1
|
Frazzoli C, Bocca B, Battistini B, Ruggieri F, Rovira J, Amadi CN, Offor SJ, Orisakwe OE. Rare Earth and Platinum Group Elements In Sub-Saharan Africa and Global Health: The Dark Side of the Burgeoning of Technology. ENVIRONMENTAL HEALTH INSIGHTS 2024; 18:11786302241271553. [PMID: 39282214 PMCID: PMC11393805 DOI: 10.1177/11786302241271553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/01/2024] [Indexed: 09/18/2024]
Abstract
Despite steady progress in the development and promotion of the circular economy as a model, an overwhelming proportion of technological devices discarded by the Global North still finds its way to the Global South, where technology-related environmental health problems start from the predation of resources and continue all the way to recycling and disposal. We reviewed literature on TCEs in sub-Saharan Africa (SSA), focussing on: the sources and levels of environmental pollution; the extent of human exposure to these substances; their role in the aetiology of human diseases; their effects on the environment. Our review shows that even minor and often neglected technology-critical elements (TCEs), like rare earth elements (REEs) and platinum group elements (PGEs), reveal the environmental damage and detrimental health effects caused by the massive mining of raw materials, exacerbated by improper disposal of e-waste (from dumping to improper recycling and open burning). We draw attention of local research on knowledge gaps such as workable safer methods for TCE recovery from end-of-life products, secondary materials and e-waste, environmental bioremediation and human detoxification. The technical and political shortcomings in the management of TCEs in SSA is all the more alarming against the background of unfavourable determinants of health and a resulting higher susceptibility to diseases, especially among children who work in mines and e-waste recycling sites or who reside in dumping sites.This paper demonstrates, for the first time, that the role of unjust North-South dynamics is evident even in the environmental levels of minor trace elements and that the premise underlying attempts to solve the problem of e-waste dumped in Africa through recycling and disposal technology is in fact misleading. The influx of foreign electrical and electronic equipments should be controlled and limited by clearly defining what is a 'useful' second-hand device and what is e-waste; risks arising from device components or processing by-products should be managed differently, and scientific uncertainty and One Health thinking should be incorporated in risk assessment.
Collapse
Affiliation(s)
- Chiara Frazzoli
- Department of Cardiovascular and Endocrine-Metabolic Diseases, and Ageing, Istituto Superiore di Sanità (Italian National Institute of Health), Rome, Italy
| | - Beatrice Bocca
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Beatrice Battistini
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Flavia Ruggieri
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Joaquim Rovira
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Reus, Catalonia, Spain
- Environmental Engineering Laboratory, Department d'Enginyeria Quimica, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain
| | - Cecilia Nwadiuto Amadi
- Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port-Harcourt, Port-Harcourt, Rivers State, Nigeria
| | - Samuel James Offor
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Uyo, Uyo, Akwa Ibom State, Nigeria
| | - Orish E Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, Port Harcourt, Choba, Nigeria
- Advanced Research Centre, European University of Lefke, Lefke, Northern Cyprus, Turkey
| |
Collapse
|
2
|
Ali SA, Destaye AG. Apparent Khat chewers exposure to DDT in Ethiopia and its potential toxic effects: A scoping review. Regul Toxicol Pharmacol 2024; 147:105555. [PMID: 38142813 DOI: 10.1016/j.yrtph.2023.105555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/28/2023] [Accepted: 12/17/2023] [Indexed: 12/26/2023]
Abstract
Dichlorodiphenyltrichloroethane (DDT) is an insecticide, a member of dirty dozen persistent organic pollutants, used widely in the world until it was banned in the 1970s.The banning of DDT was strengthened by the Stockholm Convention in 2001. DDT is allowed only for malaria control in Ethiopia. However, farmers are misusing DDT and applying it to Khat (Catha edulis) farming. So, this review analyzes available data in the literature on the current trend, application, occurrence, fate and effects of DDT and its metabolites, dichlorodiphenyldichloroethane (DDD), dichlorodiphenyldichloroethylene (DDE), in the chewable parts of Khat. Generally, the concentration level of DDT, DDD, and DDE, designated as DDTs, is detected in different farmlands of Ethiopia. Some of the DDTs concentrations detected are very high (141.2-973 μg/kg (Gelemso), 194.4-999 μg/kg (Aseno) and 6253-8413.3 μg/kg (Gurage), and these concentrations may indicate increasing recent unmonitored application of DDT on Khat leaves. Some of the detected concentrations of DDT in the literature were above the maximum residue limit (MRL) set by FAO/WHO (100 μg/kg) and the European Commission 10 μg/kg in vegetables and 50 μg/kg in cereals. DDT exposure of Khat chewers linked to the concentration of DDT on Khat leaves and the amount of Khat consumed. DDT might pose health risks to chewers due to chronic toxicity, bioaccumulation, persistent and endocrine disruption properties.
Collapse
Affiliation(s)
- Shimels Ayalew Ali
- Department of Biology, Environmental Toxicology, Dire Dawa University, Ethiopia.
| | | |
Collapse
|
3
|
Kostoff RN, Briggs MB, Kanduc D, Dewanjee S, Kandimalla R, Shoenfeld Y, Porter AL, Tsatsakis A. Modifiable contributing factors to COVID-19: A comprehensive review. Food Chem Toxicol 2023; 171:113511. [PMID: 36450305 PMCID: PMC9701571 DOI: 10.1016/j.fct.2022.113511] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/29/2022]
Abstract
The devastating complications of coronavirus disease 2019 (COVID-19) result from an individual's dysfunctional immune response following the initial severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Multiple toxic stressors and behaviors contribute to underlying immune system dysfunction. SARS-CoV-2 exploits the dysfunctional immune system to trigger a chain of events ultimately leading to COVID-19. The current study identifies eighty immune system dysfunction-enabling toxic stressors and behaviors (hereafter called modifiable contributing factors (CFs)) that also link directly to COVID-19. Each CF is assigned to one of the five categories in the CF taxonomy shown in Section 3.3.: Lifestyle (e.g., diet, substance abuse); Iatrogenic (e.g., drugs, surgery); Biotoxins (e.g., micro-organisms, mycotoxins); Occupational/Environmental (e.g., heavy metals, pesticides); Psychosocial/Socioeconomic (e.g., chronic stress, lower education). The current study shows how each modifiable factor contributes to decreased immune system capability, increased inflammation and coagulation, and increased neural damage and neurodegeneration. It is unclear how real progress can be made in combatting COVID-19 and other similar diseases caused by viral variants without addressing and eliminating these modifiable CFs.
Collapse
Affiliation(s)
- Ronald Neil Kostoff
- Independent Consultant, Gainesville, VA, 20155, USA,Corresponding author. Independent Consultant, 13500 Tallyrand Way, Gainesville, VA, 20155, USA
| | | | - Darja Kanduc
- Dept. of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, Via Orabona 4, Bari, 70125, Italy
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Ramesh Kandimalla
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, 500007, Telangana, India
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, 5265601, Israel
| | - Alan L. Porter
- School of Public Policy, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003, Heraklion, Greece
| |
Collapse
|
4
|
Morawietz H, Frenzel A, Mieting A, Goettsch W, Valtink M, Roehlecke C, Jászai J, Funk RHW, Becker KA, Engelmann K. Induction of vascular endothelial growth factor-A 165a in human retinal and endothelial cells in response to glyoxal. Ther Apher Dial 2022; 26 Suppl 1:29-34. [PMID: 36468302 DOI: 10.1111/1744-9987.13803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/10/2021] [Accepted: 01/13/2022] [Indexed: 12/09/2022]
Abstract
Low-density lipoprotein (LDL) apheresis is effective and safe for patients with diabetes, proteinuria, and dyslipidemia. Diabetes mellitus is accompanied by ocular microvascular complications like retinal neovascularization or diabetic macular edema. These are leading causes of blindness and can be mediated by abnormal vessel growth and increased vascular permeability due to elevated levels of vascular endothelial growth factor (VEGF) in diabetic patients. In this study, we established methods to study the expression of different VEGF isoforms in human retinal and endothelial cells. The VEGF-A165a isoform is much higher expressed in retinal cells, compared to endothelial cells. Stimulation with glyoxal as a model of oxidative stress under diabetic conditions lead to a pronounced induction of VEGF-A165a in human retinal and endothelial cells. These data suggest that diabetes and oxidative stress induce VEGF-A isoforms which could be relevant in regulating the ingrowths of novel blood vessels into the retina in diabetic patients.
Collapse
Affiliation(s)
- Henning Morawietz
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Annika Frenzel
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Alice Mieting
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Winfried Goettsch
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Monika Valtink
- Institute of Anatomy and Equality and Diversity Unit, Faculty of Medicine Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany
| | - Cora Roehlecke
- Institute of Anatomy and Equality and Diversity Unit, Faculty of Medicine Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany
| | - József Jászai
- Institute of Anatomy and Equality and Diversity Unit, Faculty of Medicine Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany
| | - Richard H W Funk
- Institute of Anatomy and Equality and Diversity Unit, Faculty of Medicine Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany
| | - Klio A Becker
- Department of Ophthalmology, Klinikum Chemnitz gGmbH, Chemnitz, Germany
| | - Katrin Engelmann
- Department of Ophthalmology, Klinikum Chemnitz gGmbH, Chemnitz, Germany
| |
Collapse
|
5
|
Abstract
An elevated cholesterol concentration has been suspected to increase the susceptibility for SARS-COV-2 infection. Cholesterol plays a central role in the mechanisms of the SARS-COV-2 infection. In contrast, higher HDL-cholesterol levels seem to be protective. During COVID-19 disease, LDL-cholesterol and HDL-cholesterol appear to be decreased. On the other hand, triglycerides (also in different lipoprotein fractions) were elevated. Lipoprotein(a) may increase during this disease and is most probably responsible for thromboembolic events. This lipoprotein can induce a progression of atherosclerotic lesion formation. The same is suspected for the SARS-COV-2 infection itself. COVID-19 patients are at increased risk of incident cardiovascular diseases, including cerebrovascular disorders, dysrhythmias, ischemic and non-ischemic heart disease, pericarditis, myocarditis, heart failure, and thromboembolic disorders. An ongoing lipid-lowering therapy, including lipoprotein apheresis, is recommended to be continued during the COVID-19 disease, though the impact of lipid-lowering drugs or the extracorporeal therapy on prognosis should be studied in further investigations.
Collapse
Affiliation(s)
- Ulrich Julius
- Lipidology and Center for Extracorporeal Therapy, Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Ulrike Schatz
- Lipidology and Center for Extracorporeal Therapy, Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Sergey Tselmin
- Lipidology and Center for Extracorporeal Therapy, Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Henning Morawietz
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
6
|
Reis J, Buguet A, Román GC, Spencer PS. The COVID-19 pandemic, an environmental neurology perspective. Rev Neurol (Paris) 2022; 178:499-511. [PMID: 35568518 PMCID: PMC8938187 DOI: 10.1016/j.neurol.2022.02.455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 11/20/2022]
Abstract
Neurologists have a particular interest in SARS-CoV-2 because the nervous system is a major participant in COVID-19, both in its acute phase and in its persistent post-COVID phase. The global spread of SARS-CoV-2 infection has revealed most of the challenges and risk factors that humanity will face in the future. We review from an environmental neurology perspective some characteristics that have underpinned the pandemic. We consider the agent, SARS-CoV-2, the spread of SARS-CoV-2 as influenced by environmental factors, its impact on the brain and some containment measures on brain health. Several questions remain, including the differential clinical impact of variants, the impact of SARS-CoV-2 on sleep and wakefulness, and the neurological components of Long-COVID syndrome. We touch on the role of national leaders and public health policies that have underpinned management of the COVID-19 pandemic. Increased awareness, anticipation and preparedness are needed to address comparable future challenges.
Collapse
Affiliation(s)
- J Reis
- Université de Strasbourg, 67000 Strasbourg, France; Association RISE, 67205 Oberhausbergen, France.
| | - A Buguet
- General (r) French Army Health Services, Malaria Research Unit, UMR 5246 CNRS, Claude-Bernard Lyon-1 University, 69622 Villeurbanne, France.
| | - G C Román
- Department of Neurology, Neurological Institute, Houston Methodist Hospital, Houston, TX, USA.
| | - P S Spencer
- Department of Neurology, School of Medicine, Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
7
|
Kostoff RN, Briggs MB, Kanduc D, Shores DR, Kovatsi L, Drakoulis N, Porter AL, Tsatsakis A, Spandidos DA. Contributing factors common to COVID‑19 and gastrointestinal cancer. Oncol Rep 2021; 47:16. [PMID: 34779496 PMCID: PMC8611322 DOI: 10.3892/or.2021.8227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/04/2021] [Indexed: 12/11/2022] Open
Abstract
The devastating complications of coronavirus disease 2019 (COVID-19) result from the dysfunctional immune response of an individual following the initial severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Multiple toxic stressors and behaviors contribute to underlying immune system dysfunction. SARS-CoV-2 exploits the dysfunctional immune system to trigger a chain of events, ultimately leading to COVID-19. The authors have previously identified a number of contributing factors (CFs) common to myriad chronic diseases. Based on these observations, it was hypothesized that there may be a significant overlap between CFs associated with COVID-19 and gastrointestinal cancer (GIC). Thus, in the present study, a streamlined dot-product approach was used initially to identify potential CFs that affect COVID-19 and GIC directly (i.e., the simultaneous occurrence of CFs and disease in the same article). The nascent character of the COVID-19 core literature (~1-year-old) did not allow sufficient time for the direct effects of numerous CFs on COVID-19 to emerge from laboratory experiments and epidemiological studies. Therefore, a literature-related discovery approach was used to augment the COVID-19 core literature-based ‘direct impact’ CFs with discovery-based ‘indirect impact’ CFs [CFs were identified in the non-COVID-19 biomedical literature that had the same biomarker impact pattern (e.g., hyperinflammation, hypercoagulation, hypoxia, etc.) as was shown in the COVID-19 literature]. Approximately 2,250 candidate direct impact CFs in common between GIC and COVID-19 were identified, albeit some being variants of the same concept. As commonality proof of concept, 75 potential CFs that appeared promising were selected, and 63 overlapping COVID-19/GIC potential/candidate CFs were validated with biological plausibility. In total, 42 of the 63 were overlapping direct impact COVID-19/GIC CFs, and the remaining 21 were candidate GIC CFs that overlapped with indirect impact COVID-19 CFs. On the whole, the present study demonstrates that COVID-19 and GIC share a number of common risk/CFs, including behaviors and toxic exposures, that impair immune function. A key component of immune system health is the removal of those factors that contribute to immune system dysfunction in the first place. This requires a paradigm shift from traditional Western medicine, which often focuses on treatment, rather than prevention.
Collapse
Affiliation(s)
- Ronald Neil Kostoff
- School of Public Policy, Georgia Institute of Technology, Gainesville, VA 20155, USA
| | | | - Darja Kanduc
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, I‑70125 Bari, Italy
| | - Darla Roye Shores
- Department of Pediatrics, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Leda Kovatsi
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Nikolaos Drakoulis
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | | | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
8
|
Chinnaswamy S. SARS-CoV-2 infection in India bucks the trend: Trained innate immunity? Am J Hum Biol 2021; 33:e23504. [PMID: 32965717 PMCID: PMC7536963 DOI: 10.1002/ajhb.23504] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/26/2020] [Accepted: 08/24/2020] [Indexed: 01/08/2023] Open
Abstract
SARS-CoV-2, the causative agent of COVID-19 pandemic caught the world unawares by its sudden onset in early 2020. Memories of the 1918 Spanish Flu were rekindled raising extreme fear for the virus, but in essence, it was the host and not the virus, which was deciding the outcome of the infection. Age, gender, and preexisting conditions played critical roles in shaping COVID-19 outcome. People of lower socioeconomic strata were disproportionately affected in industrialized countries such as the United States. India, a developing country with more than 1.3 billion population, a large proportion of it being underprivileged and with substandard public health provider infrastructure, feared for the worst outcome given the sheer size and density of its population. Six months into the pandemic, a comparison of COVID-19 morbidity and mortality data between India, the United States, and several European countries, reveal interesting trends. While most developed countries show curves expected for a fast-spreading respiratory virus, India seems to have a slower trajectory. As a consequence, India may have gained on two fronts: the spread of the infection is unusually prolonged, thus leading to a curve that is "naturally flattened"; concomitantly the mortality rate, which is a reflection of the severity of the disease has been relatively low. I hypothesize that trained innate immunity, a new concept in immunology, may be the phenomenon behind this. Biocultural, socioecological, and socioeconomic determinants seem to be influencing the outcome of COVID-19 in different regions/countries of the world.
Collapse
Affiliation(s)
- Sreedhar Chinnaswamy
- Infectious Disease GeneticsNational Institute of Biomedical GenomicsKalyaniIndia
| |
Collapse
|
9
|
Woldetsadik D, Simon MP, Knuth D, Hailu H, Gebresilassie A, Dejen A, Düring RA. Exposure to DDT and HCH congeners and associated potential health risks through khat (Catha edulis) consumption among adults in South Wollo, Ethiopia. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:3597-3613. [PMID: 33594639 PMCID: PMC7886647 DOI: 10.1007/s10653-021-00846-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
Khat (Catha edulis) chewing is widespread in the region of East Africa. Even low levels of organochlorine pesticides (OCPs) in khat could induce public health concern. In a market-based study, from five popular khat varieties, a total of 35 composite khat samples were analyzed for dichlorodiphenyltrichloroethane (DDT) and its main transformation products, and four hexachlorocyclohexane (HCH) isomers. Extraction was carried out by quick, easy, cheap, effective, rugged and safe method (QuEChERS). OCP concentrations were determined by head space solid phase microextraction coupled to gas chromatography-mass spectrometry (HS-SPME-GC-MS). Every sample contained β-HCH above the maximum residue limit set by the European Commission. For total DDT, this was the case for 25.7% of the samples. The ratios of (p,p'-DDD + p,p'-DDE) to p,p'-DDT were less than one for 85% of khat samples, demonstrating recent use of DDT in khat farmlands. Conversely, the ratio of β-HCH to total HCH varied from 0.56 to 0.96, implying historical input of technical HCH. Assuming a daily chewable portion of 100 g, dietary intakes of p,p'-DDT, total DDT and total HCH by adults ranged from 3.12 to 57.9, 6.49 to 80.2 and 39.2 to 51.9 ng (kg body weight)-1 day-1, respectively. These levels are below acceptable levels suggested by international organizations. Chewing khat showed lower non-cancer health risk, but showed relatively higher cancer risk in terms of OCPs. Because khat is chewed without being subjected to any treatment, uncertainties associated with estimated intakes and health risks should be low. Therefore, this practice is of great concern.
Collapse
Affiliation(s)
- Desta Woldetsadik
- Department of Soil and Water Resources Management, Wollo University, Dessie, Ethiopia
| | - Marcel Pierre Simon
- Department of Soil Science and Soil Conservation, Research Centre for BioSystems, Land Use and Nutrition (iFZ), Justus Liebig University Giessen, Giessen, Germany
| | - Dennis Knuth
- Department of Soil Science and Soil Conservation, Research Centre for BioSystems, Land Use and Nutrition (iFZ), Justus Liebig University Giessen, Giessen, Germany
| | - Hillette Hailu
- Department of Soil and Water Resources Management, Wollo University, Dessie, Ethiopia
| | - Araya Gebresilassie
- Department of Zoological Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Asmare Dejen
- Department of Plant Science, Wollo University, Dessie, Ethiopia
| | - Rolf-Alexander Düring
- Department of Soil Science and Soil Conservation, Research Centre for BioSystems, Land Use and Nutrition (iFZ), Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
10
|
Koch CA, Sharda P, Patel J, Gubbi S, Bansal R, Bartel MJ. Climate Change and Obesity. Horm Metab Res 2021; 53:575-587. [PMID: 34496408 PMCID: PMC8440046 DOI: 10.1055/a-1533-2861] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/22/2021] [Indexed: 02/08/2023]
Abstract
Global warming and the rising prevalence of obesity are well described challenges of current mankind. Most recently, the COVID-19 pandemic arose as a new challenge. We here attempt to delineate their relationship with each other from our perspective. Global greenhouse gas emissions from the burning of fossil fuels have exponentially increased since 1950. The main contributors to such greenhouse gas emissions are manufacturing and construction, transport, residential, commercial, agriculture, and land use change and forestry, combined with an increasing global population growth from 1 billion in 1800 to 7.8 billion in 2020 along with rising obesity rates since the 1980s. The current Covid-19 pandemic has caused some decline in greenhouse gas emissions by limiting mobility globally via repetitive lockdowns. Following multiple lockdowns, there was further increase in obesity in wealthier populations, malnutrition from hunger in poor populations and death from severe infection with Covid-19 and its virus variants. There is a bidirectional relationship between adiposity and global warming. With rising atmospheric air temperatures, people typically will have less adaptive thermogenesis and become less physically active, while they are producing a higher carbon footprint. To reduce obesity rates, one should be willing to learn more about the environmental impact, how to minimize consumption of energy generating carbon dioxide and other greenhouse gas emissions, and to reduce food waste. Diets lower in meat such as a Mediterranean diet, have been estimated to reduce greenhouse gas emissions by 72%, land use by 58%, and energy consumption by 52%.
Collapse
Affiliation(s)
- Christian A. Koch
- Department of Medicine, Fox Chase Cancer Center, Philadelphia, PA,
USA
- Department of Medicine, The University of Tennessee Health Science
Center, Memphis, TN, USA
| | - Pankaj Sharda
- Department of Medicine, Fox Chase Cancer Center, Philadelphia, PA,
USA
| | - Jay Patel
- Department of Medicine, The University of Tennessee Health Science
Center, Memphis, TN, USA
| | - Sriram Gubbi
- National Institutes of Health, Bethesda, MD, USA
| | | | - Michael J. Bartel
- Department of Medicine, Fox Chase Cancer Center, Philadelphia, PA,
USA
| |
Collapse
|
11
|
Sly PD, Trottier BA, Bulka CM, Cormier SA, Fobil J, Fry RC, Kim KW, Kleeberger S, Kumar P, Landrigan PJ, Lodrop Carlsen KC, Pascale A, Polack F, Ruchirawat M, Zar HJ, Suk WA. The interplay between environmental exposures and COVID-19 risks in the health of children. Environ Health 2021; 20:34. [PMID: 33771185 PMCID: PMC7996114 DOI: 10.1186/s12940-021-00716-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/07/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND An unusual feature of SARS-Cov-2 infection and the COVID-19 pandemic is that children are less severely affected than adults. This is especially paradoxical given the epidemiological links between poor air quality and increased COVID-19 severity in adults and that children are generally more vulnerable than adults to the adverse consequences of air pollution. OBJECTIVES To identify gaps in knowledge about the factors that protect children from severe SARS-Cov-2 infection even in the face of air pollution, and to develop a transdisciplinary research strategy to address these gaps. METHODS An international group of researchers interested in children's environmental health was invited to identify knowledge gaps and to develop research questions to close these gaps. DISCUSSION Key research questions identified include: what are the effects of SAR-Cov-2 infection during pregnancy on the developing fetus and child; what is the impact of age at infection and genetic susceptibility on disease severity; why do some children with COVID-19 infection develop toxic shock and Kawasaki-like symptoms; what are the impacts of toxic environmental exposures including poor air quality, chemical and metal exposures on innate immunity, especially in the respiratory epithelium; what is the possible role of a "dirty" environment in conveying protection - an example of the "hygiene hypothesis"; and what are the long term health effects of SARS-Cov-2 infection in early life. CONCLUSION A concerted research effort by a multidisciplinary team of scientists is needed to understand the links between environmental exposures, especially air pollution and COVID-19. We call for specific research funding to encourage basic and clinical research to understand if/why exposure to environmental factors is associated with more severe disease, why children appear to be protected, and how innate immune responses may be involved. Lessons learned about SARS-Cov-2 infection in our children will help us to understand and reduce disease severity in adults, the opposite of the usual scenario.
Collapse
Affiliation(s)
- Peter D Sly
- Children's Health and Environment Program, The University of Queensland, Brisbane, Australia
| | - Brittany A Trottier
- Superfund Research Program, National Institute of Environmental Health Sciences, 530 Davis Drive, Durham, NC, 27709, USA
| | - Catherine M Bulka
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, USA
| | - Stephania A Cormier
- LSU Superfund Research Program, Louisiana State University, Baton Rouge, USA
| | - Julius Fobil
- Department of Biological, Environmental and Occupational Health Science, University of Ghana, Accra, Ghana
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, USA
| | - Kyoung-Woong Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Steven Kleeberger
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Durham, USA
| | | | - Philip J Landrigan
- Schiller Institute for Integrated Science and Society, Boston College, Chestnut Hill, USA
| | - Karin C Lodrop Carlsen
- Division of Paediatric and Adolescent Medicine, University of Oslo & Oslo University Hospital, Oslo, Norway
| | - Antonio Pascale
- Department of Toxicology, Faculty of Medicine, University of the Republic, Montevideo, Uruguay
| | | | | | - Heather J Zar
- Dept of Paediatrics & Child Health and SA-MRC Unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - William A Suk
- Superfund Research Program, National Institute of Environmental Health Sciences, 530 Davis Drive, Durham, NC, 27709, USA.
| |
Collapse
|
12
|
Oliveira M, Padrão A, Ramalho A, Lobo M, Teodoro AC, Gonçalves H, Freitas A. Geospatial Analysis of Environmental Atmospheric Risk Factors in Neurodegenerative Diseases: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17228414. [PMID: 33202965 PMCID: PMC7697835 DOI: 10.3390/ijerph17228414] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022]
Abstract
Despite the vast evidence on the environmental influence in neurodegenerative diseases, those considering a geospatial approach are scarce. We conducted a systematic review to identify studies concerning environmental atmospheric risk factors for neurodegenerative diseases that have used geospatial analysis/tools. PubMed, Web of Science, and Scopus were searched for all scientific studies that included a neurodegenerative disease, an environmental atmospheric factor, and a geographical analysis. Of the 34 included papers, approximately 60% were related to multiple sclerosis (MS), hence being the most studied neurodegenerative disease in the context of this study. Sun exposure (n = 13) followed by the most common exhaustion gases (n = 10 for nitrogen dioxide (NO2) and n = 5 for carbon monoxide (CO)) were the most studied atmospheric factors. Only one study used a geospatial interpolation model, although 13 studies used remote sensing data to compute atmospheric factors. In 20% of papers, we found an inverse correlation between sun exposure and multiple sclerosis. No consensus was reached in the analysis of nitrogen dioxide and Parkinson’s disease, but it was related to dementia and amyotrophic lateral sclerosis. This systematic review (number CRD42020196188 in PROSPERO’s database) provides an insight into the available evidence regarding the geospatial influence of environmental factors on neurodegenerative diseases.
Collapse
Affiliation(s)
- Mariana Oliveira
- CINTESIS—Center for Health Technology and Services Research, Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, s/n, 4200-450 Porto, Portugal; (A.R.); (M.L.); (H.G.); (A.F.)
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, s/n, 4200-450 Porto, Portugal
- Correspondence:
| | - André Padrão
- Faculty of Arts and Humanities, University of Porto, Via Panorâmica, s/n, 4150-564 Porto, Portugal;
| | - André Ramalho
- CINTESIS—Center for Health Technology and Services Research, Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, s/n, 4200-450 Porto, Portugal; (A.R.); (M.L.); (H.G.); (A.F.)
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, s/n, 4200-450 Porto, Portugal
| | - Mariana Lobo
- CINTESIS—Center for Health Technology and Services Research, Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, s/n, 4200-450 Porto, Portugal; (A.R.); (M.L.); (H.G.); (A.F.)
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, s/n, 4200-450 Porto, Portugal
| | - Ana Cláudia Teodoro
- Department of Geosciences, Environment and Land Planning, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal;
- Earth Sciences Institute (ICT), Pole of the FCUP, University of Porto, 4169-007 Porto, Portugal
| | - Hernâni Gonçalves
- CINTESIS—Center for Health Technology and Services Research, Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, s/n, 4200-450 Porto, Portugal; (A.R.); (M.L.); (H.G.); (A.F.)
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, s/n, 4200-450 Porto, Portugal
| | - Alberto Freitas
- CINTESIS—Center for Health Technology and Services Research, Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, s/n, 4200-450 Porto, Portugal; (A.R.); (M.L.); (H.G.); (A.F.)
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, s/n, 4200-450 Porto, Portugal
| |
Collapse
|