1
|
Singh AS, Pathak D, Jain S, Devi MS, Nongthomba U. Evaluating the potential toxicity of ampicillin using Drosophila melanogaster as a model organism. Toxicol Rep 2025; 14:101992. [PMID: 40206788 PMCID: PMC11979408 DOI: 10.1016/j.toxrep.2025.101992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/26/2025] [Accepted: 03/06/2025] [Indexed: 04/11/2025] Open
Abstract
Antibiotic resistance is an indispensable threat facing in the present era. However, the studies on long term and trans-generational effects of using drugs or antibiotics on living organisms are scarce. Emphasizing the necessity to address such problems, this study investigated the potential effects of antibiotic, ampicillin (AMP) stress on the physiology of Drosophila melanogaster across multiple generations with mechanistic details. We evaluated the larval feeding behavior, fertility, cell viability in ovary and testis, longevity, expression of methylation-related genes (dDnmt2 and dMBD2/3), and antimicrobial peptide production. Larvae exposed to AMP exhibited increased mouth hook movement, indicating altered behaviour. AMP stress significantly reduced fertility across generations, with eclosion counts decreasing notably in F3 and F4 generations compared to controls. Moreover, AMP-treated flies showed decreased cell viability in ovary and testis, leading to impaired reproductive function. AMP exposure shortened the mean lifespan of flies and upregulated the expression of apoptosis-related gene p53 in females. However, there was no significant difference in p53 expression in males. Additionally, AMP stress caused a significant decrease in Drosomycin expression in treated males, while no significant changes were observed in Drosocin and Metchnikowin. In treated females, Drosocin and Drosomycin expression increased significantly, whereas the increase in Metchnikowin was not significant. The study also revealed downregulation of methylation-related genes (dDnmt2 and dMBD2/3) in AMP-treated female flies which was normalised in the rescue flies suggesting disrupted epigenetic mechanisms. Overall, the findings highlighted the importance of evaluating the trans-generational impacts of AMP stress on Drosophila physiology and gene expression, particularly in reproductive function and epigenetic regulation. The study of the impact of widely used antibiotic, AMP on model organism, Drosophila (model organism known for its genetic similarity to human), will help in predicting potential impacts on higher organisms and human. The finding would ultimately promote proper use of antibiotics and use of alternative medicine.
Collapse
Affiliation(s)
- Asem Sanjit Singh
- Developmental and Biomedical Genetics Laboratory, Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru 560012, India
| | - Dhruv Pathak
- Developmental and Biomedical Genetics Laboratory, Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru 560012, India
| | - Sakshi Jain
- Developmental and Biomedical Genetics Laboratory, Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru 560012, India
| | | | - Upendra Nongthomba
- Developmental and Biomedical Genetics Laboratory, Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru 560012, India
| |
Collapse
|
2
|
Casari G, Romaldi B, Scirè A, Minnelli C, Marzioni D, Ferretti G, Armeni T. Epigenetic Properties of Compounds Contained in Functional Foods Against Cancer. Biomolecules 2024; 15:15. [PMID: 39858410 PMCID: PMC11762081 DOI: 10.3390/biom15010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
Epigenetics encompasses reversible and heritable genomic changes in histones, DNA expression, and non-coding RNAs that occur without modifying the nucleotide DNA sequence. These changes play a critical role in modulating cell function in both healthy and pathological conditions. Dysregulated epigenetic mechanisms are implicated in various diseases, including cardiovascular disorders, neurodegenerative diseases, obesity, and mainly cancer. Therefore, to develop innovative therapeutic strategies, research for compounds able to modulate the complex epigenetic landscape of cancer is rapidly surging. Dietary phytochemicals, mostly flavonoids but also tetraterpenoids, organosulfur compounds, and isothiocyanates, represent biologically active molecules found in vegetables, fruits, medicinal plants, and beverages. These natural organic compounds exhibit epigenetic modulatory properties by influencing the activity of epigenetics key enzymes, such as DNA methyltransferases, histone acetyltransferases and deacetylases, and histone methyltransferases and demethylases. Due to the reversibility of the modifications that they induce, their minimal adverse effects, and their potent epigenetic regulatory activity, dietary phytochemicals hold significant promise as antitumor agents and warrant further investigation. This review aims to consolidate current data on the diverse epigenetic effects of the six major flavonoid subclasses, as well as other natural compounds, in the context of cancer. The goal is to identify new therapeutic epigenetic targets for drug development, whether as stand-alone treatments or in combination with conventional antitumor approaches.
Collapse
Affiliation(s)
- Giulia Casari
- Department of Clinical and Specialist Sciences (DISCO), Università Politecnica delle Marche, 60131 Ancona, Italy; (G.C.); (B.R.); (G.F.)
| | - Brenda Romaldi
- Department of Clinical and Specialist Sciences (DISCO), Università Politecnica delle Marche, 60131 Ancona, Italy; (G.C.); (B.R.); (G.F.)
| | - Andrea Scirè
- Department of Life and Environmental Sciences (DISVA), Università Politecnica delle Marche, 60131 Ancona, Italy; (A.S.); (C.M.)
| | - Cristina Minnelli
- Department of Life and Environmental Sciences (DISVA), Università Politecnica delle Marche, 60131 Ancona, Italy; (A.S.); (C.M.)
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60131 Ancona, Italy;
| | - Gianna Ferretti
- Department of Clinical and Specialist Sciences (DISCO), Università Politecnica delle Marche, 60131 Ancona, Italy; (G.C.); (B.R.); (G.F.)
| | - Tatiana Armeni
- Department of Clinical and Specialist Sciences (DISCO), Università Politecnica delle Marche, 60131 Ancona, Italy; (G.C.); (B.R.); (G.F.)
| |
Collapse
|
3
|
Santos-Pereira M, Pereira SC, Rebelo I, Spadella MA, Oliveira PF, Alves MG. Decoding the Influence of Obesity on Prostate Cancer and Its Transgenerational Impact. Nutrients 2023; 15:4858. [PMID: 38068717 PMCID: PMC10707940 DOI: 10.3390/nu15234858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/12/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
In recent decades, the escalating prevalence of metabolic disorders, notably obesity and being overweight, has emerged as a pressing concern in public health. Projections for the future indicate a continual upward trajectory in obesity rates, primarily attributable to unhealthy dietary patterns and sedentary lifestyles. The ramifications of obesity extend beyond its visible manifestations, intricately weaving a web of hormonal dysregulation, chronic inflammation, and oxidative stress. This nexus of factors holds particular significance in the context of carcinogenesis, notably in the case of prostate cancer (PCa), which is a pervasive malignancy and a leading cause of mortality among men. A compelling hypothesis arises from the perspective of transgenerational inheritance, wherein genetic and epigenetic imprints associated with obesity may wield influence over the development of PCa. This review proposes a comprehensive exploration of the nuanced mechanisms through which obesity disrupts prostate homeostasis and serves as a catalyst for PCa initiation. Additionally, it delves into the intriguing interplay between the transgenerational transmission of both obesity-related traits and the predisposition to PCa. Drawing insights from a spectrum of sources, ranging from in vitro and animal model research to human studies, this review endeavors to discuss the intricate connections between obesity and PCa. However, the landscape remains partially obscured as the current state of knowledge unveils only fragments of the complex mechanisms linking these phenomena. As research advances, unraveling the associated factors and underlying mechanisms promises to unveil novel avenues for understanding and potentially mitigating the nexus between obesity and the development of PCa.
Collapse
Affiliation(s)
- Mariana Santos-Pereira
- iBiMED-Institute of Biomedicine and Department of Medical Science, University of Aveiro, 3810-193 Aveiro, Portugal;
- Endocrine and Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal;
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, 4099-002 Porto, Portugal
| | - Sara C. Pereira
- Endocrine and Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal;
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, 4099-002 Porto, Portugal
- LAQV-REQUIMTE and Department of Chemistry, Campus Universitario de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal;
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Irene Rebelo
- UCIBIO-REQUIMTE, Laboratory of Biochemistry, Department of Biologic Sciences, Pharmaceutical Faculty, University of Porto, 4050-313 Porto, Portugal;
| | - Maria A. Spadella
- Human Embryology Laboratory, Marília Medical School, Marília 17519-030, SP, Brazil;
| | - Pedro F. Oliveira
- LAQV-REQUIMTE and Department of Chemistry, Campus Universitario de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Marco G. Alves
- iBiMED-Institute of Biomedicine and Department of Medical Science, University of Aveiro, 3810-193 Aveiro, Portugal;
| |
Collapse
|
4
|
Kahr MK, Antony KM, Galindo M, Whitham M, Hu M, Aagaard KM, Suter MA. SERUM GLP-2 is Increased in Association with Excess Gestational Weight Gain. Am J Perinatol 2023; 40:400-406. [PMID: 33940644 PMCID: PMC9970758 DOI: 10.1055/s-0041-1728828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Obesity in pregnancy bears unique maternal and fetal risks. Obesity has also been associated with chronic inflammation, including elevated serum levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). Higher serum lipopolysaccharide (LPS) levels have been implicated in driving this inflammation, a phenomenon called metabolic endotoxemia (ME). GLP-2, a proglucagon-derived peptide, is believed to be integral in maintaining the integrity of the intestine in the face of LPS-mediated endotoxemia. We hypothesized that obesity and/or excess weight gain in pregnancy would be associated with an increase in maternal and neonatal markers of ME, as well as GLP-2. STUDY DESIGN Paired maternal and neonatal (cord blood) serum samples (n = 159) were obtained from our pregnancy biobank repository. Serum levels of LPS, endotoxin core antibody-immunoglobulin M (EndoCAb-IgM), and GLP-2 were measured by ELISA. IL-6 and TNF-α were measured using a Milliplex assay. Results were stratified by maternal body mass index (BMI), maternal diabetes, and gestational weight gain (GWG). RESULTS Maternal IL-6 is significantly decreased in the obese, diabetic cohort compared with the nonobese, nondiabetic cohorts (95.28 vs. 99.48 pg/mL, p = 0.047), whereas GLP-2 is significantly increased (1.92 vs. 2.89 ng/mL, p = 0.026). Neonatal TNF-α is significantly decreased in the obese cohort compared with the nonobese cohort (12.43 vs. 13.93 pg/mL, p = 0.044). Maternal GLP-2 is significantly increased in women with excess GWG compared with those with normal GWG (2.27 vs. 1.48 ng/mL, p = 0.014). We further found that neonatal IL-6 and TNF-α are negatively correlated with maternal BMI (-0.186, p = 0.036 and -0.179, p = 0.044, respectively) and that maternal and neonatal IL-6 showed a positive correlation (0.348, p < 0.001). CONCLUSION Although we observed altered levels of markers of inflammation (IL-6 and TNF-α) with maternal obesity and diabetes, no changes in LPS or endoCAb-IgM were observed. We hypothesize that the increased GLP-2 levels in maternal serum in association with excess GWG may protect against ME in pregnancy. KEY POINTS · Maternal serum levels of GLP-2, a proglucagon-derived peptide, are increased in obese, diabetic gravidae.. · Maternal serum GLP-2 levels are also increased in association with excess gestational weight gain compared with normal gestational weight gain.. · GLP-2 may be increased in association with obesity and weight gain to protect against metabolic endotoxemia in pregnancy..
Collapse
Affiliation(s)
- Maike K. Kahr
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas
- Department of Obstetrics and Gynecology, University Hospital Zurich, Zurich, Switzerland
| | - Kathleen M. Antony
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Megan Galindo
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas
| | - Megan Whitham
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas
| | - Min Hu
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas
| | - Kjersti M. Aagaard
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas
| | - Melissa A. Suter
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas
- Address for correspondence Melissa Suter, PhD Department of Obstetrics and Gynecology, Baylor College of Medicine1 Baylor Plaza, Rm. 314C, Houston, TX 77030
| |
Collapse
|
5
|
Shannar A, Sarwar MS, Kong ANT. A New Frontier in Studying Dietary Phytochemicals in Cancer and in Health: Metabolic and Epigenetic Reprogramming. Prev Nutr Food Sci 2022; 27:335-346. [PMID: 36721757 PMCID: PMC9843711 DOI: 10.3746/pnf.2022.27.4.335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 01/03/2023] Open
Abstract
Metabolic rewiring and epigenetic reprogramming are closely inter-related, and mutually regulate each other to control cell growth in cancer initiation, promotion, progression, and metastasis. Epigenetics plays a crucial role in regulating normal cellular functions as well as pathological conditions in many diseases, including cancer. Conversely, certain mitochondrial metabolites are considered as essential cofactors and regulators of epigenetic mechanisms. Furthermore, dysregulation of metabolism promotes tumor cell growth and reprograms the cells to produce metabolites and bioenergy needed to support cancer cell proliferation. Hence, metabolic reprogramming which alters the metabolites/epigenetic cofactors, would drive the epigenetic landscape, including DNA methylation and histone modification, that could lead to cancer initiation, promotion, and progression. Recognizing the diverse array of benefits of phytochemicals, they are gaining increasing interest in cancer interception and treatment. One of the significant mechanisms of cancer interception and treatment by phytochemicals is reprogramming of the key metabolic pathways and remodeling of cancer epigenetics. This review focuses on the metabolic remodeling and epigenetics reprogramming in cancer and investigates the potential mechanisms by which phytochemicals can mitigate cancer.
Collapse
Affiliation(s)
- Ahmad Shannar
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Md. Shahid Sarwar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ah-Ng Tony Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA,
Correspondence to Ah-Ng Tony Kong,
| |
Collapse
|
6
|
BANERJEE SOHINI, DEACON ALYSSA, SUTER MELISSAA, AAGAARD KJERSTIM. Understanding the Placental Biology of Tobacco Smoke, Nicotine, and Marijuana (THC) Exposures During Pregnancy. Clin Obstet Gynecol 2022; 65:347-359. [PMID: 35125390 PMCID: PMC9042338 DOI: 10.1097/grf.0000000000000691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Widespread public health campaigns have reduces the prevalence of tobacco and nicotine exposures during pregnancy in the United States. However, tobacco and nicotine exposures during pregnancy persist as a common modifiable perinatal risk exposure. Furthermore, declines in tobacco use have been accompanied by parallel rises in both the prevalence and incidence of marijuana use in pregnancy. This is worrisome, as the macromolecules which comprise tobacco and marijuana smoke affect placental function. In this chapter we summarize the decades of evidence contributing to our understanding of the placental molecular pathophysiology accompanying these chemical exposures, thereby rendering risk of adverse perinatal outcomes.
Collapse
Affiliation(s)
- SOHINI BANERJEE
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas
| | | | - MELISSA A. SUTER
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas
| | - KJERSTI M. AAGAARD
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
7
|
Hill L, Sharma R, Hart L, Popov J, Moshkovich M, Pai N. The neonatal microbiome in utero and beyond: perinatal influences and long-term impacts. J LAB MED 2021. [DOI: 10.1515/labmed-2021-0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
The neonatal microbiome offers a valuable model for studying the origins of human health and disease. As the field of metagenomics expands, we also increase our understanding of early life influences on its development. In this review we will describe common techniques used to define and measure the microbiome. We will review in utero influences, normal perinatal development, and known risk factors for abnormal neonatal microbiome development. Finally, we will summarize current evidence that links early life microbial impacts on the development of chronic inflammatory diseases, obesity, and atopy.
Collapse
Affiliation(s)
- Lee Hill
- Department of Paediatrics, Division of Gastroenterology, Hepatology and Nutrition , McMaster Children’s Hospital, McMaster University , Hamilton , Canada
- Department of Human Biology, Division of Exercise Science and Sports Medicine , University of Cape Town , Cape Town , South Africa
| | - Ruchika Sharma
- Department of Paediatrics, Division of Gastroenterology, Hepatology and Nutrition , McMaster Children’s Hospital, McMaster University , Hamilton , Canada
- McMaster University , Hamilton , Canada
| | - Lara Hart
- Department of Paediatrics, Division of Gastroenterology, Hepatology and Nutrition , McMaster Children’s Hospital, McMaster University , Hamilton , Canada
| | - Jelena Popov
- Department of Paediatrics, Division of Gastroenterology, Hepatology and Nutrition , McMaster Children’s Hospital, McMaster University , Hamilton , Canada
- University College Cork, College of Medicine and Health , Cork , Ireland
| | - Michal Moshkovich
- Department of Paediatrics, Division of Gastroenterology, Hepatology and Nutrition , McMaster Children’s Hospital, McMaster University , Hamilton , Canada
- Faculty of Health Sciences , McMaster University , Hamilton , Canada
| | - Nikhil Pai
- Department of Paediatrics, Division of Gastroenterology, Hepatology and Nutrition , McMaster Children’s Hospital, McMaster University , Hamilton , Canada
- Farncombe Family Digestive Health Research Institute , McMaster University , Hamilton , Canada
| |
Collapse
|
8
|
Maternal DNA Methylation During Pregnancy: a Review. Reprod Sci 2021; 28:2758-2769. [PMID: 33469876 DOI: 10.1007/s43032-020-00456-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/29/2020] [Indexed: 12/19/2022]
Abstract
Multiple environmental, behavioral, and hereditary factors affect pregnancy. Recent studies suggest that epigenetic modifications, such as DNA methylation (DNAm), affect both maternal and fetal health during the period of gestation. Some of the pregnancy-related risk factors can influence maternal DNAm, thus predisposing both the mother and the neonate to clinical adversities with long-lasting consequences. DNAm alterations in the promoter and enhancer regions modulate gene expression changes which play vital physiological role. In this review, we have discussed the recent advances in our understanding of maternal DNA methylation changes during pregnancy and its associated complications such as gestational diabetes and anemia, adverse pregnancy outcomes like preterm birth, and preeclampsia. We have also highlighted some major gaps and limitations in the area which if addressed might improve our understanding of pregnancy and its associated adverse clinical conditions, ultimately leading to healthy pregnancies and reduction of public health burden.
Collapse
|
9
|
Abstract
The characteristics of fetal membrane cells and their phenotypic adaptations to support pregnancy or promote parturition are defined by global patterns of gene expression controlled by chromatin structure. Heritable epigenetic chromatin modifications that include DNA methylation and covalent histone modifications establish chromatin regions permissive or exclusive of regulatory interactions defining the cell-specific scope and potential of gene activity. Non-coding RNAs acting at the transcriptional and post-transcriptional levels complement the system by robustly stabilizing gene expression patterns and contributing to ordered phenotype transitions. Here we review currently available information about epigenetic gene regulation in the amnion and the chorion laeve. In addition, we provide an overview of epigenetic phenomena in the decidua, which is the maternal tissue fused to the chorion membrane forming the anatomical and functional unit called choriodecidua. The relationship of gene expression with DNA (CpG) methylation, histone acetylation and methylation, micro RNAs, long non-coding RNAs and chromatin accessibility is discussed in the context of normal pregnancy, parturition and pregnancy complications. Data generated using clinical samples and cell culture models strongly suggests that epigenetic events are associated with the phenotypic transitions of fetal membrane cells during the establishment, maintenance and termination of pregnancy potentially driving and consolidating the changes as pregnancy progresses. Disease conditions and environmental factors may produce epigenetic footprints that indicate exposures and mediate adverse pregnancy outcomes. Although knowledge is expanding rapidly, fetal membrane epigenetics is still in an early stage of development necessitating further research to realize its remarkable basic and translational potential.
Collapse
Affiliation(s)
- Tamas Zakar
- Department of Maternity & Gynaecology, John Hunter Hospital, New Lambton Heights, NSW, Australia
- School of Medicine and Public Health, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Jonathan W. Paul
- School of Medicine and Public Health, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
10
|
Suter MA, Aagaard KM. The impact of tobacco chemicals and nicotine on placental development. Prenat Diagn 2020; 40:1193-1200. [PMID: 32010988 PMCID: PMC7396310 DOI: 10.1002/pd.5660] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/23/2019] [Accepted: 01/19/2020] [Indexed: 12/12/2022]
Abstract
Despite decades of messages warning about the dangers of tobacco use in pregnancy, 10% to 15% of pregnant women continue to smoke. Furthermore, an increased popularity of electronic nicotine delivery systems (ENDS) over the past decade in women of childbearing age raises parallel concerns regarding the effects of vaporized nicotine use in pregnancy. While research using animal models which mimic tobacco smoke and nicotine exposure in pregnancy have largely replicated findings in humans, few studies focus directly on the effects of these exposures on the placenta. Because the placenta is a fetal derived tissue, and nicotine and other components of tobacco smoke are either processed by or transported directly through the placenta, such studies help us understand the risks of these exposures on the developing fetus. In this review, we summarize research on the placenta and placental-derived cells examining either tobacco smoke or nicotine exposure, including both histologic and subcellular (ie, epigenetic and molecular) modifications. Collectively, these studies reveal that tobacco and nicotine exposure are accompanied by some common and several unique molecular and epigenomic placental modifications. Consideration of the nature and sequelae of these molecular mediators of risk may help to better inform the public and more effectively curtail modifiable behavior.
Collapse
Affiliation(s)
- Melissa A Suter
- Baylor College of Medicine, Department of Obstetrics and Gynecology, Houston, TX
| | - Kjersti M Aagaard
- Baylor College of Medicine, Department of Obstetrics and Gynecology, Houston, TX
| |
Collapse
|
11
|
Clinical and Histological Features of Intraoral Flap and a Preliminary Study of DNA Methylation of Mucosalization. Indian J Surg 2020. [DOI: 10.1007/s12262-019-02029-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
12
|
Valentine G, Prince A, Aagaard KM. The Neonatal Microbiome and Metagenomics: What Do We Know and What Is the Future? Neoreviews 2020; 20:e258-e271. [PMID: 31261078 DOI: 10.1542/neo.20-5-e258] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The human microbiota includes the trillions of microorganisms living in the human body whereas the human microbiome includes the genes and gene products of this microbiota. Bacteria were historically largely considered to be pathogens that inevitably led to human disease. However, because of advances in both cultivation-based methods and the advent of metagenomics, bacteria are now recognized to be largely beneficial commensal organisms and thus, key to normal and healthy human development. This relatively new area of medical research has elucidated insights into diseases such as inflammatory bowel disease and obesity, as well as metabolic and atopic disorders. However, much remains unknown about the complexity of microbe-microbe and microbe-host interactions. Future efforts aimed at answering key questions pertaining to the early establishment of the microbiome, alongside what defines its dysbiosis, will likely lead to long-term health and mitigation of disease. Here, we review the relevant literature pertaining to modulations in the perinatal and neonatal microbiome, the impact of environmental and maternal factors in shaping the neonatal microbiome, and future questions and directions in the exciting emerging arena of metagenomic medicine.
Collapse
Affiliation(s)
- Gregory Valentine
- Department of Pediatrics.,Division of Neonatology at Texas Children's Hospital, Houston, TX
| | - Amanda Prince
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine
| | - Kjersti M Aagaard
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine.,Center for Microbiome and Metagenomics Research, and Departments of.,Molecular & Human Genetics and.,Molecular & Cell Biology, Baylor College of Medicine, Houston, TX
| |
Collapse
|
13
|
Yang X, Han Y, Mu Y, Yang P, Gu W, Zhang M. Multigenerational effects of cadmium on the lifespan and fertility of Drosophila melanogaster. CHEMOSPHERE 2020; 245:125533. [PMID: 31855751 DOI: 10.1016/j.chemosphere.2019.125533] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/29/2019] [Accepted: 12/01/2019] [Indexed: 06/10/2023]
Abstract
Although the damage and tolerance mechanisms of Cd stress are known, the data on genetic risk are limited. The aim of this study was to assess the chronic toxicity of Cd, genetic responses, and multigenerational effects in five generations of Drosophila melanogaster. For each generation, lifespan and fertility were statistically analysed and the expression of apoptosis- (p53 and caspase-3) and epigenesis-related (dDnmt2 and dMBD2/3) genes was examined. Lifespan and fertility significantly declined under Cd stress and these effects were maintained for two generations and one generation, respectively, when Cd stress was removed. The expression of p53 and caspase-3 was significantly up-regulated after exposure, suggesting that apoptosis contributes to the resistance mechanism. Their altered expression was retained for two generations. Furthermore, high expression of dDnmt2 and dMBD2/3 accompanied Cd exposure, which was passed on to three generations, suggesting that genetic modifications in apoptosis-related genes are carried to the offspring through epigenetic regulation.
Collapse
Affiliation(s)
- Xingran Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China.
| | - Yan Han
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China.
| | - Yun Mu
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China.
| | - Pingping Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China.
| | - Wei Gu
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China.
| | - Min Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China.
| |
Collapse
|
14
|
Gupta J, Sharma S, Sharma NR, Kabra D. Phytochemicals enriched in spices: a source of natural epigenetic therapy. Arch Pharm Res 2019; 43:171-186. [DOI: 10.1007/s12272-019-01203-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023]
|
15
|
Chu DM, Valentine GC, Seferovic MD, Aagaard KM. The Development of the Human Microbiome: Why Moms Matter. Gastroenterol Clin North Am 2019; 48:357-375. [PMID: 31383276 PMCID: PMC7261593 DOI: 10.1016/j.gtc.2019.04.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The human body is cohabitated with trillions of commensal bacteria that are essential for our health. However, certain bacteria can also cause diseases in the human host. Before the microbiome can be attributed to disease risk and pathogenesis, normal acquisition and development of the microbiome must be understood. Here, we explore the evidence surrounding in utero microbial exposures and the significant of this exposure in the proper development of the fetal and neonatal microbiome. We further explore the development of the fetal and neonatal microbiome and its relationship to preterm birth, feeding practices, and mode of delivery, and maternal diet.
Collapse
Affiliation(s)
| | | | | | - Kjersti M. Aagaard
- Corresponding author. Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Texas Children’s Hospital, 1 Baylor Plaza, Houston,TX 77030, USA.
| |
Collapse
|
16
|
Schuster J, Uzun A, Stablia J, Schorl C, Mori M, Padbury JF. Effect of prematurity on genome wide methylation in the placenta. BMC MEDICAL GENETICS 2019; 20:116. [PMID: 31253109 PMCID: PMC6599230 DOI: 10.1186/s12881-019-0835-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/24/2019] [Indexed: 12/12/2022]
Abstract
Background Preterm birth is a significant clinical problem and an enormous burden on society, affecting one in eight pregnant women and their newborns. Despite decades of research, the molecular mechanism underlying its pathogenesis remains unclear. Many studies have shown that preterm birth is associated with health risks across the later life course. The “fetal origins” hypothesis postulates that adverse intrauterine exposures are associated with later disease susceptibility. Our recent studies have focused on the placental epigenome at term. We extended these studies to genome-wide placental DNA methylation across a wide range of gestational ages. We applied methylation dependent immunoprecipitation/DNA sequencing (MeDIP-seq) to 9 placentas with gestational age from 25 weeks to term to identify differentially methylated regions (DMRs). Results Enrichment analysis revealed 427 DMRs with nominally significant differences in methylation between preterm and term placentas (p < 0.01) and 21 statistically significant DMRs after multiple comparison correction (FDR p < 0.05), of which 62% were hypo-methylated in preterm placentas vs term placentas. The majority of DMRs were in distal intergenic regions and introns. Significantly enriched pathways identified by Ingenuity Pathway Analysis (IPA) included Citrulline-Nitric Oxide Cycle and Fcy Receptor Mediated Phagocytosis in macrophages. The DMR gene set overlapped placental gene expression data, genes and pathways associated evolutionarily with preterm birth. Conclusion These studies form the basis for future studies on the epigenetics of preterm birth, “fetal programming” and the impact of environment exposures on this important clinical challenge. Electronic supplementary material The online version of this article (10.1186/s12881-019-0835-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jessica Schuster
- Pediatrics, Women & Infants Hospital, Providence, Rhode Island, 02905, USA
| | - Alper Uzun
- Pediatrics, Center for Computational Molecular Biology, Brown Medical School, Brown University, Providence, Rhode Island, 02906, USA
| | - Joan Stablia
- Pediatrics, Women & Infants Hospital, Providence, Rhode Island, 02905, USA
| | - Christoph Schorl
- Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, 02906, USA
| | - Mari Mori
- Pediatrics and Genetics, Hasbro Children's Hospital, Providence, Rhode Island, 02905, USA
| | - James F Padbury
- Pediatrics, Center for Computational Molecular Biology, Brown Medical School, Brown University, Providence, Rhode Island, 02906, USA. .,, Providence, USA.
| |
Collapse
|
17
|
Andreescu N, Puiu M, Niculescu M. Effects of Dietary Nutrients on Epigenetic Changes in Cancer. Methods Mol Biol 2019; 1856:121-139. [PMID: 30178249 DOI: 10.1007/978-1-4939-8751-1_7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Gene-nutrient interactions are important contributors to health management and disease prevention. Nutrition can alter gene expression, as well as the susceptibility to disease, including cancer, through epigenetic changes. Nutrients can influence the epigenetic status through several mechanisms, such as DNA methylation, histone modifications, and miRNA-dependent gene silencing. These alterations were associated with either increased or decreased risk for cancer development. There is convincing evidence indicating that several foods have protective roles in cancer prevention, by inhibiting tumor progression directly or through modifying tumor's microenvironment that leads to hostile conditions favorable to tumor initiation or growth. While nutritional intakes from foods cannot be adequately controlled for dosage, the role of nutrients in the epigenetics of cancer has led to more research aimed at developing nutriceuticals and drugs as cancer therapies. Clinical studies are needed to evaluate the optimum doses of dietary compounds, the safety profile of dosages, to establish the most efficient way of administration, and bioavailability, in order to maximize the beneficial effects already discovered, and to ensure replicability. Thus, nutrition represents a promising tool to be used not only in cancer prevention, but hopefully also in cancer treatment.
Collapse
Affiliation(s)
- Nicoleta Andreescu
- Medical Genetics Discipline, Center of Genomic Medicine, University of Medicine and Pharmacy "Victor Babes", Timisoara, Romania.
| | - Maria Puiu
- Medical Genetics Discipline, Center of Genomic Medicine, University of Medicine and Pharmacy "Victor Babes", Timisoara, Romania
| | - Mihai Niculescu
- Medical Genetics Discipline, Center of Genomic Medicine, University of Medicine and Pharmacy "Victor Babes", Timisoara, Romania
- Advanced Nutrigenomics, Hillsborough, NC, USA
| |
Collapse
|
18
|
Zhang J, Choudhury M. The plasticizer BBP selectively inhibits epigenetic regulator sirtuin during differentiation of C3H10T1/2 stem cell line. Toxicol In Vitro 2017; 39:75-83. [DOI: 10.1016/j.tiv.2016.11.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 01/04/2023]
|
19
|
The Challenge of Assessing Response to Psychotropic Medication Trials in Very Young Children with Fragile X Syndrome: A Cautionary Note. J Dev Behav Pediatr 2016; 37:657-8. [PMID: 27642686 DOI: 10.1097/dbp.0000000000000352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Shankar E, Kanwal R, Candamo M, Gupta S. Dietary phytochemicals as epigenetic modifiers in cancer: Promise and challenges. Semin Cancer Biol 2016; 40-41:82-99. [PMID: 27117759 DOI: 10.1016/j.semcancer.2016.04.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 04/08/2016] [Accepted: 04/18/2016] [Indexed: 12/21/2022]
Abstract
The influence of diet and environment on human health has been known since ages. Plant-derived natural bioactive compounds (phytochemicals) have acquired an important role in human diet as potent antioxidants and cancer chemopreventive agents. In past few decades, the role of epigenetic alterations such as DNA methylation, histone modifications and non-coding RNAs in the regulation of mammalian genome have been comprehensively addressed. Although the effects of dietary phytochemicals on gene expression and signaling pathways have been widely studied in cancer, the impact of these dietary compounds on mammalian epigenome is rapidly emerging. The present review outlines the role of different epigenetic mechanisms in the regulation and maintenance of mammalian genome and focuses on the role of dietary phytochemicals as epigenetic modifiers in cancer. Above all, the review focuses on summarizing the progress made thus far in cancer chemoprevention with dietary phytochemicals, the heightened interest and challenges in the future.
Collapse
Affiliation(s)
- Eswar Shankar
- Department of Urology, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA; Department of Urology, Case Western Reserve University, University Hospitals Case Medical Center, Cleveland, OH 44106, USA
| | - Rajnee Kanwal
- Department of Urology, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA; Department of Urology, Case Western Reserve University, University Hospitals Case Medical Center, Cleveland, OH 44106, USA
| | - Mario Candamo
- Department of Biology, School of Undergraduate Studies, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Sanjay Gupta
- Department of Urology, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA; Department of Urology, Case Western Reserve University, University Hospitals Case Medical Center, Cleveland, OH 44106, USA; Department of Nutrition, Case Western Reserve University, Cleveland, OH 44106, USA; Division of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, OH 44106, USA.
| |
Collapse
|
21
|
Kahr MK, Antony KM, DelBeccaro M, Hu M, Aagaard KM, Suter MA. Increasing maternal obesity is associated with alterations in both maternal and neonatal thyroid hormone levels. Clin Endocrinol (Oxf) 2016; 84:551-7. [PMID: 26562744 PMCID: PMC4789139 DOI: 10.1111/cen.12974] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 10/26/2015] [Accepted: 10/30/2015] [Indexed: 01/29/2023]
Abstract
OBJECTIVE Obesity is associated with alterations in thyroid hormone (TH) levels in obese, pregnant individuals. The maintenance of TH levels throughout gestation is important for proper foetal development. The aim of this study was to measure levels of fT3, fT4 and TSH in maternal and matched cord blood serum from normal weight, overweight and obese gravidae to determine alterations in maternal and neonatal TH levels by virtue of maternal obesity. DESIGN, SETTING, SUBJECTS, OUTCOME MEASURES ELISA was utilized to measure fT3, fT4 and TSH levels from banked, matched maternal and neonatal (cord blood) serum (N = 205 matched pairs). Data were stratified according to prepregnancy or first trimester BMI. RESULTS Both maternal and neonatal fT3 levels consistently increased with increasing maternal obesity, and maternal and neonatal fT3 were significantly correlated (r = 0·422, P < 0·001). Maternal and neonatal fT3 were also significantly associated with birthweight (β = 0·155, P = 0·027 and β = 0·171, P = 0·018, respectively). Both the maternal and neonatal fT3 to fT4 ratio significantly increased with increasing maternal obesity. We further found that excess gestational weight gain was associated with a decrease in maternal fT4 compared with gravidae who had insufficient gestational weight gain (0·86 ± 0·17 vs 0·95 ± 0·22, P < 0·01). CONCLUSION Maternal obesity is not only associated with maternal alterations in TH, but with accompanying neonatal changes. Because both maternal obesity and alterations in TH levels are associated with childhood obesity, based on these findings and our prior analyses in a nonhuman primate model, we propose that changes in fT3 levels in the offspring of obese mothers may be a potential molecular mediator of foetal overgrowth and childhood obesity.
Collapse
Affiliation(s)
- Maike K Kahr
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA
| | - Kathleen M Antony
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA
| | - Melanie DelBeccaro
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA
| | - Min Hu
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA
| | - Kjersti M Aagaard
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA
| | - Melissa A Suter
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
22
|
Bai G, Ren K, Dubner R. Epigenetic regulation of persistent pain. Transl Res 2015; 165:177-99. [PMID: 24948399 PMCID: PMC4247805 DOI: 10.1016/j.trsl.2014.05.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 02/09/2023]
Abstract
Persistent or chronic pain is tightly associated with various environmental changes and linked to abnormal gene expression within cells processing nociceptive signaling. Epigenetic regulation governs gene expression in response to environmental cues. Recent animal model and clinical studies indicate that epigenetic regulation plays an important role in the development or maintenance of persistent pain and possibly the transition of acute pain to chronic pain, thus shedding light in a direction for development of new therapeutics for persistent pain.
Collapse
Affiliation(s)
- Guang Bai
- Program in Neuroscience, Department of Neural and Pain Sciences, University of Maryland Dental School, University of Maryland, Baltimore, MD.
| | - Ke Ren
- Program in Neuroscience, Department of Neural and Pain Sciences, University of Maryland Dental School, University of Maryland, Baltimore, MD
| | - Ronald Dubner
- Program in Neuroscience, Department of Neural and Pain Sciences, University of Maryland Dental School, University of Maryland, Baltimore, MD
| |
Collapse
|
23
|
Suter MA, Mastrobattista J, Sachs M, Aagaard K. Is there evidence for potential harm of electronic cigarette use in pregnancy? ACTA ACUST UNITED AC 2014; 103:186-95. [PMID: 25366492 DOI: 10.1002/bdra.23333] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Use of electronic cigarettes (e-cigarettes) and other nicotine containing products is increasing among women of reproductive age. The short- and long-term effects of these products on both mother and fetus are unknown. METHODS Because e-cigarettes are nicotine delivery systems, we sought to conduct a comprehensive review of the effects of nicotine on the fetus. RESULTS In utero nicotine exposure in animal models is associated with adverse effects for the offspring lung, cardiovascular system and brain. In the lung, this included reduced surface area, weight, and volume, as well as emphysema-like lesions. In adulthood, exposed offspring demonstrate elevated blood pressure and increased perivascular adipose tissue. In the brain, exposure alters offspring serotonergic, dopaminergic, and norepinephrine networks, which in turn are associated with behavioral and cognitive impairments. We also review current data on the lack of efficacy of nicotine replacement therapy in pregnant women, and highlight different nicotine containing products such as snuff, snus, and hookah. CONCLUSION We conclude that no amount of nicotine is known to be safe during pregnancy, and studies specifically addressing this risk are crucial and an imminent public health issue.
Collapse
Affiliation(s)
- Melissa A Suter
- Baylor College of Medicine, Obstetrics & Gynecology, Division of Maternal-Fetal Medicine, Houston, Texas
| | | | | | | |
Collapse
|
24
|
Bhatti P, Zhang Y, Song X, Makar KW, Sather CL, Kelsey KT, Houseman EA, Wang P. Nightshift work and genome-wide DNA methylation. Chronobiol Int 2014; 32:103-12. [PMID: 25187986 DOI: 10.3109/07420528.2014.956362] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The negative health effects of shift work, including carcinogenesis, may be mediated by changes in DNA methylation, particularly in the circadian genes. Using the Infinium HumanMethylation450 Bead Array (Illumina, San Diego, CA), we compared genome-wide methylation between 65 actively working dayshift workers and 59 actively working nightshift workers in the healthcare industry. A total of 473 800 loci, including 391 loci across the 12 core circadian genes, were analyzed to identify methylation markers associated with shift work status using linear regression models adjusted for gender, age, body mass index, race, smoking status and leukocyte cell profile as measured by flow cytometry. Analyses at the level of gene, CpG island and gene region were also conducted. To account for multiple comparisons, we controlled the false discovery rate (FDR ≤0.05). Significant differences between nightshift and dayshift workers were found at 16 135 of 473 800 loci, across 3769 of 20 164 genes, across 7173 of 22 721 CpG islands and across 5508 of 51 843 gene regions. For each significant loci, gene, CpG island or gene region, average methylation was consistently found to be decreased among nightshift workers compared to dayshift workers. Twenty-one loci located in the circadian genes were also found to be significantly hypomethylated among nightshift workers. The largest differences were observed for three loci located in the gene body of PER3. A total of nine significant loci were found in the CSNK1E gene, most of which were located in a CpG island and near the transcription start site of the gene. Methylation changes in these circadian genes may lead to altered expression of these genes which has been associated with cancer in previous studies. Gene ontology enrichment analysis revealed that among the significantly hypomethylated genes, processes related to host defense and immunity were represented. Our results indicate that the health effects of shift work may be mediated by hypomethylation of a wide variety of genes, including those related to circadian rhythms. While these findings need to be followed-up among a considerably expanded group of shift workers, the data generated by this study supports the need for future targeted research into the potential impacts of shift work on specific carcinogenic mechanisms.
Collapse
|
25
|
|
26
|
Suter MA, Ma J, Vuguin PM, Hartil K, Fiallo A, Harris RA, Charron MJ, Aagaard KM. In utero exposure to a maternal high-fat diet alters the epigenetic histone code in a murine model. Am J Obstet Gynecol 2014; 210:463.e1-463.e11. [PMID: 24793723 DOI: 10.1016/j.ajog.2014.01.045] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 01/14/2014] [Accepted: 01/31/2014] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Data from animal models show that in utero exposure to a maternal high-fat diet (HFD) renders susceptibility of these offspring to the adult onset of metabolic syndrome. We and others have previously shown that epigenetic modifications to histones may serve as a molecular memory of the in utero exposure, rendering the risk of adult disease. Because mice heterozygous for the Glut4 gene (insulin sensitive glucose transporter) born to wild-type (WT) mothers demonstrate exacterbated metabolic syndrome when exposed to an HFD in utero, we sought to analyze the genome-wide epigenetic changes that occur in the fetal liver in susceptible offspring. STUDY DESIGN WT and Glut4(+/-) (G4(+/-)) offspring of WT mothers that were exposed either to a control or an HFD in utero were studied. Immunoblotting was used to measure hepatic histone modifications of fetal and 5-week animals. Chromatin immunoprecipitation (ChIP) followed by hybridization to chip arrays (ChIP-on-chip) was used to detect genome-wide changes of histone modifications with HFD exposure. RESULTS We found that levels of hepatic H3K14ac and H3K9me3 significantly increased with HFD exposure in WT and G4(+/-) fetal and 5-week offspring. Pathway analysis of our ChIP-on-chip data revealed differential H3K14ac and H3K9me3 enrichment along pathways that regulate lipid metabolism, specifically in the promoter regions of Pparg, Ppara, Rxra, and Rora. CONCLUSION We conclude that HFD exposure in utero is associated with functional alterations to fetal hepatic histone modifications in both WT and G4(+/-) offspring, some of which persist up to 5 weeks of age.
Collapse
Affiliation(s)
- Melissa A Suter
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX
| | - Jun Ma
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX
| | - Patricia M Vuguin
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY; Division of Pediatric Endocrinology, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY
| | - Kirsten Hartil
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY
| | - Ariana Fiallo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY
| | - R Alan Harris
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX
| | - Maureen J Charron
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY; Department of Obstetrics and Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, NY
| | - Kjersti M Aagaard
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX.
| |
Collapse
|
27
|
Ganu RS, Harris RA, Collins K, Aagaard KM. Early origins of adult disease: approaches for investigating the programmable epigenome in humans, nonhuman primates, and rodents. ILAR J 2014; 53:306-21. [PMID: 23744969 DOI: 10.1093/ilar.53.3-4.306] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
According to the developmental origins of health and disease hypothesis, in utero experiences reprogram an individual for immediate adaptation to gestational perturbations, with the sequelae of later-in-life risk of metabolic disease. An altered gestational milieu with resultant adult metabolic disease has been observed in instances of both in utero constraint (e.g., from famine or uteroplacental insufficiency) and overt caloric abundance (e.g., from a maternal high-fat, caloric-dense diet). The commonality of the adult metabolic phenotype begs the question of how diverse in utero experiences (i.e., reprogramming events) converge on common metabolic pathways and how the memory of these events is maintained across the lifespan. We and others have investigated the molecular mechanisms underlying fetal programming and observed that epigenetic modifications to the fetal and placental epigenome accompany these reprogramming events. Based on several lines of emerging data in human and nonhuman primates, it is now felt that modified epigenetic signature--and the histone code in particular--underlies alterations in postnatal gene expression and metabolic pathways central to accurate functioning and maintenance of health. Because of the tissue lineage specificity of many of these modifications, nonhuman primates serve as an apt model system for the capacity to recapitulate human gene expression and regulation during development. This review summarizes recent epigenetic advances using rodent and primate (both human and nonhuman) models during in utero development and contributing to adult diseases later in life.
Collapse
Affiliation(s)
- Radhika S Ganu
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
28
|
Thakur VS, Deb G, Babcook MA, Gupta S. Plant phytochemicals as epigenetic modulators: role in cancer chemoprevention. AAPS JOURNAL 2013; 16:151-63. [PMID: 24307610 DOI: 10.1208/s12248-013-9548-5] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 11/18/2013] [Indexed: 12/18/2022]
Abstract
In recent years, "nutri-epigenetics," which focuses on the influence of dietary agents on epigenetic mechanism(s), has emerged as an exciting novel area in epigenetics research. Targeting of aberrant epigenetic modifications has gained considerable attention in cancer chemoprevention research because, unlike genetic changes, epigenetic alterations are reversible and occur during early carcinogenesis. Aberrant epigenetic mechanisms, such as promoter DNA methylation, histone modifications, and miRNA-mediated post-transcriptional alterations, can silence critical tumor suppressor genes, such as transcription factors, cell cycle regulators, nuclear receptors, signal transducers, and apoptosis-inducing and DNA repair gene products, and ultimately contribute to carcinogenesis. In an effort to identify and develop anticancer agents which cause minimal harm to normal cells while effectively killing cancer cells, a number of naturally occurring phytochemicals in food and medicinal plants have been investigated. This review highlights the potential role of plant-derived phytochemicals in targeting epigenetic alterations that occur during carcinogenesis, by modulating the activity or expression of DNA methyltransferases, histone modifying enzymes, and miRNAs. We present in detail the epigenetic mode of action of various phytochemicals and discuss their potential as safe and clinically useful chemopreventive strategies.
Collapse
Affiliation(s)
- Vijay S Thakur
- Department of Urology, Case Western Reserve University, University Hospitals Case Medical Center, 10900 Euclid Avenue, Cleveland, Ohio, 44106, USA
| | | | | | | |
Collapse
|
29
|
Berngard SC, Berngard JB, Krebs NF, Garcés A, Miller LV, Westcott J, Wright LL, Kindem M, Hambidge KM. Newborn length predicts early infant linear growth retardation and disproportionately high weight gain in a low-income population. Early Hum Dev 2013; 89:967-72. [PMID: 24083893 PMCID: PMC3859373 DOI: 10.1016/j.earlhumdev.2013.09.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 08/29/2013] [Accepted: 09/03/2013] [Indexed: 12/22/2022]
Abstract
BACKGROUND Stunting is prevalent by the age of 6 months in the indigenous population of the Western Highlands of Guatemala. AIM The objective of this study was to determine the time course and predictors of linear growth failure and weight-for-age in early infancy. STUDY DESIGN AND SUBJECTS One hundred and forty eight term newborns had measurements of length and weight in their homes, repeated at 3 and 6 months. Maternal measurements were also obtained. RESULTS Mean ± SD length-for-age Z-score (LAZ) declined from newborn -1.0 ± 1.01 to -2.20 ± 1.05 and -2.26 ± 1.01 at 3 and 6 months respectively. Stunting rates for newborn, 3 and 6 months were 47%, 53% and 56% respectively. A multiple regression model (R(2) = 0.64) demonstrated that the major predictor of LAZ at 3 months was newborn LAZ with the other predictors being newborn weight-for-age Z-score (WAZ), gender and maternal education∗maternal age interaction. Because WAZ remained essentially constant and LAZ declined during the same period, weight-for-length Z-score (WLZ) increased from -0.44 to +1.28 from birth to 3 months. The more severe the linear growth failure, the greater WAZ was in proportion to the LAZ. CONCLUSION The primary conclusion is that impaired fetal linear growth is the major predictor of early infant linear growth failure indicating that prevention needs to start with maternal interventions.
Collapse
Affiliation(s)
- S Clark Berngard
- University of Colorado Denver, 12700 East 19th Avenue, Box C225, Aurora, CO 80045
| | | | - Nancy F Krebs
- University of Colorado Denver, 12700 East 19th Avenue, Box C225, Aurora, CO 80045
| | - Ana Garcés
- IMSALUD 3ra calle, a6.56, zona 10, Guatemala City, Guatemala
| | - Leland V Miller
- University of Colorado Denver, 12700 East 19th Avenue, Box C225, Aurora, CO 80045
| | - Jamie Westcott
- University of Colorado Denver, 12700 East 19th Avenue, Box C225, Aurora, CO 80045
| | - Linda L Wright
- National Institute of Child Health and Human Development, National Institutes of Health, 6100 Executive Boulevard, Rockville, MD 20852
| | - Mark Kindem
- RTI, International, 3040 Cornwallis Road, Research Triangle Park, NC 27709
| | - K Michael Hambidge
- University of Colorado Denver, 12700 East 19th Avenue, Box C225, Aurora, CO 80045
| |
Collapse
|
30
|
Sun Y, Liang D, Sahbaie P, Clark JD. Effects of methyl donor diets on incisional pain in mice. PLoS One 2013; 8:e77881. [PMID: 24205011 PMCID: PMC3812030 DOI: 10.1371/journal.pone.0077881] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 09/14/2013] [Indexed: 11/18/2022] Open
Abstract
Background Dietary supplementation with methyl donors can influence the programming of epigenetic patterns resulting in persistent alterations in disease susceptibility and behavior. However, the dietary effects of methyl donors on pain have not been explored. In this study, we evaluated the effects of dietary methyl donor content on pain responses in mice. Methods Male and female C57BL/6J mice were treated with high or low methyl donor diets either in the perinatal period or after weaning. Mechanical and thermal nociceptive sensitivity were measured before and after incision. Results Mice fed high or low methyl donor diets displayed equal weight gain over the course of the experiments. When exposed to these dietary manipulations in the perinatal period, only male offspring of dams fed a high methyl donor diet displayed increased mechanical allodynia. Hindpaw incision in these animals caused enhanced nociceptive sensitization, but dietary history did not affect the duration of sensitization. For mice exposed to high or low methyl donor diets after weaning, no significant differences were observed in mechanical or thermal nociceptive sensitivity either at baseline or in response to hindpaw incision. Conclusions Perinatal dietary factors such as methyl donor content may impact pain experiences in later life. These effects, however, may be specific to sex and pain modality.
Collapse
Affiliation(s)
- Yuan Sun
- Department of Anesthesiology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Anesthesiology, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Deyong Liang
- Department of Anesthesiology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Anesthesiology, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Peyman Sahbaie
- Department of Anesthesiology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Anesthesiology, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States of America
| | - J. David Clark
- Department of Anesthesiology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Anesthesiology, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States of America
- * E-mail:
| |
Collapse
|
31
|
Suter MA, Takahashi D, Grove KL, Aagaard KM. Postweaning exposure to a high-fat diet is associated with alterations to the hepatic histone code in Japanese macaques. Pediatr Res 2013; 74:252-8. [PMID: 23788059 PMCID: PMC3766448 DOI: 10.1038/pr.2013.106] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 02/02/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND Expression of circadian gene, Npas2, is altered in fetal life with maternal high-fat (HF) diet exposure by virtue of alterations in the fetal histone code. We postulated that these disruptions would persist postnatally. METHODS Pregnant macaques were fed a control (CTR) or HF diet and delivered at term. When offspring were weaned, they were placed on either CTR or HF diet for a period of 5 mo to yield four exposure models (in utero diet/postweaning diet: CTR/CTR n = 5; CTR/HF n = 4; HF/CTR n = 4; and HF/HF n = 5). Liver specimens were obtained at necropsy at 1 y of age. RESULTS Hepatic trimethylation of lysine 4 of histone H3 is decreased (CTR/HF 0.87-fold, P = 0.038; HF/CTR 0.84-fold, P = 0.038), whereas hepatic methyltransferase activity increased by virtue of diet exposure (HF/HF 1.3-fold, P = 0.019). Using chromatin immunoprecipitation to determine Npas2 promoter occupancy, we found alterations of both repressive and permissive histone modifications specifically with postweaning HF diet exposure. CONCLUSION We found that altered Npas2 expression corresponds with a change in the histone code within the Npas2 promoter.
Collapse
Affiliation(s)
- Melissa A. Suter
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas
| | - Diana Takahashi
- Division of Neurosciences, Oregon Health Sciences University, Oregon National Primate Research Center, Beaverton, OR
| | - Kevin L. Grove
- Division of Neurosciences, Oregon Health Sciences University, Oregon National Primate Research Center, Beaverton, OR,Division of Reproductive & Developmental Sciences, Oregon Health Sciences University, Beaverton, OR
| | - Kjersti M. Aagaard
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas,To whom correspondence should be addressed: Kjersti Aagaard, MD, PhD, Baylor College of Medicine, Division of Maternal-Fetal Medicine, phone: 713-798-8467, fax: 713-798-4216,
| |
Collapse
|
32
|
Sauerbrun-Cutler MT, Segars JH. Do in utero events contribute to current health disparities in reproductive medicine? Semin Reprod Med 2013; 31:325-32. [PMID: 23934692 DOI: 10.1055/s-0033-1348890] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Health disparities exist in reproductive medicine as discussed in detail in the subsequent articles of this issue; however, in most cases, the exact cause of these differences is unknown. Some of these disparities can be linked to environmental exposures such as alcohol and other hazardous toxic exposures (polycarbonate, pesticides, nicotine) in adults. In addition, low socioeconomic status, behavioral risk factors, and lack of education have been linked to poor obstetric and reproductive outcomes in minority groups. Aside from these various environmental exposures later in life, there is evidence that adverse events in utero could contribute to poor reproductive outcome in specific minority groups. We will focus on the developmental origins of health and disease as a possible causal mechanism for health disparities in reproductive diseases, as this perspective may suggest tractable solutions of how to address and eliminate these health disparities.
Collapse
|
33
|
Suter MA, Sangi-Haghpeykar H, Showalter L, Shope C, Hu M, Brown K, Williams S, Harris RA, Grove KL, Lane RH, Aagaard KM. Maternal high-fat diet modulates the fetal thyroid axis and thyroid gene expression in a nonhuman primate model. Mol Endocrinol 2012; 26:2071-80. [PMID: 23015752 DOI: 10.1210/me.2012-1214] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Thyroid hormone (TH) is an essential regulator of both fetal development and energy homeostasis. Although the association between subclinical hypothyroidism and obesity has been well studied, a causal relationship has yet to be established. Using our well-characterized nonhuman primate model of excess nutrition, we sought to investigate whether maternal high-fat diet (HFD)-induced changes in TH homeostasis may underlie later in life development of metabolic disorders and obesity. Here, we show that in utero exposure to a maternal HFD is associated with alterations of the fetal thyroid axis. At the beginning of the third trimester, fetal free T(4) levels are significantly decreased with HFD exposure compared with those of control diet-exposed offspring. Furthermore, transcription of the deiodinase, iodothyronine (DIO) genes, which help maintain thyroid homeostasis, are significantly (P < 0.05) disrupted in the fetal liver, thyroid, and hypothalamus. Genes involved in TH production are decreased (TRH, TSHR, TG, TPO, and SLC5A5) in hypothalamus and thyroid gland. In experiments designed to investigate the molecular underpinnings of these observations, we observe that the TH nuclear receptors and their downstream regulators are disrupted with maternal HFD exposure. In fetal liver, the expression of TH receptor β (THRB) is increased 1.9-fold (P = 0.012). Thorough analysis of the THRB promoter reveals a maternal diet-induced alteration in the fetal THRB histone code, alongside differential promoter occupancy of corepressors and coactivators. We speculate that maternal HFD exposure in utero may set the stage for later in life obesity through epigenomic modifications to the histone code, which modulates the fetal thyroid axis.
Collapse
Affiliation(s)
- Melissa A Suter
- Division of Maternal-Fetal Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Bakulski KM, Dolinoy DC, Sartor MA, Paulson HL, Konen JR, Lieberman AP, Albin RL, Hu H, Rozek LS. Genome-wide DNA methylation differences between late-onset Alzheimer's disease and cognitively normal controls in human frontal cortex. J Alzheimers Dis 2012; 29:571-88. [PMID: 22451312 DOI: 10.3233/jad-2012-111223] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Evidence supports a role for epigenetic mechanisms in the pathogenesis of late-onset Alzheimer's disease (LOAD), but little has been done on a genome-wide scale to identify potential sites involved in disease. This study investigates human postmortem frontal cortex genome-wide DNA methylation profiles between 12 LOAD and 12 cognitively normal age- and gender-matched subjects. Quantitative DNA methylation is determined at 27,578 CpG sites spanning 14,475 genes via the Illumina Infinium HumanMethylation27 BeadArray. Data are analyzed using parallel linear models adjusting for age and gender with empirical Bayes standard error methods. Gene-specific technical and functional validation is performed on an additional 13 matched pair samples, encompassing a wider age range. Analysis reveals 948 CpG sites representing 918 unique genes as potentially associated with LOAD disease status pending confirmation in additional study populations. Across these 948 sites the subtle mean methylation difference between cases and controls is 2.9%. The CpG site with a minimum false discovery rate located in the promoter of the gene Transmembrane Protein 59 (TMEM59) is 7.3% hypomethylated in cases. Methylation at this site is functionally associated with tissue RNA and protein levels of the TMEM59 gene product. The TMEM59 gene identified from our discovery approach was recently implicated in amyloid-β protein precursor post-translational processing, supporting a role for epigenetic change in LOAD pathology. This study demonstrates widespread, modest discordant DNA methylation in LOAD-diseased tissue independent from DNA methylation changes with age. Identification of epigenetic biomarkers of LOAD risk may allow for the development of novel diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Kelly M Bakulski
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Boeke CE, Baccarelli A, Kleinman KP, Burris HH, Litonjua AA, Rifas-Shiman SL, Tarantini L, Gillman M. Gestational intake of methyl donors and global LINE-1 DNA methylation in maternal and cord blood: prospective results from a folate-replete population. Epigenetics 2012; 7:253-60. [PMID: 22430801 DOI: 10.4161/epi.7.3.19082] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Maternal diet affects offspring DNA methylation in animal models, but evidence from humans is limited. We investigated the extent to which gestational intake of methyl donor nutrients affects global DNA methylation in maternal and umbilical cord blood. Among mother-infant pairs in Project Viva, a folate-replete US population, we estimated maternal intakes of vitamin B12, betaine, choline, folate, cadmium, zinc and iron periconceptionally and during the second trimester. We examined associations of these nutrients with DNA methylation, measured as %5-methyl cytosines (%5mC) in Long Interspersed Nuclear Element-1 (LINE-1), in first trimester (n = 830) and second trimester (n = 671) maternal blood and in cord blood at delivery (n = 516). Cord blood methylation was higher for male than female infants {mean [standard deviation (SD)] 84.8 [0.6] vs. 84.4 [0.7]%}. In the multivariable-adjusted model, maternal intake of methyl donor nutrients periconceptionally and during the second trimester of pregnancy was not positively associated with first trimester, second trimester or cord blood LINE-1 methylation. Periconceptional betaine intake was inversely associated with cord blood methylation [regression coefficient = -0.08% (95% confidence interval (CI): -0.14,-0.01)] but this association was attenuated after adjustment for dietary cadmium, which itself was directly associated with first trimester methylation and inversely associated with cord blood methylation. We also found an inverse association between periconceptional choline [-0.10%, 95% CI: -0.17,-0.03 for each SD (~63 mg/day)] and cord blood methylation in males only. In this folate-replete population, we did not find positive associations between intake of methyl donor nutrients during pregnancy and DNA methylation overall, but among males, higher early pregnancy intakes of choline were associated with lower cord blood methylation.
Collapse
Affiliation(s)
- Caroline E Boeke
- Department of Nutrition, Harvard School of Public Health, Boston, MA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Gerhauser C. Cancer chemoprevention and nutriepigenetics: state of the art and future challenges. Top Curr Chem (Cham) 2012; 329:73-132. [PMID: 22955508 DOI: 10.1007/128_2012_360] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The term "epigenetics" refers to modifications in gene expression caused by heritable, but potentially reversible, changes in DNA methylation and chromatin structure. Epigenetic alterations have been identified as promising new targets for cancer prevention strategies as they occur early during carcinogenesis and represent potentially initiating events for cancer development. Over the past few years, nutriepigenetics - the influence of dietary components on mechanisms influencing the epigenome - has emerged as an exciting new field in current epigenetic research. During carcinogenesis, major cellular functions and pathways, including drug metabolism, cell cycle regulation, potential to repair DNA damage or to induce apoptosis, response to inflammatory stimuli, cell signalling, and cell growth control and differentiation become deregulated. Recent evidence now indicates that epigenetic alterations contribute to these cellular defects, for example epigenetic silencing of detoxifying enzymes, tumor suppressor genes, cell cycle regulators, apoptosis-inducing and DNA repair genes, nuclear receptors, signal transducers and transcription factors by promoter methylation, and modifications of histones and non-histone proteins such as p53, NF-κB, and the chaperone HSP90 by acetylation or methylation.The present review will summarize the potential of natural chemopreventive agents to counteract these cancer-related epigenetic alterations by influencing the activity or expression of DNA methyltransferases and histone modifying enzymes. Chemopreventive agents that target the epigenome include micronutrients (folate, retinoic acid, and selenium compounds), butyrate, polyphenols from green tea, apples, coffee, black raspberries, and other dietary sources, genistein and soy isoflavones, curcumin, resveratrol, dihydrocoumarin, nordihydroguaiaretic acid (NDGA), lycopene, anacardic acid, garcinol, constituents of Allium species and cruciferous vegetables, including indol-3-carbinol (I3C), diindolylmethane (DIM), sulforaphane, phenylethyl isothiocyanate (PEITC), phenylhexyl isothiocyanate (PHI), diallyldisulfide (DADS) and its metabolite allyl mercaptan (AM), cambinol, and relatively unexplored modulators of histone lysine methylation (chaetocin, polyamine analogs). So far, data are still mainly derived from in vitro investigations, and results of animal models or human intervention studies are limited that demonstrate the functional relevance of epigenetic mechanisms for health promoting or cancer preventive efficacy of natural products. Also, most studies have focused on single candidate genes or mechanisms. With the emergence of novel technologies such as next-generation sequencing, future research has the potential to explore nutriepigenomics at a genome-wide level to understand better the importance of epigenetic mechanisms for gene regulation in cancer chemoprevention.
Collapse
Affiliation(s)
- Clarissa Gerhauser
- Division Epigenomics and Cancer Risk Factors, German Cancer Research Center, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
37
|
Abstract
Spontaneous preterm birth (PTB; birth prior to 37 weeks of gestation) is a complex phenotype with multiple risk factors that complicate our understanding of its etiology. A number of recent studies have supported the hypothesis that epigenetic modifications such as DNA methylation induced by pregnancy-related risk factors may influence the risk of PTB or result in changes that predispose a neonate to adult-onset diseases. The critical role of timing of gene expression in the etiology of PTB makes it a highly relevant disorder in which to examine the potential role of epigenetic changes. Because changes in DNA methylation patterns can result in long-term consequences, it is of critical interest to identify the epigenetic patterns associated with adverse pregnancy outcomes. This review examines the potential role of DNA methylation as a risk factor for PTB and discusses several issues and limitations that should be considered when planning DNA methylation studies.
Collapse
Affiliation(s)
- Ramkumar Menon
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, The University of Texas Medical Branch at Galveston, TX 77555, USA.
| | | | | |
Collapse
|
38
|
Bakker R, Timmermans S, Steegers EAP, Hofman A, Jaddoe VWV. Folic acid supplements modify the adverse effects of maternal smoking on fetal growth and neonatal complications. J Nutr 2011; 141:2172-9. [PMID: 22031658 DOI: 10.3945/jn.111.142976] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Maternal smoking during pregnancy leads to increased risks of neonatal complications. The use of folic acid supplements might reduce the adverse effects of smoking. We examined whether folic acid supplement use modifies the associations of maternal smoking with first trimester plasma homocysteine concentrations, fetal growth characteristics, and risks of neonatal complications. The associations were studied in 6294 mothers participating in a prospective population-based cohort study in The Netherlands. Main outcomes measurements were first trimester plasma homocysteine concentrations, fetal growth characteristics, and neonatal complications, including preterm birth, low birth weight, and small-size-for-gestational-age. Continued maternal smoking was associated with higher first trimester plasma homocysteine concentrations [difference 0.52 μmol/L (95% range = 0.20, 2.14)], lower third trimester fetal weight (difference -44 g (95% CI = -57, -31)], and birth weight [difference -148 g (95% CI = -179, -118)]. There were significant interactions between maternal smoking and folic acid supplements on all outcome measures (all P-interaction < 0.040). Among mothers who continued smoking during pregnancy, those who did not use folic acid supplements had the highest risk of delivering a child with low birth weight [OR = 3.45 (95% CI = 1.25, 9.54)] compared to those who did use periconceptional folic acid supplements. No significant effects were observed for the risks of preterm birth and small-size-for-gestational-age at birth. Our results suggest that some adverse effects of maternal smoking on fetal growth and neonatal outcomes might be reduced by the use of folic acid supplements. The observed interaction seems to be mainly driven by smoking in the first trimester only.
Collapse
Affiliation(s)
- Rachel Bakker
- The Generation R Study Group, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
39
|
Abstract
The beginning of this century was not only marked by the publication of the first draft of the human genome but also set off a decade of intense research on epigenetic phenomena. Apart from DNA methylation, it became clear that many other factors including a wide range of histone modifications, different shades of chromatin accessibility, and a vast suite of noncoding RNAs comprise the epigenome. With the recent advances in sequencing technologies, it has now become possible to analyze many of these features in depth, allowing for the first time the establishment of complete epigenomic profiles for basically every cell type of interest. Here, we will discuss the recent advances that allow comprehensive epigenetic mapping, highlight several projects that set out to better understand the epigenome, and discuss the impact that epigenomic mapping can have on our understanding of both healthy and diseased cells.
Collapse
Affiliation(s)
- Joost H A Martens
- Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
| | | | | |
Collapse
|
40
|
Roberson EDO, Liu Y, Ryan C, Joyce CE, Duan S, Cao L, Martin A, Liao W, Menter A, Bowcock AM. A subset of methylated CpG sites differentiate psoriatic from normal skin. J Invest Dermatol 2011; 132:583-92. [PMID: 22071477 PMCID: PMC3568942 DOI: 10.1038/jid.2011.348] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Psoriasis is a chronic inflammatory immune-mediated disorder affecting the skin and other organs including joints. Over 1,300 transcripts are altered in psoriatic involved skin compared to normal skin. However to our knowledge global epigenetic profiling of psoriatic skin is previously unreported. Here we describe a genome-wide study of altered CpG methylation in psoriatic skin. We determined the methylation levels at 27,578 CpG sites in skin samples from individuals with psoriasis (12 involved, 8 uninvolved) and 10 unaffected individuals. CpG methylation of involved skin differed from normal skin at 1,108 sites. Twelve mapped to the epidermal differentiation complex, upstream or within genes that are highly up-regulated in psoriasis. Hierarchical clustering of 50 of the top differentially methylated (DM) sites separated psoriatic from normal skin samples. CpG sites where methylation was correlated with gene expression are reported. Sites with inverse correlations between methylation and nearby gene expression include those of KYNU, OAS2, S100A12, and SERPINB3, whose strong transcriptional up-regulation are important discriminators of psoriasis. We observed intrinsic epigenetic differences in uninvolved skin. Pyrosequencing of bisulfite-treated DNA from skin biopsies at three DM loci confirmed earlier findings and revealed reversion of methylation levels towards the non-psoriatic state after one month of anti-TNF-α therapy.
Collapse
Affiliation(s)
- Elisha D O Roberson
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Suter M, Ma J, Harris A, Patterson L, Brown KA, Shope C, Showalter L, Abramovici A, Aagaard-Tillery KM. Maternal tobacco use modestly alters correlated epigenome-wide placental DNA methylation and gene expression. Epigenetics 2011; 6:1284-94. [PMID: 21937876 DOI: 10.4161/epi.6.11.17819] [Citation(s) in RCA: 196] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Several studies linking alterations in differential placental methylation with pregnancy disorders have implicated (de)regulation of the placental epigenome with fetal programming and later-in-life disease. We have previously demonstrated that maternal tobacco use is associated with alterations in promoter methylation of placental CYP1A1 and that these changes are correlated with CYP1A1 gene expression and fetal growth restriction. In this study we sought to expand our analysis of promoter methylation by correlating it to gene expression on a genome-wide scale. Employing side-by-side IlluminaHG-12 gene transcription with Infinium27K methylation arrays, we interrogated correlative changes in placental gene expression and DNA methylation associated with maternal tobacco smoke exposure at an epigenome-wide level and in consideration of signature gene pathways. We observed that the expression of 623 genes and the methylation of 1024 CpG dinucleotides are significantly altered among smokers, with only 38 CpGs showing significant differential methylation (differing by a methylation level of ≥10%). We identified a significant Pearson correlation (≥0.7 or ≤-0.7) between placental transcriptional regulation and differential CpG methylation in only 25 genes among non-smokers but in 438 genes among smokers (18-fold increase, p < 0.0001), with a dominant effect among oxidative stress pathways. Differential methylation at as few as 6 sites was attributed to maternal smoking-mediated birth weight reduction in linear regression models with Bonferroni correction (p < 1.8 × 10(-6)). These studies suggest that a common perinatal exposure (such as maternal smoking) deregulates placental methylation in a CpG site-specific manner that correlates with meaningful alterations in gene expression along signature pathways.
Collapse
Affiliation(s)
- Melissa Suter
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Sbrana E, Suter MA, Abramovici AR, Hawkins HK, Moss JE, Patterson L, Shope C, Aagaard-Tillery K. Maternal tobacco use is associated with increased markers of oxidative stress in the placenta. Am J Obstet Gynecol 2011; 205:246.e1-7. [PMID: 21803321 DOI: 10.1016/j.ajog.2011.06.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 04/27/2011] [Accepted: 06/07/2011] [Indexed: 10/18/2022]
Abstract
OBJECTIVE We sought to extend our prior observations and histopathologically characterize key metabolic enzymes (CYP1A1) with markers of oxidative damage in the placental sections from smokers. STUDY DESIGN Placental specimens were collected from term singleton deliveries from smokers (n = 10) and nonsmokers (n = 10) and subjected to a detailed histopathological examination. To quantify the extent of oxidative damage, masked score-graded (0-6) histopathology against 4-hydroxy-2-nonenal (4-HNE) and 8-hydroxydeoxyguanisine (8-OHdG) was performed. Minimal significance (P < .05) was determined with a Fisher's exact and a 2-tailed Student t test as appropriate. RESULTS We observed a significant increase in the presence of syncytial knots in placentas from smokers (70% vs 10%, P = .02). These gross observations were accompanied by a significant aberrant placental aromatic hydrocarbon metabolism (increased CYP1A1, 4.4 vs 2.1, P = .002) in addition to evidence of oxidative damage (4-HNE 3.4 vs 1.1, P = .00005; 8-OHdG 4.9 vs 3.1, P = .0038). CONCLUSION We observed a strong association between maternal tobacco use and aberrant placental metabolism, syncytial knot formation, and multiple markers of oxidative damage.
Collapse
|
43
|
Allina J, Grabowski J, Doherty-Lyons S, Fiel MI, Jackson CE, Zelikoff JT, Odin JA. Maternal allergy acts synergistically with cigarette smoke exposure during pregnancy to induce hepatic fibrosis in adult male offspring. J Immunotoxicol 2011; 8:258-64. [PMID: 21718087 DOI: 10.3109/1547691x.2011.589412] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Maternal environmental exposures during pregnancy are known to affect disease onset in adult offspring. For example, maternal asthma exacerbations during pregnancy can worsen adult asthma in the offspring. Cigarette smoking during pregnancy is associated with future onset of cardiovascular disease, obesity and diabetes. However, little is known about the effect of maternal environmental exposures on offspring susceptibility to liver disease. This pilot study examined the long-term effect of maternal allergen challenge and/or cigarette smoking during pregnancy on hepatic inflammation and fibrosis in adult mouse offspring. Ovalbumin (OVA) or phosphate-buffered saline (PBS)-sensitized/challenged CD-1 dams were exposed to mainstream cigarette smoke (MCS) or filtered air from gestational day 4 until parturition. Eight weeks postnatally, offspring were sacrificed for comparison of hepatic histology and mRNA expression. Adult male offspring of OVA-sensitized/challenged dams exposed to MCS (OSM) displayed significantly increased liver fibrosis (9.2% collagen content vs. <4% for all other treatment groups). These mice also had 1.8-fold greater collagen 1A1 mRNA levels. From the results here, we concluded that maternal allergen challenge in combination with cigarette smoke exposure during pregnancy may be an important risk factor for liver disease in adult male offspring.
Collapse
Affiliation(s)
- Jorge Allina
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Schaible TD, Harris RA, Dowd SE, Smith CW, Kellermayer R. Maternal methyl-donor supplementation induces prolonged murine offspring colitis susceptibility in association with mucosal epigenetic and microbiomic changes. Hum Mol Genet 2011; 20:1687-96. [PMID: 21296867 PMCID: PMC3115577 DOI: 10.1093/hmg/ddr044] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 12/17/2010] [Accepted: 01/31/2011] [Indexed: 12/11/2022] Open
Abstract
Developmental epigenetic changes, such as DNA methylation, have been recognized as potential pathogenic factors in inflammatory bowel diseases, the hallmark of which is an exaggerated immune response against luminal microbes. A methyl-donor (MD) diet can modify DNA methylation at select murine genomic loci during early development. The components of the MDs are routinely incorporated into prenatal human supplements. Therefore, we studied the effects of maternal MD supplementation on offspring colitis susceptibility and colonic mucosal DNA methylation and gene expression changes in mice as a model. Additionally, we investigated the offspring mucosal microbiomic response to the maternal dietary supplementation. Colitis was induced by dextran sulfate sodium. Colonic mucosa from offspring of MD-supplemented mothers following reversal to control diet at weaning was interrogated by methylation-specific microarrays and pyrosequencing at postnatal days 30 (P30) and P90. Transcriptomic changes were analyzed by microarray profiling and real-time reverse transcription polymerase chain reaction. The mucosal microbiome was studied by high throughput pyrosequencing of 16S rRNA. Maternal MD supplementation induced a striking susceptibility to colitis in offspring. This phenotype was associated with colonic mucosal DNA methylation and expression changes. Metagenomic analyses did not reveal consistent bacteriomic differences between P30 and P90, but showed a prolonged effect of the diet on the offspring mucosal microbiome. In conclusion, maternal MD supplementation increases offspring colitis susceptibility that associates with persistent epigenetic and prolonged microbiomic changes. These findings underscore that epigenomic reprogramming relevant to mammalian colitis can occur during early development in response to maternal dietary modifications.
Collapse
Affiliation(s)
- Tiffany D. Schaible
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, USDA/ARS Children's Nutrition Research Center, Houston, TX, USA
| | - R. Alan Harris
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA and
| | - Scot E. Dowd
- Research and Testing Laboratory, Lubbock, TX, USA
| | - C. Wayne Smith
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, USDA/ARS Children's Nutrition Research Center, Houston, TX, USA
| | - Richard Kellermayer
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, USDA/ARS Children's Nutrition Research Center, Houston, TX, USA
| |
Collapse
|
45
|
Suter M, Abramovici A, Aagaard-Tillery K. Genetic and epigenetic influences associated with intrauterine growth restriction due to in utero tobacco exposure. PEDIATRIC ENDOCRINOLOGY REVIEWS : PER 2010; 8:94-102. [PMID: 21150839 PMCID: PMC5084836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
While many fetuses are exposed to tobacco in utero, not all experience adverse outcomes as a result of this exposure. Mechanisms leading to the attenuation of fetal birth weight and adverse pregnancy outcomes are complex. Therefore many studies have begun to focus, not only on the contribution of maternal and fetal genes to phenotypic outcome, but also on epigenetic changes associated with exposure to maternal tobacco smoke. In this review, we detail the epidemiologic evidence associating an adverse pregnancy outcome to maternal tobacco use. We provide a brief summary of studies demonstrating an association between maternal and fetal gene polymorphisms with low birth weight in response to maternal tobacco exposure. We also review the literature showing epigenetic changes in the offspring associated with in utero tobacco exposure. The complex interplay of genomic and epigenomic factors may contribute to specific phenotypic outcomes and can help begin to elucidate the differential susceptibilities to tobacco smoke in utero.
Collapse
Affiliation(s)
- Melissa Suter
- Department of Obstetrics and Gynecology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
| | - Adi Abramovici
- Department of Obstetrics and Gynecology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
| | - Kjersti Aagaard-Tillery
- Department of Obstetrics and Gynecology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
| |
Collapse
|
46
|
Suter M, Bocock P, Showalter L, Hu M, Shope C, McKnight R, Grove K, Lane R, Aagaard-Tillery K. Epigenomics: maternal high-fat diet exposure in utero disrupts peripheral circadian gene expression in nonhuman primates. FASEB J 2010; 25:714-26. [PMID: 21097519 DOI: 10.1096/fj.10-172080] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The effect of in utero exposure to a maternal high-fat diet on the peripheral circadian system of the fetus is unknown. Using mRNA copy number analysis, we report that the components of the peripheral circadian machinery are transcribed in the nonhuman primate fetal liver in an intact phase-antiphase fashion and that Npas2, a paralog of the Clock transcription factor, serves as the rate-limiting transcript by virtue of its relative low abundance (10- to 1000-fold lower). We show that exposure to a maternal high-fat diet in utero significantly alters the expression of fetal hepatic Npas2 (up to 7.1-fold, P<0.001) compared with that in control diet-exposed animals and is reversible in fetal offspring from obese dams reversed to a control diet (1.3-fold, P>0.05). Although the Npas2 promoter remains largely unmethylated, differential Npas2 promoter occupancy of acetylation of fetal histone H3 at lysine 14 (H3K14ac) occurs in response to maternal high-fat diet exposure compared with control diet-exposed animals. Furthermore, we find that disruption of Npas2 is consistent with high-fat diet exposure in juvenile animals, regardless of in utero diet exposure. In summary, the data suggest that peripheral Npas2 expression is uniquely vulnerable to diet exposure.
Collapse
Affiliation(s)
- Melissa Suter
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Bloom MS, Fitzgerald EF, Kim K, Neamtiu I, Gurzau ES. Spontaneous pregnancy loss in humans and exposure to arsenic in drinking water. Int J Hyg Environ Health 2010; 213:401-13. [DOI: 10.1016/j.ijheh.2010.09.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 08/25/2010] [Accepted: 09/05/2010] [Indexed: 11/30/2022]
|
48
|
Vandegehuchte MB, De Coninck D, Vandenbrouck T, De Coen WM, Janssen CR. Gene transcription profiles, global DNA methylation and potential transgenerational epigenetic effects related to Zn exposure history in Daphnia magna. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2010; 158:3323-3329. [PMID: 20719420 DOI: 10.1016/j.envpol.2010.07.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 07/13/2010] [Accepted: 07/18/2010] [Indexed: 05/29/2023]
Abstract
A reduced level of DNA methylation has recently been described in both Zn-exposed and non-exposed offspring of Daphnia magna exposed to Zn. The hypothesis examined in this study is that DNA hypomethylation has an effect on gene transcription. A second hypothesis is that accumulative epigenetic effects can affect gene transcription in non-exposed offspring from parents with an exposure history of more than one generation. Transcriptional gene regulation was studied with a cDNA microarray. In the exposed and non-exposed hypomethylated daphnids, a large proportion of common genes were similarly up- or down-regulated, indicating a possible effect of the DNA hypomethylation. Two of these genes can be mechanistically involved in DNA methylation reduction. The similar transcriptional regulation of two and three genes in the F0 and F1 exposed daphnids on one hand and their non-exposed offspring on the other hand, could be the result of a one-generation temporary transgenerational epigenetic effect, which was not accumulative.
Collapse
Affiliation(s)
- Michiel B Vandegehuchte
- Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University, J. Plateaustraat 22, B-9000 Ghent, Belgium.
| | | | | | | | | |
Collapse
|
49
|
Meeran SM, Ahmed A, Tollefsbol TO. Epigenetic targets of bioactive dietary components for cancer prevention and therapy. Clin Epigenetics 2010; 1:101-116. [PMID: 21258631 PMCID: PMC3024548 DOI: 10.1007/s13148-010-0011-5] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The emergent interest in cancer epigenetics stems from the fact that epigenetic modifications are implicated in virtually every step of tumorigenesis. More interestingly, epigenetic changes are reversible heritable changes that are not due to the alteration in DNA sequence but have potential to alter gene expression. Dietary agents consist of many bioactive ingredients which actively regulate various molecular targets involved in tumorigenesis. We present evidence that numerous bioactive dietary components can interfere with various epigenetic targets in cancer prevention and therapy. These agents include curcumin (turmeric), genistein (soybean), tea polyphenols (green tea), resveratrol (grapes), and sulforaphane (cruciferous vegetables). These bioactive components alter the DNA methylation and histone modifications required for gene activation or silencing in cancer prevention and therapy. Bioactive components mediate epigenetic modifications associated with the induction of tumor suppressor genes such as p21WAF1/CIP1 and inhibition of tumor promoting genes such as the human telomerase reverse transcriptase during tumorigenesis processes. Here, we present considerable evidence that bioactive components and their epigenetic targets are associated with cancer prevention and therapy which should facilitate novel drug discovery and development. In addition, remarkable advances in our understanding of basic epigenetic mechanisms as well as the rapid progress that is being made in developing powerful new technologies, such as those for sensitive and quantitative detection of epigenetic and epigenomic changes in cancer biology, hold great promise for novel epigenetic approaches to cancer prevention and therapy.
Collapse
Affiliation(s)
- Syed M. Meeran
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Campbell Hall 175, Birmingham, AL 35294-1170 USA
| | - Amiya Ahmed
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Campbell Hall 175, Birmingham, AL 35294-1170 USA
| | - Trygve O. Tollefsbol
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Campbell Hall 175, Birmingham, AL 35294-1170 USA
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL USA
- Center for Aging, University of Alabama at Birmingham, Birmingham, AL USA
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL USA
| |
Collapse
|
50
|
Weyrich A, Axtner J, Sommer S. Selection and validation of reference genes for real-time RT-PCR studies in the non-model species Delomys sublineatus, an endemic Brazilian rodent. Biochem Biophys Res Commun 2010; 392:145-9. [PMID: 20059981 DOI: 10.1016/j.bbrc.2009.12.173] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 12/30/2009] [Indexed: 11/18/2022]
Abstract
Quantitative real-time RT-PCR (qRT-PCR) is a sensitive technique for gene expression analysis. A critical factor for creating reliable data in relative quantification is the normalization of the expression data of genes of interest. Therefore the needed normalization factor is calculated out of the expression data of co-amplified genes that are stable expressed in the certain sample material, the so-called reference genes. In this study, we demonstrate the important process of validating potential reference genes using a non-model species. As there are almost no sequences known of the Pallid Atlantic Forest Rat (Delomys sublineatus), a rodent used as indicator species in conservation studies of the endangered Brazilian rainforest, suitable primer sets are more problematic to find than in model species. Out of nine tested primer sets designed for the fully sequenced Mus musculus, five could be used for the establishment of a proper running SYBR-Green assay and validation of their constant expression. qRT-PCR results of 12 cDNAs of Delomys livers were analyzed with three different validation software programs: BestKeeper, NormFinder and geNorm. Our approach showed that out of the five (Sdha, Canx, Pgk1, Actb and Actg1) potential reference genes, the first four should be used for accurate normalization in further relative quantification analyses. Transferring data from close-by model organisms makes high sensitive real-time RT-PCR applicable even to free-ranging non-model organisms. Our approach might be suitable for other non-model organisms.
Collapse
Affiliation(s)
- Alexandra Weyrich
- Leibniz Institute for Zoo and Wildlife Research (IZW), Evolutionary Genetics, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany
| | | | | |
Collapse
|