1
|
Aguilera-Correa JJ, Wei F, Leclercq LD, Tasrini Y, Mullapudi E, Daher W, Nakajima K, Canaan S, Herrmann JL, Wilmanns M, Guérardel Y, Wen L, Kremer L. A dTDP-L-rhamnose 4-epimerase required for glycopeptidolipid biosynthesis in Mycobacterium abscessus. J Biol Chem 2024; 300:107852. [PMID: 39362472 PMCID: PMC11549994 DOI: 10.1016/j.jbc.2024.107852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/11/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024] Open
Abstract
Mycobacterium abscessus causes severe lung infections in cystic fibrosis patients and exhibits smooth (S) or rough (R) morphotypes. Disruption of glycopeptidolipid (GPL) production results in the S-to-R transition but the underlying molecular mechanisms of this transition remain incompletely understood. Herein, we characterized MAB_4111c in relation to GPL synthesis and investigated the effects of MAB_4111c deletion in M. abscessus pathogenicity. An enzymatic assay indicated that MAB_4111c, also designated Tle for Talose epimerase, is converting dTDP-L-Rhamnose into dTDP-6-deoxy-L-Talose. A tle deletion mutant was constructed in the S variant of M. abscessus and relative areas of Rhamnose and 6-deoxy-Talose and their methylated forms expressed as ratios of total monosaccharides, showed an altered GPL profile lacking 6-deoxy-Talose. Thus, Tle provides dTDP-6-deoxy-L-Talose, subsequently used by the glycosyltransferase Gtf1 to transfer 6-deoxy-Talose to the GPL backbone. Strikingly, the tle mutant exhibited an R morphotype, showed impaired sliding motility and biofilm formation, and these phenotypes were rescued upon functional complementation. Moreover, deletion of tle in M. abscessus results in increased pathogenicity and killing in zebrafish embryos. Together, our results underscore the importance of the dTDP-L-Rhamnose 4-epimerase activity in GPL biosynthesis and in influencing M. abscessus virulence.
Collapse
Affiliation(s)
- John Jairo Aguilera-Correa
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - Fangyu Wei
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Louis-David Leclercq
- Université de Lille, CNRS, UMR 8576 - UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France; Université Paris-Saclay, UVSQ, Inserm, Infection et Inflammation, Montigny-Le-Bretonneux, France
| | - Yara Tasrini
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | | | - Wassim Daher
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France; INSERM, IRIM, Montpellier, France
| | - Kazuki Nakajima
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Stéphane Canaan
- Aix-Marseille Université, CNRS, LISM, IMM, Marseille, France
| | - Jean-Louis Herrmann
- Université Paris-Saclay, UVSQ, Inserm, Infection et Inflammation, Montigny-Le-Bretonneux, France
| | - Matthias Wilmanns
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany; University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yann Guérardel
- Université de Lille, CNRS, UMR 8576 - UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France; Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Liuqing Wen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France; INSERM, IRIM, Montpellier, France.
| |
Collapse
|
2
|
Corrêa PR, Schwarz MGA, Maia RM, Vergara FMF, Moraes MO, Mendonça-Lima L. Differences in responses to the intracellular macrophage environment between Mycobacterium bovis BCG vaccine strains Moreau and Pasteur. Mem Inst Oswaldo Cruz 2023; 118:e230070. [PMID: 37851722 PMCID: PMC10581373 DOI: 10.1590/0074-02760230070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/05/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND The Bacille Calmette-Guérin (BCG) vaccine comprises a family of strains with variable protective efficacy against pulmonary tuberculosis (TB) and leprosy, partly due to genetic differences between strains. OBJECTIVES Previous data highlighting differences between the genomes and proteomic profiles of BCG strains Moreau and Pasteur led us to evaluate their behaviour in the macrophage microenvironment, capable of stimulating molecular responses that can impact the protective effect of the vaccine. METHODS Strain infectivity, viability, co-localisation with acidified vesicles, macrophage secretion of IL-1 and MCP-1 and lipid droplet biogenesis were evaluated after infection. FINDINGS We found that BCG Moreau is internalised more efficiently, with significantly better intracellular survival up to 96 h p.i., whereas more BCG Pasteur bacilli were found co-localised in acidified vesicles up to 6 h p.i. IL-1β and MCP-1 secretion and lipid droplet biogenesis by infected macrophages were more prominent in response to BCG Pasteur. MAIN CONCLUSION Overall, our results show that, compared to Pasteur, BCG Moreau has increased fitness and better endurance in the harsh intracellular environment, also regulating anti-microbial responses (lower IL-1b and MCP-1). These findings contribute to the understanding of the physiology of BCG Moreau and Pasteur in response to the intraphagosomal environment in a THP-1 macrophage model.
Collapse
Affiliation(s)
- Paloma Rezende Corrêa
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genômica Funcional e Bioinformática, Rio de Janeiro, RJ, Brasil
| | - Marcos Gustavo Araujo Schwarz
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genômica Funcional e Bioinformática, Rio de Janeiro, RJ, Brasil
| | - Renata Monteiro Maia
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genômica Funcional e Bioinformática, Rio de Janeiro, RJ, Brasil
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular de Insetos, Rio de Janeiro, RJ, Brasil
| | - Fátima Maria Figueroa Vergara
- Fundação Oswaldo Cruz-Fiocruz, Instituto de Tecnologia em Fármacos, Laboratório de Farmacologia Aplicada, Farmanguinhos, Rio de Janeiro, RJ, Brasil
- Fundação Oswaldo Cruz-Fiocruz, Centro de Desenvolvimento Tecnológico em Saúde, Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Milton Ozório Moraes
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Hanseníase, Rio de Janeiro, RJ, Brasil
| | - Leila Mendonça-Lima
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genômica Funcional e Bioinformática, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
3
|
Born SEM, Reichlen MJ, Bartek IL, Benoit JB, Frank DN, Voskuil MI. Population heterogeneity in Mycobacterium smegmatis and Mycobacterium abscessus. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001402. [PMID: 37862100 PMCID: PMC10634367 DOI: 10.1099/mic.0.001402] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023]
Abstract
Bacteria use population heterogeneity, the presence of more than one phenotypic variant in a clonal population, to endure diverse environmental challenges - a 'bet-hedging' strategy. Phenotypic variants have been described in many bacteria, but the phenomenon is not well-understood in mycobacteria, including the environmental factors that influence heterogeneity. Here, we describe three reproducible morphological variants in M. smegmatis - smooth, rough, and an intermediate morphotype that predominated under typical laboratory conditions. M. abscessus has two recognized morphotypes, smooth and rough. Interestingly, M. tuberculosis exists in only a rough form. The shift from smooth to rough in both M. smegmatis and M. abscessus was observed over time in extended static culture, however the frequency of the rough morphotype was high in pellicle preparations compared to planktonic culture, suggesting a role for an aggregated microenvironment in the shift to the rough form. Differences in growth rate, biofilm formation, cell wall composition, and drug tolerance were noted among M. smegmatis and M. abscessus variants. Deletion of the global regulator lsr2 shifted the M. smegmatis intermediate morphotype to a smooth form but did not fully phenocopy the naturally generated smooth morphotype, indicating Lsr2 is likely downstream of the initiating regulatory cascade that controls these morphotypes. Rough forms typically correlate with higher invasiveness and worse outcomes during infection and our findings indicate the shift to this rough form is promoted by aggregation. Our findings suggest that mycobacterial population heterogeneity, reflected in colony morphotypes, is a reproducible, programmed phenomenon that plays a role in adaptation to unique environments and this heterogeneity may influence infection progression and response to treatment.
Collapse
Affiliation(s)
- Sarah E. M. Born
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Matthew J. Reichlen
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Iona L. Bartek
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jeanne B. Benoit
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Daniel N. Frank
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Martin I. Voskuil
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
4
|
Boopathi S, Ramasamy S, Haridevamuthu B, Murugan R, Veerabadhran M, Jia AQ, Arockiaraj J. Intercellular communication and social behaviors in mycobacteria. Front Microbiol 2022; 13:943278. [PMID: 36177463 PMCID: PMC9514802 DOI: 10.3389/fmicb.2022.943278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Cell-to-cell communication is a fundamental process of bacteria to exert communal behaviors. Sputum samples of patients with cystic fibrosis have often been observed with extensive mycobacterial genetic diversity. The emergence of heterogenic mycobacterial populations is observed due to subtle changes in their morphology, gene expression level, and distributive conjugal transfer (DCT). Since each subgroup of mycobacteria has different hetero-resistance, they are refractory against several antibiotics. Such genetically diverse mycobacteria have to communicate with each other to subvert the host immune system. However, it is still a mystery how such heterogeneous strains exhibit synchronous behaviors for the production of quorum sensing (QS) traits, such as biofilms, siderophores, and virulence proteins. Mycobacteria are characterized by division of labor, where distinct sub-clonal populations contribute to the production of QS traits while exchanging complimentary products at the community level. Thus, active mycobacterial cells ensure the persistence of other heterogenic clonal populations through cooperative behaviors. Additionally, mycobacteria are likely to establish communication with neighboring cells in a contact-independent manner through QS signals. Hence, this review is intended to discuss our current knowledge of mycobacterial communication. Understanding mycobacterial communication could provide a promising opportunity to develop drugs to target key pathways of mycobacteria.
Collapse
Affiliation(s)
- Seenivasan Boopathi
- Key Laboratory of Tropical Biological Resources of Ministry Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Subbiah Ramasamy
- Department of Biochemistry, Cardiac Metabolic Disease Laboratory, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - B. Haridevamuthu
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Raghul Murugan
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Maruthanayagam Veerabadhran
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre Facilities, Kalpakkam, Tamil Nadu, India
| | - Ai-Qun Jia
- Key Laboratory of Tropical Biological Resources of Ministry Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
- *Correspondence: Ai-Qun Jia
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
- Jesu Arockiaraj ;
| |
Collapse
|
5
|
Chung ES, Johnson WC, Aldridge BB. Types and functions of heterogeneity in mycobacteria. Nat Rev Microbiol 2022; 20:529-541. [PMID: 35365812 DOI: 10.1038/s41579-022-00721-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2022] [Indexed: 12/24/2022]
Abstract
The remarkable ability of Mycobacterium tuberculosis to survive attacks from the host immune response and drug treatment is due to the resilience of a few bacilli rather than a result of survival of the entire population. Maintenance of mycobacterial subpopulations with distinct phenotypic characteristics is key for survival in the face of dynamic and variable stressors encountered during infection. Mycobacterial populations develop a wide range of phenotypes through an innate asymmetric growth pattern and adaptation to fluctuating microenvironments during infection that point to heterogeneity being a vital survival strategy. In this Review, we describe different types of mycobacterial heterogeneity and discuss how heterogeneity is generated and regulated in response to environmental cues. We discuss how this heterogeneity may have a key role in recording memory of their environment at both the single-cell level and the population level to give mycobacterial populations plasticity to withstand complex stressors.
Collapse
Affiliation(s)
- Eun Seon Chung
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - William C Johnson
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA.,Tufts University School of Graduate Biomedical Sciences, Boston, MA, USA
| | - Bree B Aldridge
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA. .,Tufts University School of Graduate Biomedical Sciences, Boston, MA, USA. .,Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Tufts University, Boston, MA, USA. .,Department of Biomedical Engineering, Tufts University School of Engineering, Medford, MA, USA.
| |
Collapse
|
6
|
Ndzeidze R, Leestemaker-Palmer A, Danelishvili L, Bermudez LE. Virulent Mycobacterium avium subspecies hominissuis subverts macrophages during early stages of infection. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35133955 DOI: 10.1099/mic.0.001133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Virulent non-tuberculous Mycobacteria (NTMs) successfully reside and multiply within the phagosomes of phagocytic cells such as monocytes and macrophages. Macrophages play a very important role in the innate clearance of intracellular pathogens including NTMs. Attenuated Mycobacterium avium subsp. hominissuis 100 enters macrophages but is incapable of escaping these cells via canonical mycobacteria escape mechanisms. Alternatively, virulent Mycobacterium avium subsp. hominissuis 104 and Mycobacterium abscessus subsp. abscessus are able to modify macrophages to suit their growth, survival and ultimately escape from macrophages, while non-virulent Mycobacterium smegmatis is readily killed by macrophages. In this study we focused on early infection of macrophages with NTMs to determine the phenotypic response of macrophages, M1 or M2 differentiation, and phosphorylation alterations that can affect cellular response to invading bacteria. Our findings indicate that infection of the macrophage with MAH 100 and M. smegmatis favours the development of M1 macrophage, a pro-inflammatory phenotype associated with the killing of intracellular pathogens, while infection of the macrophage with MAH 104 and M. abscessus favoured the development of M2 macrophage, an anti-inflammatory phenotype associated with the healing process. Interference with the host post-translational mechanisms, such as protein phosphorylation, is a key strategy used by many intracellular bacterial pathogens to modulate macrophage phenotype and subvert macrophage function. By comparing protein phosphorylation patterns of infected macrophages, we observed that uptake of both MAH 100 and M. smegmatis resulted in MARCKS-related protein phosphorylation, which has been associated with macrophage activation. In contrast, in macrophages infected with MAH 104 and M. abscessus, methionine adenosyltransferase IIβ, an enzyme that catalyses the biosynthesis of S-adenosylmethionine, a methyl donor for DNA methylation. Inhibition of DNA methylation with 5-aza-2 deoxycytidine, significantly impaired the survival of MAH 104 in macrophages. Our findings suggest that the virulent MAH 104 and M. abscessus enhance its survival in the macrophage possibly through interference with the epigenome responses.
Collapse
Affiliation(s)
- Robert Ndzeidze
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Corvallis, OR, USA
| | - Amy Leestemaker-Palmer
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Corvallis, OR, USA
| | - Lia Danelishvili
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Corvallis, OR, USA
| | - Luiz E Bermudez
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Corvallis, OR, USA.,Department of Microbiology, College of Sciences, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
7
|
Crotta Asis A, Savoretti F, Cabruja M, Gramajo H, Gago G. Characterization of key enzymes involved in triacylglycerol biosynthesis in mycobacteria. Sci Rep 2021; 11:13257. [PMID: 34168231 PMCID: PMC8225852 DOI: 10.1038/s41598-021-92721-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/08/2021] [Indexed: 02/05/2023] Open
Abstract
Phosphatidic acid phosphatase (PAP) catalyzes the dephosphorylation of phosphatidic acid (PA) yielding diacylglycerol (DAG), the lipid precursor for triacylglycerol (TAG) biosynthesis. PAP activity has a key role in the regulation of PA flux towards TAG or glycerophospholipid synthesis. In this work we have characterized two Mycobacterium smegmatis genes encoding for functional PAP proteins. Disruption of both genes provoked a sharp reduction in de novo TAG biosynthesis in early growth phase cultures under stress conditions. In vivo labeling experiments demonstrated that TAG biosynthesis was restored in the ∆PAP mutant when bacteria reached exponential growth phase, with a concomitant reduction of phospholipid synthesis. In addition, comparative lipidomic analysis showed that the ∆PAP strain had increased levels of odd chain fatty acids esterified into TAGs, suggesting that the absence of PAP activity triggered other rearrangements of lipid metabolism, like phospholipid recycling, in order to maintain the wild type levels of TAG. Finally, the lipid changes observed in the ∆PAP mutant led to defective biofilm formation. Understanding the interaction between TAG synthesis and the lipid composition of mycobacterial cell envelope is a key step to better understand how lipid homeostasis is regulated during Mycobacterium tuberculosis infection.
Collapse
Affiliation(s)
- Agostina Crotta Asis
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Franco Savoretti
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Matías Cabruja
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
- Stanford University, Stanford, USA
| | - Hugo Gramajo
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.
| | - Gabriela Gago
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.
| |
Collapse
|
8
|
Performance of lipid fingerprint-based MALDI-ToF for the diagnosis of mycobacterial infections. Clin Microbiol Infect 2021; 27:912.e1-912.e5. [PMID: 32861860 PMCID: PMC8186428 DOI: 10.1016/j.cmi.2020.08.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Bacterial diagnosis of mycobacteria is often challenging because of the variability of the sensitivity and specificity of the assay used, and it can be expensive to perform accurately. Although matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) has become the workhorse of clinical laboratories, the current MALDI methodology (which is based on cytosolic protein profiling) for mycobacteria is still challenging due to the number of steps involved (up to seven) and potential biosafety concerns. Knowing that mycobacteria produce surface-exposed species-specific lipids, we here hypothesized that the detection of those molecules could offer a rapid, reproducible and robust method for mycobacterial identification. METHODS We evaluated the performance of an alternative methodology based on characterized species-specific lipid profiling of intact bacteria, without any sample preparation, by MALDI MS; it uses MALDI-time-of-flight (ToF) MS combined with a specific matrix (super-2,5-dihydroxybenzoic acid solubilized in an apolar solvent system) to analyse lipids of intact heat-inactivated mycobacteria. Cultured mycobacteria are heat-inactivated and loaded directly onto the MALDI target followed by addition of the matrix. Acquisition of the data is done in both positive and negative ion modes. Blinded studies were performed using 273 mycobacterial strains comprising both the Mycobacterium tuberculosis (Mtb) complex and non-tuberculous mycobacteria (NTMs) subcultured in Middlebrook 7H9 media supplemented with 10% OADC (oleic acid/dextrose/catalase) growth supplement and incubated for up to 2 weeks at 37°C. RESULTS The method we have developed is fast (<10 mins) and highly sensitive (<1000 bacteria required); 96.7% of the Mtb complex strains (204/211) were correctly assigned as MTB complex and 91.7% (22/24) NTM species were correctly assigned based only on intact bacteria species-specific lipid profiling by MALDI-ToF MS. CONCLUSIONS Intact bacterial lipid profiling provides a biosafe and unique route for rapid and accurate mycobacterial identification.
Collapse
|
9
|
Nishimura T, Shimoda M, Tamizu E, Uno S, Uwamino Y, Kashimura S, Yano I, Hasegawa N. The rough colony morphotype of Mycobacterium avium exhibits high virulence in human macrophages and mice. J Med Microbiol 2020; 69:1020-1033. [PMID: 32589124 DOI: 10.1099/jmm.0.001224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. The incidence of Mycobacterium avium complex (MAC) pulmonary disease (MAC PD), a refractory chronic respiratory tract infection, is increasing worldwide. MAC has three predominant colony morphotypes: smooth opaque (SmO), smooth transparent (SmT) and rough (Rg).Aim. To determine whether colony morphotypes can predict the prognosis of MAC PD, we evaluated the virulence of SmO, SmT and Rg in mice and in human macrophages.Methodology. We compared the characteristics of mice and human macrophages infected with the SmO, SmT, or Rg morphotypes of M. avium subsp. hominissuis 104. C57BL/6 mice and human macrophages derived from peripheral mononuclear cells were used in these experiments.Results. In comparison to SmO- or SmT-infected mice, Rg-infected mice revealed severe pathologically confirmed pneumonia, increased lung weight and increased lung bacterial burden. Rg-infected macrophages revealed significant cytotoxicity, increased bacterial burden, secretion of proinflammatory cytokines (TNF-α and IL-6) and chemokines (CCL5 and CCL3), and formation of cell clusters. Rg formed larger bacterial aggregates than SmO and SmT. Cytotoxicity, bacterial burden and secretion of IL-6, CCL5 and CCL3 were induced strongly by Rg infection, and were decreased by disaggregation of the bacteria.Conclusion. M. avium Rg, which is associated with bacterial aggregation, has the highest virulence among the predominant colony morphotypes.
Collapse
Affiliation(s)
| | - Masayuki Shimoda
- Department of Pathology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Eiko Tamizu
- Department of Infectious Diseases, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Shunsuke Uno
- Department of Infectious Diseases, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Yoshifumi Uwamino
- Department of Laboratory Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Shoko Kashimura
- Department of Infectious Diseases, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Ikuya Yano
- Department of Bacteriology, Osaka City University Graduate School of Medicine, Osaka-city, Osaka, Japan
| | - Naoki Hasegawa
- Department of Infectious Diseases, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
10
|
Headley CA, Gerberick A, Mehta S, Wu Q, Yu L, Fadda P, Khan M, Ganesan LP, Turner J, Rajaram MVS. Nontuberculous mycobacterium M. avium infection predisposes aged mice to cardiac abnormalities and inflammation. Aging Cell 2019; 18:e12926. [PMID: 30834643 PMCID: PMC6516181 DOI: 10.1111/acel.12926] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/12/2018] [Accepted: 01/20/2019] [Indexed: 12/14/2022] Open
Abstract
Biological aging dynamically alters normal immune and cardiac function, favoring the production of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) and increased instances of cardiac distress. Cardiac failure is the primary reason for hospitalization of the elderly (65+ years). The elderly are also increasingly susceptible to developing chronic bacterial infections due to aging associated immune abnormalities. Since bacterial infections compound the rates of cardiac failure in the elderly, and this phenomenon is not entirely understood, the interplay between the immune system and cardiovascular function in the elderly is of great interest. Using Mycobacterium avium, an opportunistic pathogen, we investigated the effect of mycobacteria on cardiac function in aged mice. Young (2-3 months) and old (18-20 months) C57BL/6 mice were intranasally infected with M. avium strain 104, and we compared the bacterial burden, immune status, cardiac electrical activity, pathology, and function of infected mice against uninfected age-matched controls. Herein, we show that biological aging may predispose old mice infected with M. avium to mycobacterial dissemination into the heart tissue and this leads to cardiac dysfunction. M. avium infected old mice had significant dysrhythmia, cardiac hypertrophy, increased recruitment of CD45+ leukocytes, cardiac fibrosis, and increased expression of inflammatory genes in isolated heart tissue. This is the first study to report the effect of mycobacteria on cardiac function in an aged model. Our findings are critical to understanding how nontuberculous mycobacterium (NTM) and other mycobacterial infections contribute to cardiac dysfunction in the elderly population.
Collapse
Affiliation(s)
- Colwyn A. Headley
- Department of Microbial Infection and Immunity, College of MedicineThe Ohio State University Wexner Medical CenterColumbusOhio
- Texas Biomedical Research Institute8715 W. Military Dr.San AntonioTX 78227
| | - Abigail Gerberick
- Department of Microbiology, College of MedicineThe Ohio State University Wexner Medical CenterColumbusOhio
| | - Sumiran Mehta
- Department of Microbiology, College of MedicineThe Ohio State University Wexner Medical CenterColumbusOhio
| | - Qian Wu
- Department of Microbial Infection and Immunity, College of MedicineThe Ohio State University Wexner Medical CenterColumbusOhio
| | - Lianbo Yu
- Department of Biomedical Informatics, College of MedicineThe Ohio State University Wexner Medical CenterColumbusOhio
| | - Paolo Fadda
- Department of Biomedical Informatics, College of MedicineThe Ohio State University Wexner Medical CenterColumbusOhio
- Genomics Shared Resource‐Comprehensive Cancer Center, College of MedicineThe Ohio State University Wexner Medical CenterColumbusOhio
| | - Mahmood Khan
- Department Emergency Medicine & Physiology and Cell Biology, College of MedicineThe Ohio State University Wexner Medical CenterColumbusOhio
| | - Latha Prabha Ganesan
- Department of Internal Medicine, College of MedicineThe Ohio State University Wexner Medical CenterColumbusOhio
| | - Joanne Turner
- Department of Microbial Infection and Immunity, College of MedicineThe Ohio State University Wexner Medical CenterColumbusOhio
- Texas Biomedical Research Institute8715 W. Military Dr.San AntonioTX 78227
| | - Murugesan V. S. Rajaram
- Department of Microbial Infection and Immunity, College of MedicineThe Ohio State University Wexner Medical CenterColumbusOhio
| |
Collapse
|
11
|
Verma D, Stapleton M, Gadwa J, Vongtongsalee K, Schenkel AR, Chan ED, Ordway D. Mycobacterium avium Infection in a C3HeB/FeJ Mouse Model. Front Microbiol 2019; 10:693. [PMID: 31001241 PMCID: PMC6456659 DOI: 10.3389/fmicb.2019.00693] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 03/19/2019] [Indexed: 01/08/2023] Open
Abstract
Infections caused by Mycobacterium avium complex (MAC) species are increasing worldwide, resulting in a serious public health problem. Patients with MAC lung disease face an arduous journey of a prolonged multidrug regimen that is often poorly tolerated and associated with relatively poor outcome. Identification of new animal models that demonstrate a similar pulmonary pathology as humans infected with MAC has the potential to significantly advance our understanding of nontuberculosis mycobacteria (NTM) pathogenesis as well as provide a tractable model for screening candidate compounds for therapy. One new mouse model is the C3HeB/FeJ which is similar to MAC patients in that these mice can form foci of necrosis in granulomas. In this study, we evaluated the ability of C3HeB/FeJ mice exposure to an aerosol infection of a rough strain of MAC 2285 to produce a progressive infection resulting in small necrotic foci during granuloma formation. C3HeB/FeJ mice were infected with MAC and demonstrated a progressive lung infection resulting in an increase in bacterial burden peaking around day 40, developed micronecrosis in granulomas and was associated with increased influx of CD4+ Th1, Th17, and Treg lymphocytes into the lungs. However, during chronic infection around day 50, the bacterial burden plateaued and was associated with the reduced influx of CD4+ Th1, Th17 cells, and increased numbers of Treg lymphocytes and necrotic foci during granuloma formation. These results suggest the C3HeB/FeJ MAC infection mouse model will be an important model to evaluate immune pathogenesis and compound efficacy.
Collapse
Affiliation(s)
- Deepshikha Verma
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Megan Stapleton
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Jake Gadwa
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Kridakorn Vongtongsalee
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Alan R Schenkel
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Edward D Chan
- Department of Medicine, Denver Veterans Affairs Medical Center, Denver, CO, United States.,Departments of Medicine and Academic Affairs, National Jewish Health, Denver, CO, United States.,Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Diane Ordway
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
12
|
Abstract
Nontuberculous mycobacteria (NTM) include species that colonize human epithelia, as well as species that are ubiquitous in soil and aquatic environments. NTM that primarily inhabit soil and aquatic environments include the Mycobacterium avium complex (MAC, M. avium and Mycobacterium intracellulare) and the Mycobacterium abscessus complex (MABSC, M. abscessus subspecies abscessus, massiliense, and bolletii), and can be free-living, biofilm-associated, or amoeba-associated. Although NTM are rarely pathogenic in immunocompetent individuals, those who are immunocompromised - due to either an inherited or acquired immunodeficiency - are highly susceptible to NTM infection (NTMI). Several characteristics such as biofilm formation and the ability of select NTM species to form distinct colony morphotypes all may play a role in pathogenesis not observed in the related, well-characterized pathogen Mycobacterium tuberculosis The recognition of different morphotypes of NTM has been established and characterized since the 1950s, but the mechanisms that underlie colony phenotype change and subsequent differences in pathogenicity are just beginning to be explored. Advances in genomic analysis have led to progress in identifying genes important to the pathogenesis and persistence of MAC disease as well as illuminating genetic aspects of different colony morphotypes. Here we review recent literature regarding NTM ecology and transmission, as well as the factors which regulate colony morphotype and pathogenicity.
Collapse
Affiliation(s)
- Tiffany A Claeys
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Richard T Robinson
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| |
Collapse
|
13
|
Effects of nutritional and ambient oxygen condition on biofilm formation in Mycobacterium avium subsp. hominissuis via altered glycolipid expression. Sci Rep 2017; 7:41775. [PMID: 28155911 PMCID: PMC5290538 DOI: 10.1038/srep41775] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 12/28/2016] [Indexed: 11/08/2022] Open
Abstract
Mycobacterium avium subsp. hominissuis (MAH) is the major causative agent of nontuberculous mycobacteriosis, the representative case of environment-related infectious diseases the incidence of which is increasing in industrialized countries. MAH is found in biofilm in drinking water distribution system and residential environments. We investigated the effect of gaseous and nutritional conditions, and the role of glycopeptidolipids (GPLs) on biofilm-like pellicle formation in MAH. Pellicle formation was observed under 5% oxygen in Middlebrook 7H9 broth containing 0.2% glycerol and 10% albumin-dextrose-catalase enrichment but not under normoxia or in nutrient-poor media. An analysis of 17 environmental isolates revealed that hypoxia (5% oxygen) preferentially enhanced pellicle formation both in plastic plates and in glass tubes, compared with hypercapnia (5% carbon dioxide). Wild-type strains (WT) developed much thicker pellicles than GPL-deficient rough mutants (RM). WT bacterial cells distributed randomly and individually in contrast to that RM cells positioned linearly in a definite order. Exogenous supplementation of GPLs thickened the pellicles of RM, resulting in a similar morphological pattern to WT. These data suggest a significant implication of eutrophication and hypoxia in biofilm-like pellicle formation, and a functional role of GPLs on development of pellicles in MAH.
Collapse
|
14
|
Cha SB, Jeon BY, Kim WS, Kim JS, Kim HM, Kwon KW, Cho SN, Shin SJ, Koh WJ. Experimental Reactivation of Pulmonary Mycobacterium avium Complex Infection in a Modified Cornell-Like Murine Model. PLoS One 2015; 10:e0139251. [PMID: 26406237 PMCID: PMC4583228 DOI: 10.1371/journal.pone.0139251] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 09/09/2015] [Indexed: 01/19/2023] Open
Abstract
The latency and reactivation of Mycobacterium tuberculosis infection has been well studied. However, there have been few studies of the latency and reactivation of Mycobacterium avium complex (MAC), the most common etiological non-tuberculous Mycobacterium species next to M. tuberculosis in humans worldwide. We hypothesized that latent MAC infections can be reactivated following immunosuppression after combination chemotherapy with clarithromycin and rifampicin under experimental conditions. To this end, we employed a modified Cornell-like murine model of tuberculosis and investigated six strains consisting of two type strains and four clinical isolates of M. avium and M. intracellulare. After aerosol infection of each MAC strain, five to six mice per group were euthanized at 2, 4, 10, 18, 28 and 35 weeks post-infection, and lungs were sampled to analyze bacterial burden and histopathology. One strain of each species maintained a culture-negative state for 10 weeks after completion of 6 weeks of chemotherapy, but was reactivated after 5 weeks of immunosuppression in the lungs with dexamethasone (three out of six mice in M. avium infection) or sulfasalazine (four out of six mice in both M. avium and M. intracellulare infection). The four remaining MAC strains exhibited decreased bacterial loads in response to chemotherapy; however, they remained at detectable levels and underwent regrowth after immunosuppression. In addition, the exacerbated lung pathology demonstrated a correlation with bacterial burden after reactivation. In conclusion, our results suggest the possibility of MAC reactivation in an experimental mouse model, and experimentally demonstrate that a compromised immune status can induce reactivation and/or regrowth of MAC infection.
Collapse
Affiliation(s)
- Seung Bin Cha
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Bo Young Jeon
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju, South Korea
| | - Woo Sik Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong-Seok Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Hong Min Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Kee Woong Kwon
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Sang-Nae Cho
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
- * E-mail: (WK); (SJS)
| | - Won-Jung Koh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- * E-mail: (WK); (SJS)
| |
Collapse
|
15
|
Danelishvili L, Bermudez LE. Mycobacterium avium MAV_2941 mimics phosphoinositol-3-kinase to interfere with macrophage phagosome maturation. Microbes Infect 2015; 17:628-37. [PMID: 26043821 PMCID: PMC4554883 DOI: 10.1016/j.micinf.2015.05.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/22/2015] [Indexed: 11/25/2022]
Abstract
Mycobacterium avium subsp hominissuis (M. avium) is a pathogen that infects and survives in macrophages. Previously, we have identified the M. avium MAV_2941 gene encoding a 73 amino acid protein exported by the oligopeptide transporter OppA to the macrophage cytoplasm. Mutations in MAV_2941 were associated with significant impairment of M. avium growth in THP-1 macrophages. In this study, we investigated the molecular mechanism of MAV_2941 action and demonstrated that MAV_2941 interacts with the vesicle trafficking proteins syntaxin-8 (STX8), adaptor-related protein complex 3 (AP-3) complex subunit beta-1 (AP3B1) and Archain 1 (ARCN1) in mononuclear phagocytic cells. Sequencing analysis revealed that the binding site of MAV_2941 is structurally homologous to the human phosphatidylinositol 3-kinase (PI3K) chiefly in the region recognized by vesicle trafficking proteins. The β3A subunit of AP-3, encoded by AP3B1, is essential for trafficking cargo proteins, including lysosomal-associated membrane protein 1 (LAMP-1), to the phagosome and lysosome-related organelles. Here, we show that while the heat-killed M. avium when ingested by macrophages co-localizes with LAMP-1 protein, transfection of MAV_2941 in macrophages results in significant decrease of LAMP-1 co-localization with the heat-killed M. avium phagosomes. Mutated MAV_2941, where the amino acids homologous to the binding region of PI3K were changed, failed to interact with trafficking proteins. Inactivation of the AP3B1 gene led to alteration in the trafficking of LAMP-1. These results suggest that M. avium MAV_2941 interferes with the protein trafficking within macrophages altering the maturation of phagosome.
Collapse
Affiliation(s)
- Lia Danelishvili
- Department of Biomedical Sciences, College of Veterinary Medicine, USA
| | - Luiz E Bermudez
- Department of Biomedical Sciences, College of Veterinary Medicine, USA; Department of Microbiology, College of Science, USA; Molecular and Cell Biology Program, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
16
|
Sliding Motility, Biofilm Formation, and Glycopeptidolipid Production in Mycobacterium colombiense Strains. BIOMED RESEARCH INTERNATIONAL 2015; 2015:419549. [PMID: 26180799 PMCID: PMC4477443 DOI: 10.1155/2015/419549] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/15/2015] [Accepted: 01/16/2015] [Indexed: 01/15/2023]
Abstract
Mycobacterium colombiense is a novel member of the Mycobacterium avium complex, which produces respiratory and disseminated infections in immunosuppressed patients. Currently, the morphological and genetic bases underlying the phenotypic features of M. colombiense strains remain unknown. In the present study, we demonstrated that M. colombiense strains displaying smooth morphology show increased biofilm formation on hydrophobic surfaces and sliding on motility plates. Thin-layer chromatography experiments showed that M. colombiense strains displaying smooth colonies produce large amounts of glycolipids with a chromatographic behaviour similar to that of the glycopeptidolipids (GPLs) of M. avium. Conversely, we observed a natural rough variant of M. colombiense (57B strain) lacking pigmentation and exhibiting impaired sliding, biofilm formation, and GPL production. Bioinformatics analyses revealed a gene cluster that is likely involved in GPL biosynthesis in M. colombiense CECT 3035. RT-qPCR experiments showed that motile culture conditions activate the transcription of genes possibly involved in key enzymatic activities of GPL biosynthesis.
Collapse
|
17
|
Pathogenic nontuberculous mycobacteria resist and inactivate cathelicidin: implication of a novel role for polar mycobacterial lipids. PLoS One 2015; 10:e0126994. [PMID: 25993058 PMCID: PMC4436335 DOI: 10.1371/journal.pone.0126994] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 04/09/2015] [Indexed: 12/05/2022] Open
Abstract
Nontuberculous mycobacteria (NTM) are a large group of environmental organisms with worldwide distribution, but only a relatively few are known to be pathogenic. Chronic, debilitating lung disease is the most common manifestation of NTM infection, which is often refractory to treatment. The incidence and prevalence of NTM lung disease are increasing in the United States and in many parts of the world. Hence, a more complete understanding of NTM pathogenesis will provide the foundation to develop innovative approaches to treat this recalcitrant disease. Herein, we demonstrate that several species of NTM show broad resistance to the antimicrobial peptide, cathelicidin (LL-37). Resistance to LL-37 was not significantly different between M. avium that contain serovar-specific glycopeptidolipid (GPL, M. aviumssGPL) and M. avium that do not (M. aviumΔssGPL). Similarly, M. abscessus containing non-specific GPL (M. abscessusnsGPL(+)) or lacking nsGPL (M. abscessusnsGPL(-)) remained equally resistant to LL-37. These findings would support the notion that GPL are not the components responsible for NTM resistance to LL-37. Unexpectedly, the growth of M. abscessusnsGPL(-) increased with LL-37 or scrambled LL-37 peptide in a dose-dependent fashion. We also discovered that LL-37 exposed to NTM had reduced antimicrobial activity, and initial work indicates that this is likely due to inactivation of LL-37 by lipid component(s) of the NTM cell envelope. We conclude that pathogenic NTM resist and inactivate LL-37. The mechanism by which NTM circumvent the antimicrobial activity of LL-37 remains to be determined.
Collapse
|
18
|
Kweon O, Kim SJ, Blom J, Kim SK, Kim BS, Baek DH, Park SI, Sutherland JB, Cerniglia CE. Comparative functional pan-genome analyses to build connections between genomic dynamics and phenotypic evolution in polycyclic aromatic hydrocarbon metabolism in the genus Mycobacterium. BMC Evol Biol 2015; 15:21. [PMID: 25880171 PMCID: PMC4342237 DOI: 10.1186/s12862-015-0302-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 01/29/2015] [Indexed: 11/10/2022] Open
Abstract
Background The bacterial genus Mycobacterium is of great interest in the medical and biotechnological fields. Despite a flood of genome sequencing and functional genomics data, significant gaps in knowledge between genome and phenome seriously hinder efforts toward the treatment of mycobacterial diseases and practical biotechnological applications. In this study, we propose the use of systematic, comparative functional pan-genomic analysis to build connections between genomic dynamics and phenotypic evolution in polycyclic aromatic hydrocarbon (PAH) metabolism in the genus Mycobacterium. Results Phylogenetic, phenotypic, and genomic information for 27 completely genome-sequenced mycobacteria was systematically integrated to reconstruct a mycobacterial phenotype network (MPN) with a pan-genomic concept at a network level. In the MPN, mycobacterial phenotypes show typical scale-free relationships. PAH degradation is an isolated phenotype with the lowest connection degree, consistent with phylogenetic and environmental isolation of PAH degraders. A series of functional pan-genomic analyses provide conserved and unique types of genomic evidence for strong epistatic and pleiotropic impacts on evolutionary trajectories of the PAH-degrading phenotype. Under strong natural selection, the detailed gene gain/loss patterns from horizontal gene transfer (HGT)/deletion events hypothesize a plausible evolutionary path, an epistasis-based birth and pleiotropy-dependent death, for PAH metabolism in the genus Mycobacterium. This study generated a practical mycobacterial compendium of phenotypic and genomic changes, focusing on the PAH-degrading phenotype, with a pan-genomic perspective of the evolutionary events and the environmental challenges. Conclusions Our findings suggest that when selection acts on PAH metabolism, only a small fraction of possible trajectories is likely to be observed, owing mainly to a combination of the ambiguous phenotypic effects of PAHs and the corresponding pleiotropy- and epistasis-dependent evolutionary adaptation. Evolutionary constraints on the selection of trajectories, like those seen in PAH-degrading phenotypes, are likely to apply to the evolution of other phenotypes in the genus Mycobacterium. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0302-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ohgew Kweon
- Division of Microbiology, National Center for Toxicological Research/FDA, Jefferson, Arkansas, USA.
| | - Seong-Jae Kim
- Division of Microbiology, National Center for Toxicological Research/FDA, Jefferson, Arkansas, USA.
| | - Jochen Blom
- Center for Biotechnology, Bielefeld University, Bielefeld, Nordrhein-Westfalen, Germany.
| | - Sung-Kwan Kim
- Department of Management, University of Arkansas at Little Rock, Little Rock, Arkansas, USA.
| | - Bong-Soo Kim
- Department of Life Science, Hallym University, Chuncheon, Gangwon-do, 200-702, Republic of Korea.
| | - Dong-Heon Baek
- Department of Oral Microbiology and Immunology, School of Dentistry, Dankook University, Chonan, Republic of Korea.
| | - Su Inn Park
- Department of Computer Science and Engineering, Texas A&M University, College Station, Texas, USA.
| | - John B Sutherland
- Division of Microbiology, National Center for Toxicological Research/FDA, Jefferson, Arkansas, USA.
| | - Carl E Cerniglia
- Division of Microbiology, National Center for Toxicological Research/FDA, Jefferson, Arkansas, USA.
| |
Collapse
|
19
|
Characterization of mouse models of Mycobacterium avium complex infection and evaluation of drug combinations. Antimicrob Agents Chemother 2015; 59:2129-35. [PMID: 25624335 DOI: 10.1128/aac.04841-14] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Mycobacterium avium complex is the most common cause of nontuberculous mycobacterial lung disease worldwide; yet, an optimal treatment regimen for M. avium complex infection has not been established. Clarithromycin is accepted as the cornerstone drug for treatment of M. avium lung disease; however, good model systems, especially animal models, are needed to evaluate the most effective companion drugs. We performed a series of experiments to evaluate and use different mouse models (comparing BALB/c, C57BL/6, nude, and beige mice) of M. avium infection and to assess the anti-M. avium activity of single and combination drug regimens, in vitro, ex vivo, and in mice. In vitro, clarithromycin and moxifloxacin were most active against M. avium, and no antagonism was observed between these two drugs. Nude mice were more susceptible to M. avium infection than the other mouse strains tested, but the impact of treatment was most clearly seen in M. avium-infected BALB/c mice. The combination of clarithromycin-ethambutol-rifampin was more effective in all infected mice than moxifloxacin-ethambutol-rifampin; the addition of moxifloxacin to the clarithromycin-containing regimen did not increase treatment efficacy. Clarithromycin-containing regimens are the most effective for M. avium infection; substitution of moxifloxacin for clarithromycin had a negative impact on treatment efficacy.
Collapse
|
20
|
Larrouy-Maumus G, Puzo G. Mycobacterial envelope lipids fingerprint from direct MALDI-TOF MS analysis of intact bacilli. Tuberculosis (Edinb) 2014; 95:75-85. [PMID: 25488848 DOI: 10.1016/j.tube.2014.11.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 11/05/2014] [Indexed: 11/29/2022]
Abstract
Mycobacterium tuberculosis (Mtb) lipids including glycolipids and lipoglycans play a crucial role in the modulation of the host immune response by targeting the innate receptors C-type lectins, TLRs and the CD1 proteins of class 1. Glycolipids have been shown to be biomarkers of M. tuberculosis strains and also of opportunistic mycobacteria called non-tuberculous mycobacteria. Most of the structural and functional work of the Mtb lipids has been done using lipids arising from M. tuberculosis cell growth in vitro. However it is likely that lipid structures can change during infection or among the M. tuberculosis or opportunistic clinical strains. Here we describe a new, rapid and sensitive analysis of lipids directly on whole mycobacteria which can be done in few minutes and on less than 1000 mycobacteria by direct matrix-assisted laser desorption/ionization mass spectrometry using an unusual solvent matrix. By this new methodology, which does not require extraction or purification steps, we are able to discriminate mycobacteria belonging to the Mtb complex as well as opportunistic and non-pathogenic mycobacteria. This method was also found to be successful for identification of an envelope lipid mutant. This work opens a new analytical route for in vivo analysis of mycobacterial lipids.
Collapse
Affiliation(s)
- Gérald Larrouy-Maumus
- Tuberculosis and Infection Biology CNRS, Institut de Pharmacologie et de Biologie Structurale, 205 Route de Narbonne, F-31077 Toulouse, France; UPS, Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France.
| | - Germain Puzo
- Tuberculosis and Infection Biology CNRS, Institut de Pharmacologie et de Biologie Structurale, 205 Route de Narbonne, F-31077 Toulouse, France; UPS, Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France.
| |
Collapse
|
21
|
Poyntz HC, Stylianou E, Griffiths KL, Marsay L, Checkley AM, McShane H. Non-tuberculous mycobacteria have diverse effects on BCG efficacy against Mycobacterium tuberculosis. Tuberculosis (Edinb) 2014; 94:226-37. [PMID: 24572168 PMCID: PMC4066954 DOI: 10.1016/j.tube.2013.12.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 11/30/2013] [Accepted: 12/23/2013] [Indexed: 11/28/2022]
Abstract
The efficacy of Bacillus Calmette-Guerin (BCG) vaccination in protection against pulmonary tuberculosis (TB) is highly variable between populations. One possible explanation for this variability is increased exposure of certain populations to non-tuberculous mycobacteria (NTM). This study used a murine model to determine the effect that exposure to NTM after BCG vaccination had on the efficacy of BCG against aerosol Mycobacterium tuberculosis challenge. The effects of administering live Mycobacterium avium (MA) by an oral route and killed MA by a systemic route on BCG-induced protection were evaluated. CD4+ and CD8+ T cell responses were profiled to define the immunological mechanisms underlying any effect on BCG efficacy. BCG efficacy was enhanced by exposure to killed MA administered by a systemic route; T helper 1 and T helper 17 responses were associated with increased protection. BCG efficacy was reduced by exposure to live MA administered by the oral route; T helper 2 cells were associated with reduced protection. These findings demonstrate that exposure to NTM can induce opposite effects on BCG efficacy depending on route of exposure and viability of NTM. A reproducible model of NTM exposure would be valuable in the evaluation of novel TB vaccine candidates.
Collapse
Affiliation(s)
- Hazel C Poyntz
- The Jenner Institute, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, United Kingdom.
| | - Elena Stylianou
- The Jenner Institute, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, United Kingdom.
| | - Kristin L Griffiths
- The Jenner Institute, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, United Kingdom.
| | - Leanne Marsay
- The Jenner Institute, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, United Kingdom.
| | - Anna M Checkley
- The Jenner Institute, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, United Kingdom.
| | - Helen McShane
- The Jenner Institute, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, United Kingdom.
| |
Collapse
|
22
|
Pang L, Tian X, Pan W, Xie J. Structure and function of mycobacterium glycopeptidolipids from comparative genomics perspective. J Cell Biochem 2013; 114:1705-13. [PMID: 23444081 DOI: 10.1002/jcb.24515] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 02/04/2013] [Indexed: 11/08/2022]
Abstract
Glycopeptidolipids (GPLs) attached to the outer surface of the greasy cell envelope, are a class of important glycolipids synthesized by several non-tuberculosis mycobacteria. The deletion or structure change of GPLs confers several phenotypical changes including colony morphology, hydrophobicity, aggregation, sliding motility, and biofilm formation. In addition, GPLs, particular serovar specific GPLs, are important immunomodulators. This review aims to summarize the advance on the structure, function and biosynthesis of mycobacterium GPLs.
Collapse
Affiliation(s)
- Lei Pang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | | | | | | |
Collapse
|
23
|
Pawlik A, Garnier G, Orgeur M, Tong P, Lohan A, Le Chevalier F, Sapriel G, Roux AL, Conlon K, Honoré N, Dillies MA, Ma L, Bouchier C, Coppée JY, Gaillard JL, Gordon SV, Loftus B, Brosch R, Herrmann JL. Identification and characterization of the genetic changes responsible for the characteristic smooth-to-rough morphotype alterations of clinically persistent Mycobacterium abscessus. Mol Microbiol 2013; 90:612-29. [PMID: 23998761 DOI: 10.1111/mmi.12387] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2013] [Indexed: 12/13/2022]
Abstract
Mycobacterium abscessus is an emerging pathogen that is increasingly recognized as a relevant cause of human lung infection in cystic fibrosis patients. This highly antibiotic-resistant mycobacterium is an exception within the rapidly growing mycobacteria, which are mainly saprophytic and non-pathogenic organisms. M. abscessus manifests as either a smooth (S) or a rough (R) colony morphotype, which is of clinical importance as R morphotypes are associated with more severe and persistent infections. To better understand the molecular mechanisms behind the S/R alterations, we analysed S and R variants of three isogenic M. abscessus S/R pairs using an unbiased approach involving genome and transcriptome analyses, transcriptional fusions and integrating constructs. This revealed different small insertions, deletions (indels) or single nucleotide polymorphisms within the non-ribosomal peptide synthase gene cluster mps1-mps2-gap or mmpl4b in the three R variants, consistent with the transcriptional differences identified within this genomic locus that is implicated in the synthesis and transport of Glyco-Peptido-Lipids (GPL). In contrast to previous reports, the identification of clearly defined genetic lesions responsible for the loss of GPL-production or transport makes a frequent switching back-and-forth between smooth and rough morphologies in M. abscessus highly unlikely, which is important for our understanding of persistent M. abscessus infections.
Collapse
Affiliation(s)
- Alexandre Pawlik
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, Paris, France; EA 3647, University Versailles St Quentin in Yvelines, Garches, France; Microbiology Laboratory, Assistance Publique - Hôpitaux de Paris, Raymond Poincaré Hospital, Garches, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Andréjak C, Almeida DV, Tyagi S, Converse PJ, Ammerman NC, Grosset JH. Improving existing tools for Mycobacterium xenopi treatment: assessment of drug combinations and characterization of mouse models of infection and chemotherapy. J Antimicrob Chemother 2012; 68:659-65. [PMID: 23129730 DOI: 10.1093/jac/dks421] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Mycobacterium xenopi is a common agent of non-tuberculous mycobacterial lung diseases in Europe. However, an optimal treatment regimen for M. xenopi infection has not yet been established. Appropriate in vitro and in vivo model systems are needed for characterization of the activity of potential drugs and drug combinations against M. xenopi. METHODS We utilized three experimental platforms to analyse the anti-M. xenopi activity of single and combination drug regimens. First, we determined the bacteriostatic and bactericidal activities of drugs alone and in combination in vitro. Second, we used serum from treated mice to evaluate drug activities ex vivo. Third, we analysed M. xenopi growth in four strains of mice (BALB/c, C57BL/6, beige and athymic nude) and developed a mouse model of chemotherapy for this infection. RESULTS Two-drug combinations of ethambutol with rifampicin, rifapentine or moxifloxacin, and of clarithromycin with moxifloxacin were bactericidal in vitro, and the combination of ethambutol and rifampicin with either clarithromycin or moxifloxacin showed significant bactericidal activity ex vivo. Nude mice were the most susceptible strain to M. xenopi infection, and in this model amikacin-containing regimens were the most effective against M. xenopi. No difference in activity was found between regimens containing clarithromycin and moxifloxacin in vivo. CONCLUSION The ethambutol/rifampicin combination with clarithromycin or moxifloxacin had significant bactericidal activity against M. xenopi. The nude mouse, being highly susceptible to M. xenopi, can be utilized for in vivo chemotherapy studies for this infection.
Collapse
Affiliation(s)
- Claire Andréjak
- Johns Hopkins University School of Medicine, Center for Tuberculosis Research, 1550 Orleans Street, Baltimore, MD 21231, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Khattak FA, Kumar A, Kamal E, Kunisch R, Lewin A. Illegitimate recombination: an efficient method for random mutagenesis in Mycobacterium avium subsp. hominissuis. BMC Microbiol 2012; 12:204. [PMID: 22966811 PMCID: PMC3511198 DOI: 10.1186/1471-2180-12-204] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 09/07/2012] [Indexed: 01/04/2023] Open
Abstract
Background The genus Mycobacterium (M.) comprises highly pathogenic bacteria such as M. tuberculosis as well as environmental opportunistic bacteria called non-tuberculous mycobacteria (NTM). While the incidence of tuberculosis is declining in the developed world, infection rates by NTM are increasing. NTM are ubiquitous and have been isolated from soil, natural water sources, tap water, biofilms, aerosols, dust and sawdust. Lung infections as well as lymphadenitis are most often caused by M. avium subsp. hominissuis (MAH), which is considered to be among the clinically most important NTM. Only few virulence genes from M. avium have been defined among other things due to difficulties in generating M. avium mutants. More efforts in developing new methods for mutagenesis of M. avium and identification of virulence-associated genes are therefore needed. Results We developed a random mutagenesis method based on illegitimate recombination and integration of a Hygromycin-resistance marker. Screening for mutations possibly affecting virulence was performed by monitoring of pH resistance, colony morphology, cytokine induction in infected macrophages and intracellular persistence. Out of 50 randomly chosen Hygromycin-resistant colonies, four revealed to be affected in virulence-related traits. The mutated genes were MAV_4334 (nitroreductase family protein), MAV_5106 (phosphoenolpyruvate carboxykinase), MAV_1778 (GTP-binding protein LepA) and MAV_3128 (lysyl-tRNA synthetase LysS). Conclusions We established a random mutagenesis method for MAH that can be easily carried out and combined it with a set of phenotypic screening methods for the identification of virulence-associated mutants. By this method, four new MAH genes were identified that may be involved in virulence.
Collapse
Affiliation(s)
- Faisal Asghar Khattak
- Robert Koch-Institute, Division 16 Mycology/Parasitology/Intracellular Pathogens, Nordufer 20, Berlin 13353, Germany
| | | | | | | | | |
Collapse
|
26
|
Jönsson B, Ridell M, Wold AE. Phagocytosis and cytokine response to rough and smooth colony variants of Mycobacterium abscessus by human peripheral blood mononuclear cells. APMIS 2012; 121:45-55. [PMID: 23030647 DOI: 10.1111/j.1600-0463.2012.02932.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 05/11/2012] [Indexed: 01/19/2023]
Abstract
Mycobacterium abscessus is a non-tuberculous mycobacteria able to cause opportunistic infections in selected patient groups. During the last decades it has emerged as a cause of chronic pulmonary infection in patients with cystic fibrosis (CF). M. abscessus strains exhibit either smooth or rough colony morphology. Strains exhibiting the rough phenotype more often cause pulmonary infections in CF patients than did the smooth ones. Here, we examined phagocytosis and production of cytokines by human peripheral blood mononuclear cells, in response to M. abscessus strains with smooth and rough colony phenotype. The rough isolates all formed multicellular cords, similar to what is observed in Mycobacterium tuberculosis. Monocytes were generally unable to internalize these rough cord isolates, in contrast with the smooth ones. Furthermore, the rough M. abscessus strains induced a distinct cytokine profile differing from that induced by the smooth ones. Rough isolates induced significantly less IL-10 and tumour necrosis factor compared to smooth strains, but more IL-1β. Both varieties induced equal amounts of IFN-γ, IL-17, IL-23, IL-6, IL-8 and equally little IL-12. The ability to withstand phagocytosis might be a virulence factor contributing to the capacity of rough M. abscessus strains to give persistent pulmonary infections.
Collapse
Affiliation(s)
- Bodil Jönsson
- Clinical Bacteriology Section, Department of Infectious Medicine, Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden.
| | | | | |
Collapse
|
27
|
Early J, Fischer K, Bermudez LE. Mycobacterium avium uses apoptotic macrophages as tools for spreading. Microb Pathog 2010; 50:132-9. [PMID: 21167273 DOI: 10.1016/j.micpath.2010.12.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2010] [Revised: 12/04/2010] [Accepted: 12/07/2010] [Indexed: 02/04/2023]
Abstract
BACKGROUND Mycobacterium avium (MAC) lives and replicates in macrophages and causes disseminated disease in immunocompromised individuals. As a host response to control disease, many macrophages become apoptotic a few days after MAC infection. In this study, we hypothesized that MAC can survive autophagic and apoptotic macrophages and spread. METHODS Electron, time-lapse video, fluorescence microscopy. Apoptosis was determined by ELISA and TUNEL assays. Autophagy was seen by migration of LC3-1. RESULTS Apoptotic macrophages harbor chiefly viable MAC. MAC escapes both the vacuole and the macrophage once apoptosis is triggered, leaving the bacteria free to infect nearby macrophages in the process of spreading. In addition, some MAC species will have apoptotic bodies and are released in healthy macrophages following apoptotic body ingestion. Because autophagy precedes apoptosis, it was established that heat-killed MAC, and viable MAC induces autophagy in macrophages at similar rates, but MAC still survives. CONCLUSION MAC spreading from cell-to-cell is triggered by the macrophage's attempt to kill the bacterium, undergoing apoptosis.
Collapse
Affiliation(s)
- Julie Early
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | | | | |
Collapse
|
28
|
Schorey JS, Sweet L. The mycobacterial glycopeptidolipids: structure, function, and their role in pathogenesis. Glycobiology 2008; 18:832-41. [PMID: 18723691 DOI: 10.1093/glycob/cwn076] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Glycopeptidolipids (GPLs) are a class of glycolipids produced by several nontuberculosis-causing members of the Mycobacterium genus including pathogenic and nonpathogenic species. GPLs are expressed in different forms with production of highly antigenic, typeable serovar-specific GPLs in members of the Mycobacterium avium complex (MAC). M. avium and M. intracellulare, which comprise this complex, are slow-growing mycobacteria noted for producing disseminated infections in AIDS patients and pulmonary infections in non-AIDS patients. Previous studies have defined the gene cluster responsible for GPL biosynthesis and more recent work has characterized the function of the individual genes. Current research has also focused on the GPL's role in colony morphology, sliding motility, biofilm formation, immune modulation and virulence. These topics, along with new information on the enzymes involved in GPL biosynthesis, are the subject of this review.
Collapse
Affiliation(s)
- Jeffrey S Schorey
- Department of Biological Sciences, Eck Institute for Global Health and Infectious Diseases, University of Notre Dame, Notre Dame, IN 46556, USA.
| | | |
Collapse
|
29
|
Abstract
The past several years have witnessed an upsurge of genomic data pertaining to the Mycobacterium avium complex (MAC). Despite clear advances, problems with the detection of MAC persist, spanning the tests that can be used, samples required for their validation, and the use of appropriate nomenclature. Additionally, the amount of genomic variability documented to date greatly outstrips the functional understanding of epidemiologically different subsets of the organism. In this review, we discuss how postgenomic insights into the MAC have helped to clarify the relationships between MAC organisms, highlighting the distinction between environmental and pathogenic subsets of M. avium. We discuss the availability of various genetic targets for accurate classification of organisms and how these results provide a framework for future studies of MAC variability. The results of postgenomic M. avium study provide optimism that a functional understanding of these organisms will soon emerge, with genomically defined subsets that are epidemiologically distinct and possess different survival mechanisms for their various niches. Although the status quo has largely been to study different M. avium subsets in isolation, it is expected that attention to the similarities and differences between M. avium organisms will provide greater insight into their fundamental differences, including their propensity to cause disease.
Collapse
Affiliation(s)
- Christine Y Turenne
- McGill University Health Centre, A5.156, 1650 Cedar Avenue, Montreal H3G 1A4, Canada
| | | | | |
Collapse
|
30
|
Flaherty DK, Vesosky B, Beamer GL, Stromberg P, Turner J. Exposure to Mycobacterium avium can modulate established immunity against Mycobacterium tuberculosis infection generated by Mycobacterium bovis BCG vaccination. J Leukoc Biol 2006; 80:1262-71. [PMID: 16968819 DOI: 10.1189/jlb.0606407] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Mycobacterium bovis bacille Calmette Guerin (BCG), the current vaccine against infection with Mycobacterium tuberculosis, offers a variable, protective efficacy in man. It has been suggested that exposure to environmental mycobacteria can interfere with the generation of BCG-specific immunity. We hypothesized that exposure to environmental mycobacteria following BCG vaccination would interfere with established BCG immunity and reduce protective efficacy, thus modeling the guidelines for BCG vaccination within the first year of life. Mice were vaccinated with BCG and subsequently given repeated oral doses of live Mycobacterium avium to model exposure to environmental mycobacteria. The protective efficacy of BCG with and without subsequent exposure to M. avium was determined following an aerogenic challenge with M. tuberculosis. Exposure of BCG-vaccinated mice to M. avium led to a persistent increase in the number of activated T cells within the brachial lymph nodes but similar T cell activation profiles in the lungs following infection with M. tuberculosis. The capacity of BCG-vaccinated mice to reduce the bacterial load following infection with M. tuberculosis was impaired in mice that had been exposed to M. avium. Our data suggest that exposure to environmental mycobacteria can negatively impact the protection afforded by BCG. These findings are relevant for the development of a vaccine administered in regions with elevated levels of environmental mycobacteria.
Collapse
Affiliation(s)
- David K Flaherty
- Department of Internal Medicine, Division of Infectious Diseases, Center for Microbial Interface Biology, 420 West 12th Avenue, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
31
|
Howard ST, Rhoades E, Recht J, Pang X, Alsup A, Kolter R, Lyons CR, Byrd TF. Spontaneous reversion of Mycobacterium abscessus from a smooth to a rough morphotype is associated with reduced expression of glycopeptidolipid and reacquisition of an invasive phenotype. MICROBIOLOGY-SGM 2006; 152:1581-1590. [PMID: 16735722 DOI: 10.1099/mic.0.28625-0] [Citation(s) in RCA: 255] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Mycobacterium abscessus is an increasingly important cause of human disease; however, virulence determinants are largely uncharacterized. Previously, it was demonstrated that a rough, wild-type human clinical isolate (390R) causes persistent, invasive infection, while a smooth isogenic mutant (390S) has lost this capability. During serial passage of 390S, a spontaneous rough revertant was obtained, which was named 390V. This revertant regained the ability to cause persistent, invasive infection in human monocytes and the lungs of mice. Glycopeptidolipid (GPL), which plays a role in environmental colonization, was present in abundance in the cell wall of 390S, and was associated with sliding motility and biofilm formation. In contrast, a marked reduction in the amount of GPL in the cell wall of 390R and 390V was correlated with cord formation, a property associated with mycobacterial virulence. These results indicate that the ability to switch between smooth and rough morphologies may allow M. abscessus to transition between a colonizing phenotype and a more virulent, invasive form.
Collapse
Affiliation(s)
- Susan T Howard
- Center for Pulmonary and Infectious Disease Control, University of Texas Health Center at Tyler, Tyler, TX 75708, USA
| | - Elizabeth Rhoades
- C4 101 Veterinary Medical Center, Cornell University, Ithaca, NY 14850, USA
| | - Judith Recht
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston MA 02115, USA
| | - Xiuhua Pang
- Center for Pulmonary and Infectious Disease Control, University of Texas Health Center at Tyler, Tyler, TX 75708, USA
| | - Anny Alsup
- The University of New Mexico School of Medicine, Albuquerque, NM87108, USA
| | - Roberto Kolter
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston MA 02115, USA
| | - C Rick Lyons
- The University of New Mexico School of Medicine, Albuquerque, NM87108, USA
| | - Thomas F Byrd
- Department of Medicine, Albuquerque Veterans Affairs Medical Center, 1501 San Pedro, SE, Albuquerque, NM 87108, USA
- The University of New Mexico School of Medicine, Albuquerque, NM87108, USA
| |
Collapse
|
32
|
Bhatnagar S, Schorey JS. Elevated mitogen-activated protein kinase signalling and increased macrophage activation in cells infected with a glycopeptidolipid-deficient Mycobacterium avium. Cell Microbiol 2006; 8:85-96. [PMID: 16367868 DOI: 10.1111/j.1462-5822.2005.00602.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mycobacterium avium is a significant cause of morbidity and mortality in AIDS patients. M. avium can be isolated as three major morphotypes: smooth-transparent (SmT ), smooth-opaque (SmO) and rough (Rg). Studies indicate that many Rg isolates lack or have modified glycopeptidolipids (GPLs). GPLs are major surface constituents of the M. avium cell wall and heterogeneity in their carbohydrate moieties has been used to classify M. avium into different serotypes, with serotypes 1, 4 and 8 being isolated with high frequency from AIDS patients. However, it is unclear what role GPLs play in M. avium pathogenicity. To begin to address how the absence of GPLs affects M. avium-macrophage interaction, we used the well-characterized M. avium 2151 SmT and Rg isolates which differ in GPL expression. We found macrophages infected with the Rg compared with SmT M. avium 2151 showed prolonged activation of the mitogen-activated protein kinases (MAPKs) p38 and ERK1/2. Macrophages infected with the Rg 2151 also showed increased tumour necrosis factor-alpha (TNF-alpha) production. Interestingly, TNF-alpha secretion by macrophages infected with SmO or SmT 2151 was dependent on p38, ERK1/2 and NF-kappaB while TNF-alpha secretion by Rg 2151-infected macrophages was dependent on NF-kappaB but not the MAPKs. Rg 2151-infected macrophages also produced increased levels of IL-6, IL-12, MCP-1 and RANTES relative to macrophages infected with SmT 2151. These results indicate that M. avium 2151 deficient in GPLs promote increased macrophage activation. This disparity in cellular activation stems from a quantitative and qualitative difference in the macrophage signalling response to the Rg and SmT M. avium 2151.
Collapse
Affiliation(s)
- Sanchita Bhatnagar
- Department of Biological Sciences, Center for Tropical Disease Research and Training, University of Notre Dame, Notre Dame, IN 46556, USA
| | | |
Collapse
|
33
|
Miyamoto Y, Mukai T, Nakata N, Maeda Y, Kai M, Naka T, Yano I, Makino M. Identification and characterization of the genes involved in glycosylation pathways of mycobacterial glycopeptidolipid biosynthesis. J Bacteriol 2006; 188:86-95. [PMID: 16352824 PMCID: PMC1317587 DOI: 10.1128/jb.188.1.86-95.2006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glycopeptidolipids (GPLs) are major components present on the outer layers of the cell walls of several nontuberculous mycobacteria. GPLs are antigenic molecules and have variant oligosaccharides in mycobacteria such as Mycobacterium avium. In this study, we identified four genes (gtf1, gtf2, gtf3, and gtf4) in the genome of Mycobacterium smegmatis. These genes were independently inactivated by homologous recombination in M. smegmatis, and the structures of GPLs from each gene disruptant were analyzed. Thin-layer chromatography, gas chromatography-mass spectrometry, and matrix-assisted laser desorption ionization-time-of-flight mass spectrometry analyses revealed that the mutants Deltagtf1 and Deltagtf2 accumulated the fatty acyl-tetrapeptide core having O-methyl-rhamnose and 6-deoxy-talose as sugar residues, respectively. The mutant Deltagtf4 possessed the same GPLs as the wild type, whereas the mutant Deltagtf3 lacked two minor GPLs, consisting of 3-O-methyl-rhamnose attached to O-methyl-rhamnose of the fatty acyl-tetrapeptide core. These results indicate that the gtf1 and gtf2 genes are responsible for the early glycosylation steps of GPL biosynthesis and the gtf3 gene is involved in transferring a rhamnose residue not to 6-deoxy-talose but to an O-methyl-rhamnose residue. Moreover, a complementation experiment showed that M. avium gtfA and gtfB, which are deduced glycosyltransferase genes of GPL biosynthesis, restore complete GPL production in the mutants Deltagtf1 and Deltagtf2, respectively. Our findings propose that both M. smegmatis and M. avium have the common glycosylation pathway in the early steps of GPL biosynthesis but differ at the later stages.
Collapse
Affiliation(s)
- Yuji Miyamoto
- Department of Microbiology, Leprosy Research Center, National Institute of Infectious Diseases, 4-2-1 Aobacho, Higashimurayama, Tokyo 189-0002, Japan
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Krzywinska E, Bhatnagar S, Sweet L, Chatterjee D, Schorey JS. Mycobacterium avium 104 deleted of the methyltransferase D gene by allelic replacement lacks serotype-specific glycopeptidolipids and shows attenuated virulence in mice. Mol Microbiol 2005; 56:1262-73. [PMID: 15882419 DOI: 10.1111/j.1365-2958.2005.04608.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mycobacterium avium is a major opportunistic pathogen of AIDS patients in the United States. The understanding of M. avium pathogenesis has been hampered by the inability to create gene knockouts by homologous recombination, an important mechanism for defining and characterizing virulence factors. In this study a functional methyltransferase D (mtfD) gene was deleted by allelic replacement in the M. avium strain 104. Methyltransferase D is involved in the methylation of glycopeptidolipids (GPLs); highly antigenic glycolipids found in copious amounts on the M. avium cell surface. Interestingly, the loss of mtfD resulted in M. avium 104 containing only the non-serotype specific GPL. Results also suggest that the mtfD encodes for a 3-O-methyltransferase. The absence of significant amounts of any serotype-specific GPLs as a consequence of mtfD deletion indicates that the synthesis of the core 3,4-di-O-methyl rhamnose is a prerequisite for synthesis of the serotype-specific GPLs. Macrophages infected with the mtfD mutant show elevated production of tumour necrosis factor-alpha (TNF-alpha) and RANTES compared to control infections. In addition, the M. avium 104 mtfD mutant exhibits decreased ability to survive/proliferate in mouse liver and lung compared to wild-type 104, as assessed by bacterial counts. Importantly, the mtfD mutant complemented with a wild-type mtfD gene maintained an infection level similar to wild-type. These experiments demonstrate that the loss of mtfD results in a M. avium 104 strain, which preferentially activates macrophages in vitro and shows attenuated virulence in mice. Together our data support a role for GPLs in M. avium pathogenesis.
Collapse
Affiliation(s)
- Elzbieta Krzywinska
- Department of Biological Sciences, Center for Tropical Disease Research and Training, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | | | |
Collapse
|
35
|
Blumenthal A, Lauber J, Hoffmann R, Ernst M, Keller C, Buer J, Ehlers S, Reiling N. Common and unique gene expression signatures of human macrophages in response to four strains of Mycobacterium avium that differ in their growth and persistence characteristics. Infect Immun 2005; 73:3330-41. [PMID: 15908359 PMCID: PMC1111816 DOI: 10.1128/iai.73.6.3330-3341.2005] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Classification of pathogenic species according to the distinct host transcriptional responses that they elicit may become a relevant tool for microarray-based diagnosis of infection. Individual strains of Mycobacterium avium, an opportunistic pathogen in humans, have previously been shown to differ in terms of growth and persistence. In order to cover a wide spectrum of virulence, we selected four M. avium isolates (2151SmO, 2151SmT, SE01, TMC724) that have distinct intramacrophage replication characteristics and cause differential activation in human macrophages. Following infection with each of these strains, the expression of 12,558 genes in human macrophages was systematically analyzed by microarray technology. Fifty genes (including genes encoding proinflammatory cytokines, chemokines, signaling, and adhesion molecules) were differentially expressed more than twofold in response to all of the M. avium isolates investigated and therefore constitute a common macrophage signature in response to M. avium. The magnitude of regulation of most of these genes was directly correlated with the host cell-activating capacity of the particular M. avium strain. The regulation of a number of genes not previously associated with mycobacterial infections was apparent; these genes included genes encoding lymphocyte antigen 64 and myosin X. In addition, individual response patterns typical for some M. avium isolates could be defined by the pronounced upregulation of interleukin-12p40 (IL-12p40) (in the case of 2151SmO) or the specific upregulation of SOCS-1 and IL-10 (in the case of SE01) in macrophages. TMC724, a strain of avian origin, could not be classified by any one of these schemes, possibly indicating the limits of pathogen categorization solely by immune response signatures.
Collapse
Affiliation(s)
- Antje Blumenthal
- Division of Molecular Infection Biology, Department of Immunochemistry and Biochemical Microbiology, Research Center Borstel, Parkallee 22, D-23845 Borstel, Germany
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Eckstein TM, Belisle JT, Inamine JM. Proposed pathway for the biosynthesis of serovar-specific glycopeptidolipids in Mycobacterium avium serovar 2. MICROBIOLOGY-SGM 2003; 149:2797-2807. [PMID: 14523113 DOI: 10.1099/mic.0.26528-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Members of the Mycobacterium avium complex are distinguished by the presence of highly antigenic surface molecules called glycopeptidolipids (GPLs) and the oligosaccharide portion of the serovar-specific GPL defines the 28 serovars. Previously, the genomic region (ser2) encoding the enzymes responsible for the glycosylation of the lipopeptide core to generate the serovar-2-specific GPLs has been described. In this work, the ser2 gene clusters of M. avium serovar 2 strains 2151 and TMC 724 were fully sequenced and compared to the homologous regions of M. avium serovar 1 strain 104, M. avium subsp. paratuberculosis and M. avium subsp. silvaticum. It was also determined that 104Rg, a mutant of strain 104 that produces truncated GPLs, lost several GPL biosynthesis genes by deletion. This comparison, together with analysis of protein similarities, supports a biosynthetic model in which serovar-2-specific GPLs are synthesized from a serovar-1-specific GPL intermediate that is derived from a non-specific GPL precursor. We also identified a gene encoding an enzyme that is necessary for the biosynthesis of serovar-3- and 9-specific GPLs, but not serovar-2-specific GPLs, suggesting that the different serovars may have evolved from the acquisition or loss of genetic information. In addition, a subcluster of genes for the biosynthesis and transfer of fucose, which are needed to make serovar-specific GPLs such as those of serovar 2, is found in the non-GPL-producing M. avium subspecies paratuberculosis and silvaticum.
Collapse
Affiliation(s)
- Torsten M Eckstein
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA
| | - John T Belisle
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA
| | - Julia M Inamine
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA
| |
Collapse
|