Platform Technology & Science/Molecular Discovery Research, ELT-Boston, 830 Winter Street, Waltham, MA 02451, USA
| |
Collapse
|
11
|
Daly CJ, Ross RA, Whyte J, Henstridge CM, Irving AJ, McGrath JC. Fluorescent ligand binding reveals heterogeneous distribution of adrenoceptors and 'cannabinoid-like' receptors in small arteries. Br J Pharmacol 2010; 159:787-96. [PMID: 20136833 DOI: 10.1111/j.1476-5381.2009.00608.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Pharmacological analysis of synergism or functional antagonism between different receptors commonly assumes that interacting receptors are located in the same cells. We have now investigated the distribution of alpha-adrenoceptors, beta-adrenoceptors and cannabinoid-like (GPR55) receptors in the mouse arteries. EXPERIMENTAL APPROACH Fluorescence intensity from vascular tissue incubated with fluorescent ligands (alpha(1)-adrenoceptor ligand, BODIPY-FL-prazosin, QAPB; beta-adrenoceptor ligand, TMR-CGP12177; fluorescent angiotensin II; a novel diarylpyrazole cannabinoid ligand (Tocrifluor 1117, T1117) was measured with confocal microscopy. Small mesenteric and tail arteries of wild-type and alpha(1B/D)-adrenoceptor-KO mice were used. KEY RESULTS T1117, a fluorescent form of the cannabinoid CB(1) receptor antagonist AM251, was a ligand for GPR55, with low affinity for CB(1) receptors. In mesenteric arterial smooth muscle cells, alpha(1A)-adrenoceptors were predominantly located in different cells from those with beta-adrenoceptors, angiotensin receptors or cannabinoid-like (GPR55) receptors. Cells with beta-adrenoceptors predominated at arterial branches. Endothelial cells expressed beta-adrenoceptors, alpha-adrenoceptors and cannabinoid-like receptors. Only endothelial alpha-adrenoceptors appeared in clusters. Adventitia was a rich source of G protein-coupled receptors (GPCRs), particularly fibroblasts and nerve tracts, where Schwann cells bound alpha-adrenoceptor, beta-adrenoceptor and CB-receptor ligands, with a mix of separate receptor locations and co-localization. CONCLUSIONS AND IMPLICATIONS Within each cell type, each GPCR had a distinctive heterogeneous distribution with limited co-localization, providing a guide to the possibilities for functional synergism, and suggesting a new paradigm for synergism in which interactions may be either between cells or involve converging intracellular signalling processes.
Collapse
Affiliation(s)
- C J Daly
- Integrative and Systems Biology, Faculty of Biomedical and Life Sciences, West Medical Building, University of Glasgow, Glasgow, UK.
| | | | | | | | | | | |
Collapse
|
12
|
Kupczyk P, Reich A, Szepietowski JC. Cannabinoid system in the skin - a possible target for future therapies in dermatology. Exp Dermatol 2009; 18:669-79. [PMID: 19664006 DOI: 10.1111/j.1600-0625.2009.00923.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cannabinoids and their derivatives are group of more than 60 biologically active chemical agents, which have been used in natural medicine for centuries. The major agent of exogenous cannabinoids is Delta(9)-tetrahydrocannabinol (Delta(9)-THC), natural psychoactive ingredient of marijuana. However, psychoactive properties of these substances limited their use as approved medicines. Recent discoveries of endogenous cannabinoids (e.g. arachidonoylethanolamide, 2-arachidonoylglycerol or palmithyloethanolamide) and their receptors initiated discussion on the role of cannabinoid system in physiological conditions as well as in various diseases. Based on the current knowledge, it could be stated that cannabinoids are important mediators in the skin, however their role have not been well elucidated yet. In our review, we summarized the current knowledge about the significant role of the cannabinoid system in the cutaneous physiology and pathology, pointing out possible future therapeutic targets.
Collapse
Affiliation(s)
- Piotr Kupczyk
- Department of Clinical Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | | | | |
Collapse
|
13
|
Brighton PJ, McDonald J, Taylor AH, Challiss RAJ, Lambert DG, Konje JC, Willets JM. Characterization of anandamide-stimulated cannabinoid receptor signaling in human ULTR myometrial smooth muscle cells. Mol Endocrinol 2009; 23:1415-27. [PMID: 19477951 DOI: 10.1210/me.2009-0097] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Accumulating evidence highlights the importance of the endocannabinoid anandamide (AEA) as a key mediator in reproductive physiology. Current data suggest potential roles for AEA in gametogenesis, fertilization, and parturition. AEA exerts its actions through two G protein-coupled receptors, termed cannabinoid receptor 1 (CB1), and 2 (CB2), and the ligand-gated transient receptor potential vanilloid receptor type 1 (TRPV1) ion channel. At present, the cellular mechanism(s) and consequences of AEA signaling in reproductive tissues, especially the myometrium, are poorly understood. Here, we examine the expression of CB1, CB2, and TRPV1 in the human myometrial smooth muscle cell-line (ULTR) and characterize intracellular signaling after stimulation with AEA. Radioligand binding analysis revealed a total CB receptor expression of 76 +/- 24 fmol/mg protein, with both quantitative PCR and competition binding studies indicating a negligible CB2 component. AEA caused Galpha(i/o)-dependent inhibition of adenylate cyclase to reduce intracellular cAMP levels. In addition, AEA caused a 2.5- to 3.5-fold increase in ERK activation, which was ablated by inhibition of Galpha(i/o), phosphoinositide-3-kinase and Src-kinase activities, but not by inhibition of Ca(2+)/calmodulin-dependent protein kinase or protein kinase C activities. TRPV1 channel activation with capsaicin failed to activate ERK. Consistent with these findings, the selective agonists, arachidonyl-2-chloroethylamide (CB1) and L759656 (CB2), and selective antagonists AM251 (CB1) and JTE907 (CB2), provided pharmacological evidence that the ERK signaling pathway is activated through endogenously expressed CB1. These findings provide an insight into myometrial AEA signaling, highlighting a potential role for endocannabinoids in the regulation of gene expression in myometrial smooth muscle cells.
Collapse
Affiliation(s)
- Paul J Brighton
- Endocannabinoid Research Group, Reproductive Sciences Section, Department of Cancer Studies, University of Leicester, Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
14
|
Hashiguchi T, Kakihana Y, Isowaki S, Kuniyoshi T, Kaminosono T, Nagata E, Tobo K, Tahara M, Okayama N, Arakawa Y, Kakihara Y, Goromaru T, Nakanishi N, Nakazawa H, Kanmura Y. Systematic evaluation of nitric oxide, tetrahydrobiopterin, and anandamide levels in a porcine model of endotoxemia. J Anesth 2008; 22:213-20. [PMID: 18685926 DOI: 10.1007/s00540-008-0610-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Accepted: 01/25/2008] [Indexed: 11/25/2022]
Abstract
PURPOSE Using a lipopolysaccharide (LPS)-treated porcine model, we examined: (1) whether nitric oxide (NO), anandamide, and tetrahydrobiopterin (BH4) increased or not in early endotoxic shock; and (2) the location of the major site of production of these molecules, by comparing their concentrations in arteries and the portal and hepatic veins. METHODS Ten pigs received an infusion of LPS at 1.7 microg x kg(-1)x h(-1) via the portal vein for 240 min. Consecutive changes in systemic hemodynamics, hepatosplanchnic circulation, and oxygen delivery were measured. Furthermore, the variable changes in the concentrations of nitrite and nitrate (NOx), anandamide, and BH4 were measured. To access the effects of surgery, anesthesia, and fluid management on BH4, an experiment without LPS infusion was performed in two other animals. RESULTS Mean arterial pressure and cardiac index started to decrease at 60 min after LPS infusion. However, systemic vascular resistance remained unchanged. Total hepatic blood flow and hepatic oxygen delivery also decreased significantly. NOx and anandamide did not change during LPS infusion. BH4 values did not change without LPS infusion. However, BH4 values increased significantly in the arterial, portal, and hepatic circulation during LPS infusion, especially in the hepatic vein (from 136.8 +/- 27.5 to 281.3 +/- 123.2 mol/ml; P < 0.01). CONCLUSION Our data suggest that the BH4 values were significantly increased in several organs, especially in the liver during endotoxic shock. Impaired cardiac output and decreased blood pressure appeared in the early phase of porcine endotoxemia. Longer-term observation of these parameters after LPS treatment should be performed as the next step in future studies.
Collapse
Affiliation(s)
- Tetsuaki Hashiguchi
- Department of Anesthesiology and Critical Care Medicine, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Williams MA, Smith SA, O'Brien DE, Mitchell JH, Garry MG. The group IV afferent neuron expresses multiple receptor alterations in cardiomyopathyic rats: evidence at the cannabinoid CB1 receptor. J Physiol 2007; 586:835-45. [PMID: 18063665 DOI: 10.1113/jphysiol.2007.140392] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The exercise pressor reflex (EPR) is an important neural mechanism that controls blood pressure and heart rate during static muscle contraction. It has been previously demonstrated that the EPR is exaggerated in cardiomyopathy. Both mechanically (group III) and metabolically (group IV) sensitive afferent neurons are important to this reflex in normal humans and animals. In cardiomyopathy, however, the metabolically sensitive afferents are less responsive to activation whereas the mechanically sensitive fibres are overactive. We have demonstrated that this overactivity is responsible for the exaggeration in the EPR. Of importance, we have also demonstrated that the reduced responsiveness in the group IV afferent neuron is an initiating factor in the development of the exaggerated EPR. To date, the mechanism mediating this reduced group IV responsiveness remains unclear. Given that group IV afferent neurons are activated via chemically sensitive receptors, it is logical to suggest that changes in receptor function are responsible for the blunted behaviour of group IV neurons in cardiomyopathy. In order to test this postulate, however, potential receptor candidates must first be identified. The transient receptor potential vanilloid 1 (TRPv1) receptor is a non-selective cation channel that serves as a marker of the group IV afferent neurons in the periphery. We have demonstrated that the TRPv1 is abnormal in cardiomyopathy. It has been shown that the TRPv1 receptor is colocalized with the cannabinoid 1 (CB(1)) receptor on group IV afferent neurons. Therefore, we hypothesized that the function of CB(1) receptors is abnormal in cardiomyopathy. We explored this possibility by using anandamide (AEA), an endogenously produced cannabinoid that has been shown to control blood pressure via activation of the CB(1) receptor. In these studies, we evaluated the cardiovascular responses to intra-arterial injection of AEA into the hindlimb of normal, cardiomyopathic and neonatally capsaicin-treated (NNCAP) rats (rats that lack group IV afferent neurons) to determine whether administration of AEA results in abnormal responses of group IV afferent neurons in cardiomyopathic rats. We determined that AEA controls changes in blood pressure, predominately via activation of the CB(1) receptor in this preparation. We further observed that the blood pressure response to AEA is blunted in cardiomyopathic rats when compared to normal rats. We also observed a reduced blood pressure response to AEA in NNCAP animals, indicating that AEA is acting on group IV afferent neurons in this preparation. To determine whether programmed cell death could account for the decreased responsiveness that we observed during activation of the CB(1) and TRPv1 receptors on group IV afferent neurons in heart failure, we performed terminal deoxynucleotidyl transferase-mediated dUTP nick end-labelling (TUNEL) assay. We observed no evidence of cell death within the dorsal root ganglia in rats with cardiomyopathy. The data suggest that the responsiveness of CB(1) receptors on group IV afferent neurons is blunted in cardiomyopathy. Importantly, these data indicate that group IV primary afferent neurons express multiple receptor defects in cardiomyopathy that may contribute to the decreased CB(1) receptor sensitivity in this disease.
Collapse
Affiliation(s)
- Maurice A Williams
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9174, USA
| | | | | | | | | |
Collapse
|
16
|
McDougall JJ, Yu V, Thomson J. In vivo effects of CB2 receptor-selective cannabinoids on the vasculature of normal and arthritic rat knee joints. Br J Pharmacol 2007; 153:358-66. [PMID: 17982474 DOI: 10.1038/sj.bjp.0707565] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE Cannabinoids (CBs) are known to be vasoactive and to regulate tissue inflammation. The present study examined the in vivo vasomotor effects of the CB2 receptor agonists JWH015 and JWH133 in rat knee joints. The effect of acute and chronic joint inflammation on CB2 receptor-mediated responses was also tested. EXPERIMENTAL APPROACH Blood flow was assessed in rat knee joints by laser Doppler imaging both before and following topical administration of CB2 receptor agonists. Vasoactivity was measured in normal, acute kaolin/carrageenan inflamed and Freund's complete adjuvant chronically inflamed knees. KEY RESULTS In normal animals, JWH015 and JWH133 caused a concentration-dependent increase in synovial blood flow which in the case of JWH133 was blocked by the selective CB2 receptor antagonist AM630 as well as the transient receptor potential vanilloid-1 (TRPV1) antagonist SB366791. The vasodilator effect of JWH133 was significantly attenuated in both acute and chronically inflamed knees. Given alone, AM630 had no effect on joint blood flow. CONCLUSION AND IMPLICATIONS In normal joints, the cannabinomimetic JWH133 causes hyperaemia via a CB2 and TRPV1 receptor mechanism. During acute and chronic inflammation, however, this vasodilatatory response is significantly attenuated.
Collapse
Affiliation(s)
- J J McDougall
- Department of Physiology & Biophysics, University of Calgary, Calgary, Alberta, Canada.
| | | | | |
Collapse
|
17
|
Fryer RM, Segreti JA, Widomski DL, Franklin PH, Banfor PN, Koch KA, Nakane M, Wu-Wong JR, Cox BF, Reinhart GA. Systemic activation of the calcium sensing receptor produces acute effects on vascular tone and circulatory function in uremic and normal rats: focus on central versus peripheral control of vascular tone and blood pressure by cinacalcet. J Pharmacol Exp Ther 2007; 323:217-26. [PMID: 17636005 DOI: 10.1124/jpet.107.123901] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Calcium-sensing receptor (CaR) activation decreases serum parathyroid hormone (PTH) and Ca2+ and, despite long-term reductions in mean arterial blood pressure (MAP), may produce acute hypertension in rats, an effect we hypothesized was mediated by constriction of multiple vascular beds. Rats were subjected to 5/6 nephrectomy (NX) or no surgery (Normal); at 7 to 8 weeks, uremia animals were anesthetized and instrumented to record MAP and regional blood flow (carotid, mesenteric, and hindlimb). Cinacalcet [N-(1-naphthalen-1-ylethyl)-3-[3-(trifluoromethyl)phenyl]-propan-1-amine; 1, 3, and 10 mg/kg; 30 min/dose] was infused over 90 min. In NX rats, cinacalcet dose-dependently decreased ionized calcium (iCa2+), elicited a 90% reduction in PTH, and produced dose-dependent self-limiting increases in MAP (from 119 +/- 6 to 129 +/- 5, 142 +/- 4, and 145 +/- 3 mm Hg at the end of each infusion). At 1 mg/kg, carotid vascular resistance (CVR) and mesenteric vascular resistance (MVR) increased to 16 +/- 6 and 18 +/- 6% above baseline, respectively. Hindlimb vascular resistance (HVR) also trended upward (13 +/- 8%). At 3 mg/kg, increases in CVR (38 +/- 10%), MVR (40 +/- 8%), and HVR (39 +/- 14%) were exacerbated; at 10 mg/kg, values remained at or near these levels. The effects of cinacalcet in Normal rats were similar to NX and were attenuated by ganglionic blockade with hexamethonium at low doses but remained significantly elevated at higher doses. Thus, CaR activation acutely increases MAP in uremic and nonuremic rats, responses that occur in parallel to vasoconstriction in multiple vascular beds through both a central and peripheral mechanism of action. Moreover, subsequent mechanistic studies suggest that increases in MAP produced by cinacalcet may be mediated by reduced tonic NO synthase-dependent NO production subsequent to reductions in blood iCa2+.
Collapse
Affiliation(s)
- Ryan M Fryer
- Integrative Pharmacology, Global Pharmaceutical Research and Development, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064-6119, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Mendizábal VE, Adler-Graschinsky E. Cannabinoids as therapeutic agents in cardiovascular disease: a tale of passions and illusions. Br J Pharmacol 2007; 151:427-40. [PMID: 17450170 PMCID: PMC2013961 DOI: 10.1038/sj.bjp.0707261] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In addition to their classical known effects, such as analgesia, impairment of cognition and learning and appetite enhancement, cannabinoids have also been related to the regulation of cardiovascular responses and implicated in cardiovascular pathology. Elevated levels of endocannabinoids have been related to the extreme hypotension associated with various forms of shock as well as to the cardiovascular abnormalities that accompany cirrhosis. In contrast, cannabinoids have also been associated with beneficial effects on the cardiovascular system, such as a protective role in atherosclerosis progression and in cerebral and myocardial ischaemia. In addition, it has also been suggested that the pharmacological manipulation of the endocannabinoid system may offer a novel approach to antihypertensive therapy. During the last decades, the tremendous increase in the understanding of the molecular basis of cannabinoid activity has encouraged many pharmaceutical companies to develop more potent synthetic cannabinoid analogues and antagonists, leading to an explosion of basic research and clinical trials. Consequently. not only the synthetic THC dronabinol (Marinol) and the synthetic THC analogue nabilone (Cesamet) have been approved in the United States, but also the standardized cannabis extract (Sativex) in Canada. At least three strategies can be foreseen in the future clinical use of cannabinoid-based drugs: (a) the use of CB(1) receptor antagonists, such as the recently approved rimonabant (b) the use of CB(2)-selective agonists, and (c) the use of inhibitors of endocannabinoid degradation. In this context, the present review examines the effects of cannabinoids and of the pharmacological manipulation of the endocannabinoid system, in cardiovascular pathophysiology.
Collapse
Affiliation(s)
- V E Mendizábal
- Instituto de Investigaciones Farmacológicas (CONICET), Buenos Aires, Argentina.
| | | |
Collapse
|
19
|
Pharmacological characterization of receptor types mediating the dilator action of anandamide on blood vessels of the rat knee joint. Life Sci 2007; 80:1495-502. [DOI: 10.1016/j.lfs.2007.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2006] [Revised: 12/16/2006] [Accepted: 01/10/2007] [Indexed: 11/20/2022]
|
20
|
Kopczyńska B. The contribution of VR1 and CB1 receptors and the role of the afferent vagal pathway in modelling of cardio-respiratory effects of anandamide in rats. Life Sci 2007; 80:1738-45. [PMID: 17379256 DOI: 10.1016/j.lfs.2007.01.062] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 01/19/2007] [Accepted: 01/24/2007] [Indexed: 10/23/2022]
Abstract
Anaesthetized and spontaneously breathing rats were used to study the cardio-respiratory effects of intravenous anandamide administration. To investigate the role of particular levels of the afferent pathway in this response rats were challenged with bolus injection of anandamide (1 mg kg(-1)) into the femoral vein while intact, following bilateral superior laryngeal nerves (SLNs) section and after midcervical vagotomy. To test the hypothesis that the activation of the vanilloid receptors (VR1) as well as cannabinoid receptors (CB1) contributes to the anandamide-induced response administrations of anandamide were preceded by nonselective VR1 antagonist ruthenium red or selective CB1 antagonist AM281. Anandamide evoked apnoea of mean duration of 4.84+/-0.75 s in all animals while intact which was shortened by subsequent neurotomies, after SLNs section to 3.3+/-0.57 s (P<0.05) and after midcervical vagi section to 1.99+/-0.24 s (P<0.01). In post-apnoeic breathing tidal volume (V(T)) was reduced in all neural states. Anandamide evoked hypotension in the intact and SLNs neurotomized rats. Midcervical vagotomy reduced this fall in blood pressure. Both antagonists ruthenium red and AM281 eliminated post-anandamide apnoea and hypotension but had no effect on post-apnoeic depression of V(T). Subsequent SLNs and cervical vagi sections did not eliminate but only reduced post-anandamide depression of breathing. Midcervical vagotomy lessened anandamide-induced hypotension. Apnoeic and hypotensive response to anandamide was mediated by both VR1 and CB1 receptors. Post-anandamide decline of V(T) might depend on different type of receptors.
Collapse
Affiliation(s)
- Beata Kopczyńska
- Laboratory of Respiratory Reflexes, PAS Medical Research Center, 5 Pawińskiego St., 02-106 Warsaw, Poland.
| |
Collapse
|
21
|
Nishida M, Hara Y, Yoshida T, Inoue R, Mori Y. TRP channels: molecular diversity and physiological function. Microcirculation 2006; 13:535-50. [PMID: 16990213 DOI: 10.1080/10739680600885111] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Calcium ions (Ca(2+)) are particularly important in cellular homeostasis and activity. To elicit physiologically relevant timing and spatial patterns of Ca(2+) signaling, ion channels in the surface of each cell precisely control Ca(2+) influx across the plasma membrane. A group of surface membrane ion channels called receptor-activated cation/Ca(2+) channels (RACCs) are activated by diverse cellular stimuli from the surrounding extracellular environment via receptors and other pathways such as heat, osmotic pressure, and mechanical and oxidative stress. An important clue to understanding the molecular mechanisms underlying the functional diversity of RACCs was first attained by molecular identification of the transient receptor potential (trp) protein (TRP), which mediates light-induced depolarization in Drosophila photoreceptor cells, and its homologues from various biological species. Recent studies have revealed that respective TRP channels are indeed activated by characteristic cellular stimuli. Furthermore, the involvement of TRP channels has been demonstrated in the signaling pathways essential for tissue-specific functions as well as ubiquitous biological responses, such as cell proliferation, differentiation, and death. These findings encourage the usage of TRP channels and their signalplexes as powerful tools for developing novel pharmaceutical targets.
Collapse
Affiliation(s)
- Motohiro Nishida
- Department of Pharmacology & Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
22
|
Inoue R, Jensen LJ, Shi J, Morita H, Nishida M, Honda A, Ito Y. Transient receptor potential channels in cardiovascular function and disease. Circ Res 2006; 99:119-31. [PMID: 16857972 DOI: 10.1161/01.res.0000233356.10630.8a] [Citation(s) in RCA: 296] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sustained elevation in the intracellular Ca2+ concentration via Ca2+ influx, which is activated by a variety of mechanisms, plays a central regulatory role for cardiovascular functions. Recent molecular biological research has disclosed an unexpectedly diverse array of Ca(2+-entry channel molecules involved in this Ca2+ influx. These include more than ten transient receptor potential (TRP) superfamily members such as TRPC1, TRPC3-6, TRPV1, TRPV2, TRPV4, TRPM4, TRPM7, and polycystin (TRPP2). Most of them appear to be multimodally activated or modulated and show relevant features to both acute hemodynamic control and long-term remodeling of the cardiovascular system, and many of them have been found to respond not only to receptor stimulation but also to various forms of stimuli. There is good evidence to implicate TRPC1 in neointimal hyperplasia after vascular injury via store-depletion-operated Ca2+ entry. TRPC6 likely contributes to receptor-operated and mechanosensitive Ca2+ mobilizations, being involved in vasoconstrictor and myogenic responses and pulmonary arterial proliferation and its associated disease (idiopathic pulmonary arterial hypertension). Considerable evidence has also been accumulated for unique involvement of TRPV1 in blood flow/pressure regulation via sensory vasoactive neuropeptide release. New lines of evidence suggest that TRPV2 may act as a Ca2+-overloading pathway associated with dystrophic cardiomyopathy, TRPV4 as a mediator of endothelium-dependent hyperpolarization, TRPM7 as a proproliferative vascular Mg2+ entry channel, and TRPP2 as a Ca2+-entry channel requisite for vascular integrity. This review attempts to provide an overview of the current knowledge on TRP proteins and discuss their possible roles in cardiovascular functions and diseases.
Collapse
Affiliation(s)
- Ryuji Inoue
- Department of Physiology, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan.
| | | | | | | | | | | | | |
Collapse
|
23
|
Cheer JF, Wassum KM, Wightman RM. Cannabinoid modulation of electrically evoked pH and oxygen transients in the nucleus accumbens of awake rats. J Neurochem 2006; 97:1145-54. [PMID: 16686693 DOI: 10.1111/j.1471-4159.2006.03860.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cannabinoid receptors have been implicated in the regulation of blood flow in the cerebral vasculature. Because the nucleus accumbens (NAc) shows high levels of central cannabinoid receptor 1 (CB1) expression we examined the effects of cannabinoids on the local transient alkaline shifts and increases in extracellular oxygen induced by electrical stimulation of the medial forebrain bundle (MFB) in conscious animals. These changes result from increases in cerebral blood flow (CBF) and metabolism in the NAc that are evoked by the stimulation. Oxygen and pH changes were monitored using fast-scan cyclic voltammetry at carbon-fiber microelectrodes in the NAc of freely moving rats. Administration of the cannabinoid receptor agonist WIN55,212-2 potently inhibited extracellular oxygen and pH changes, an effect that was reversed and prevented by pre-treatment with the CB1 receptor antagonists SR141716A and AM251. The effects on pH following WIN55,212-2 were similar to those following nimodipine, a recognized vasodilator. When AM251 was injected alone, the amplitude of electrically evoked pH shifts was unaffected. Administration of AM404 and VDM11, endocannabinoid transport inhibitors, partially inhibited pH transients in a CB1 receptor-dependent manner. The present findings suggest that CB1 receptor activation modulates changes in two well-established indices of local blood flow and metabolism resulting from electrically evoked activation of ascending fibers. Although endogenous cannabinoid tone alone is not sufficient to modify these responses, uptake blockade demonstrates that the system has the potential to exert CB1-specific effects similar to those of full agonists.
Collapse
Affiliation(s)
- Joseph F Cheer
- Department of Chemistry and Neuroscience Center, The University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| | | | | |
Collapse
|
24
|
Inoue R, Morita H, Ito Y. Newly emerging Ca2+ entry channel molecules that regulate the vascular tone. Expert Opin Ther Targets 2006; 8:321-34. [PMID: 15268627 DOI: 10.1517/14728222.8.4.321] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Local blood flow is critically determined by the arterial tone in which sustained Ca(2+) influx, activated by a variety of mechanisms, plays a central regulatory role. Recent progress in molecular biological research has disclosed unexpectedly diverse and complex facets of Ca(2+) entry channel molecules involved in this Ca(2+) influx. Candidates include several transient receptor potential (TRP) superfamily members such as TRPC1, TRPC4, TRPC6, TRPV2, TRPV4 and TRPM4, none of which exhibit simple properties attributable to a single particular role. Rather, they appear to be multimodally activated or modulated by receptor stimulation, temperature, mechanical stress or lipid second messengers generated from various sources, and may be involved in both acute vasomotor control and long-term vascular remodelling. This paper provides an overview of existing knowledge of TRP proteins, and their possible relationships with principal factors regulating the arterial tone (i.e., autonomic nerves, various autocrine and paracrine factors, and intravascular pressure).
Collapse
Affiliation(s)
- Ryuji Inoue
- Kyushu University, Department of Pharmacology, Graduate School of Medical Sciences, Fukuoka 812-8582, Japan.
| | | | | |
Collapse
|
25
|
Movahed P, Evilevitch V, Andersson TLG, Jönsson BAG, Wollmer P, Zygmunt PM, Högestätt ED. Vascular effects of anandamide and N-acylvanillylamines in the human forearm and skin microcirculation. Br J Pharmacol 2005; 146:171-9. [PMID: 15997233 PMCID: PMC1576264 DOI: 10.1038/sj.bjp.0706313] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The endocannabinoid anandamide is an emerging potential signalling molecule in the cardiovascular system. Anandamide causes vasodilatation, bradycardia and hypotension in animals and has been implicated in the pathophysiology of endotoxic, haemorrhagic and cardiogenic shock, but its vascular effects have not been studied in man. Human forearm blood flow and skin microcirculatory flow were recorded using venous occlusion plethysmography and laser-Doppler perfusion imaging (LDPI), respectively. Each test drug was infused into the brachial artery or applied topically on the skin followed by a standardized pin-prick to disrupt the epidermal barrier. Anandamide failed to affect forearm blood flow when administered intra-arterially at infusion rates of 0.3-300 nmol min(-1). The highest infusion rate led to an anandamide concentration of approximately 1 microM in venous blood as measured by mass spectrometry. Dermal application of anandamide significantly increased skin microcirculatory flow and coapplication of the transient receptor potential vanilloid 1 (TRPV1) antagonist capsazepine inhibited this effect. The TRPV1 agonists capsaicin, olvanil and arvanil all induced concentration-dependent increases in skin blood flow and burning pain when administered dermally. Coapplication of capsazepine inhibited blood flow and pain responses to all three TRPV1 agonists. This study shows that locally applied anandamide is a vasodilator in the human skin microcirculation. The results are consistent with this lipid being an activator of TRPV1 on primary sensory nerves, but do not support a role for anandamide as a circulating vasoactive hormone in the human forearm vascular bed.
Collapse
Affiliation(s)
- Pouya Movahed
- Department of Clinical and Experimental Pharmacology, Lund University Hospital, SE-221 85 Lund, Sweden
| | - Vladimir Evilevitch
- Department of Clinical Physiology, Malmö University Hospital, SE-205 02 Malmö, Sweden
| | - Tomas L G Andersson
- Department of Clinical and Experimental Pharmacology, Lund University Hospital, SE-221 85 Lund, Sweden
| | - Bo A G Jönsson
- Department of Occupational and Environmental Medicine, Lund University Hospital, SE-221 85 Lund, Sweden
| | - Per Wollmer
- Department of Clinical Physiology, Malmö University Hospital, SE-205 02 Malmö, Sweden
| | - Peter M Zygmunt
- Department of Clinical and Experimental Pharmacology, Lund University Hospital, SE-221 85 Lund, Sweden
- Author for correspondence:
| | - Edward D Högestätt
- Department of Clinical and Experimental Pharmacology, Lund University Hospital, SE-221 85 Lund, Sweden
| |
Collapse
|
26
|
Abstract
Elucidation of mechanisms regulating microcirculatory vascular tone is a key issue in the knowledge of human pathophysiology. Anandamide is an endogenous lipidic cannabinoid (CB) characterized by potent vasodilator activity acting mainly through the activation of CB receptors, located on the vessel walls, and the vanilloid receptor 1, located on sensory peptidergic nerve endings within the external layers of vessel walls. In humans, cutaneous anandamide administration causes forearm skin vasodilation by activating vanilloid receptor 1 presumably on primary sensory nerves, while intrabrachial infusion of the same compound is devoid of effect on forearm muscle microcirculation. Taken together, these results indicate that, apart from a possible distrectual difference, the effect of anandamide is specific for the abluminal, but not for the endoluminal, part of the vessel wall. Thus, it is conceivable that, at least in the peripheral microcirculation, this compound could act as an autocrine/paracrine agent and not as a circulating hormone. In line with this possibility, it has been demonstrated that anandamide can be produced by macrophages and therefore its biological effect might increase in clinical conditions characterized by augmented activity of this cell line, including cardiogenic, hemorrhagic and endotoxic shock and even in atherosclerosis, inflammation and ischemia. Moreover, increased serum values of anandamide have been found in patients with endotoxic shock. However, decisive information concerning the role of anandamide in humans will be obtained when specific antagonists or inhibitors will be available. In that case, the anandamide system might represent a potential target for the treatment of important cardiovascular conditions, including severe shock.
Collapse
Affiliation(s)
- Stefano Taddei
- Department of Internal Medicine, University of Pisa, Via Roma, 67, 56100 Pisa, Italy.
| |
Collapse
|
27
|
Matsuda K, Mikami Y, Takeda K, Fukuyama S, Egawa S, Sunamura M, Maruyama I, Matsuno S. The cannabinoid 1 receptor antagonist, AM251, prolongs the survival of rats with severe acute pancreatitis. TOHOKU J EXP MED 2005; 207:99-107. [PMID: 16141678 DOI: 10.1620/tjem.207.99] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It has recently been recognized that anandamide (arachidonylethanolamide), which is an endogeneous-cannabinoid (endocannabinoid), mediates septic shock. Cannabinoid means a mind-active material in cannabis (marijuana). Anandamide is mainly produced by macrophages. Cannabinoid 1 (CB1) receptor, which is one of the cannabiniod receptors, is also known to mediate hypotensive shock. The role of endocannabinoids in the progression of acute pancreatitis is unclear. The aims of this study are to clarify their relationship and to find a new therapeutic strategy by regulating the endocannabinoid signaling in acute pancreatitis. Male Wistar rats were injected with caerulein intravenously to induce mild edematous pancreatitis or injected with 5% sodium taurocholate to the bilio-pancreatic duct to induce severe necrotizing pancreatitis. The animals in the latter group were also injected with a CB1 receptor antagonist, AM251, or vehicle solution to see if the inhibition of endocannabinoids improves their survival. Plasma anandamide level was measured by the liquid chromatography/tandem mass spectrometry method. In both models of acute pancreatitis, the plasma anandamide levels were increased, and the levels were significantly higher in rats with severe necrotizing pancreatitis than those in rats with mild edematous pancreatitis. The mean arterial pressure and survival rate were significantly improved by the treatment with AM251, despite that the local inflammatory changes in the pancreas and various parameters (white blood cells, hematocrit, serum amylase, and serum interleukin-6) were similar. This is the first report to show that endocannabinoids are involved in the deterioration of acute pancreatitis and that the down-regulation of endocannabinoid signaling may be a new therapeutic strategy for severe acute pancreatitis.
Collapse
MESH Headings
- Acute Disease
- Animals
- Arachidonic Acids/blood
- Blood Pressure/drug effects
- Disease Models, Animal
- Endocannabinoids
- Fluorescent Antibody Technique, Indirect
- Immunohistochemistry
- Male
- Pancreatitis, Acute Necrotizing/chemically induced
- Pancreatitis, Acute Necrotizing/drug therapy
- Pancreatitis, Acute Necrotizing/mortality
- Pancreatitis, Acute Necrotizing/pathology
- Pancreatitis, Acute Necrotizing/physiopathology
- Piperidines/metabolism
- Piperidines/pharmacology
- Polyunsaturated Alkamides
- Pyrazoles/metabolism
- Pyrazoles/pharmacology
- Random Allocation
- Rats
- Rats, Wistar
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Survival Rate
- Taurocholic Acid
- Time Factors
Collapse
Affiliation(s)
- Kazuhisa Matsuda
- Division of Gastroenterological Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryomachi, Aoba-ku, Sendai, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Engeli S, Böhnke J, Feldpausch M, Gorzelniak K, Janke J, Bátkai S, Pacher P, Harvey-White J, Luft FC, Sharma AM, Jordan J. Activation of the peripheral endocannabinoid system in human obesity. Diabetes 2005; 54:2838-43. [PMID: 16186383 PMCID: PMC2228268 DOI: 10.2337/diabetes.54.10.2838] [Citation(s) in RCA: 516] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Obesity is the main risk factor for the development of type 2 diabetes. Activation of the central endocannabinoid system increases food intake and promotes weight gain. Blockade of the cannabinoid type 1 (CB-1) receptor reduces body weight in animals by central and peripheral actions; the role of the peripheral endocannabinoid system in human obesity is now being extensively investigated. We measured circulating endocannabinoid concentrations and studied the expression of CB-1 and the main degrading enzyme, fatty acid amide hydrolase (FAAH), in adipose tissue of lean (n = 20) and obese (n = 20) women and after a 5% weight loss in a second group of women (n = 17). Circulating levels of anandamide and 1/2-arachidonoylglycerol were increased by 35 and 52% in obese compared with lean women (P < 0.05). Adipose tissue mRNA levels were reduced by -34% for CB-1 and -59% for FAAH in obese subjects (P < 0.05). A strong negative correlation was found between FAAH expression in adipose tissue and circulating endocannabinoids. Circulating endocannabinoids and CB-1 or FAAH expression were not affected by 5% weight loss. The expression of CB-1 and FAAH was increased in mature human adipocytes compared with in preadipocytes and was found in several human tissues. Our findings support the presence of a peripheral endocannabinoid system that is upregulated in human obesity.
Collapse
Affiliation(s)
- Stefan Engeli
- Franz Volhard Clinical Research Center, Charité Campus Buch, 13125 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ashton JC, Appleton I, Darlington CL, Smith PF. Immunohistochemical localization of cerebrovascular cannabinoid CB1 receptor protein. J Cardiovasc Pharmacol 2005; 44:517-9. [PMID: 15505486 DOI: 10.1097/00005344-200411000-00001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cannabinoids are powerful hypotensives and vasodilators. However, their mode of action is controversial. This study is the first to investigate the distribution of vascular CB1 receptor protein expression in situ. We used double-fluorescence and chromogenic immunohistochemistry to investigate patterns of CB1 protein expression in cerebrovascular tissue in rat brain sections. We found a layer of intense CB1 labeling immediately adjacent to the internal elastic lamina, consistent with myointimal and vascular smooth muscle cells, and diffuse labeling adventitial to this layer. We concluded that CB1 receptor are most intensely expressed in the vascular smooth muscle layer in cerebral arteries, and are likely to be chiefly responsible for the potent vasodilatory effect of cannabinoids.
Collapse
Affiliation(s)
- John C Ashton
- Department of Pharmacology and Toxicology, School of Medical Sciences, University of Otago Medical School, University of Otago, Dunedin, New Zealand.
| | | | | | | |
Collapse
|
30
|
Randall MD, Kendall DA, O'Sullivan S. The complexities of the cardiovascular actions of cannabinoids. Br J Pharmacol 2004; 142:20-6. [PMID: 15131000 PMCID: PMC1574918 DOI: 10.1038/sj.bjp.0705725] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The cardiovascular actions of cannbinoids are complex. In general they cause vasorelaxation in isolated blood vessels, while in anaesthetised animals they cause multiphasic responses which involve an early bradycardia and long-lasting hypotension. However, in conscious animals, the picture is one of bradycardia followed by pressor responses. Clearly, the responses to cannabinoids are dependent on the experimental conditions and synthetic cannabinoids and endocannabinoids exhibit different pharmacologies. In terms of mechanisms involved in the vascular responses to cannabinoids, the following have been implicated: the involvement of 'classical' cannabinoid receptors, the involvement of a novel endothelial cannabinoid receptor, the release of nitric oxide, the release of endothelium-derived hyperpolarising factor (EDHF), the activation of vanilloid receptors, metabolism of endocannabinoids to vasoactive molecules, and both peripheral inhibition and central excitation of the sympathetic nervous system.
Collapse
Affiliation(s)
- Michael D Randall
- School of Biomedical Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham NG7 2UH.
| | | | | |
Collapse
|
31
|
López-Miranda V, Herradón E, Dannert MT, Alsasua A, Martín MI. Anandamide vehicles: a comparative study. Eur J Pharmacol 2004; 505:151-61. [PMID: 15556148 DOI: 10.1016/j.ejphar.2004.10.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Accepted: 10/04/2004] [Indexed: 10/26/2022]
Abstract
Among the studies that investigate the vasorelaxation induced by anandamide, one of the most frequent differences is the use of distinct solvents that could modify vascular function and explain the controversial results described. The aims of this study were: to evaluate the influence of different cannabinoid vehicles in vascular function of rat aorta, and to compare the vasorelaxation induced by anandamide dissolved in different vehicles. Vehicles were: ethanol (70%), Tween 80/ethanol (2:1 and 1:1), 1:1:18 (Tween 80/ethanol/saline) and dimethylsulphoxide (DMSO) 0.5%. All the vehicles tested, except DMSO 0.5%, modified the vascular and/or the endothelial function in rat aorta rings. Anandamide caused a time- and concentration-dependent vasorelaxation in all the experimental groups except in ethanol group, but the mechanisms involved in its vasorelaxation appear to be different depending on the vehicle used. The results obtained with vehicles containing Tween 80 suggest a non-endothelial component in the vasorelaxation caused by anandamide, while those obtained with DMSO at 0.5% suggest an endothelial component in this vasorelaxation.
Collapse
Affiliation(s)
- Visitación López-Miranda
- Universidad Rey Juan Carlos, Facultad Ciencias de la Salud, Dpto. Ciencias de la Salud, Unidad de Farmacología. Avda. Atenas s/n 28922 Alcorcón, Madrid, Spain.
| | | | | | | | | |
Collapse
|
32
|
Baker CL, McDougall JJ. The cannabinomimetic arachidonyl-2-chloroethylamide (ACEA) acts on capsaicin-sensitive TRPV1 receptors but not cannabinoid receptors in rat joints. Br J Pharmacol 2004; 142:1361-7. [PMID: 15277316 PMCID: PMC1575203 DOI: 10.1038/sj.bjp.0705902] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The vasoactive effects of the synthetic cannabinoid (CB) arachidonyl-2-chloroethylamide (ACEA) was tested in the knee joints of urethane-anaesthetised rats. Experiments were also performed to determine whether these vasomotor responses could be blocked by the selective CB(1) receptor antagonists AM251 (N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide) (10(-9) mol) and AM281 (1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-4-morpholinyl-1H-pyrazole-3-carboxamide) (10(-8) mol), as well as the selective CB(2) receptor antagonist AM630 (6-iodo-2-methyl-1-[2-4(morpholinyl)ethyl]-[1H-indol-3-yl](4-methoxyphenyl)methanone) (10(-8) mol). Peripheral application of ACEA (10(-14)-10(-9) mol) onto the exposed surface of the knee joint capsule caused a dose-dependent increase in synovial blood flow. The dilator action of the CB occurred within 1 min after drug administration and rapidly returned to control levels shortly thereafter. The maximal vasodilator effect of ACEA corresponded to a 30% increase in articular perfusion compared to control levels. The hyperaemic action of ACEA was not significantly altered by coadministration of AM251, AM281 or AM630 (P>0.05; two-way ANOVA). The transient receptor potential channel vanilloid receptor 1 (TRPV(1)) antagonist capsazepine (10(-6) mol) significantly reduced the vasodilator effect of ACEA on joint blood vessels (P=0.002). Furthermore, destruction of unmyelinated and thinly myelinated joint sensory nerves by capsaicin (8-methyl-N-vanillyl-6-nonenamide) treatment also attenuated ACEA responses (P<0.0005). These data clearly demonstrate a vasodilator effect of the cannabinomimetic ACEA on knee joint perfusion. Rather than a classic CB receptor pathway, ACEA exerts its vasomotor influence by acting via TRPV(1) receptors located on the terminal branches of capsaicin-sensitive afferent nerves innervating the joint.
Collapse
Affiliation(s)
- Chris L Baker
- Department of Physiology and Biophysics, 3300, Hospital Drive NW, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Jason J McDougall
- Department of Physiology and Biophysics, 3300, Hospital Drive NW, University of Calgary, Calgary, Alberta, Canada T2N 4N1
- Author for correspondence:
| |
Collapse
|
33
|
Van Der Stelt M, Di Marzo V. Endovanilloids. Putative endogenous ligands of transient receptor potential vanilloid 1 channels. ACTA ACUST UNITED AC 2004; 271:1827-34. [PMID: 15128293 DOI: 10.1111/j.1432-1033.2004.04081.x] [Citation(s) in RCA: 316] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Endovanilloids are defined as endogenous ligands of the transient receptor potential vanilloid type 1 (TRPV1) protein, a nonselective cation channel that belongs to the large family of TRP ion channels, and is activated by the pungent ingredient of hot chilli peppers, capsaicin. TRPV1 is expressed in some nociceptor efferent neurons, where it acts as a molecular sensor of noxious heat and low pH. However, the presence of these channels in various regions of the central nervous system, where they are not likely to be targeted by these noxious stimuli, suggests the existence of endovanilloids. Three different classes of endogenous lipids have been found recently that can activate TRPV1, i.e. unsaturated N-acyldopamines, lipoxygenase products of arachidonic acid and the endocannabinoid anandamide with some of its congeners. To classify a molecule as an endovanilloid, the compound should be formed or released in an activity-dependent manner in sufficient amounts to evoke a TRPV1-mediated response by direct activation of the channel. To control TRPV1 signaling, endovanilloids should be inactivated within a short time-span. In this review, we will discuss, for each of the proposed endogenous ligands of TRPV1, their ability to act as endovanilloids in light of the criteria mentioned above.
Collapse
Affiliation(s)
- Mario Van Der Stelt
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | | |
Collapse
|
34
|
Wasilewski M, Wieckowski MR, Dymkowska D, Wojtczak L. Effects of N-acylethanolamines on mitochondrial energetics and permeability transition. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1657:151-63. [PMID: 15238272 DOI: 10.1016/j.bbabio.2004.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2004] [Revised: 05/10/2004] [Accepted: 05/11/2004] [Indexed: 11/26/2022]
Abstract
Effects of N-acylethanolamines (NAEs): N-arachidonoylethanolamine (anandamide), N-oleoylethanolamine and N-palmitoylethanolamine, on energy coupling and permeability of rat heart mitochondria were investigated. In nominally Ca2+-free media, these compounds exerted a weak protonophoric effect manifested by dissipation of the transmembrane potential and stimulation of resting state respiration. The strongest action was exhibited by N-arachidonoylethanolamine, followed by N-oleoylethanolamine, whereas N-palmitoylethanolamine was almost inactive. These protonophoric effects were resistant to cyclosporin A (CsA) and were much weaker than those of corresponding nonesterified fatty acids. In uncoupled mitochondria N-arachidonoylethanolamine and N-oleoylethanolamine partly inhibited mitochondrial respiration with glutamate and succinate but not with tetramethyl-p-phenylenediamine (TMPD) plus ascorbate as respiratory substrates. In mitochondria preloaded with small amounts of Ca2+, NAEs produced a much stronger dissipation of the membrane potential and a release of accumulated calcium, both effects being inhibited by CsA, indicative for opening of the mitochondrial permeability transition pore (PTP). Again, the potency of this action was N-arachidonoylethanolamine>N-oleoylethanolamine>N-palmitoylethanolamine. However, in spite of making the matrix space accessible to external [14C]sucrose, N-arachidonoylethanolamine and N-oleoylethanolamine resulted in only a limited swelling of mitochondria and diminished the rate of swelling produced by high Ca2+ load.
Collapse
Affiliation(s)
- Michał Wasilewski
- Department of Cellular Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, PL-02-093 Warsaw, Poland
| | | | | | | |
Collapse
|
35
|
Abstract
In most countries Cannabis is the most widely used illegal drug. Its use during pregnancy in developed nations is estimated to be approximately 10%. Recent evidence suggests that the endogenous cannabinoid system, now consisting of two receptors and multiple endocannabinoid ligands, may also play an important role in the maintenance and regulation of early pregnancy and fertility. The purpose of this review is therefore twofold, to examine the impact that cannabis use may have on fertility and reproduction, and to review the potential role of the endocannabinoid system in hormonal regulation, embryo implantation and maintenance of pregnancy.
Collapse
Affiliation(s)
- Boram Park
- Department of Pharmacology and Liggins Institute, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | |
Collapse
|
36
|
Dubrovska G, Verlohren S, Luft FC, Gollasch M. Mechanisms of ADRF release from rat aortic adventitial adipose tissue. Am J Physiol Heart Circ Physiol 2003; 286:H1107-13. [PMID: 14644761 DOI: 10.1152/ajpheart.00656.2003] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Blood vessels are surrounded by variable amounts of adipose tissue. We showed earlier that adventitial adipose tissue inhibits rat aortic contraction by release of a transferable factor, adventitium-derived relaxing factor (ADRF), which activates smooth muscle K(+) channels. However, little is known about the mechanisms of ADRF release. Using isolated rat aortic rings and isometric contraction measurements, we show that ADRF release depends on extracellular [Ca(2+)] (EC(50) approximately 4.7 mM). ADRF effects do not involve neuronal presynaptic N-type Ca(2+) and Na(+) channels or vanilloid, cannabinoid, and CGRP receptors. ADRF release is strongly inhibited by the protein tyrosine kinase inhibitors genistein and tyrphostin A25. In contrast, daidzein, an inactive genistein analog, and the protein tyrosine kinase inhibitor ST638 had no effect. Protein kinase A inhibition by H89 also inhibited ADRF release, whereas the protein kinase G inhibitor KT-5823 had no effect. We propose that ADRF release is Ca(2+) dependent and is regulated by intracellular signaling pathways involving tyrosine kinase and protein kinase A. Furthermore, ADRF release does not depend on perivascular nerve endings.
Collapse
|
37
|
Abstract
A large body of evidence now exists to substantiate that the endocannabinoid, anandamide, activates TRPV1 receptors. It is a low intrinsic efficacy TRPV1 agonist that behaves as a partial agonist in tissues with a low receptor reserve, while in tissues with high receptor reserve and in circumstances associated with certain disease states, it behaves as a full agonist. The efficacy of anandamide as a TRPV1 agonist is influenced by a succession of factors including receptor reserve, phosphorylation, metabolism and uptake, CB1 receptor activation, voltage, temperature, pH and bovine serum albumin. There are indications that the endocannabinoid system may play a role in the modulation of TRPV1 receptor activation. The activation of TRPV1 receptors by anandamide has potential implications in the treatment of inflammatory, respiratory and cardiovascular disorders. The relative importance of anandamide as a physiological and/or pathophysiological TRPV1 receptor agonist in comparison to other potential candidates has yet to be revealed.
Collapse
Affiliation(s)
- Ruth A Ross
- Department of Biomedical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland.
| |
Collapse
|
38
|
Abstract
Research of the cannabinoid system has many similarities with that of the opioid system. In both instances, studies into drug-producing plants led to the discovery of an endogenous control system with a central role in neurobiology. Few compounds have had as much positive press from patients as those of the cannabinoid system. While these claims are investigated in disorders such as multiple sclerosis spasticity and pain, basic research is discovering interesting members of this family of compounds that have previously unknown qualities, the most notable of which is the capacity for neuroprotection. Large randomised clinical trials of the better known compounds are in progress. Even if the results of these studies are not as positive as many expect them to be, that we are only just beginning to appreciate the huge therapeutic potential of this family of compounds is clear.
Collapse
Affiliation(s)
- David Baker
- Institute of Neurology, University College London, Queen Square, WC1N 3BG, London, UK
| | | | | | | |
Collapse
|
39
|
Jonsson KO, Andersson A, Jacobsson SOP, Vandevoorde S, Lambert DM, Fowler CJ. AM404 and VDM 11 non-specifically inhibit C6 glioma cell proliferation at concentrations used to block the cellular accumulation of the endocannabinoid anandamide. Arch Toxicol 2003; 77:201-7. [PMID: 12698235 DOI: 10.1007/s00204-002-0435-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2002] [Accepted: 12/05/2002] [Indexed: 10/20/2022]
Abstract
AM404 [ N-(4-hydroxyphenyl)arachidonylamide] and VDM 11 [(5 Z,8 Z,11 Z,14 Z)- N-(4-hydroxy-2-methylphenyl)-5,8,11,14-eicosatetraenamide] are commonly used to prevent the cellular accumulation of the endocannabinoid anandamide, and thereby to potentiate its actions. However, it has been reported that AM404 can produce an influx of calcium into cells, which might be expected to have deleterious effects on cell proliferation. In the present study, AM404 and VDM 11 were found to reduce C6 glioma cell proliferation with IC(50) values of 4.9 and 2.7 microM, respectively. The inhibition of cell proliferation following a 96-h exposure was not accompanied by dramatic caspase activation, and was not prevented by either a combination of cannabinoid and vanilloid receptor antagonists, or by the antioxidant alpha-tocopherol, suggestive of a non-specific mode of action. Similar results were seen with palmitoylisopropylamide, although this compound only produced significant inhibition of cell proliferation at 30 microM concentrations. AM404 (1 microM), VDM 11 (1 microM) and palmitoylisopropylamide (3-30 microM), i.e. concentrations producing relatively modest effects on cell proliferation per se, reduced the vanilloid receptor-mediated antiproliferative effects of anandamide, as would be expected for compounds preventing the cellular accumulation of anandamide (and thereby access to its binding site on the vanilloid receptor). It is concluded that concentrations of AM404 and VDM 11 that are generally used to reduce the cellular accumulation of anandamide have deleterious effects upon cell proliferation, and that lower concentrations of these compounds may be more appropriate to use in vitro.
Collapse
Affiliation(s)
- Kent-Olov Jonsson
- Department of Pharmacology and Clinical Neuroscience, Umeå University, 901 87, Umeå, Sweden.
| | | | | | | | | | | |
Collapse
|
40
|
Delta 9-tetrahydrocannabinol and cannabinol activate capsaicin-sensitive sensory nerves via a CB1 and CB2 cannabinoid receptor-independent mechanism. J Neurosci 2002. [PMID: 12040079 DOI: 10.1523/jneurosci.22-11-04720.2002] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although Delta(9)-tetrahydrocannabinol (THC) produces analgesia, its effects on nociceptive primary afferents are unknown. These neurons participate not only in pain signaling but also in the local response to tissue injury. Here, we show that THC and cannabinol induce a CB(1)/CB(2) cannabinoid receptor-independent release of calcitonin gene-related peptide from capsaicin-sensitive perivascular sensory nerves. Other psychotropic cannabinoids cannot mimic this action. The vanilloid receptor antagonist ruthenium red abolishes the responses to THC and cannabinol. However, the effect of THC on sensory nerves is intact in vanilloid receptor subtype 1 gene knock-out mice. The THC response depends on extracellular calcium but does not involve known voltage-operated calcium channels, glutamate receptors, or protein kinases A and C. These results may indicate the presence of a novel cannabinoid receptor/ion channel in the pain pathway.
Collapse
|