1
|
Chang L, Ma H, Li K, Gao T, Zeng J, Li Y, Luo Y, Chen Y, Liu C, Shi N. A novel method of cardia visualization and comfort level enhancement during magnetic capsule gastroscopy via sugar-glued tether-assisted technique: a randomized pilot study inspired by a Chinese snack-making process (with video). Surg Endosc 2024; 38:6948-6955. [PMID: 39361135 DOI: 10.1007/s00464-024-11218-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/19/2024] [Indexed: 11/01/2024]
Abstract
BACKGROUND Magnetic capsule gastroscopy (MCG) is a non-invasive diagnostic method for the digestive tract. However, its efficiency in visualizing the gastric cardia is often compromised due to the capsule's rapid passage. This study introduces a novel sugar-glued tether-assisted technique inspired by a traditional Chinese snack-making process to enhance cardia visualization and patient comfort during MCG. METHODS This pilot, open-label, single-center, randomized controlled, non-inferiority study was conducted at Binzhou Medical University Hospital. Seventy-eight patients were enrolled and divided into three groups: conventional MCG, suction cup tether-assisted MCG, and sugar-glued tether-assisted MCG. The primary outcomes included safety, comfort level, and gastric cardia visualization quality. Secondary outcomes assessed technique-associated performance and clinical factors. RESULTS The sugar-glued tether-assisted MCG demonstrated comparable cardia visualization quality to the suction cup method, with significantly better results than conventional MCG. Comfort levels were significantly higher in the sugar-glued group compared to the suction cup group. The number of swallow attempts was significantly lower in the sugar-glued group, with no adverse events reported. Secondary outcomes showed no significant differences in MCG assembly time and ingestion-to-detachment period between the suction cup and sugar-glued groups. CONCLUSION The sugar-glued tether-assisted MCG is a feasible and safe modification that enhances gastric cardia visualization while improving patient comfort. This technique provides a cost-effective alternative to the suction cup method, warranting further investigation in larger, multi-center studies.
Collapse
Affiliation(s)
- Lujie Chang
- Department of Gastroenterology and Hepatology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, 256603, Shandong, China
- Endosocpy Center, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Huaiyuan Ma
- Department of Gastroenterology and Hepatology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, 256603, Shandong, China
- Endosocpy Center, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Institute of Gastroenterology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Kun Li
- Department of Gastroenterology and Hepatology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, 256603, Shandong, China
- Endosocpy Center, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Institute of Gastroenterology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Tao Gao
- Department of Gastroenterology and Hepatology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, 256603, Shandong, China
- Endosocpy Center, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Jinbei Zeng
- Binzhou Medical University, Binzhou, Shandong, China
| | - Yiying Li
- Binzhou Medical University, Binzhou, Shandong, China
| | - Yuwen Luo
- Binzhou Medical University, Binzhou, Shandong, China
| | - Yan Chen
- Department of Gastroenterology and Hepatology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, 256603, Shandong, China
- Binzhou Medical University, Binzhou, Shandong, China
- Endosocpy Center, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Institute of Gastroenterology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Chengxia Liu
- Department of Gastroenterology and Hepatology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, 256603, Shandong, China.
- Binzhou Medical University, Binzhou, Shandong, China.
- Endosocpy Center, Binzhou Medical University Hospital, Binzhou, Shandong, China.
- Institute of Gastroenterology, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| | - Ning Shi
- Department of Gastroenterology and Hepatology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, 256603, Shandong, China.
- Binzhou Medical University, Binzhou, Shandong, China.
- Endosocpy Center, Binzhou Medical University Hospital, Binzhou, Shandong, China.
- Institute of Gastroenterology, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| |
Collapse
|
2
|
Cao Q, Deng R, Pan Y, Liu R, Chen Y, Gong G, Zou J, Yang H, Han D. Robotic wireless capsule endoscopy: recent advances and upcoming technologies. Nat Commun 2024; 15:4597. [PMID: 38816464 PMCID: PMC11139981 DOI: 10.1038/s41467-024-49019-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/21/2024] [Indexed: 06/01/2024] Open
Abstract
Wireless capsule endoscopy (WCE) offers a non-invasive evaluation of the digestive system, eliminating the need for sedation and the risks associated with conventional endoscopic procedures. Its significance lies in diagnosing gastrointestinal tissue irregularities, especially in the small intestine. However, existing commercial WCE devices face limitations, such as the absence of autonomous lesion detection and treatment capabilities. Recent advancements in micro-electromechanical fabrication and computational methods have led to extensive research in sophisticated technology integration into commercial capsule endoscopes, intending to supersede wired endoscopes. This Review discusses the future requirements for intelligent capsule robots, providing a comparative evaluation of various methods' merits and disadvantages, and highlighting recent developments in six technologies relevant to WCE. These include near-field wireless power transmission, magnetic field active drive, ultra-wideband/intrabody communication, hybrid localization, AI-based autonomous lesion detection, and magnetic-controlled diagnosis and treatment. Moreover, we explore the feasibility for future "capsule surgeons".
Collapse
Affiliation(s)
- Qing Cao
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Runyi Deng
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yue Pan
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ruijie Liu
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yicheng Chen
- Sir Run-Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Guofang Gong
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jun Zou
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Huayong Yang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Dong Han
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310027, China.
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
3
|
Jiang B, Pan J, Qian YY, He C, Xia J, He SX, Sha WH, Feng ZJ, Wan J, Wang SS, Zhong L, Xu SC, Li XL, Huang XJ, Zou DW, Song DD, Zhang J, Ding WQ, Chen JY, Chu Y, Zhang HJ, Yu WF, Xu Y, He XQ, Tang JH, He L, Fan YH, Chen FL, Zhou YB, Zhang YY, Yu Y, Wang HH, Ge KK, Jin GH, Xiao YL, Fang J, Yan XM, Ye J, Yang CM, Li Z, Song Y, Wen MY, Zong Y, Han X, Wu LL, Ma JJ, Xie XP, Yu WH, You Y, Lu XH, Song YL, Ma XQ, Li SD, Zeng B, Gao YJ, Ma RJ, Ni XG, He CH, Liu YP, Wu JS, Liu J, Li AM, Chen BL, Cheng CS, Sun XM, Ge ZZ, Feng Y, Tang YJ, Li ZS, Linghu EQ, Liao Z. Clinical guideline on magnetically controlled capsule gastroscopy (2021 edition). J Dig Dis 2023; 24:70-84. [PMID: 37220999 DOI: 10.1111/1751-2980.13173] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 04/20/2023] [Indexed: 05/25/2023]
Abstract
With the development and generalization of endoscopic technology and screening, clinical application of magnetically controlled capsule gastroscopy (MCCG) has been increasing. In recent years, various types of MCCG are used globally. Therefore, establishing relevant guidelines on MCCG is of great significance. The current guidelines containing 23 statements were established based on clinical evidence and expert opinions, mainly focus on aspects including definition and diagnostic accuracy, application population, technical optimization, inspection process, and quality control of MCCG. The level of evidence and strength of recommendations were evaluated. The guidelines are expected to guide the standardized application and scientific innovation of MCCG for the reference of clinicians.
Collapse
Affiliation(s)
- Bin Jiang
- National Clinical Research Center for Digestive Diseases; Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Department of Gastroenterology, The First Naval Hospital of Southern Theater Command, Zhanjiang, Guangdong Province, China
| | - Jun Pan
- National Clinical Research Center for Digestive Diseases; Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yang Yang Qian
- National Clinical Research Center for Digestive Diseases; Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chen He
- National Clinical Research Center for Digestive Diseases; Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Ji Xia
- National Clinical Research Center for Digestive Diseases; Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
- Department of Gastroenterology, The 926th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Kaiyuan, Yunnan Province, China
| | - Shui Xiang He
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Wei Hong Sha
- Department of Gastroenterology, Guangdong Provincial Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province, China
| | - Zhi Jie Feng
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Jun Wan
- Department of Gastroenterology, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Sha Sha Wang
- Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Liang Zhong
- Department of Gastroenterology, Huashan Hospital, Fudan University, Shanghai, China
| | - Shu Chang Xu
- Department of Gastroenterology, Tongji Hospital of Tongji University, Shanghai, China
| | - Xiu Ling Li
- Department of Gastroenterology, Henan Provincial People's Hospital, Zhengzhou, Henan Province, China
| | - Xiao Jun Huang
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Duo Wu Zou
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dan Dan Song
- Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jie Zhang
- Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wei Qun Ding
- Department of Gastroenterology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jia Yu Chen
- Department of Gastroenterology, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, Gansu Province, China
| | - Ye Chu
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Jing Zhang
- Department of Digestive Endoscopy, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Wei Fang Yu
- Department of Gastroenterology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Yan Xu
- Department of Gastroenterology, Guangzhou Cadre Health Management Center, Guangzhou, Guangdong Province, China
| | - Xue Qiang He
- Department of Gastroenterology and Respiration, The 924th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Guilin, Guangxi Zhuang Autonomous Region, China
| | - Jian Hua Tang
- Department of Gastroenterology, Ganzhou People's Hospital, Ganzhou, Jiangxi Province, China
| | - Ling He
- Department of Gastroenterology II, The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, China
| | - Yi Hong Fan
- Department of Gastroenterology, Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, Zhejiang Province, China
| | - Feng Lin Chen
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Yu Bao Zhou
- Department of Gastroenterology, The Second Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Yi Yang Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Yong Yu
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Hai Hong Wang
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ku Ku Ge
- Department of Gastroenterology, Xi'an Children's Hospital, Xi'an, Shaanxi Province, China
| | - Guo Hua Jin
- Department of Gastroenterology, The First Bethune Hospital of Jilin University, Changchun, Jilin Province, China
| | - Ying Lian Xiao
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jun Fang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xue Min Yan
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jun Ye
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Chong Mei Yang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| | - Zhen Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Yan Song
- Digestive Endoscopy Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan Province, China
| | - Mao Yao Wen
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ye Zong
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiao Han
- Department of Gastroenterology, General Hospital of the Northern Theater Command, Shenyang, Liaoning Province, China
| | - Lan Lan Wu
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing Jing Ma
- Department of Gastroenterology, Jiangsu Provincial Hospital, Nanjing, Jiangsu Province, China
| | - Xiao Ping Xie
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Wei Hua Yu
- Department of Gastroenterology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi Province, China
| | - Yu You
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Xiao Hong Lu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Yu Lin Song
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Xue Qin Ma
- Department of Gastroenterology, Qinghai University Affiliated Hospital, Xining, Qinghai Province, China
| | - Shu Dan Li
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Bin Zeng
- Department of Gastroenterology, The First Affiliated Hospital of University of South China, Hengyang, Hunan Province, China
| | - Yun Jie Gao
- Department of Gastroenterology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Rui Jun Ma
- Department of Gastroenterology, Shanxi Provincial People's Hospital, Taiyuan, Shanxi Province, China
| | - Xiao Guang Ni
- Department of Digestive Endoscopy, Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Chao Hui He
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, Guangdong Province, China
| | - Yi Pin Liu
- Department of Gastroenterology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong Province, China
| | - Jian Sheng Wu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jing Liu
- Department of Gastroenterology, The Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ai Min Li
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Bai Li Chen
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Chun Sheng Cheng
- Department of Gastroenterology, Nanshan Hospital, Guangdong Medical University, Shenzhen, Guangdong Province, China
| | - Xiao Mei Sun
- Department of Gastroenterology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang Province, China
| | - Zhi Zheng Ge
- Department of Gastroenterology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Feng
- Editorial Office of Chinese Journal of Digestion, Shanghai, China
| | - Yong Jin Tang
- Editorial Office of Chinese Journal of Digestive Endoscopy, Nanjing, Jiangsu Province, China
| | - Zhao Shen Li
- National Clinical Research Center for Digestive Diseases; Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - En Qiang Linghu
- Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhuan Liao
- National Clinical Research Center for Digestive Diseases; Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
4
|
Abstract
Abstract
For diagnostic and therapeutic applications in spacious spots of the gastrointestinal (GI) tract, the single rigid body capsule clinically applied is difficult to realize the fix-point posture adjustment function manipulated by the external permanent magnet system using the static balance control because the posture alignment and the locomotion interfere with each other. To realize this function easily, the dual hemisphere capsule robot (DHCR) is proposed, based on tracking effect—the axis of DHCR keeps tracking the normal orientation of the spatial universal rotating magnetic vector (SURMV). Since tracking effect employs dynamic balance control, dynamic stability of the DHCR system affects posture alignment performance. This paper focuses on posture alignment dynamic modeling and the influence of the magnetic flux density and the angular velocity of the SURMV, along with the damping coefficient of the GI tract surface on stability, obtaining the stability domains of parameters. Furthermore, to reduce error due to the uncertainties in complex GI tract environment, the sliding mode controller based on nominal model is proposed to achieve more accurate dynamic tracking, and Lyapunov theorem is employed to assess stability of controller. Finally, the tracking effect is verified through simulations and experiments, indicating that the fix-point posture adjustment can be realized with higher accuracy and efficiency.
Collapse
|
5
|
Clinical Benefits and Challenges in Application of Novel Portable Gastric Capsule Endoscopy for Home Healthcare Patients. Diagnostics (Basel) 2022; 12:diagnostics12071755. [PMID: 35885658 PMCID: PMC9323364 DOI: 10.3390/diagnostics12071755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/09/2022] [Accepted: 07/19/2022] [Indexed: 11/26/2022] Open
Abstract
Portable magnetic-assisted capsule endoscopy (MACE) provides satisfactory patient experience and safety with comparable performance in diagnosis of organic lesions when compared to conventional upper gastrointestinal endoscopy. In this study, a total of 58 homecare patients were included for MACE either in the hospital (n = 42) or at home (n = 16), with mean age of 71.1 ± 12.4 years. A total of 55 patients (94.83%) had completed the MACE with diagnosis of reflux esophagitis (43.6%), gastritis (54.5%), erosions (21.8%), fundic polyps (14.5%), peptic ulcers (25.9%), etc. Most patients (n = 47, 85.5%) were satisfied with the experience, and all patients who received MACE at home (n = 15, 100%) appreciated the convenience of endoscopy at home. Less than half of the patients (n = 24, 43.6%) could afford MACE if the expense was not covered by health insurance (USD 714). Time consumption from both traffic and capsule manipulation was also challenging for the physicians, as it took an average of 24.7 min to complete MACE, but it added up to a total of 92.7 min at home, which is about 15 times that of conventional endoscopy in hospital. More efforts are needed to ease the financial burden of patients, and optimization of workflow in community practice may help lift the obstacles revealed in this study.
Collapse
|
6
|
Szalai M, Helle K, Lovász BD, Finta Á, Rosztóczy A, Oczella L, Madácsy L. First prospective European study for the feasibility and safety of magnetically controlled capsule endoscopy in gastric mucosal abnormalities. World J Gastroenterol 2022; 28:2227-2242. [PMID: 35721886 PMCID: PMC9157624 DOI: 10.3748/wjg.v28.i20.2227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/14/2022] [Accepted: 04/26/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND While capsule endoscopy (CE) is the gold standard diagnostic method of detecting small bowel (SB) diseases and disorders, a novel magnetically controlled capsule endoscopy (MCCE) system provides non-invasive evaluation of the gastric mucosal surface, which can be performed without sedation or discomfort. During standard SBCE, passive movement of the CE may cause areas of the complex anatomy of the gastric mucosa to remain unexplored, whereas the precision of MCCE capsule movements inside the stomach promises better visualization of the entire mucosa.
AIM To evaluate the Ankon MCCE system’s feasibility, safety, and diagnostic yield in patients with gastric or SB disorders.
METHODS Of outpatients who were referred for SBCE, 284 (male/female: 149/135) were prospectively enrolled and evaluated by MCCE. The stomach was examined in the supine, left, and right lateral decubitus positions without sedation. Next, all patients underwent a complete SBCE study protocol. The gastric mucosa was explored with the Ankon MCCE system with active magnetic control of the capsule endoscope in the stomach, applying three standardized pre-programmed computerized algorithms in combination with manual control of the magnetic movements.
RESULTS The urea breath test revealed Helicobacter pylori positivity in 32.7% of patients. The mean gastric and SB transit times with MCCE were 0 h 47 min 40 s and 3 h 46 min 22 s, respectively. The average total time of upper gastrointestinal MCCE examination was 5 h 48 min 35 s. Active magnetic movement of the Ankon capsule through the pylorus was successful in 41.9% of patients. Overall diagnostic yield for detecting abnormalities in the stomach and SB was 81.9% (68.6% minor; 13.3% major pathologies); 25.8% of abnormalities were in the SB; 74.2% were in the stomach. The diagnostic yield for stomach/SB was 55.9%/12.7% for minor and 4.9%/8.4% for major pathologies.
CONCLUSION MCCE is a feasible, safe diagnostic method for evaluating gastric mucosal lesions and is a promising non-invasive screening tool to decrease morbidity and mortality in upper gastro-intestinal diseases.
Collapse
Affiliation(s)
- Milán Szalai
- Department of Gastroenterology, Endo-Kapszula Health Centre and Endoscopy Unit, Székesfehérvár 8000, Hungary
| | - Krisztina Helle
- Department of Internal Medicine, University of Szeged, Szeged 6725, Hungary
| | | | - Ádám Finta
- Department of Gastroenterology, Endo-Kapszula Health Centre and Endoscopy Unit, Székesfehérvár 8000, Hungary
| | - András Rosztóczy
- Department of Internal Medicine, University of Szeged, Szeged 6725, Hungary
| | - László Oczella
- Department of Gastroenterology, Endo-Kapszula Health Centre and Endoscopy Unit, Székesfehérvár 8000, Hungary
| | - László Madácsy
- Department of Gastroenterology, Endo-Kapszula Health Centre and Endoscopy Unit, Székesfehérvár 8000, Hungary
| |
Collapse
|
7
|
Papaefthymiou A, Koffas A, Laskaratos FM, Epstein O. Upper gastrointestinal video capsule endoscopy: The state of the art. Clin Res Hepatol Gastroenterol 2022; 46:101798. [PMID: 34500118 DOI: 10.1016/j.clinre.2021.101798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/28/2021] [Accepted: 08/16/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Video capsule can illuminate the entire gastrointestinal mucosa. Upper gastrointestinal capsule endoscopy (UGICE) has the potential to survey for oesophageal, gastric and duodenal pathology and determine whether biopsy or intervention is indicated. AIMS This review traces the evolution of foregut video capsule endoscopy. METHODS A broad literature research was performed independently by two investigators. Extracted articles were organized and evaluated to interpret all current data. RESULTS In contrast to small bowel capsule, UGICE required sequential innovations to deal with rapid oesophageal transit, the irregular shape of the stomach and unpredictable gastric peristalsis. Oesophageal capsule endoscopy required the development of a two-camera device operating at a high frame rate, and postural change was developed to improve image capture, especially at the level of the Z-line, thus providing good imaging of Barrett's oesophagus, erosive oesophagitis and oesophageal varices, with optimal patients' tolerance. UGICE in patients presenting to the emergency room with acute bleeding has demonstrated accuracy when deciding on the need for emergency intervention. The latest development of a high frame rate UGICE, designed to image the oesophagus, stomach and duodenum has overtaken dedicated oesophageal capsule development. Capsule control is possible by exposing a magnetised capsule to an external magnetic field, and early reports indicate high accuracy in the oesophagus and stomach with high levels of patient acceptability. There is little information on cost-benefit. CONCLUSIONS Capsule endoscopy offers gastroenterologists a new device to investigate the upper gastrointestinal tract with promising future potential.
Collapse
Affiliation(s)
- Apostolis Papaefthymiou
- Department of Gastroenterology, General University Hospital of Larisa, Mezourlo, Larisa 41110, Greece; First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Macedonia, Greece
| | - Apostolos Koffas
- Department of Gastroenterology, General University Hospital of Larisa, Mezourlo, Larisa 41110, Greece
| | - Faidon-Marios Laskaratos
- Endoscopy Unit, Digestive Diseases Centre, Barking Havering and Redbridge University Hospitals NHS Trust, London, United Kingdom
| | - Owen Epstein
- Centre for Gastroenterology, Royal Free Hospital, Pond St, London NW3 2QG, United Kingdom..
| |
Collapse
|
8
|
Zhang Y, Liu X, Liu G, Ji X, Yang H, Liu Z. Design and implementation of a highly integrated dual hemisphere capsule robot. Biomed Microdevices 2022; 24:10. [DOI: 10.1007/s10544-022-00611-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2022] [Indexed: 12/22/2022]
|
9
|
Development and Application of Magnetically Controlled Capsule Endoscopy in Detecting Gastric Lesions. Gastroenterol Res Pract 2022; 2021:2716559. [PMID: 35003252 PMCID: PMC8739542 DOI: 10.1155/2021/2716559] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/13/2021] [Indexed: 12/24/2022] Open
Abstract
In the past 20 years, several magnetically controlled capsule endoscopes (MCCE) have been developed for the evaluation of gastric lesions, including NaviCam (ANKON), MiroCam-Navi (Intromedic), Endocapsule MGCE (Olympus and Siemens), SMCE (JIFU), and FAMCE (Jinshan). Although limited to observing esophageal and duodenal lesions and lacking the ability of biopsy, MCCE has the advantages of comfort, safety, no anesthesia, no risk of cross-infection, and high acceptability. Several high-quality RCTs showed that the diagnostic accuracy of MCCE is comparable to the traditional gastroscopy. Due to the nonnecessity of anesthesia, MCCE may be more suitable for the elderly with obvious comorbidities as well as children. With more evidences accumulated and more innovative technologies developed, MCCE is expected to be an important tool for screening of early gastric cancer or the diagnosis of gastric diseases.
Collapse
|
10
|
O'Farrell C, Stamatopoulos K, Simmons M, Batchelor H. In vitro models to evaluate ingestible devices: Present status and current trends. Adv Drug Deliv Rev 2021; 178:113924. [PMID: 34390774 DOI: 10.1016/j.addr.2021.113924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 12/14/2022]
Abstract
Orally ingestible medical devices offer significant opportunity in the diagnosis and treatment of gastrointestinal conditions. Their development necessitates the use of models that simulate the gastrointestinal environment on both a macro and micro scale. An evolution in scientific technology has enabled a wide range of in vitro, ex vivo and in vivo models to be developed that replicate the gastrointestinal tract. This review describes the landscape of the existing range of in vitro tools that are available to characterize ingestible devices. Models are presented with details on their benefits and limitations with regards to the evaluation of ingestible devices and examples of their use in the evaluation of such devices is presented where available. The multitude of models available provides a suite of tools that can be used in the evaluation of ingestible devices that should be selected on the functionality of the device and the mechanism of its function.
Collapse
Affiliation(s)
- Connor O'Farrell
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Konstantinos Stamatopoulos
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Biopharmaceutics, Pharmaceutical Development, PDS, MST, RD Platform Technology & Science, GSK, David Jack Centre, Park Road, Ware, Hertfordshire SG12 0DP, UK
| | - Mark Simmons
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Hannah Batchelor
- Strathclyde Institute of Pharmacy and Biomedical Sciences, 161 Cathedral Street, Glasgow G4 0RE, UK.
| |
Collapse
|
11
|
The Application of Magnetic-Controlled Capsule Gastroscopy in Patients Refusing C-EGD: A Single-Center 5-Year Observational Study. Gastroenterol Res Pract 2021; 2021:6934594. [PMID: 34675973 PMCID: PMC8526258 DOI: 10.1155/2021/6934594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 08/16/2021] [Indexed: 11/29/2022] Open
Abstract
Background and Aims Screening for gastric diseases in symptomatic outpatients with conventional esophagogastroduodenoscopy (C-EGD) is expensive and has poor compliance. We aimed to explore the efficiency and safety of magnetic-controlled capsule gastroscopy (MCCG) in symptomatic outpatients who refused C-EGD. Methods We performed a retrospective study of 76794 consecutive symptomatic outpatients from January 2014 to October 2019. A total of 2318 adults (F/M = 1064/1254) in the MCCG group who refused C-EGD were matched with adults in the C-EGD group using propensity-score matching (PSM). The detection rates of abnormalities were analyzed to explore the application of MCCG in symptomatic patients. Results Our study demonstrated a prevalence of gastric ulcers (GUs) in patients with functional dyspepsia- (FD-) like symptoms of 8.14%. The detection rate of esophagitis and Barrett's esophagus was higher in patients with typical gastroesophageal reflux disease (GERD) symptoms than in patients in the other four groups (P < 0.01). The detection rates of gastric ulcers in the five groups (abdominal pain, bloating, heartburn, follow-up, and bleeding) were significantly different (P = 0.015). The total detection rate of gastric ulcers in symptomatic patients was 9.7%. A total of 7 advanced carcinomas were detected by MCCG and confirmed by endoscopic or surgical biopsy. The advanced gastric cancer detection rate was not significantly different between the MCCG group and the C-EGD matched group in terms of nonhematemesis GI bleeding (2 vs. 2, P = 1.00). In addition, the overall focal lesion detection rate in the MCCG group was superior to that in the C-EGD matched group (224 vs. 184, P = 0.038). MCCG gained a clinically meaningful small bowel diagnostic yield of 54.8% (17/31) out of 31 cases of suspected small bowel bleeding. No patient reported capsule retention at the two-week follow-up. Conclusion MCCG is well tolerated, safe, and technically feasible and has a considerable diagnostic yield. The overall gastric diagnostic yield of gastric focal lesions with MCCG was comparable to that with C-EGD. MCCG offered a supplementary diagnosis in patients who had a previously undiagnostic C-EGD, indicating that MCCG could play an important role in the routine monitoring and follow-up of outpatient. MCCG shows its safety and efficiency in symptomatic outpatient applications.
Collapse
|
12
|
Oh DJ, Nam JH, Park J, Hwang Y, Lim YJ. Gastric examination using a novel three-dimensional magnetically assisted capsule endoscope and a hand-held magnetic controller: A porcine model study. PLoS One 2021; 16:e0256519. [PMID: 34610019 PMCID: PMC8491884 DOI: 10.1371/journal.pone.0256519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 08/10/2021] [Indexed: 12/24/2022] Open
Abstract
Magnetically assisted capsule endoscopy (MACE) is a noninvasive procedure and can overcome passive capsule movement that limits gastric examination. MACE has been studied in many trials as an alternative to upper endoscopy. However, to increase diagnostic accuracy of various gastric lesions, MACE should be able to provide stereoscopic, clear images and to measure the size of a lesion. So, we conducted the animal experiment using a novel three-dimensional (3D) MACE and a new hand-held magnetic controller for gastric examination. The purpose of this study is to assess the performance and safety of 3D MACE and hand-held magnetic controller through the animal experiment. Subsequently, via the dedicated viewer, we evaluate whether 3D reconstruction images and clear images can be obtained and accurate lesion size can be measured. During real-time gastric examination, the maneuverability and visualization of 3D MACE were adequate. A polypoid mass lesion was incidentally observed at the lesser curvature side of the prepyloric antrum. The mass lesion was estimated to be 10.9 x 11.5 mm in the dedicated viewer, nearly the same size and shape as confirmed by upper endoscopy and postmortem examination. Also, 3D and clear images of the lesion were successfully reconstructed. This animal experiment demonstrates the accuracy and safety of 3D MACE. Further clinical studies are warranted to confirm the feasibility of 3D MACE for human gastric examination.
Collapse
Affiliation(s)
- Dong Jun Oh
- Department of Internal Medicine, Dongguk University College of Medicine, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| | - Ji Hyung Nam
- Department of Internal Medicine, Dongguk University College of Medicine, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| | - Junseok Park
- Digestive Disease Center, Institute for Digestive Research, Department of Internal Medicine, Soonchunhyang University College of Medicine, Seoul, Republic of Korea
| | - Youngbae Hwang
- Department of Electronics Engineering, Chungbuk National University, Cheongju, Republic of Korea
| | - Yun Jeong Lim
- Department of Internal Medicine, Dongguk University College of Medicine, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
- * E-mail:
| |
Collapse
|
13
|
Capsule Endoscopy for Gastric Evaluation. Diagnostics (Basel) 2021; 11:diagnostics11101792. [PMID: 34679491 PMCID: PMC8534557 DOI: 10.3390/diagnostics11101792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 12/22/2022] Open
Abstract
Wireless capsule endoscopy was first developed to observe the small intestine. A small capsule can be swallowed and images of gastrointestinal tract are taken with natural movement of peristalsis. Application of capsule endoscopy for observing the stomach has also received much attention as a useful alternative to esophagogastroduodenoscopy, but anatomical characteristics of the stomach have demanded technical obstacles that need to be tackled: clear visualization and active movements that could be controlled. Different methods of controlling the capsule within stomach have been studied and magnetic manipulation is the only system that is currently used in clinical settings. Magnets within the capsule can be controlled with a hand-held magnet paddle, robotic arm, and electromagnetic coil system. Studies on healthy volunteers and patients with upper gastrointestinal symptoms have shown that it is a safe and effective alternative method of observing the stomach. This work reviews different magnetic locomotion systems that have been used for observation of the stomach as an emerging new application of wireless capsule endoscopy.
Collapse
|
14
|
Xiao YF, Wu ZX, He S, Zhou YY, Zhao YB, He JL, Peng X, Yang ZX, Lv QJ, Yang H, Bai JY, Fan CQ, Tang B, Hu CJ, Jie MM, Liu E, Lin H, Koulaouzidis A, Zhao XY, Yang SM, Xie X. Fully automated magnetically controlled capsule endoscopy for examination of the stomach and small bowel: a prospective, feasibility, two-centre study. Lancet Gastroenterol Hepatol 2021; 6:914-921. [PMID: 34555347 DOI: 10.1016/s2468-1253(21)00274-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND The use of magnetically controlled capsules for gastroscopy is in the early stages of clinical adoption. We aimed to evaluate the safety and efficacy of a fully automated magnetically controlled capsule endoscopy (FAMCE) system in clinical practice for gastroscopy and small bowel examination. METHODS We did a prospective, comparative study to evaluate the safety and efficacy of FAMCE. Patients from two hospitals in Chongqing, China were consecutively enrolled. Eligible participants were aged 18-80 years with suspected gastric pathology and no previous surgery. Participants underwent FAMCE for screening of gastric lesions, then conventional transoral gastroscopy 2 h later, and stomach examination results were compared. The primary outcome was the rate of complete detection of gastric anatomy landmarks (cardia, fundus, body, angulus, antrum, and pylorus) by FAMCE. Secondary outcomes were the time required for gastric completion by FAMCE, the rate of detection of gastric lesions by FAMCE compared with conventional transoral gastroscopy, and the rate of complete small bowel examination. Adverse events were also evaluated. The study was registered in the Chinese Clinical Trial Registry, ChiCTR2000040507. FINDINGS Between May 12 and Aug 17, 2020, 114 patients (mean age 44·0 years [IQR 34·0-55·0]; 63 [55%] female) were enrolled. The rate of complete detection of gastric anatomical structures by FAMCE was 100% (95% CI 99·3-100·0). The concordance between FAMCE and conventional transoral gastroscopy was 99·61% (99·45-99·78). The mean completion time of a gastroscopy with FAMCE was 19·17 min (SD 1·43; median 19·00, IQR 19·00-20·00), compared with 5·21 min (2·00; 5·18, 3·68-6·45) for conventional transoral gastroscopy. In 114 enrolled patients, 214 lesions were detected by FAMCE and conventional transoral gastroscopy. Of those, 193 were detected by both modalities. FAMCE missed five pathologies (four cases of gastritis and one polyp), whereas conventional transoral gastroscopy missed 16 pathologies (12 cases of gastritis, one polyp, one fundal xanthoma, and two antral erosions). FAMCE was able to provide a complete small bowel examination for all 114 patients and detected intestinal lesions in 50 (44%) patients. During the study, two (2%) patients experienced adverse events. No serious adverse events were recorded, and there was no evidence of capsule retention. INTERPRETATION The performance of FAMCE is similar to conventional transoral gastroscopy in completion of gastric examination and lesion detection. Furthermore, it can provide a complete small bowel examination. Therefore, FAMCE could be effective method for examination of the gastrointestinal tract. FUNDING Chinese National Key Research and Development Program.
Collapse
Affiliation(s)
- Yu-Feng Xiao
- Department of Gastroenterology, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Zhi-Xuan Wu
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Song He
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuan-Yuan Zhou
- Department of Gastroenterology, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Yong-Bing Zhao
- Department of Gastroenterology, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Jia-Lin He
- Department of Gastroenterology, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Xue Peng
- Department of Gastroenterology, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Zhao-Xia Yang
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qing-Jian Lv
- Department of Gastroenterology, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Huan Yang
- Department of Gastroenterology, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Jian-Ying Bai
- Department of Gastroenterology, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Chao-Qiang Fan
- Department of Gastroenterology, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Bo Tang
- Department of Gastroenterology, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Chang-Jiang Hu
- Department of Gastroenterology, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Meng-Meng Jie
- Department of Gastroenterology, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - En Liu
- Department of Gastroenterology, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Hui Lin
- Department of Gastroenterology, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | | | - Xiao-Yan Zhao
- Department of Gastroenterology, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Shi-Ming Yang
- Department of Gastroenterology, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Xia Xie
- Department of Gastroenterology, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China.
| |
Collapse
|
15
|
Gastric examination by guided capsule endoscopy: a new era. Lancet Gastroenterol Hepatol 2021; 6:879-880. [PMID: 34555345 DOI: 10.1016/s2468-1253(21)00310-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 11/23/2022]
|
16
|
Yan JS, Yan B, Meng K. Current status and future developments of upper gastrointestinal tract capsule endoscopy. Shijie Huaren Xiaohua Zazhi 2021; 29:960-965. [DOI: 10.11569/wcjd.v29.i16.960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Capsule endoscopy has been widely used for the diagnosis of small bowel diseases due to its safety, noninvasiveness, and acceptability. Despite the potential benefits of capsule endoscopy, there are obvious challenges to capsule endoscopy application in the upper gastrointestinal tract, due to the fast transit speed in the esophagus and large space of the gastric cavity. With the development of innovative technologies, such as magnetic navigation and tethered capsule endoscopy, the indications for capsule endoscopy have recently been expanded. Various capsule endoscopes have been applied to clinical practice, and several state-of-the-art research-oriented designs and devices provide hope for further use in the diagnosis of upper gastrointestinal diseases. In this review, we will summarize the current status and future developments of upper gastrointestinal tract capsule endoscopy.
Collapse
Affiliation(s)
- Jing-Shuang Yan
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China,School of Medicine, Nankai University, Tianjin 300071, China
| | - Bin Yan
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Ke Meng
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
17
|
Navigation of a magnetic micro-robot through a cerebral aneurysm phantom with magnetic particle imaging. Sci Rep 2021; 11:14082. [PMID: 34234207 PMCID: PMC8263782 DOI: 10.1038/s41598-021-93323-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/11/2021] [Indexed: 12/02/2022] Open
Abstract
Cerebral aneurysms are potentially life threatening and nowadays treated by a catheter-guided coiling or by a neurosurgical clipping intervention. Here, we propose a helically shaped magnetic micro-robot, which can be steered by magnetic fields in an untethered manner and could be applied for a novel coiling procedure. This is shown by navigating the micro-robot through an additively manufactured phantom of a human cerebral aneurysm. The magnetic fields are applied with a magnetic particle imaging (MPI) scanner, which allows for the navigation and tomographic visualization by the same machine. With MPI the actuation process can be visualized with a localization accuracy of 0.68 mm and an angiogram can be acquired both without any radiation exposure. First in-vitro phantom experiments are presented, showing an idea of a robot conducted treatment of cerebral aneurysms.
Collapse
|
18
|
Feasibility of Upper Gastrointestinal Examination in Home Care Setting with a Magnetically Assisted Capsule Endoscopy System: A Retrospective Study. Healthcare (Basel) 2021; 9:healthcare9050577. [PMID: 34068015 PMCID: PMC8152223 DOI: 10.3390/healthcare9050577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
The magnetic assisted capsule endoscope (MACE) with a hand-held magnetic field navigator (MFN) for upper gastrointestinal examination achieved satisfactory results in a healthy volunteer study. We evaluated the feasibility of upper gastrointestinal examination in the home care setting with the MACE system. Home care patients with upper gastrointestinal symptoms that received an MACE exam were enrolled in the study. MACE procedure time; completeness of observation of important anatomical landmarks; endoscopic diagnosis; patient tolerance during the procedure; and patient data, including age, sex, comorbidities, symptoms, body weight, and height, were retrieved from hospital information system for data analysis. A total of 16 participants were enrolled with a mean age 74.3 ± 15.4 years (47 to 99 years). One patient failed to swallow the capsule and was excluded. The average procedure time was 23.7 ± 10.0 min (14.1 to 42.5 min) to complete each endoscopic exam for the remaining 15 patients. The overall maneuverability in the esophagus, stomach, and duodenum was 93.75%, 87.5%, and 75%, respectively. Overall completeness in the aforementioned regions was 93.75%, 81.25%, and 75%, respectively. No severe adverse events were noted. The results clearly demonstrate the promise of using this MACE system to perform endoscopic examination outside the hospital for patients confined to the community and home.
Collapse
|
19
|
Alsunaydih FN, Yuce MR. Next-generation ingestible devices: sensing, locomotion and navigation. Physiol Meas 2021; 42. [PMID: 33706294 DOI: 10.1088/1361-6579/abedc0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/11/2021] [Indexed: 12/15/2022]
Abstract
There is significant interest in exploring the human body's internal activities and measuring important parameters to understand, treat and diagnose the digestive system environment and related diseases. Wireless capsule endoscopy (WCE) is widely used for gastrointestinal (GI) tract exploration due to its effectiveness as it provides no pain and is totally tolerated by the patient. Current ingestible sensing technology provides a valuable diagnostic tool to establish a platform for monitoring the physiological and biological activities inside the human body. It is also used for visualizing the GI tract to observe abnormalities by recording the internal cavity while moving. However, the capsule endoscopy is still passive, and there is no successful locomotion method to control its mobility through the whole GI tract. Drug delivery, localization of abnormalities, cost reduction and time consumption are improvements that can be gained from having active ingestible WCEs. In this article, the current technological developments of ingestible devices including sensing, locomotion and navigation are discussed and compared. The main features required to implement next-generation active WCEs are explored. The methods are evaluated in terms of the most important features such as safety, velocity, complexity of design, control, and power consumption.
Collapse
Affiliation(s)
- Fahad N Alsunaydih
- Department of Electrical and Computer Systems Engineering, Monash University, Melbourne, VIC, Australia.,Department of Electrical Engineering, Qassim University, Onizah, Qassim, Saudi Arabia
| | - Mehmet R Yuce
- Department of Electrical and Computer Systems Engineering, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
20
|
Li G, Jin Y, Bai T, Qian W, Xie X, Hou X. Feasibility of a second-generation colon capsule in visualization of the upper gastrointestinal tract. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:411. [PMID: 33842632 PMCID: PMC8033325 DOI: 10.21037/atm-20-3699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background Capsule endoscopy for visualization of the entire gastrointestinal tract is a challenge. A second-generation colon capsule endoscopy system (CCE-2) performed well in the colon and small intestine, but its utility in the upper gastrointestinal duct is not clear. We evaluated the use of the CCE-2 in the visualization of the upper gastrointestinal tract. Methods We performed a retrospective study and further evaluated CCE-2 images using the typical landmarks of esophagus and stomach. The two imagers located at each end of the CCE-2 system were defined as imager1 (green) and imager2 (yellow). Two endoscopists read the images, and they were blinded to the other reader’s results. All of the images from the two imagers were separately reviewed. Results Images from 127 subjects were analyzed. This study demonstrated the comprehensive visualization of 71.7% of esophageal landmarks and 89.8% of gastric landmarks using the CCE-2. The two CCE-2 imagers were not identical, and the lighter imager (imager2, yellow) was superior to the heavier imager (imager1, green) (78% vs. 33.1%) in the stomach. Compared with the use of one imager, the use of two imagers was superior (two-imager vs. imager1, 89.8% vs. 33.1%; two-imager vs. imager2, 89.8% vs. 78%) in the stomach. Two-imager combination analysis detected a total of 160 positive findings. In contrast, single-imager analysis with imager1 and imager2 detected 133 and 137 findings, respectively. Two-imager combination analysis provided 20.3% and 16.8% more findings than imager1 and imager2, respectively. The two imagers complemented each other to detect more lesions. Conclusions The CCE-2 system is feasible for use in the upper gastrointestinal tract and may be considered an optional tool for upper gastrointestinal imaging. This system may represent a good choice for complete gastrointestinal duct screening. Compared with the use of one imager, the two-imager combination provided improved upper gastrointestinal tract mucosal visualization.
Collapse
Affiliation(s)
- Gangping Li
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Jin
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Bai
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Qian
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Xie
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Fan X, Qin X, Zhang Y, Li Z, Zhou T, Zhang J, You W, Li W, Pan K. Screening for gastric cancer in China: Advances, challenges and visions. Chin J Cancer Res 2021; 33:168-180. [PMID: 34158737 PMCID: PMC8181866 DOI: 10.21147/j.issn.1000-9604.2021.02.05] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer (GC) is one of the major cancers in China and all over the world. Most GCs are diagnosed at an advanced stage with unfavorable prognosis. Along with some other countries, China has developed the government-funded national screening programs for GC and other major cancers. GC screening has been shown to effectively decrease the incidence of and mortality from GC in countries adopting nationwide screening programs (Japan and Korea) and in studies based on selected Chinese populations. The screening of GC relies mostly on gastroendoscopy, the accuracy, reliability and safety of which have been indicated by previous studies. However, considering its invasive screening approach, requirements on skilled endoscopists and pathologists, and a high cost, developing noninvasive methods to amend endoscopic screening would be highly needed. Numerous studies have examined biomarkers for GC screening and the combination of biomarkers involving pepsinogen, gastrin, and Helicobacter pylori antibodies has been proposed for risk stratification, seeking to narrow down the high-risk populations for further endoscopy. Despite all the achievements of endoscopic screening, evidence on appropriate screening age, intervals for repeated screening, novel biomarkers promoting precision prevention, and health economics need to be accumulated to inform policymakers on endoscopic screening in China. With the guide of Health China 2030 Planning Outline, we have golden opportunities to promote prevention and control of GC. In this review, we summarize the characteristics of screening programs in China and other East Asian countries and introduce the past and current approaches and strategies for GC screening, aiming for featuring the latest advances and key challenges, and illustrating future visions of GC screening.
Collapse
Affiliation(s)
- Xiaohan Fan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xiangxiang Qin
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yang Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zhexuan Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Tong Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jingying Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Weicheng You
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Wenqing Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Kaifeng Pan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
22
|
Wang YC, Pan J, Liu YW, Sun FY, Qian YY, Jiang X, Zou WB, Xia J, Jiang B, Ru N, Zhu JH, Linghu EQ, Li ZS, Liao Z. Adverse events of video capsule endoscopy over the past two decades: a systematic review and proportion meta-analysis. BMC Gastroenterol 2020; 20:364. [PMID: 33138792 PMCID: PMC7607645 DOI: 10.1186/s12876-020-01491-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/07/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND A full spectrum of video capsule endoscopy (VCE) adverse events over the past two decades has not been evaluated. We aimed to determine pooled rates, predictors and temporal-trend of VCE adverse events over the past two decades. METHODS Systematic search of PubMed and EMBASE for English-language publications reporting VCE adverse events (January 1, 2000 to March 31, 2019). Data were extracted independently by two investigators. Pooled VCE adverse event rates were calculated using the random or fixed model as appropriate. Predictors and temporal-trend of each adverse event were performed by meta-regression analyses. RESULTS In total, 402 studies were identified, including 108,079 VCE procedures. Rate of retention, swallow disorder, aspiration, technical failure, and procedural adverse events were 0.73% (95% confidence interval [CI] 0.59-0.89%), 0.75% (95% CI 0.43-1.13%), 0.00% (95% CI 0.00-0.00%), 0.94% (95% CI 0.65-1.28%), 0.67% (95% CI 0.32-1.10%), respectively; incomplete examination rate of esophagus, stomach, small bowel, and colon were 9.05%, 7.69%, 12.08%, 19.19%, respectively. Patency capsule reduced retention rate by 5.04%, whereas known inflammatory bowel disease increased retention rate by 4.29%. Elder was the risk and protective factor for small bowel incomplete examination (0.30%) and swallow disorder (- 0.72%), respectively. Rates of retention and small bowel incomplete examination significantly declined over time (P = .0006 and P < .0001).. CONCLUSIONS VCE adverse event rates were generally low, and retention and small bowel incomplete examination rates declined over the past two decades. Patients with known inflammatory bowel disease or elder should be alerted to high risk of retention or small bowel incomplete examination (PROSPERO: CRD42019139595).
Collapse
Affiliation(s)
- Yuan-Chen Wang
- National Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Changhai Hospital, 168 Changhai Road, Shanghai, 200433, China
| | - Jun Pan
- National Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Changhai Hospital, 168 Changhai Road, Shanghai, 200433, China
| | - Ya-Wei Liu
- Department of Gastroenterology, The First Medical Center of PLA General Hospital/Chinese PLA Postgraduate Military Medical School, 28 Fuxing Road, Beijing, 100853, China
| | - Feng-Yuan Sun
- National Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Changhai Hospital, 168 Changhai Road, Shanghai, 200433, China
| | - Yang-Yang Qian
- National Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Changhai Hospital, 168 Changhai Road, Shanghai, 200433, China
| | - Xi Jiang
- National Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Changhai Hospital, 168 Changhai Road, Shanghai, 200433, China
| | - Wen-Bin Zou
- National Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Changhai Hospital, 168 Changhai Road, Shanghai, 200433, China
| | - Ji Xia
- National Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Changhai Hospital, 168 Changhai Road, Shanghai, 200433, China
| | - Bin Jiang
- National Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Changhai Hospital, 168 Changhai Road, Shanghai, 200433, China
| | - Nan Ru
- National Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Changhai Hospital, 168 Changhai Road, Shanghai, 200433, China
| | - Jia-Hui Zhu
- National Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Changhai Hospital, 168 Changhai Road, Shanghai, 200433, China
| | - En-Qiang Linghu
- Department of Gastroenterology, The First Medical Center of PLA General Hospital/Chinese PLA Postgraduate Military Medical School, 28 Fuxing Road, Beijing, 100853, China.
| | - Zhao-Shen Li
- National Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Changhai Hospital, 168 Changhai Road, Shanghai, 200433, China
| | - Zhuan Liao
- National Clinical Research Center for Digestive Diseases, Department of Gastroenterology, Changhai Hospital, 168 Changhai Road, Shanghai, 200433, China.
| |
Collapse
|
23
|
Frontiers of Robotic Gastroscopy: A Comprehensive Review of Robotic Gastroscopes and Technologies. Cancers (Basel) 2020; 12:cancers12102775. [PMID: 32998213 PMCID: PMC7600666 DOI: 10.3390/cancers12102775] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary With the rapid advancements of medical technologies and patients’ higher expectations for precision diagnostic and surgical outcomes, gastroscopy has been increasingly adopted for the detection and treatment of pathologies in the upper digestive tract. Correspondingly, robotic gastroscopes with advanced functionalities, e.g., disposable, dextrous and not invasive solutions, have been developed in the last years. This article extensively reviews these novel devices and describes their functionalities and performance. In addition, the implementation of artificial intelligence technology into robotic gastroscopes, combined with remote telehealth endoscopy services, are discussed. The aim of this paper is to provide a clear and comprehensive view of contemporary robotic gastroscopes and ancillary technologies to support medical practitioners in their future clinical practice but also to inspire and drive new engineering developments. Abstract Upper gastrointestinal (UGI) tract pathology is common worldwide. With recent advancements in robotics, innovative diagnostic and treatment devices have been developed and several translational attempts made. This review paper aims to provide a highly pictorial critical review of robotic gastroscopes, so that clinicians and researchers can obtain a swift and comprehensive overview of key technologies and challenges. Therefore, the paper presents robotic gastroscopes, either commercial or at a progressed technology readiness level. Among them, we show tethered and wireless gastroscopes, as well as devices aimed for UGI surgery. The technological features of these instruments, as well as their clinical adoption and performance, are described and compared. Although the existing endoscopic devices have thus far provided substantial improvements in the effectiveness of diagnosis and treatment, there are certain aspects that represent unwavering predicaments of the current gastroenterology practice. A detailed list includes difficulties and risks, such as transmission of communicable diseases (e.g., COVID-19) due to the doctor–patient proximity, unchanged learning curves, variable detection rates, procedure-related adverse events, endoscopists’ and nurses’ burnouts, limited human and/or material resources, and patients’ preferences to choose non-invasive options that further interfere with the successful implementation and adoption of routine screening. The combination of robotics and artificial intelligence, as well as remote telehealth endoscopy services, are also discussed, as viable solutions to improve existing platforms for diagnosis and treatment are emerging.
Collapse
|
24
|
Daniel P, Rana SS. Magnetically Assisted Capsule Endoscopy for Endoscopic Examination of Esophagus and Stomach—Beginning of the End of Flexible Esophagogastroscopy! JOURNAL OF DIGESTIVE ENDOSCOPY 2020. [DOI: 10.1055/s-0040-1718470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Philip Daniel
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Surinder Singh Rana
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
25
|
Oh DJ, Kim KS, Lim YJ. A New Active Locomotion Capsule Endoscopy under Magnetic Control and Automated Reading Program. Clin Endosc 2020; 53:395-401. [PMID: 32746536 PMCID: PMC7403023 DOI: 10.5946/ce.2020.127] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023] Open
Abstract
Capsule endoscopy (CE) is the first-line diagnostic modality for detecting small bowel lesions. CE is non-invasive and does not require sedation, but its movements cannot be controlled, it requires a long time for interpretation, and it has lower image quality compared to wired endoscopy. With the rapid advancement of technology, several methods to solve these problems have been developed. This article describes the ongoing developments regarding external CE locomotion using magnetic force, artificial intelligence-based interpretation, and image-enhancing technologies with the CE system.
Collapse
Affiliation(s)
- Dong Jun Oh
- Department of Internal Medicine, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang, Korea
| | - Kwang Seop Kim
- Chief Research Engineer, Research and Development team, IntroMedic Co., Ltd., Seoul, Korea
| | - Yun Jeong Lim
- Department of Internal Medicine, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang, Korea
| |
Collapse
|
26
|
Lai H, Wang X, Cai J, Zhao X, Han Z, Zhang J, Chen Z, Lin Z, Zhou P, Hu B, Li A, Liu S. Standing-type magnetically guided capsule endoscopy versus gastroscopy for gastric examination: multicenter blinded comparative trial. Dig Endosc 2020; 32:557-564. [PMID: 31483889 PMCID: PMC7318584 DOI: 10.1111/den.13520] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/27/2019] [Indexed: 02/05/2023]
Abstract
AIM To compare feasibility and safety after gastrointestinal checkup by standing-type magnetically controlled capsule endoscopy (SMCE) and conventional gastroscopy. METHODS This was a prospective multicenter, blinded study that compared SMCE with gastroscopy in patients from April 2018 to July 2018. All patients first underwent SMCE and then subsequently had gastroscopy with i.v. anesthesia. We calculated the compliance rates of gastric lesion detection by SMCE using gastroscopy as the standard. Capsule retention rate, incidence of adverse events, and patient satisfaction were documented throughout the study. RESULTS One hundred and sixty-one patients who completed SMCE and gastroscopy were included in the analysis. Positive compliance rate among SMCE and gastroscopy was 92.0% (95% CI: 80.77%-97.78%). Negative compliance rate was 95.5% (89.80%, 98.52%). Moreover, overall compliance rate was 94.41% (89.65%, 97.41%). Sixty-four pathological outcomes were identified. Of these 64 outcomes, 50 were detected by both procedures. The gastroscopy method neglected seven findings (such as five erosions, one polyp, and one ulcer). Furthermore, SMCE also overlooked seven lesions (i.e. one erosion, two polyps, one atrophy, and three submucosal tumors). Capsule retention or related adverse events were not reported. CONCLUSION Standing-type magnetically controlled capsule endoscopy provides equivalent agreement with gastroscopy and may be useful for screening of gastric illnesses without any anesthesia.
Collapse
Affiliation(s)
- Hua‐sheng Lai
- Guangdong Provincial Key Laboratory of GastroenterologyDepartment of GastroenterologyNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Xin‐ke Wang
- Guangdong Provincial Key Laboratory of GastroenterologyDepartment of GastroenterologyNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Jian‐qun Cai
- Guangdong Provincial Key Laboratory of GastroenterologyDepartment of GastroenterologyNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Xin‐mei Zhao
- Guangdong Provincial Key Laboratory of GastroenterologyDepartment of GastroenterologyNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Ze‐long Han
- Guangdong Provincial Key Laboratory of GastroenterologyDepartment of GastroenterologyNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Jie Zhang
- Guangdong Provincial Key Laboratory of GastroenterologyDepartment of GastroenterologyNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Zhen‐yu Chen
- Guangdong Provincial Key Laboratory of GastroenterologyDepartment of GastroenterologyNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Zhi‐zhao Lin
- Guangdong Provincial Key Laboratory of GastroenterologyDepartment of GastroenterologyNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Ping‐hong Zhou
- Department of GastroenterologyZhongshan HospitalFudan UniversityShanghaiChina
| | - Bing Hu
- Department of GastroenterologyWest China HospitalSichuan UniversityChengduChina
| | - Ai‐min Li
- Guangdong Provincial Key Laboratory of GastroenterologyDepartment of GastroenterologyNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Si‐de Liu
- Guangdong Provincial Key Laboratory of GastroenterologyDepartment of GastroenterologyNanfang HospitalSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
27
|
Gulati S, Patel M, Emmanuel A, Haji A, Hayee B, Neumann H. The future of endoscopy: Advances in endoscopic image innovations. Dig Endosc 2020; 32:512-522. [PMID: 31286574 DOI: 10.1111/den.13481] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 07/01/2019] [Indexed: 02/08/2023]
Abstract
The latest state of the art technological innovations have led to a palpable progression in endoscopic imaging and may facilitate standardisation of practice. One of the most rapidly evolving modalities is artificial intelligence with recent studies providing real-time diagnoses and encouraging results in the first randomised trials to conventional endoscopic imaging. Advances in functional hypoxia imaging offer novel opportunities to be used to detect neoplasia and the assessment of colitis. Three-dimensional volumetric imaging provides spatial information and has shown promise in the increased detection of small polyps. Studies to date of self-propelling colonoscopes demonstrate an increased caecal intubation rate and possibly offer patients a more comfortable procedure. Further development in robotic technology has introduced ex vivo automated locomotor upper gastrointestinal and small bowel capsule devices. Eye-tracking has the potential to revolutionise endoscopic training through the identification of differences in experts and non-expert endoscopist as trainable parameters. In this review, we discuss the latest innovations of all these technologies and provide perspective into the exciting future of diagnostic luminal endoscopy.
Collapse
Affiliation(s)
- Shraddha Gulati
- King's Institute of Therapeutic Endoscopy, King's College Hospital NHS Foundation Trust, London, UK
| | - Mehul Patel
- King's Institute of Therapeutic Endoscopy, King's College Hospital NHS Foundation Trust, London, UK
| | - Andrew Emmanuel
- King's Institute of Therapeutic Endoscopy, King's College Hospital NHS Foundation Trust, London, UK
| | - Amyn Haji
- King's Institute of Therapeutic Endoscopy, King's College Hospital NHS Foundation Trust, London, UK
| | - Bu'Hussain Hayee
- King's Institute of Therapeutic Endoscopy, King's College Hospital NHS Foundation Trust, London, UK
| | - Helmut Neumann
- Department of Medicine, University Hospital Mainz, Mainz, Germany
| |
Collapse
|
28
|
Visconti TADC, Otoch JP, Artifon ELDA. Robotic endoscopy. A review of the literature. Acta Cir Bras 2020; 35:e202000206. [PMID: 32348403 PMCID: PMC7184939 DOI: 10.1590/s0102-865020200020000006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/28/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose To present new endoscopic robotic devices in the context of minimally invasive procedures with high precision and automation. Methods Review of the literature by December 2018 on robotic endoscopy. Results We present the studies and investments for robotic implementation and flexible endoscopy evolution. We divided them into forceps manipulation platforms, active endoscopy and endoscopic capsule. They try to improve forceps handling and stability and to promote active movement. Conclusion The implementation and propagation of robotic models depend on doing what the endoscopist is unable to. The new devices are moving forward in this direction.
Collapse
|
29
|
Berkelman P, Tix B. Simultaneous Independent Translational and Rotational Feedback Motion Control System for a Cylindrical Magnet using Planar Arrays of Magnetic Sensors and Cylindrical Coils. IEEE MAGNETICS LETTERS 2020; 11:1-5. [PMID: 33777328 PMCID: PMC7996633 DOI: 10.1109/lmag.2020.3038586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
This letter describes an electromagnetic feedback control system for rigid-body motion control of a magnet. Its novel features are that sensing and actuation using magnetometer sensors and actuator coils operate simultaneously, and magnetic field models from the controlled magnet and each of the actuator coil currents are used together to calculate the 3D position and orientation of the magnet to control motion simultaneously and independently in multiple degrees of freedom including planar translation and two in rotation, leaving rotation about the cylindrical axis of magnetization uncontrolled. The system configuration and the localization and actuation methods are presented with experimental results of magnet localization with constant and varying coil currents, and during feedback control of trajectory following motion of the magnet in multiple directions on a planar surface and with controlled changes in orientation. The intended application of the system is for motion control of magnetic endoscope capsules and other miniature medical devices inside the human body.
Collapse
Affiliation(s)
- Peter Berkelman
- Department of Mechanical Engineering at the University of Hawaii-Manoa, Honolulu, HI, 96822 USA
| | - Bernadette Tix
- Information and Computer Sciences Department at the University of Hawaii-Manoa
| |
Collapse
|
30
|
Sun TJ, Cheng CS, Zhang HD. Optimizing the performance of magnet-controlled capsule endoscopy based on radiological and gastroscopic modeling. Exp Ther Med 2020; 19:248-254. [PMID: 31853296 PMCID: PMC6909664 DOI: 10.3892/etm.2019.8202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/09/2019] [Indexed: 12/16/2022] Open
Abstract
Routine use of magnet-controlled capsule endoscopy of the stomach has been limited by the inadequate views of specific stomach regions. In the present study, radiology and upper gastrointestinal endoscopy (UGIE) were used to determine optimal subject body positioning and suitable external control magnet placement for capsule endoscopy. Healthy adult volunteers were subjected to upper gastrointestinal X-ray radiography (n=5), spiral computed tomography with volume reconstruction (n=4) or UGIE (n=1). Stomach fundus-to-body (FB) and body-to-antrum (BA) angles were compared when subjects were supine, prone, lying on their left side and on their right side, and when they were standing upright. Vertical distances from the surface of the body to the distal points of the fundus and antrum were also compared in this range of subject positions. Obtuse angles were considered the most beneficial for capsule movement and short vertical distances were considered desirable for optimizing magnetic force. The FB angle was sharply acute in the supine position, relatively open where subjects were on their side, and almost 180° in the standing position. The BA angle was obtuse in the standing position but acute in all other positions. With the subject in any position, the left lower lateral chest had the shortest distance to the fundus, while the ventral wall was closest to the antrum. The present modeling analysis indicates that standing is superior to all decubitus positions for magnetic-capsule endoscopy, including the commonly used supine position. Both the abdominal anterior wall and left lateral lower chest appeared to be advantageous locations for external control magnet placement.
Collapse
Affiliation(s)
- Ting-Ji Sun
- Department of Gastroenterology, Nanshan Hospital, Guangdong Medical University, Shenzhen, Guangdong 518052, P.R. China
| | - Chun-Sheng Cheng
- Department of Gastroenterology, Nanshan Hospital, Guangdong Medical University, Shenzhen, Guangdong 518052, P.R. China
| | - Hou-De Zhang
- Department of Gastroenterology, Nanshan Hospital, Guangdong Medical University, Shenzhen, Guangdong 518052, P.R. China
| |
Collapse
|
31
|
Cheng CS, Sun TJ, Zhang HD. Human gastric magnet-controlled capsule endoscopy conducted in a standing position: the phase 1 study. BMC Gastroenterol 2019; 19:184. [PMID: 31718547 PMCID: PMC6852763 DOI: 10.1186/s12876-019-1101-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 10/29/2019] [Indexed: 12/22/2022] Open
Abstract
Background Current magnet-controlled capsule endoscopy (MCE) for the stomach is not yet satisfactory with respect to navigation control, especially in the gastric fundus and cardia. A newly developed MCE system conducted in a standing rather than supine position may improve capsule maneuverability within the stomach. The aim of this phase 1 study was to assess the feasibility and safety of this system for examining the human stomach in healthy volunteers. Methods A cohort of 31 healthy volunteers were enrolled. Each swallowed a capsule after drinking water and gas producing agents intended to produce distention. Under the newly developed standing MCE system, subjects were examined endoscopically while standing with external guide magnets placed on the abdominal wall and left lower chest. Safety, gastric preparation, maneuverability, visualization of anatomical landmarks and the gastric mucosa, and examination time were the primary parameters assessed. The gastric preparation and examination procedures were well accepted by the subjects and there were no adverse events. Results Gastric examination took 27.8 ± 8.3 min (12–45 min). Gastric cleanliness was good in 24 participants (77.4%) and moderate in 7 participants (22.6%). Gastric distention was good in all of 31 participants (100%). Capsule maneuverability was also graded as good in all 31 subjects (100%), and manipulation in the fundus and cardia regions was as easy as that in the antrum and body. Visualization of the gastric cardia, fundus, body, angulus, antrum and pylorus was assessed subjectively as complete in all 31 subjects (100%). Visualization of the gastric mucosa was also good (> 75%) in all 31 subjects (100%). In areas where the mucosa could not be visualized, the low visibility was due to opaque fluid or foam. Polyps and erosive lesions were found in 25 subjects. Conclusion MCE of the stomach conducted in a standing position is feasible and safe with satisfactory maneuverability.
Collapse
Affiliation(s)
- Chun-Sheng Cheng
- Department of Gastroenterology, Shenzhen Sixth People's Hospital, Guangdong Medical University, Nanshan District, Shenzhen, 518052, China
| | - Ting-Ji Sun
- Department of Gastroenterology, Shenzhen Sixth People's Hospital, Guangdong Medical University, Nanshan District, Shenzhen, 518052, China
| | - Hou-de Zhang
- Department of Gastroenterology, Shenzhen Sixth People's Hospital, Guangdong Medical University, Nanshan District, Shenzhen, 518052, China.
| |
Collapse
|
32
|
Ching HL, Hale MF, Sidhu R, Beg S, Ragunath K, McAlindon ME. Magnetically assisted capsule endoscopy in suspected acute upper GI bleeding versus esophagogastroduodenoscopy in detecting focal lesions. Gastrointest Endosc 2019; 90:430-439. [PMID: 31082392 DOI: 10.1016/j.gie.2019.04.248] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 04/21/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Acute upper GI bleeding is common and requires investigation with EGD, but endotherapy is not always necessary. Magnetically assisted capsule endoscopy (MACE) uses a capsule steerable by an external magnet and allows examination of the upper GI tract and small bowel, but its role in acute upper GI bleeding has not been assessed. METHODS We conducted a prospective cohort study comparing the diagnostic yield of MACE and EGD in patients with suspected acute upper GI bleeding. Patient tolerance, mucosal visibility by MACE, and frequency of small-bowel bleeding were assessed. Whether or not MACE could safely predict discharge of patients was also determined. RESULTS Thirty-three patients were included for analysis (median age, 60 years; 75.8% male). MACE detected more focal lesions (peptic, vascular, and fresh/altered blood without a clear source) than EGD (40 versus 25, respectively, P = .02) but statistical significance was not reached for significant lesions (considered to be the bleeding source; 14 vs 13, respectively, P = 1). Capsule endoscopy identified an additional cause for bleeding in the small bowel in 18%. Visualization by MACE was excellent in most areas; views of the esophagus, gastroesophageal junction, fundus, and duodenal bulb were suboptimal. MACE was better tolerated than unsedated EGD and correctly identified patients who were safe for discharge. CONCLUSIONS MACE had higher diagnostic yield for focal lesions and was better tolerated than EGD. It also correctly predicted safe discharge for patients with acute upper GI bleeding. (Clinical trials registration number: NCT02690376.).
Collapse
Affiliation(s)
- Hey-Long Ching
- Academic Department of Gastroenterology and Hepatology, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Trust, Sheffield, Nottingham, United Kingdom
| | - Melissa F Hale
- Academic Department of Gastroenterology and Hepatology, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Trust, Sheffield, Nottingham, United Kingdom
| | - Reena Sidhu
- Academic Department of Gastroenterology and Hepatology, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Trust, Sheffield, Nottingham, United Kingdom
| | - Sabina Beg
- NIHR Nottingham Biomedical Research Center, Nottingham Digestive Diseases Center, University of Nottingham and Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Krish Ragunath
- NIHR Nottingham Biomedical Research Center, Nottingham Digestive Diseases Center, University of Nottingham and Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Mark E McAlindon
- Academic Department of Gastroenterology and Hepatology, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Trust, Sheffield, Nottingham, United Kingdom
| |
Collapse
|
33
|
Magnetically Guided Capsule Endoscopy in Pediatric Patients with Abdominal Pain. Gastroenterol Res Pract 2019; 2019:7172930. [PMID: 31205466 PMCID: PMC6530101 DOI: 10.1155/2019/7172930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/10/2019] [Accepted: 04/28/2019] [Indexed: 02/06/2023] Open
Abstract
Background and Aims Magnetically guided capsule endoscopy (MGCE) offers a noninvasive method of evaluating both the gastric cavity and small intestine; however, few studies have evaluated MGCE in pediatric patients. We investigated the diagnostic efficacy of MGCE in pediatric patients with abdominal pain. Patients and Methods We enrolled 48 patients with abdominal pain aged 6–18 years. All patients underwent MGCE to evaluate the gastric cavity and small intestine. Results The cleanliness of the gastric cardia, fundus, body, angle, antrum, and pylorus was assessed satisfactorily in 100%, 85.4%, 89.6%, 100%, 97.9%, and 100% of patients, respectively. The subjective percentage visualization of the gastric cardia, fundus, body, angle, antrum, and pylorus was 84.8%, 83.8%, 88.5%, 87.7%, 95.2%, and 99.6%, respectively. Eighteen (37.5%) patients had 19 gastrointestinal tract lesions: one esophageal, three in the gastric cavity, and 15 in the small intestine. No adverse events occurred during follow-up. Conclusions MGCE is safe, convenient, and tolerable for evaluating the gastric cavity and small intestine in pediatric patients. MGCE can effectively diagnose pediatric patients with abdominal pain.
Collapse
|
34
|
Bianchi F, Masaracchia A, Shojaei Barjuei E, Menciassi A, Arezzo A, Koulaouzidis A, Stoyanov D, Dario P, Ciuti G. Localization strategies for robotic endoscopic capsules: a review. Expert Rev Med Devices 2019; 16:381-403. [PMID: 31056968 DOI: 10.1080/17434440.2019.1608182] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Federico Bianchi
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
| | | | | | | | - Alberto Arezzo
- Department of Surgical Sciences, University of Torino, Torino, Italy
| | | | - Danail Stoyanov
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, London, UK
| | - Paolo Dario
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Gastone Ciuti
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
| |
Collapse
|
35
|
Liao Z, Zou W, Li ZS. Clinical application of magnetically controlled capsule gastroscopy in gastric disease diagnosis: recent advances. SCIENCE CHINA-LIFE SCIENCES 2018; 61:1304-1309. [PMID: 30367341 DOI: 10.1007/s11427-018-9353-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 08/23/2018] [Indexed: 12/16/2022]
Abstract
Magnetically controlled capsule gastroscopy (MCCG) is a novel system primarily used for the diagnosis of gastric disease. It consists of an endoscopic capsule with magnetic material inside, external guidance magnet equipment, data recorder and computer workstation. Several clinical trials have demonstrated that MCCG is comparable in accuracy in diagnosing gastric focal disease when compared to conventional gastroscopy. Further clinical studies are needed to test the diagnostic accuracy and improve the functioning of MCCG. This novel MCCG system could be a promising alternative for screening for gastric diseases, with the advantages of no anesthesia required, comfort and high acceptance across populations.
Collapse
Affiliation(s)
- Zhuan Liao
- Department of Gastroenterology, Changhai Hospital, the Second Military Medical University, Shanghai, 200433, China
| | - Wenbin Zou
- Department of Gastroenterology, Changhai Hospital, the Second Military Medical University, Shanghai, 200433, China
| | - Zhao-Shen Li
- Department of Gastroenterology, Changhai Hospital, the Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
36
|
Spada C, Hassan C, Costamagna G. Magnetically controlled capsule endoscopy for the evaluation of the stomach. Are we ready for this? Dig Liver Dis 2018; 50:1047-1048. [PMID: 30174177 DOI: 10.1016/j.dld.2018.07.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 07/31/2018] [Accepted: 07/31/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Cristiano Spada
- Digestive Endoscopy Unit and Gastroenterology, Poliambulanza Foundation, Brescia, Italy; Digestive Endoscopy Unit, A. Gemlli IRCCS University Hospital, Rome, Italy.
| | - Cesare Hassan
- Gastroenterology Unit, Nuovo Regina Margherita Hospital, Rome, Italy
| | - Guido Costamagna
- Digestive Endoscopy Unit, A. Gemlli IRCCS University Hospital, Rome, Italy; IHU, USIAS Strasbourg University, Strasbourg, France
| |
Collapse
|
37
|
Magnetic-Guided Capsule Endoscopy in the Diagnosis of Gastrointestinal Diseases in Minors. Gastroenterol Res Pract 2018; 2018:4248792. [PMID: 30319695 PMCID: PMC6167592 DOI: 10.1155/2018/4248792] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 08/03/2018] [Accepted: 08/23/2018] [Indexed: 12/11/2022] Open
Abstract
Objective This study aimed at investigating the clinical value of magnetic-guided capsule endoscopy (MGCE) in the diagnosis of gastrointestinal diseases in minors. Methods Eighty-four minor patients hospitalized in the pediatric department at Ruijin Hospital between June 2015 and January 2018 were enrolled for this study. Following bowel preparation, all patients underwent MGCE. The feasibility, safety, diagnostic yield, and sensitivity of MGCE were analyzed. Patients were followed up for more than 2 weeks. Results The main indications for MGCE in minors were Crohn's disease, gastrointestinal bleeding, and abdominal pain. The main causes of gastric disease were gastric inflammatory hyperplasia, exudative gastritis, and polyps. The most common small bowel diseases in minors were Crohn's disease, Henoch-Schonlein purpura, and polyps. The diagnostic yield in the stomach and small intestine was 13.1% and 28.6%, respectively, and the sensitivity was 100% and 96.0%, respectively. No adverse events occurred. Conclusion MGCE is a safe, effective, and well-tolerated procedure with good sensitivity and has a potential clinic value for the diagnosis of gastrointestinal diseases in minors.
Collapse
|
38
|
Nam SJ, Lee HS, Lim YJ. Evaluation of Gastric Disease with Capsule Endoscopy. Clin Endosc 2018; 51:323-328. [PMID: 30078305 PMCID: PMC6078934 DOI: 10.5946/ce.2018.092] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/16/2018] [Accepted: 07/16/2018] [Indexed: 12/15/2022] Open
Abstract
The clinical indication for capsule endoscopy has expanded from small bowel evaluation to include esophagus or colon evaluation.Nevertheless, the role of capsule endoscopy in evaluation of the stomach is very limited because of the large volume and surface.However, efforts to develop an active locomotion system for capsule manipulation in detailed gastric evaluation are ongoing, becausethe technique is non-invasive, convenient, and safe, and requires no sedation. Studies have successfully reported gastric evaluation usinga magnetic-controlled capsule endoscopy system. Advances in technology suggest that capsule endoscopy will have a major role notonly in the evaluation of gastric disorders but also in the pathologic diagnosis, intervention, and treatment of any gastrointestinal tractdisorder.
Collapse
Affiliation(s)
- Seung-Joo Nam
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Hyun Seok Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Korea
| | - Yun Jeong Lim
- Department of Internal Medicine, Dongguk University, College of Medicine, Dongguk University Ilsan Hospital, Goyang, Korea
| |
Collapse
|
39
|
Abstract
Endoscopes extend the eyes of the physician into the patient's body. They are widely used in gastrointestinal (GI) diagnostics and minimally invasive surgery. Endoscopes can be classified into 3 types: rigid, flexible, and capsule endoscopes. Rigid and flexible endoscopes are traditionally held and manipulated by the physician to visualize the region of interest, while capsule endoscopes move passively along with the GI peristalsis. With the advancement of technology, robotic endoscopy has been increasingly developed and accepted. In this work, robotic endoscopy from 3 categories (robot-assisted rigid endoscopy, robot-assisted flexible endoscopy, and active GI endoscopy including active flexible colonoscopy and active capsule endoscopy) is reviewed by PubMed search with the criteria ('Robotics' OR 'Robot') and ('Endoscopy' OR 'Endoscope').
Collapse
Affiliation(s)
- Zheng Li
- Department of Surgery, Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, Special administrative regions of China, China
| | - Philip Wai-Yan Chiu
- Department of Surgery, Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, Special administrative regions of China, China
| |
Collapse
|
40
|
Lai H, Huang J, Xu Y, Zhang J, Chen Z, Xi F, Li A, Liu S. Association between patient characteristics and magnetically controlled capsule endoscopy findings. Saudi J Gastroenterol 2018; 24:189-195. [PMID: 29652031 PMCID: PMC5985639 DOI: 10.4103/sjg.sjg_509_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND/AIM Magnetically-controlled capsule endoscopy (MCE) is a potential option for the evaluation of gastric diseases in cases that are unsuited for conventional endoscopy, avoiding discomfort, sedation, and related complications. This retrospective study investigated associations between MCE findings and patient gender, age, and inpatient/outpatient status. PATIENTS AND METHODS The data of 580 consecutive patients who underwent MCE from 2015 to 2016 were analyzed. Data included age, gender, indication for MCE, inpatient/outpatient status, overall coverage of gastric anatomical landmarks, and comorbid conditions. RESULTS Compared with outpatients, inpatients had a higher rate of overall significant MCE findings (P = 0.014), polyp (P = 0.03), and ulceration (P = 0.003). MCE findings of the inpatient men and women were similar. Considering all patients, the percentage with ulceration was significantly higher in men than in women (P = 0.004), and men were younger (P < 0.001). Compared with younger patients, those aged ≥60 years had significantly higher rates of overall significant findings, mainly polyp and angiodysplasia. CONCLUSIONS Compared with outpatients, the inpatients showed higher overall significant findings. Men undergoing MCE were younger than the women, and more likely to have ulcerations. Older patients, whether outpatient or inpatient, had higher rates of significant findings, mainly polyp and angiodysplasia.
Collapse
Affiliation(s)
- Huasheng Lai
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Junsheng Huang
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yangzhi Xu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jie Zhang
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Zhenyu Chen
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Fengcheng Xi
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Aimin Li
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China,Address for correspondence: Dr. Side Liu, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, People's Republic of China. E-mail:
Dr. Aimin Li, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, People's Republic of China. E-mail:
| | - Side Liu
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China,Address for correspondence: Dr. Side Liu, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, People's Republic of China. E-mail:
Dr. Aimin Li, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, People's Republic of China. E-mail:
| |
Collapse
|
41
|
Gastric preparation for magnetically controlled capsule endoscopy: A prospective, randomized single-blinded controlled trial. Dig Liver Dis 2018; 50:42-47. [PMID: 29110963 DOI: 10.1016/j.dld.2017.09.129] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/24/2017] [Accepted: 09/26/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Magnetically controlled capsule endoscopy (MCE) is a novel technique for which there is no agreed gastric preparation. We aimed to determine an optimal standardized gastric preparation regimen. METHODS 120 patients referred for MCE were randomly assigned to gastric preparation with either water alone (A), water with simethicone (B) or water, simethicone and pronase (C). Image quality was assessed using cleanliness and visualization scores, higher scores equating to better image quality. RESULTS The total cleanliness scores were (mean±SD) 15.83±2.41 (A), 21.35±1.23 (B), and 20.82±1.90 (C). The total visualization scores (mean±SD) were 10.75±2.02 (A), 15.20±1.32 (B), and 15.08±1.86 (C). While the image quality of the whole stomach in groups B and C were significantly better than group A (P<0.0001), there was no statistical difference between group B and C (P>0.05). MCE detected positive findings in 21 (52.5%), 27 (67.5%) and 21 (53.8%) patients in group A, B and C respectively, with no significant difference between groups (P>0.5). CONCLUSIONS Simethicone swallowed with water prior to MCE produced the optimal gastric mucosal image quality. The addition of pronase had no demonstrable additional benefit.
Collapse
|
42
|
Feasibility and safety of a novel magnetic-assisted capsule endoscope system in a preliminary examination for upper gastrointestinal tract. Surg Endosc 2017; 32:1937-1944. [PMID: 29071416 DOI: 10.1007/s00464-017-5887-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/13/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND STUDY AIM Current capsule endoscopy procedures are ineffective for upper gastrointestinal (GI) tract examination because they do not allow for operator-controlled navigation of the capsule. External controllability of a capsule endoscope with an applied magnetic field is a possible solution to this problem. We developed a novel magnetic-assisted capsule endoscope (MACE) system to visualize the entire upper GI tract. The present study evaluated the safety and feasibility of the MACE system for the examination of the upper GI tract, including the esophagus, stomach, and duodenum. METHODS The present open clinical study enrolled ten healthy volunteers. All participants swallowed a MACE, and an external magnetic field navigator was used for magnetic capsule manipulation in the upper GI tract. We assessed the maneuverability of the magnetic capsule and completeness of the MACE examination as well as the safety and tolerability of the procedure. RESULTS The present study enrolled ten healthy volunteers with a mean age and body mass index of 47.7 years and 25.6 kg/m2, respectively. One volunteer withdrew because of difficulty in swallowing the capsule. In total, nine volunteers underwent the MACE examination. The average examination time was 27.1 min. The maneuverability of the capsule was assessed as good and fair in 55.6 and 44.4% of the participants, respectively. The overall completeness of the examination in the esophagus, stomach, and duodenum was 100, 85.2, and 86.1%, respectively. No severe adverse events occurred during this study. All participants exhibited satisfactory tolerance of the MACE examination. CONCLUSION The MACE system has satisfactory maneuverability and visualization completeness with excellent acceptance and tolerance.
Collapse
|
43
|
Near-lossless energy-efficient image compression algorithm for wireless capsule endoscopy. Biomed Signal Process Control 2017. [DOI: 10.1016/j.bspc.2017.04.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
44
|
Shamsudhin N, Zverev VI, Keller H, Pane S, Egolf PW, Nelson BJ, Tishin AM. Magnetically guided capsule endoscopy. Med Phys 2017; 44:e91-e111. [PMID: 28437000 DOI: 10.1002/mp.12299] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/22/2017] [Accepted: 04/13/2017] [Indexed: 12/18/2022] Open
Abstract
Wireless capsule endoscopy (WCE) is a powerful tool for medical screening and diagnosis, where a small capsule is swallowed and moved by means of natural peristalsis and gravity through the human gastrointestinal (GI) tract. The camera-integrated capsule allows for visualization of the small intestine, a region which was previously inaccessible to classical flexible endoscopy. As a diagnostic tool, it allows to localize the sources of bleedings in the middle part of the gastrointestinal tract and to identify diseases, such as inflammatory bowel disease (Crohn's disease), polyposis syndrome, and tumors. The screening and diagnostic efficacy of the WCE, especially in the stomach region, is hampered by a variety of technical challenges like the lack of active capsular position and orientation control. Therapeutic functionality is absent in most commercial capsules, due to constraints in capsular volume and energy storage. The possibility of using body-exogenous magnetic fields to guide, orient, power, and operate the capsule and its mechanisms has led to increasing research in Magnetically Guided Capsule Endoscopy (MGCE). This work shortly reviews the history and state-of-art in WCE technology. It highlights the magnetic technologies for advancing diagnostic and therapeutic functionalities of WCE. Not restricting itself to the GI tract, the review further investigates the technological developments in magnetically guided microrobots that can navigate through the various air- and fluid-filled lumina and cavities in the body for minimally invasive medicine.
Collapse
Affiliation(s)
- Naveen Shamsudhin
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, CH 8092, Switzerland
| | - Vladimir I Zverev
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Henrik Keller
- KUKA Roboter GmbH, Zugspitzstrasse 140, Augsburg, 86165, Germany
| | - Salvador Pane
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, CH 8092, Switzerland
| | - Peter W Egolf
- Institute of Thermal Sciences and Engineering, University of Applied Sciences of Western Switzerland, Yverdon-les-Bains, CH 1401, Switzerland
| | - Bradley J Nelson
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, CH 8092, Switzerland
| | - Alexander M Tishin
- Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, 119991, Russia.,Pharmag LLC, Promyshlennaya st 4, Troitsk, Moscow, 142190, Russia
| |
Collapse
|
45
|
Campisano F, Gramuglia F, Dawson IR, Lyne CT, Izmaylov ML, Misra S, De Momi E, Morgan DR, Obstein KL, Valdastri P. Gastric Cancer Screening in Low?-Income Countries: System Design, Fabrication, and Analysis for an Ultralow-Cost Endoscopy Procedure. IEEE ROBOTICS & AUTOMATION MAGAZINE 2017; 24:73-81. [PMID: 28959118 PMCID: PMC5613747 DOI: 10.1109/mra.2017.2673852] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Affiliation(s)
- Federico Campisano
- STORM Lab USA, Dept. of Mechanical Engineering, Vanderbilt University, Nashville, TN 37212, USA
| | - Francesco Gramuglia
- Dept. of Electronics, Information and Bioengineering, Politecnico di Milano, Milano 20100, Italy
| | - Imro R Dawson
- Surgical Robotics Lab, Dept. of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - Christopher T Lyne
- STORM Lab USA, Dept. of Mechanical Engineering, Vanderbilt University, Nashville, TN 37212, USA
| | - Michelle L Izmaylov
- Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Sarthak Misra
- Surgical Robotics Lab, Dept. of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
- Department of Biomedical Engineering, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
| | - Elena De Momi
- Dept. of Electronics, Information and Bioengineering, Politecnico di Milano, Milano 20100, Italy
| | - Douglas R Morgan
- Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Keith L Obstein
- Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN 37212, USA
- STORM Lab USA, Dept. of Mechanical Engineering, Vanderbilt University, Nashville, TN 37212, USA
| | - Pietro Valdastri
- STORM Lab UK, School of Electronic and Electrical Engineering, University of Leeds, Leeds, UK
- STORM Lab USA, Dept. of Mechanical Engineering, Vanderbilt University, Nashville, TN 37212, USA
| |
Collapse
|
46
|
Eliakim R. Where do I see minimally invasive endoscopy in 2020: clock is ticking. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:202. [PMID: 28567382 DOI: 10.21037/atm.2017.04.17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Since it was introduced 17 years ago, capsule endoscopy has become an important diagnostic tool for the small bowel. Three generations of the original small bowel capsule have been developed since (PillCam SB3, Medtronic, USA), and four competitors were introduced for the small bowel. A non-video patency capsule (Agile patency capsule, Medtronic, USA) was also developed, in order to confirm patency and thus avoid retention in the GI tract. Moreover, capsules viewing other organs of the body (esophagus, colon) as well as three different magnetic guided capsules that visualize the stomach as good as optical endoscopy (OE) have been developed. Over 2,000 articles looking at the efficacy of the small bowel capsule in different clinical situations were published since then. Studies are comparing capsule endoscopy versus other modalities in various indications, looking at preparations aiming to improve the diagnostic yield and at technical aspects. The present paper, describes the available capsules in the market and my biased future expectations.
Collapse
Affiliation(s)
- Rami Eliakim
- Department of Gastroenterology & Hepatology, Chaim Sheba Medical Center, Tel-Hashomer, Sackler School of Medicine, Tel-Aviv University, Israel
| |
Collapse
|
47
|
Abstract
Ingestible sensing capsules are fast emerging as a critical technology that has the ability to greatly impact health, nutrition, and clinical areas. These ingestible devices are noninvasive and hence are very attractive for customers. With widespread access to smart phones connected to the Internet, the data produced by this technology can be readily seen and reviewed online, and accessed by both users and physicians. The outputs provide invaluable information to reveal the state of gut health and disorders as well as the impact of food, medical supplements, and environmental changes on the gastrointestinal tract. One unique feature of such ingestible sensors is that their passage through the gut lumen gives them access to each individual organ of the gastrointestinal tract. Therefore, ingestible sensors offer the ability to gather images and monitor luminal fluid and the contents of each gut segment including electrolytes, enzymes, metabolites, hormones, and the microbial communities. As such, an incredible wealth of knowledge regarding the functionality and state of health of individuals through key gut biomarkers can be obtained. This Review presents an overview of the gut structure and discusses current and emerging digestible technologies. The text is an effort to provide a comprehensive overview of ingestible sensing capsules, from both a body physiology point of view as well as a technological view, and to detail the potential information that they can generate.
Collapse
Affiliation(s)
| | - Nam Ha
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Jian Zhen Ou
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Kyle J. Berean
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
48
|
Combination of Five Body Positions Can Effectively Improve the Rate of Gastric Mucosa's Complete Visualization by Applying Magnetic-Guided Capsule Endoscopy. Gastroenterol Res Pract 2016; 2016:6471945. [PMID: 28018426 PMCID: PMC5153483 DOI: 10.1155/2016/6471945] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 11/08/2016] [Indexed: 12/13/2022] Open
Abstract
Objectives. Achieving a comprehensive view of gastric mucosa has been a challenge for magnetic-guided capsule endoscopy (MGCE) for years. This study works on optimizing the performance of MGCE by changing the conventional positions to the five body positions. Methods. Sixty patients were enrolled in the study and underwent MGCE. All patients were asked to adopt five body positions (left lateral, supine, right lateral, knee-chest, and sitting). In each position, the ability to visualize the six gastric landmarks (cardia, fundus, body, angulus, antrum, and pylorus) was assessed. Rates of complete visualization were calculated for different position combinations. Results. Supine position was the best for cardia and body visualization (91.7% and 86.7%, resp., p < 0.001). Left lateral position was the best for fundus visualization (91.7%, p < 0.001). Knee-chest position was the best for angulus observation (80.0%, p < 0.001). Right lateral and sitting positions were the best for antrum observation (88.3% and 90.0%, resp., p < 0.001). Right lateral position was the best for pylorus observation (81.7%, p < 0.001). The supine + right lateral + knee-chest combination achieved better angulus visualization than conventional 3-position combination (93.3% versus 63.3%, p < 0.001). Five-position combination significantly improved the comprehensive gastric landmark visualization (93.3%, p < 0.001). Conclusion. Compared with 3-position combination, 5-position combination should be adopted for gastric mucosal visualization by MGCE.
Collapse
|
49
|
Liao Z, Hou X, Lin-Hu EQ, Sheng JQ, Ge ZZ, Jiang B, Hou XH, Liu JY, Li Z, Huang QY, Zhao XJ, Li N, Gao YJ, Zhang Y, Zhou JQ, Wang XY, Liu J, Xie XP, Yang CM, Liu HL, Sun XT, Zou WB, Li ZS. Accuracy of Magnetically Controlled Capsule Endoscopy, Compared With Conventional Gastroscopy, in Detection of Gastric Diseases. Clin Gastroenterol Hepatol 2016; 14:1266-1273.e1. [PMID: 27211503 DOI: 10.1016/j.cgh.2016.05.013] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Diseases of the stomach, including gastric cancer and peptic ulcer, are the most common digestive diseases. It is impossible to visualize the entire stomach with the passive capsule currently used in practice because of the large size of the gastric cavity. A magnetically controlled capsule endoscopy (MCE) system has been designed to explore the stomach. We performed a prospective study to compare the accuracy of detection of gastric focal lesions by MCE vs conventional gastroscopy (the standard method). METHODS We performed a multicenter blinded study comparing MCE with conventional gastroscopy in 350 patients (mean age, 46.6 y), with upper abdominal complaints scheduled to undergo gastroscopy at a tertiary center in China from August 2014 through December 2014. All patients underwent MCE, followed by conventional gastroscopy 2 hours later, without sedation. We calculated the sensitivity, specificity, positive predictive value, and negative predictive value of detection of gastric focal lesions by MCE, using gastroscopy as the standard. RESULTS MCE detected gastric focal lesions in the whole stomach with 90.4% sensitivity (95% confidence interval [CI], 84.7%-96.1%), 94.7% specificity (95% CI, 91.9%-97.5%), a positive predictive value of 87.9% (95% CI, 81.7%-94.0%), a negative predictive value of 95.9% (95% CI, 93.4%-98.4%), and 93.4% accuracy (95% CI, 90.83%-96.02%). MCE detected focal lesions in the upper stomach (cardia, fundus, and body) with 90.2% sensitivity (95% CI, 82.0%-98.4%) and 96.7% specificity (95% CI, 94.4%-98.9%). MCE detected focal lesions in the lower stomach (angulus, antrum, and pylorus) with 90.6% sensitivity (95% CI, 82.7%-98.4%) and 97.9% specificity (95% CI, 96.1%-99.7%). MCE detected 1 advanced gastric carcinoma, 2 malignant lymphomas, and 1 early stage gastric tumor. MCE did not miss any lesions of significance (including tumors or large ulcers). Among the 350 patients, 5 reported 9 adverse events (1.4%) and 335 preferred MCE over gastroscopy (95.7%). CONCLUSIONS MCE detects focal lesions in the upper and lower stomach with comparable accuracy with conventional gastroscopy. MCE is preferred by almost all patients, compared with gastroscopy, and can be used to screen gastric diseases without sedation. Clinicaltrials.gov number: NCT02219529.
Collapse
Affiliation(s)
- Zhuan Liao
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xi Hou
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - En-Qiang Lin-Hu
- Department of Gastroenterology, General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Jian-Qiu Sheng
- Department of Gastroenterology, Beijing Military General Hospital, Beijing, China
| | - Zhi-Zheng Ge
- Division of Gastroenterology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Bo Jiang
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiao-Hua Hou
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ji-Yong Liu
- Department of Gastroenterology, Shandong Provincial Hospital, Jinan, China
| | - Zhen Li
- Department of Gastroenterology, General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Qi-Yang Huang
- Department of Gastroenterology, General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Xiao-Jun Zhao
- Department of Gastroenterology, Beijing Military General Hospital, Beijing, China
| | - Na Li
- Department of Gastroenterology, Beijing Military General Hospital, Beijing, China
| | - Yun-Jie Gao
- Division of Gastroenterology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yao Zhang
- Division of Gastroenterology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jie-Qiong Zhou
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xin-Ying Wang
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jun Liu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Ping Xie
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cong-Mei Yang
- Department of Gastroenterology, Shandong Provincial Hospital, Jinan, China
| | - Hua-Lin Liu
- Department of Gastroenterology, Shandong Provincial Hospital, Jinan, China
| | - Xiao-Tian Sun
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Wen-Bin Zou
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Zhao-Shen Li
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
50
|
Ching HL, Hale MF, McAlindon ME. Current and future role of magnetically assisted gastric capsule endoscopy in the upper gastrointestinal tract. Therap Adv Gastroenterol 2016; 9:313-21. [PMID: 27134661 PMCID: PMC4830104 DOI: 10.1177/1756283x16633052] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Capsule endoscopy first captivated the medical world when it provided a means to visualize the small bowel, which was previously out of endoscopic reach. In the subsequent decade and a half we continue to learn of the true potential that capsule endoscopy has to offer. Of particular current interest is whether capsule endoscopy has any reliable investigative role in the upper gastrointestinal tract. Much research has already been dedicated to enhancing the diagnostic and indeed therapeutic properties of capsule endoscopy. Specific modifications to tackle the challenges of the gut have already been described in the current literature. In the upper gastrointestinal tract, the capacious anatomy of the stomach represents one of many challenges that capsule endoscopy must overcome. One solution to improving diagnostic yield is to utilize external magnetic steering of a magnetically receptive capsule endoscope. Notionally this would provide a navigation system to direct the capsule to different areas of the stomach and allow complete gastric mucosal examination. To date, several studies have presented promising data to support the feasibility of this endeavour. However the jury is still out as to whether this system will surpass conventional gastroscopy, which remains the gold standard diagnostic tool in the foregut. Nevertheless, a minimally invasive and patient-friendly alternative to gastroscopy remains irresistibly appealing, warranting further studies to test the potential of magnetically assisted capsule endoscopy. In this article the authors would like to share the current state of magnetically assisted capsule endoscopy and anticipate what is yet to come.
Collapse
Affiliation(s)
| | - Melissa Fay Hale
- Clinical Investigations Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Glossop Road, Sheffield S10 2JF, UK
| | - Mark Edward McAlindon
- Clinical Investigations Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Glossop Road, Sheffield S10 2JF, UK
| |
Collapse
|