1
|
Wang H, de Lucio M, Hu T, Leng Y, Gomez H. A MPET 2-mPBPK model for subcutaneous injection of biotherapeutics with different molecular weights: From local scale to whole-body scale. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2025; 260:108543. [PMID: 39671822 DOI: 10.1016/j.cmpb.2024.108543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/19/2024] [Accepted: 12/02/2024] [Indexed: 12/15/2024]
Abstract
BACKGROUND AND OBJECTIVE Subcutaneous injection of biotherapeutics has attracted considerable attention in the pharmaceutical industry. However, there is limited understanding of the mechanisms underlying the absorption of drugs with different molecular weights and the delivery of drugs from the injection site to the targeted tissue. METHODS We propose the MPET2-mPBPK model to address this issue. This multiscale model couples the MPET2 model, which describes subcutaneous injection at the local tissue scale from a biomechanical view, with a post-injection absorption model at injection site and a minimal physiologically-based pharmacokinetic (mPBPK) model at whole-body scale. Utilizing the principles of tissue biomechanics and fluid dynamics, the local MPET2 model provides solutions that account for tissue deformation and drug absorption in local blood vessels and initial lymphatic vessels during injection. Additionally, we introduce a model accounting for the molecular weight effect on the absorption by blood vessels, and a nonlinear model accounting for the absorption in lymphatic vessels. The post-injection model predicts drug absorption in local blood vessels and initial lymphatic vessels, which are integrated into the whole-body mPBPK model to describe the pharmacokinetic behaviors of the absorbed drug in the circulatory and lymphatic system. RESULTS We establish a numerical model which links the biomechanical process of subcutaneous injection at local tissue scale and the pharmacokinetic behaviors of injected biotherapeutics at whole-body scale. With the help of the model, we propose an explicit relationship between the reflection coefficient and the molecular weight and predict the bioavalibility of biotherapeutics with varying molecular weights via subcutaneous injection. CONCLUSION The considered drug absorption mechanisms enable us to study the differences in local drug absorption and whole-body drug distribution with varying molecular weights. This model enhances the understanding of drug absorption mechanisms and transport routes in the circulatory system for drugs of different molecular weights, and holds the potential to facilitate the application of computational modeling to drug formulation.
Collapse
Affiliation(s)
- Hao Wang
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907, USA.
| | - Mario de Lucio
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907, USA
| | - Tianyi Hu
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907, USA
| | - Yu Leng
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907, USA; Los Alamos National Laboratory, Bikini Atoll Rd, Los Alamos NM 87544, USA
| | - Hector Gomez
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907, USA; Weldon School of Biomedical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907, USA
| |
Collapse
|
2
|
Desai KG. Subcutaneous Administration of Therapeutic Monoclonal Antibody Drug Products Using a Syringe in Blinded Clinical Trials: Advances and Key Aspects Related to Blinding/Matching/Masking Strategies for Placebo Formulation. Mol Pharm 2025; 22:620-637. [PMID: 39745002 DOI: 10.1021/acs.molpharmaceut.4c01166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Therapeutic monoclonal antibody (mAb) drug products are increasingly used to treat both chronic and acute diseases. These mAb drug products are often developed for subcutaneous (SC) injection to simplify dosing compared with intravenous (IV) infusion. For SC injection, the mAb liquid drug product is typically filled in a vial for use with a syringe or in a prefilled syringe, which can then be assembled into a safety syringe device or an autoinjector for direct administration. A placebo is an inert formulation (one without an active ingredient) that lacks pharmacological activity or a therapeutic effect. It serves as a control in blinded clinical trials to evaluate the efficacy of a new treatment. A suitable blinding/matching/masking strategy is crucial to ensure that study participants cannot distinguish between the active mAb formulation and the placebo. The success of these strategies is pivotal in ensuring the accuracy and reliability of clinical trial results. This Review summarizes recent advances and key considerations related to placebo strategies. It covers the benefits and challenges of SC injection of therapeutic mAbs compared to IV infusion, the placebo effect, the significance of blinding/matching/masking, and various strategies. Strategies discussed include the use of traditional placebos (e.g., normal saline, 5% w/v dextrose solution, and formulation buffer of the active mAb), syringe blinding, the use of different gauge syringe needles, novel (custom) placebos, dilution, independent administration, and multiple injections. Additional topics covered include the incidence of antidrug antibodies (ADAs), the benefits and challenges associated with different strategies, and regulatory expectations regarding custom placebos. By addressing these critical aspects, the Review aims to contribute to the growing body of knowledge and ongoing efforts to enhance the effectiveness of formulation blinding, matching, and masking in clinical trials.
Collapse
Affiliation(s)
- Kashappa Goud Desai
- Drug Product Development-Steriles, Medicine Development and Supply, GSK, 1250 S. Collegeville Road, Collegeville, Pennsylvania 19426, United States
| |
Collapse
|
3
|
Ziegengeist JL, Tan AR. A Clinical Review of Subcutaneous Trastuzumab and the Fixed-Dose Combination of Pertuzumab and Trastuzumab for Subcutaneous Injection in the Treatment of HER2-Positive Breast Cancer. Clin Breast Cancer 2025; 25:e124-e132. [PMID: 39567339 DOI: 10.1016/j.clbc.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/06/2024] [Indexed: 11/22/2024]
Abstract
Therapy directed against human epidermal growth factor receptor type 2 (HER2) is the standard of care for patients with early-stage and metastatic HER2-positive breast cancer. Treating patients with HER2-positive breast cancer with anti-HER2-monoclonal antibodies, specifically trastuzumab and pertuzumab, is considered standard of care in the neoadjuvant and adjuvant settings and in the first-line setting for metastatic HER2-positive breast cancer. Pertuzumab and trastuzumab are commonly administered intravenously. Subcutaneous (SC) formulations of trastuzumab alone and as a combined product of pertuzumab and trastuzumab are now available for clinical use. Phase III trial results demonstrate that the efficacy and safety of SC trastuzumab and fixed-dose combination of pertuzumab, trastuzumab, and hyaluronidase-zzxf for subcutaneous (PH FDC SC) injection and the intravenous (IV) formulation counterparts are comparable. SC formulations of anti-HER2 monoclonal antibodies offer several advantages over IV counterparts, including shorter administration time, less need for IV access, and better resource utilization for treatment facilities. This review summarizes the clinical data supporting the use of SC trastuzumab and PH FDC SC injection in treating early-stage and metastatic HER2-positive breast cancer and highlights the benefits of SC injection compared to the IV formulations.
Collapse
Affiliation(s)
| | - Antoinette R Tan
- Department of Solid Tumor Oncology and Investigational Therapeutics, Atrium Health Levine Cancer Institute, Wake Forest University School of Medicine, Charlotte, NC.
| |
Collapse
|
4
|
Hada S, Shin IJ, Park HE, Kim KH, Kim KJ, Jeong SH, Kim NA. In-use stability of Rituximab and IVIG during intravenous infusion: Impact of peristaltic pump, IV bags, flow rate, and plastic syringes. Int J Pharm 2024; 663:124577. [PMID: 39137820 DOI: 10.1016/j.ijpharm.2024.124577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024]
Abstract
This study investigates the impact of intravenous (IV) infusion protocols on the stability of Intravenous Immunoglobulin G (IVIG) and Rituximab, with a particular focus on subvisible particle generation. Infusion set based on peristaltic movement (Medifusion DI-2000 pump) was compared to a gravity-based infusion system (Accu-Drip) at different flow rates. The impacts of different diluents (0.9 % saline and 5.0 % dextrose) and plastic syringes with or without silicone oil (SO) were also investigated. The results from the aforementioned particular case demonstrated that peristaltic pumps generated high levels of subvisible particles (prominently < 25 µm), exacerbated by increasing flow rates, specifically in formulations lacking surfactants. Other factors, such as diluent type and syringe composition, also increased the number of subvisible particles. Strategies that can help overcome these complications include surfactant addition as well as the use of SO-free syringes and a gravity infusion system, which aid in reducing particle formation and preserving antibody monomer during administration. Altogether, these findings highlight the importance of the careful selection of formulations and infusion protocols to minimize particle generation during IV infusion both for patients' safety and treatment efficacy.
Collapse
Affiliation(s)
- Shavron Hada
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea.
| | - I Jeong Shin
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea
| | - Ha Eun Park
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea
| | - Ki Hyun Kim
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
| | - Kwang Joon Kim
- College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Seong Hoon Jeong
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea.
| | - Nam Ah Kim
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea; Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Muan 58554, Republic of Korea.
| |
Collapse
|
5
|
Penkov K, Bondarenko I, Saenko DV, Kulyaba Y, Guo J, Gong Y, Yamamoto N, Hotko YS, Boyko V, Fadeeva NV, Ursol GM, Ahn HK, Kislov NV, Shen CI, Davis C, Kowalski K, Michelon E, Pavlov D, Hirohashi T, Cho BC. Pharmacokinetics, safety, and efficacy of an alternative dosing regimen of sasanlimab in participants with advanced NSCLC and other malignancies. Ther Adv Med Oncol 2024; 16:17588359241274592. [PMID: 39281971 PMCID: PMC11393800 DOI: 10.1177/17588359241274592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/02/2024] [Indexed: 09/18/2024] Open
Abstract
Background Sasanlimab (PF-06801591), a humanized immunoglobulin G4 monoclonal antibody, binds to programmed cell death protein-1 (PD-1), preventing ligand (PD-L1) interaction. Objectives To evaluate pharmacokinetics (PK), safety, tolerability, and efficacy of two subcutaneous sasanlimab dosing regimens. Design An open-label study consisting of phases Ib and II. Phase Ib: non-randomized, dose escalation, and expansion study in Asian participants with advanced malignancies. Phase II conducted globally in participants with non-small-cell lung cancer with PD-L1 positive or PD-L1 status unknown tumors; participants were randomized 1:2 to receive subcutaneous sasanlimab 300 mg once every 4 weeks (300 mg-Q4W) or 600 mg once every 6 weeks (600 mg-Q6W). Methods Primary endpoint in phase Ib: dose-limiting toxicity (DLT) occurring in first treatment cycle; in phase II: C trough and AUC. Results A total of 155 participants (phase Ib, n = 34; phase II, n = 121) received sasanlimab. Phase Ib: no DLT reported. Phase II: ratio of adjusted geometric mean for AUCtau was 231.2 (90% CI, 190.1-281.2) and C trough was 111.5 (90% CI, 86.3-144.0) following 600 mg-Q6W (test) versus 300 mg-Q4W (reference). Phase Ib: grade 3 treatment-related adverse events (TRAEs) occurred in 1/4 (25%) and 3/12 (25%) participants treated in 300 mg-Q4W dose escalation and expansion cohorts, respectively. Phase II: grade 3 TRAEs occurred in 3/41 (7.3%) and 3/80 (3.8%) participants treated with 300 mg-Q4W and 600 mg-Q6W, respectively; no grade 4/5 TRAEs. Phase II: confirmed objective response was observed in 11/41 (26.8% (95% CI, 14.2-42.9)) and 12/80 (15.0% (95% CI, 8.0-24.7)) participants treated with 300 mg-Q4W and 600 mg-Q6W, respectively. Conclusions Phase Ib regimens were considered safe with no DLTs reported. In phase II, 600 mg-Q6W regimen criteria were met for AUCtau and C trough metrics to support PK-based extrapolation of efficacy of alternative regimen. Regimens were well tolerated, showing anti-tumor activity in participants with advanced solid tumors. Administration of sasanlimab at a dose of 600 mg-Q6W subcutaneously may serve as a convenient alternative to 300 mg-Q4W administration. Trial registration NCT04181788 (ClinicalTrials.gov); 2019-003818-14 (EudraCT).
Collapse
Affiliation(s)
- Konstantin Penkov
- Private Medical Institution "Euromedservice," Saint-Petersburg, Russia
| | | | | | | | - Jun Guo
- Beijing Cancer Hospital, Beijing, China
| | - Yi Gong
- Chongqing University Cancer Hospital, Chongqing, China
| | | | - Yevhen Stepanovych Hotko
- Municipal nonprofit enterprise Central City Clinical Hospital of Uzhhorod City Council, Uzhgorod, Ukraine
| | - Vasyl Boyko
- Municipal Non-profit Enterprise "SubCarpathian Clinical Oncological Centre of Ivano-Frankivsk RC," Ivano-Frankivsk, Ukraine
| | | | | | - Hee Kyung Ahn
- Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - Nikolay Viktorovich Kislov
- State Budgetary Institution of Healthcare of Yaroslavl Region "Clinical Oncology Hospital," Yaroslavl, Russia
| | - Chia-I Shen
- Taipei Veterans General Hospital, Taipei, Taiwan
| | | | | | | | | | | | - Byoung Chul Cho
- Yonsei Cancer Center, Yonsei University College of Medicine, Yonsei-Ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
6
|
Stevenson J, Poker R, Schoss J, Campbell M, Everitt C, Holly B, Stones N, Pettis RJ, Sanchez-Felix M. Pharmaceutical and biotech industry perspectives on optimizing patient experience and treatment adherence through subcutaneous drug delivery design. Adv Drug Deliv Rev 2024; 209:115322. [PMID: 38677443 DOI: 10.1016/j.addr.2024.115322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/06/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
Subcutaneous (SC) drug delivery can be a safe, effective alternative to the traditional intravenous route of administration, potentially offering notable advantages for both patients and healthcare providers. The SC Drug Development & Delivery Consortium convened in 2018 to raise awareness of industry challenges to advance the development of patient-centric SC drug delivery strategies. The SC Consortium identified better understanding of patient preferences and perspectives as necessary to optimize SC product design attributes and help guide design decisions during SC product development. This manuscript provides a comprehensive overview of patient-centric factors for consideration in the SC drug delivery design and development process with the aim of establishing a foundation of existing knowledge for patient experiences related to SC drug delivery. This overview is informed by the outcomes of a multi-step survey of Consortium members and key pharmaceutical stakeholders. Framed in the context of the patient's treatment journey, the survey findings offer future perspectives to fill data gaps to advance patient-centric SC drug delivery.
Collapse
Affiliation(s)
| | - Rachel Poker
- AstraZeneca, Human Factors Engineering, BioPharmaceutical Development, Biopharmaceuticals R&D, 121 Oyster Point Blvd, South San Francisco, CA 94080, USA
| | | | | | - Claire Everitt
- Pfizer, Granta Park, Great Abington, Cambridge CB21 6GP, UK
| | - Brian Holly
- Pfizer, Granta Park, Great Abington, Cambridge CB21 6GP, UK
| | - Nicholas Stones
- Novartis Pharma AG, Lichtstrasse 35, CH-4056 Basel, Switzerland
| | - Ronald J Pettis
- Becton-Dickinson, 21 Davis Drive, Research Triangle Park, NC 27513, USA
| | | |
Collapse
|
7
|
Nelemans LC, Melo VA, Buzgo M, Bremer E, Simaite A. Antibody desolvation with sodium chloride and acetonitrile generates bioactive protein nanoparticles. PLoS One 2024; 19:e0300416. [PMID: 38483950 PMCID: PMC10939210 DOI: 10.1371/journal.pone.0300416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/26/2024] [Indexed: 03/17/2024] Open
Abstract
About 30% of the FDA approved drugs in 2021 were protein-based therapeutics. However, therapeutic proteins can be unstable and rapidly eliminated from the blood, compared to conventional drugs. Furthermore, on-target but off-tumor protein binding can lead to off-tumor toxicity, lowering the maximum tolerated dose. Thus, for effective treatment therapeutic proteins often require continuous or frequent administration. To improve protein stability, delivery and release, proteins can be encapsulated inside drug delivery systems. These drug delivery systems protect the protein from degradation during (targeted) transport, prevent premature release and allow for long-term, sustained release. However, thus far achieving high protein loading in drug delivery systems remains challenging. Here, the use of protein desolvation with acetonitrile as an intermediate step to concentrate monoclonal antibodies for use in drug delivery systems is reported. Specifically, trastuzumab, daratumumab and atezolizumab were desolvated with high yield (∼90%) into protein nanoparticles below 100 nm with a low polydispersity index (<0.2). Their size could be controlled by the addition of low concentrations of sodium chloride between 0.5 and 2 mM. Protein particles could be redissolved in aqueous solutions and redissolved antibodies retained their binding activity as evaluated in cell binding assays and exemplified for trastuzumab in an ELISA.
Collapse
Affiliation(s)
- Levi Collin Nelemans
- R&D Center, InoCure s.r.o, Celákovice, Central Bohemian, Czech Republic
- Department of Hematology, University Medical Center Groningen/University of Groningen, Groningen, Groningen, The Netherlands
| | - Vinicio Alejandro Melo
- Department of Hematology, University Medical Center Groningen/University of Groningen, Groningen, Groningen, The Netherlands
| | - Matej Buzgo
- R&D Center, InoCure s.r.o, Celákovice, Central Bohemian, Czech Republic
| | - Edwin Bremer
- Department of Hematology, University Medical Center Groningen/University of Groningen, Groningen, Groningen, The Netherlands
| | - Aiva Simaite
- R&D Center, InoCure s.r.o, Celákovice, Central Bohemian, Czech Republic
| |
Collapse
|
8
|
Davis JD, Bravo Padros M, Conrado DJ, Ganguly S, Guan X, Hassan HE, Hazra A, Irvin SC, Jayachandran P, Kosloski MP, Lin KJ, Mukherjee K, Paccaly A, Papachristos A, Partridge MA, Prabhu S, Visich J, Welf ES, Xu X, Zhao A, Zhu M. Subcutaneous Administration of Monoclonal Antibodies: Pharmacology, Delivery, Immunogenicity, and Learnings From Applications to Clinical Development. Clin Pharmacol Ther 2024; 115:422-439. [PMID: 38093583 DOI: 10.1002/cpt.3150] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/06/2023] [Indexed: 01/11/2024]
Abstract
Subcutaneous (s.c.) administration of monoclonal antibodies (mAbs) can reduce treatment burden for patients and healthcare systems compared with intravenous (i.v.) infusion through shorter administration times, made possible by convenient, patient-centric devices. A deeper understanding of clinical pharmacology principles related to efficacy and safety of s.c.-administered mAbs over the past decade has streamlined s.c. product development. This review presents learnings from key constituents of the s.c. mAb development pathway, including pharmacology, administration variables, immunogenicity, and delivery devices. Restricted mAb transportation through the hypodermis explains their incomplete absorption at a relatively slow rate (pharmacokinetic (PK)) and may impact mAb-cellular interactions and/or onset and magnitude of physiological responses (pharmacodynamic). Injection volumes, formulation, rate and site of injection, and needle attributes may affect PKs and the occurrence/severity of adverse events like injection-site reactions or pain, with important consequences for treatment adherence. A review of immunogenicity data for numerous compounds reveals that incidence of anti-drug antibodies (ADAs) is generally comparable across i.v. and s.c. routes, and complementary factors including response magnitude (ADA titer), persistence over time, and neutralizing antibody presence are needed to assess clinical impact. Finally, four case studies showcase how s.c. biologics have been clinically developed: (i) by implementation of i.v./s.c. bridging strategies to streamline PD-1/PD-L1 inhibitor development, (ii) through co-development with i.v. presentations for anti-severe acute respiratory syndrome-coronavirus 2 antibodies to support rapid deployment of both formulations, (iii) as the lead route for bispecific T cell engagers (BTCEs) to mitigate BTCE-mediated cytokine release syndrome, and (iv) for pediatric patients in the case of dupilumab.
Collapse
Affiliation(s)
- John D Davis
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, USA
| | | | | | - Samit Ganguly
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, USA
| | - Xiaowen Guan
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, USA
| | - Hazem E Hassan
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, USA
| | - Anasuya Hazra
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, USA
| | - Susan C Irvin
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, USA
| | | | | | - Kuan-Ju Lin
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, USA
| | | | - Anne Paccaly
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, USA
| | | | | | - Saileta Prabhu
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, USA
| | | | - Erik S Welf
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, USA
| | - Xiaoying Xu
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, USA
| | - An Zhao
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, USA
| | - Min Zhu
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, USA
| |
Collapse
|
9
|
Napolitano D, Settanni CR, Parisio L, Orgiana N, Poscia A, Schiavoni E, Turchini L, Cascio AL, Germini F, Sblendorio E, Milani A, Patteril C, Laterza L, Lopetuso LR, Pugliese D, Papa A, Gasbarrini A, Scaldaferri F. Transition from intravenous to subcutaneous biological therapies in inflammatory bowel disease: An online survey of patients. Indian J Gastroenterol 2024; 43:215-225. [PMID: 38244138 DOI: 10.1007/s12664-023-01500-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 12/05/2023] [Indexed: 01/22/2024]
Abstract
BACKGROUND The transition from in-hospital intravenous administration to subcutaneous therapies to treat inflammatory bowel disease (IBD) can raise some concerns among patients due to the self-administration concerns, the management of potential side effects and the overall worries related to a change of treatment. This study aimed at evaluating patients' opinion about the switch from intravenous to subcutaneous formulations and their knowledge on new available therapeutic options. METHODS We conducted a survey using a questionnaire prepared by a team of gastroenterologists and nurses working at the IBD unit. It consists of 31 items and has been divided into four sections: descriptive, commitment, knowledge and passage mode opinion. The questions were formulated in Italian and conceived according to daily consultations with patients in everyday practice, without any previous piloting or specific medical literature reference. The survey was administered to consecutive IBD patients in intravenous biological treatment; patients currently or previously treated with subcutaneous therapy were excluded. RESULTS Four hundred questionnaires were distributed to participants. As many as 311 patients (77.7%) completed the survey, while the remaining were excluded from the analysis; 155 (49.8%) patients were favorable to switch from intravenous to subcutaneous therapy, while only 78 (25.1%) disagreed. In univariate and multi-variate analysis, the approval rate for home therapy was significantly associated with the distance from the IBD center and work/family/personal commitments. Surprisingly, only a quarter of the IBD patients knew that almost all available therapeutic agents have a subcutaneous administration route. Regarding patients' opinion on the efficacy of subcutaneous administration of biological agents compared to intravenous drugs, 194 (63%) had no definite idea, while 44 (14%) believed that the effectiveness could be reduced. CONCLUSION The transition from in-hospital to subcutaneous therapeutic management of biological therapy at home was generally viewed favorably by patients, especially if they have commitments or were residents far from the IBD center.
Collapse
Affiliation(s)
- Daniele Napolitano
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, 00168, Rome, Italy.
| | | | - Laura Parisio
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | | | - Andrea Poscia
- Fondazione Policlinico A. Gemelli IRCCS, 00168, Rome, Italy
| | - Elisa Schiavoni
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Laura Turchini
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | | | | | - Elena Sblendorio
- Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, Bari, Italy
| | | | | | - Lucrezia Laterza
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Loris Riccardo Lopetuso
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Daniela Pugliese
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Alfredo Papa
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Antonio Gasbarrini
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Franco Scaldaferri
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| |
Collapse
|
10
|
Wang H, Hu T, Leng Y, de Lucio M, Gomez H. MPET 2: a multi-network poroelastic and transport theory for predicting absorption of monoclonal antibodies delivered by subcutaneous injection. Drug Deliv 2023; 30:2163003. [PMID: 36625437 PMCID: PMC9851243 DOI: 10.1080/10717544.2022.2163003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Subcutaneous injection of monoclonal antibodies (mAbs) has attracted much attention in the pharmaceutical industry. During the injection, the drug is delivered into the tissue producing strong fluid flow and tissue deformation. While data indicate that the drug is initially uptaken by the lymphatic system due to the large size of mAbs, many of the critical absorption processes that occur at the injection site remain poorly understood. Here, we propose the MPET2 approach, a multi-network poroelastic and transport model to predict the absorption of mAbs during and after subcutaneous injection. Our model is based on physical principles of tissue biomechanics and fluid dynamics. The subcutaneous tissue is modeled as a mixture of three compartments, i.e., interstitial tissue, blood vessels, and lymphatic vessels, with each compartment modeled as a porous medium. The proposed biomechanical model describes tissue deformation, fluid flow in each compartment, the fluid exchanges between compartments, the absorption of mAbs in blood vessels and lymphatic vessels, as well as the transport of mAbs in each compartment. We used our model to perform a high-fidelity simulation of an injection of mAbs in subcutaneous tissue and evaluated the long-term drug absorption. Our model results show good agreement with experimental data in depot clearance tests.
Collapse
Affiliation(s)
- Hao Wang
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA,CONTACT Hao Wang School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Tianyi Hu
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Yu Leng
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Mario de Lucio
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Hector Gomez
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
11
|
Meza NP, Hardy CA, Morin KH, Huang C, Raghava S, Song J, Zhang J, Wang Y. Predicting Colloidal Stability of High-Concentration Monoclonal Antibody Formulations in Common Pharmaceutical Buffers Using Improved Polyethylene Glycol Induced Protein Precipitation Assay. Mol Pharm 2023; 20:5842-5855. [PMID: 37867303 DOI: 10.1021/acs.molpharmaceut.3c00694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Colloidal stability is an important consideration when developing high concentration mAb formulations. PEG-induced protein precipitation is a commonly used assay to assess the colloidal stability of protein solutions. However, the practical usefulness and the current theoretical model for this assay have yet to be verified over a large formulation space across multiple mAbs and mAb-based modalities. In the present study, we used PEG-induced protein precipitation assays to evaluate colloidal stability of 3 mAbs in 24 common formulation buffers at 20 and 5 °C. These prediction assays were conducted at low protein concentration (1 mg/mL). We also directly characterized high concentration (100 mg/mL) formulations for cold-induced phase separation, turbidity, and concentratibility by ultrafiltration. This systematic study allowed analysis of the correlation between the results of low concentration assays and the high concentration attributes. The key findings of this study include the following: (1) verification of the usefulness of three different parameters (Cmid, μB, and Tcloud) from PEG-induced protein precipitation assays for ranking colloidal stability of high concentration mAb formulations; (2) a new method to implement PEG-induced protein precipitation assay suitable for high throughput screening with low sample consumption; (3) improvement in the theoretical model for calculating robust thermodynamic parameters of colloidal stability (μB and εB) that are independent of specific experimental settings; (4) systematic evaluation of the effects of pH and buffer salts on colloidal stability of mAbs in common formulation buffers. These findings provide improved theoretical and practical tools for assessing the colloidal stability of mAbs and mAb-based modalities during formulation development.
Collapse
Affiliation(s)
- Noemi P Meza
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28403, United States
| | - Colin A Hardy
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28403, United States
| | - Kylie H Morin
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28403, United States
| | - Chengbin Huang
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Smita Raghava
- Sterile and Specialty Products, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Jing Song
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Jingtao Zhang
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Ying Wang
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28403, United States
| |
Collapse
|
12
|
Khadria A, Paavola CD, Maslov K, Brown-Augsburger PL, Grealish PF, Lozano E, Blankenship RL, Cao R, Shi J, Beals JM, Oladipupo SS, Wang LV. Photoacoustic imaging of the dynamics of a dye-labeled IgG4 monoclonal antibody in subcutaneous tissue reveals a transient decrease in murine blood oxygenation under anesthesia. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:116002. [PMID: 38078154 PMCID: PMC10704085 DOI: 10.1117/1.jbo.28.11.116002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023]
Abstract
Significance Over 100 monoclonal antibodies have been approved by the U.S. Food and Drug Administration (FDA) for clinical use; however, a paucity of knowledge exists regarding the injection site behavior of these formulated therapeutics, particularly the effect of antibody, formulation, and tissue at the injection site. A deeper understanding of antibody behavior at the injection site, especially on blood oxygenation through imaging, will help design improved versions of the therapeutics for a wide range of diseases. Aim The aim of this research is to understand the dynamics of monoclonal antibodies at the injection site as well as how the antibody itself affects the functional characteristics of the injection site [e.g., blood oxygen saturation (sO 2 )]. Approach We employed triple-wavelength equipped functional photoacoustic imaging to study the dynamics of dye-labeled and unlabeled monoclonal antibodies at the site of injection in a mouse ear. We injected a near-infrared dye-labeled (and unlabeled) human IgG4 isotype control antibody into the subcutaneous space in mouse ears to analyze the injection site dynamics and quantify molecular movement, as well as its effect on local hemodynamics. Results We performed pharmacokinetic studies of the antibody in different regions of the mouse body to show that dye labeling does not alter the pharmacokinetic characteristics of the antibody and that mouse ear is a viable model for these initial studies. We explored the movement of the antibody in the interstitial space to show that the bolus area grows by ∼ 300 % over 24 h. We discovered that injection of the antibody transiently reduces the local sO 2 levels in mice after prolonged anesthesia without affecting the total hemoglobin content and oxygen extraction fraction. Conclusions This finding on local oxygen saturation opens a new avenue of study on the functional effects of monoclonal antibody injections. We also show the suitability of the mouse ear model to study antibody dynamics through high-resolution imaging techniques. We quantified the movement of antibodies at the injection site caused by the interstitial fluid, which could be helpful for designing antibodies with tailored absorption speeds in the future.
Collapse
Affiliation(s)
- Anjul Khadria
- California Institute of Technology, Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Pasadena, California, United States
| | - Chad D. Paavola
- Eli Lilly and Company, Lilly Corporate Center, Lilly Research Laboratories, Indianapolis, Indiana, United States
| | - Konstantin Maslov
- California Institute of Technology, Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Pasadena, California, United States
| | - Patricia L. Brown-Augsburger
- Eli Lilly and Company, Lilly Corporate Center, Lilly Research Laboratories, Indianapolis, Indiana, United States
| | - Patrick F. Grealish
- Eli Lilly and Company, Lilly Corporate Center, Lilly Research Laboratories, Indianapolis, Indiana, United States
| | - Emmanuel Lozano
- Eli Lilly and Company, Lilly Corporate Center, Lilly Research Laboratories, Indianapolis, Indiana, United States
| | - Ross L. Blankenship
- Eli Lilly and Company, Lilly Corporate Center, Lilly Research Laboratories, Indianapolis, Indiana, United States
| | - Rui Cao
- California Institute of Technology, Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Pasadena, California, United States
| | - Junhui Shi
- California Institute of Technology, Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Pasadena, California, United States
| | - John M. Beals
- Eli Lilly and Company, Lilly Biotechnology Center, Lilly Research Laboratories, San Diego, California, United States
| | - Sunday S. Oladipupo
- Eli Lilly and Company, Lilly Corporate Center, Lilly Research Laboratories, Indianapolis, Indiana, United States
| | - Lihong V. Wang
- California Institute of Technology, Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Pasadena, California, United States
- California Institute of Technology, Caltech Optical Imaging Laboratory, Department of Electrical Engineering, Pasadena, California, United States
| |
Collapse
|
13
|
Malta R, Marques AC, da Costa PC, Amaral MH. Stimuli-Responsive Hydrogels for Protein Delivery. Gels 2023; 9:802. [PMID: 37888375 PMCID: PMC10606693 DOI: 10.3390/gels9100802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023] Open
Abstract
Proteins and peptides are potential therapeutic agents, but their physiochemical properties make their use as drug substances challenging. Hydrogels are hydrophilic polymeric networks that can swell and retain high amounts of water or biological fluids without being dissolved. Due to their biocompatibility, their porous structure, which enables the transport of various peptides and proteins, and their protective effect against degradation, hydrogels have gained prominence as ideal carriers for these molecules' delivery. Particularly, stimuli-responsive hydrogels exhibit physicochemical transitions in response to subtle modifications in the surrounding environment, leading to the controlled release of entrapped proteins or peptides. This review is focused on the application of these hydrogels in protein and peptide delivery, including a brief overview of therapeutic proteins and types of stimuli-responsive polymers.
Collapse
Affiliation(s)
- Rafaela Malta
- CeNTI—Centre for Nanotechnology and Smart Materials, Rua Fernando Mesquita, 2785, 4760-034 Vila Nova de Famalicão, Portugal;
| | - Ana Camila Marques
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Paulo Cardoso da Costa
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Maria Helena Amaral
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
14
|
Zambelli A, Cazzaniga M, La Verde N, Munzone E, Antonazzo IC, Mantovani LG, Di Cosimo S, Mancuso A, Generali D, Cortesi PA. A cost-consequence analysis of adding pertuzumab to the neoadjuvant combination therapy in HER2-positive high-risk early breast cancer in Italy. Breast 2023; 71:113-121. [PMID: 37573652 PMCID: PMC10428118 DOI: 10.1016/j.breast.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 08/15/2023] Open
Abstract
INTRODUCTION Clinical trials confirmed the beneficial effects of adding pertuzumab (P) to the combination of trastuzumab-chemotherapy (TC) in the (neo)adjuvant setting of high-risk HER2-positive early breast cancer (HER2+BC). We evaluated the clinical, economic and societal impact of adding pertuzumab to neoadjuvant TC combination (TPC) in Italy. METHODS A cost-consequence analysis comparing TPC vs. TC was performed developing a cohort-based multi-state Markov model to estimate the clinical, societal and economic impact of the neoadjuvant therapy of TPC versus TC in HER2+BC at high-risk of recurrence. The model works on a cycle length of 1 month and 5-years-time horizon. Literature review-based data were used to populate the model. The following clinical and economic outcomes were estimated: cumulative incidence of loco-regional/distant recurrences, life of years and QALY and both direct and indirect costs (€). Finally, sensitivity analyses were performed. RESULTS TPC was associated with a 75,630 € saved of direct costs. Specifically, it was associated with an initial increase of treatment costs (+4.8%) followed by reduction of recurrence management cost (-20.4%). TPC was also associated with an indirect cost reduction of 1.40%, as well as decreased incidence of distant recurrence (-20.14%), days of work lost (-1.53%) and days lived with disability (-0.50%). Furthermore, TPC reported 10,47 QALY gained (+2.77%) compared to TC. The probability to achieve the pathological complete response (pCR) was the parameter that mostly affected the results in the sensitivity analysis. CONCLUSION Our findings suggested that TPC combination could be a cost-saving option in patients with HER2+BC at high-risk of recurrence.
Collapse
Affiliation(s)
- Alberto Zambelli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Marina Cazzaniga
- Phase 1 Research Centre, ASST-Monza (MB), 20900, Monza, Italy; School of Medicine and Surgery, University of Milano-Bicocca, 20900, Monza, Italy
| | - Nicla La Verde
- Department of Oncology, Sacco Hospital, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Elisabetta Munzone
- Division of Medical Senology, European Institute of Oncology, IRCCS, Milan, Italy
| | | | | | - Serena Di Cosimo
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | | | - Daniele Generali
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34127, Trieste, Italy; Multidisciplinary Unit of Breast Pathology and Translational Research, ASST of Cremona Hospital, 26100, Cremona, Italy
| | - Paolo Angelo Cortesi
- Research Centre on Public Health (CESP), University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
15
|
Burotto M, Zvirbule Z, Mochalova A, Runglodvatana Y, Herraez-Baranda L, Liu SN, Chan P, Shearer-Kang E, Liu X, Tosti N, Zanghi JA, Leutgeb B, Felip E. IMscin001 Part 2: a randomised phase III, open-label, multicentre study examining the pharmacokinetics, efficacy, immunogenicity, and safety of atezolizumab subcutaneous versus intravenous administration in previously treated locally advanced or metastatic non-small-cell lung cancer and pharmacokinetics comparison with other approved indications. Ann Oncol 2023; 34:693-702. [PMID: 37268157 DOI: 10.1016/j.annonc.2023.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/19/2023] [Accepted: 05/22/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND Atezolizumab intravenous (IV) is approved for the treatment of various solid tumours. To improve treatment convenience and health care efficiencies, a coformulation of atezolizumab and recombinant human hyaluronidase PH20 was developed for subcutaneous (SC) use. Part 2 of IMscin001 (NCT03735121) was a randomised phase III, open-label, multicentre, noninferiority study comparing the drug exposure of atezolizumab SC with atezolizumab IV. PATIENTS AND METHODS Eligible patients with locally advanced/metastatic non-small-cell lung cancer were randomised 2 : 1 to receive atezolizumab SC (1875 mg; n = 247) or IV (1200 mg; n = 124) every 3 weeks. The co-primary endpoints were cycle 1 observed trough serum concentration (Ctrough) and model-predicted area under the curve from days 0 to 21 (AUC0-21 d). The secondary endpoints were steady-state exposure, efficacy, safety, and immunogenicity. Exposure following atezolizumab SC was then compared with historical atezolizumab IV values across approved indications. RESULTS The study met both of its co-primary endpoints: cycle 1 observed Ctrough {SC: 89 μg/ml [coefficient of variation (CV): 43%] versus IV: 85 μg/ml (CV: 33%); geometric mean ratio (GMR), 1.05 [90% confidence interval (CI) 0.88-1.24]} and model-predicted AUC0-21 d [SC: 2907 μg d/ml (CV: 32%) versus IV: 3328 μg d/ml (CV: 20%); GMR, 0.87 (90% CI 0.83-0.92)]. Progression-free survival [hazard ratio 1.08 (95% CI 0.82-1.41)], objective response rate (SC: 12% versus IV: 10%), and incidence of anti-atezolizumab antibodies (SC: 19.5% versus IV: 13.9%) were similar between arms. No new safety concerns were identified. Ctrough and AUC0-21 d for atezolizumab SC were consistent with the other approved atezolizumab IV indications. CONCLUSIONS Compared with IV, atezolizumab SC demonstrated noninferior drug exposure at cycle 1. Efficacy, safety, and immunogenicity were similar between arms and consistent with the known profile for atezolizumab IV. Similar drug exposure and clinical outcomes following SC and IV administration support the use of atezolizumab SC as an alternative to atezolizumab IV.
Collapse
Affiliation(s)
- M Burotto
- Centro de Investigación, Clínica Bradford Hill, Santiago, Chile.
| | - Z Zvirbule
- Latvian Oncology Center, Riga Eastern Clinical University Hospital, Riga, Latvia
| | - A Mochalova
- Department of Antitumor Drug Therapy, MEDSI Clinical Hospital, Moscow, Russia
| | - Y Runglodvatana
- Faculty of Medicine, Vajira Hospital, Bangkok Metropolitan University, Bangkok, Thailand
| | - L Herraez-Baranda
- Product Development Medical Affairs Oncology, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - S N Liu
- Clinical Pharmacology, Genentech, Inc., South San Francisco, USA
| | - P Chan
- Clinical Pharmacology, Genentech, Inc., South San Francisco, USA
| | - E Shearer-Kang
- Product Safety Development, Genentech, Inc., South San Francisco, CA, USA
| | - X Liu
- Data and Statistical Sciences, Genentech, Inc., South San Francisco, CA, USA
| | - N Tosti
- Product Development Oncology, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - J A Zanghi
- BioAnalytical Sciences, Genentech, Inc., South San Francisco, CA, USA
| | - B Leutgeb
- Product Development Oncology, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - E Felip
- Oncology Department, Vall d'Hebron University Hospital, Barcelona, Spain; Clinical Research Department, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| |
Collapse
|
16
|
Pujahari SR, Mali PS, Purusottam RN, Kumar A. Combined Liquid-State and Solid-State Nuclear Magnetic Resonance at Natural Abundance for Comparative Higher Order Structure Assessment in the Formulated-State of Biphasic Biopharmaceutics. Anal Chem 2023. [PMID: 37154614 DOI: 10.1021/acs.analchem.2c05485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A higher-order structure (HOS) is critical to a biopharmaceutical drug as the three-dimensional structure governs its function. Even the partial perturbation in the HOS of the drug can alter the biological efficiency and efficacy. Due to current limitations in analytical technologies, it is imperative to develop a protocol to characterize the HOS of biopharmaceuticals in the native formulated state. This becomes even more challenging for the suspension formulations where solution and solid phases co-exist. Here, we have used a combinatorial approach using liquid (1D 1H) and solid-state (13C CP MAS) NMR methodology to demonstrate the HOS in the biphasic microcrystalline suspension drug in its formulated state. The data were further assessed by principal component analysis and Mahalanobis distance (DM) calculation for quantitative assessment. This approach is sufficient to provide information regarding the protein HOS and the local dynamics of the molecule when combined with orthogonal techniques such as X-ray scattering. Our method can be an elegant tool to investigate batch-to-batch variation in the process of manufacture and storage as well as a biosimilarity comparison study for biphasic/microcrystalline suspension.
Collapse
Affiliation(s)
| | - Pramod S Mali
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Rudra N Purusottam
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Ashutosh Kumar
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
17
|
Imaging of large volume subcutaneous deposition using MRI: exploratory clinical study results. Drug Deliv Transl Res 2023:10.1007/s13346-023-01318-7. [PMID: 36913105 PMCID: PMC10382358 DOI: 10.1007/s13346-023-01318-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2023] [Indexed: 03/14/2023]
Abstract
Subcutaneous (SC) delivery is a preferred route of administration for biotherapeutics but has predominantly been limited to volumes below 3 mL. With higher volume drug formulations emerging, understanding large volume SC (LVSC) depot localization, dispersion, and impact on the SC environment has become more critical. The aim of this exploratory clinical imaging study was to assess the feasibility of magnetic resonance imaging (MRI) to identify and characterize LVSC injections and their effect on SC tissue as a function of delivery site and volume. Healthy adult subjects received incremental injections of normal saline up to 5 mL total volume in the arm and up to 10 mL in the abdomen and thigh. MRI images were acquired after each incremental SC injection. Post-image analysis was performed to correct imaging artifacts, identify depot tissue location, create 3-dimensional (3D) SC depot rendering, and estimate in vivo bolus volumes and SC tissue distention. LVSC saline depots were readily achieved, imaged using MRI, and quantified via subsequent image reconstructions. Imaging artifacts occurred under some conditions, necessitating corrections applied during image analysis. 3D renderings were created for both the depot alone and in relation to the SC tissue boundaries. LVSC depots remained predominantly within the SC tissue and expanded with increasing injection volume. Depot geometry varied across injection sites and localized physiological structure changes were observed to accommodate LVSC injection volumes. MRI is an effective means to clinically visualize LVSC depots and SC architecture allowing assessment of deposition and dispersion of injected formulations.Trial Registration: Not applicable for this exploratory clinical imaging study.
Collapse
|
18
|
de Lucio M, Leng Y, Hans A, Bilionis I, Brindise M, Ardekani AM, Vlachos PP, Gomez H. Modeling large-volume subcutaneous injection of monoclonal antibodies with anisotropic porohyperelastic models and data-driven tissue layer geometries. J Mech Behav Biomed Mater 2023; 138:105602. [PMID: 36529050 DOI: 10.1016/j.jmbbm.2022.105602] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
Subcutaneous injection of therapeutic monoclonal antibodies (mAbs) has become one of the fastest-growing fields in the pharmaceutical industry. The transport and mechanical processes behind large volume injections are poorly understood. Here, we leverage a large-deformation poroelastic model to study high-dose, high-speed subcutaneous injection. We account for the anisotropy of subcutaneous tissue using of a fibril-reinforced porohyperelastic model. We also incorporate the multi-layer structure of the skin tissue, generating data-driven geometrical models of the tissue layers using histological data. We analyze the impact of handheld autoinjectors on the injection dynamics for different patient forces. Our simulations show the importance of considering the large deformation approach to model large injection volumes. This work opens opportunities to better understand the mechanics and transport processes that occur in large-volume subcutaneous injections of mAbs.
Collapse
Affiliation(s)
- Mario de Lucio
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette IN 47907, USA
| | - Yu Leng
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette IN 47907, USA
| | - Atharva Hans
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette IN 47907, USA
| | - Ilias Bilionis
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette IN 47907, USA
| | - Melissa Brindise
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette IN 47907, USA
| | - Arezoo M Ardekani
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette IN 47907, USA
| | - Pavlos P Vlachos
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette IN 47907, USA
| | - Hector Gomez
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette IN 47907, USA.
| |
Collapse
|
19
|
Tabrizi S, Martin-Alonso C, Xiong K, Blewett T, Sridhar S, An Z, Patel S, Rodriguez-Aponte S, Naranjo CA, Wang ST, Shea D, Golub TR, Bhatia SN, Adalsteinsson V, Love JC. An intravenous DNA-binding priming agent protects cell-free DNA and improves the sensitivity of liquid biopsies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.13.523947. [PMID: 36711455 PMCID: PMC9882106 DOI: 10.1101/2023.01.13.523947] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Blood-based, or "liquid," biopsies enable minimally invasive diagnostics but have limits on sensitivity due to scarce cell-free DNA (cfDNA). Improvements to sensitivity have primarily relied on enhancing sequencing technology ex vivo . Here, we sought to augment the level of circulating tumor DNA (ctDNA) detected in a blood draw by attenuating the clearance of cfDNA in vivo . We report a first-in-class intravenous DNA-binding priming agent given 2 hours prior to a blood draw to recover more cfDNA. The DNA-binding antibody minimizes nuclease digestion and organ uptake of cfDNA, decreasing its clearance at 1 hour by over 150-fold. To improve plasma persistence and limit potential immune interactions, we abrogated its Fc-effector function. We found that it protects GC-rich sequences and DNase-hypersensitive sites, which are ordinarily underrepresented in cfDNA. In tumor-bearing mice, priming improved tumor DNA recovery by 19-fold and sensitivity for detecting cancer from 6% to 84%. These results suggest a novel method to enhance the sensitivity of existing DNA-based cancer testing using blood biopsies.
Collapse
|
20
|
McCloskey C, Ortega MT, Nair S, Garcia MJ, Manevy F. A Systematic Review of Time and Resource Use Costs of Subcutaneous Versus Intravenous Administration of Oncology Biologics in a Hospital Setting. PHARMACOECONOMICS - OPEN 2023; 7:3-36. [PMID: 35996066 PMCID: PMC9395845 DOI: 10.1007/s41669-022-00361-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/19/2022] [Indexed: 06/07/2023]
Abstract
BACKGROUND The introduction of human epidermal growth factor receptor 2 (HER2)-targeted treatment options, including dual HER2 blockade, has improved the prognosis for patients with HER2-positive breast cancer (BC) substantially. However, most of these treatments are administered via the intravenous (IV) route, which can present many challenges, such as long infusion and observation times, issues associated with repeated IV access, and increased strain on time and resources of medical centers and healthcare professionals. A fixed-dose combination of pertuzumab and trastuzumab for subcutaneous (SC) injection (pertuzumab, trastuzumab, and hyaluronidase-zzxf (PHESGO®, F. Hoffmann-La Roche Ltd, Basel, Switzerland; PH FDC SC)) has been approved for use alongside chemotherapy for early-stage and metastatic HER2-positive BC. OBJECTIVES This systematic literature review was performed to identify evidence relating to time/resource use and resulting cost differences between SC and IV administration of oncology biologics in a hospital setting, and, ultimately, to inform economic modeling and associated health technology assessment of PH FDC SC. METHODS Electronic databases (Embase, MEDLINE, and EconLit) were searched on 9 April 2020. Additional hand searches were performed to identify publications not captured in the electronic database search. Publication screening and data extraction (study characteristics, participants, interventions, costs, and time/resource use) were carried out per the standard Cochrane review methodology. The quality of economic evidence of cost analyses was assessed using the 36-item checklist of the National Institute for Health and Care Excellence Single Technology Appraisal Specification for submission of evidence (January 2015). RESULTS The database search identified 2,740 records, of which 237 underwent full text screening. Full text screening, prioritization of publications about patients with a cancer diagnosis, and the addition of four citations identified during the hand search resulted in 72 final included publications, relating to 71 unique studies. This included 40 publications that described the time/resource use and/or costs associated with SC versus IV trastuzumab administration for the treatment of HER2-positive BC, and 28 publications that described time/resource use and/or costs associated with rituximab SC versus IV administration for the treatment of non-Hodgkin's lymphoma/follicular lymphoma and diffuse large B-cell lymphoma. The majority of publications showed substantial time savings for preparation and administration of SC versus IV therapy, and cost savings associated with reductions in healthcare professional time and resource use for SC administration. LIMITATIONS There was a lack of consensus between publications regarding time and cost measurements. In addition, the search was limited to publications related to anticancer drugs; the majority of the studies included were performed in European countries. CONCLUSIONS AND IMPLICATIONS This review indicated a substantial body of evidence showing time/resource and cost savings of SC versus IV administration of oncology biologics in a hospital setting, which can be used to inform economic evaluations of PH FDC SC.
Collapse
Affiliation(s)
| | | | | | - Maria João Garcia
- Pharmaceuticals Division, Global Access-Evidence Chapter, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland.
| | - Federico Manevy
- Pharmaceuticals Division, Global Access-Evidence Chapter, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| |
Collapse
|
21
|
Leng Y, Wang H, de Lucio M, Gomez H. Mixed-dimensional multi-scale poroelastic modeling of adipose tissue for subcutaneous injection. Biomech Model Mechanobiol 2022; 21:1825-1840. [PMID: 36057050 PMCID: PMC9440471 DOI: 10.1007/s10237-022-01622-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/02/2022] [Indexed: 11/28/2022]
Abstract
Subcutaneous injection of therapeutic monoclonal antibodies (mAbs) has gained increasing interest in the pharmaceutical industry. The transport, distribution and absorption of mAbs in the skin after injection are not yet well-understood. Experiments have shown that fibrous septa form preferential channels for fluid flow in the tissue. The majority of mAbs can only be absorbed through lymphatics which follow closely the septa network. Therefore, studying drug transport in the septa network is vital to the understanding of drug absorption. In this work, we present a mixed-dimensional multi-scale (MDMS) poroelastic model of adipose tissue for subcutaneous injection. More specifically, we model the fibrous septa as reduced-dimensional microscale interfaces embedded in the macroscale tissue matrix. The model is first verified by comparing numerical results against the full-dimensional model where fibrous septa are resolved using fine meshes. Then, we apply the MDMS model to study subcutaneous injection. It is found that the permeability ratio between the septa and matrix, volume capacity of the septa network, and concentration-dependent drug viscosity are important factors affecting the amount of drug entering the septa network which are paths to lymphatics. Our results show that septa play a critical role in the transport of mAbs in the subcutaneous tissue, and this role was previously overlooked.
Collapse
Affiliation(s)
- Yu Leng
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| | - Hao Wang
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Mario de Lucio
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Hector Gomez
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
22
|
Hesse F, Wright AJ, Bulat F, Somai V, Kreis F, Brindle KM. Deuterium MRSI of tumor cell death in vivo following oral delivery of 2 H-labeled fumarate. Magn Reson Med 2022; 88:2014-2020. [PMID: 35816502 PMCID: PMC9545469 DOI: 10.1002/mrm.29379] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/25/2022] [Accepted: 06/16/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE There is an unmet clinical need for direct and sensitive methods to detect cell death in vivo, especially with regard to monitoring tumor treatment response. We have shown previously that tumor cell death can be detected in vivo from 2 H MRS and MRSI measurements of increased [2,3-2 H2 ]malate production following intravenous injection of [2,3-2 H2 ]fumarate. We show here that cell death can be detected with similar sensitivity following oral administration of the 2 H-labeled fumarate. METHODS Mice with subcutaneously implanted EL4 tumors were fasted for 1 h before administration (200 μl) of [2,3-2 H2 ]fumarate (2 g/kg bodyweight) via oral gavage without anesthesia. The animals were then anesthetized, and after 30 min, tumor conversion of [2,3-2 H2 ]fumarate to [2,3-2 H2 ]malate was assessed from a series of 13 2 H spectra acquired over a period of 65 min. The 2 H spectra and 2 H spectroscopic images were acquired using a surface coil before and at 48 h after treatment with a chemotherapeutic drug (etoposide, 67 mg/kg). RESULTS The malate/fumarate signal ratio increased from 0.022 ± 0.03 before drug treatment to 0.12 ± 0.04 following treatment (p = 0.023, n = 4). Labeled malate was undetectable in spectroscopic images acquired before treatment and increased in the tumor area following treatment. The increase in the malate/fumarate signal ratio was similar to that observed previously following intravenous administration of labeled fumarate. CONCLUSION Orally administered [2,3-2 H2 ]fumarate can be used to detect tumor cell death noninvasively following treatment with a sensitivity that is similar to that obtained with intravenous administration.
Collapse
Affiliation(s)
| | | | - Flaviu Bulat
- Cancer Research UK Cambridge Institute
CambridgeUK
- Department of ChemistryUniversity of CambridgeCambridgeUK
| | - Vencel Somai
- Cancer Research UK Cambridge Institute
CambridgeUK
- Department of RadiologyUniversity of CambridgeCambridgeUK
| | - Felix Kreis
- Cancer Research UK Cambridge Institute
CambridgeUK
| | - Kevin M. Brindle
- Cancer Research UK Cambridge Institute
CambridgeUK
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| |
Collapse
|
23
|
Eshraghi J, Dou Z, Veilleux JC, Shi G, Collins D, Ardekani AM, Vlachos PP. The Air Entrainment and Hydrodynamic Shear of the Liquid Slosh in Syringes. Int J Pharm 2022; 627:122210. [PMID: 36122618 DOI: 10.1016/j.ijpharm.2022.122210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 10/31/2022]
Abstract
Understanding the interface motion and hydrodynamic shear induced by the liquid sloshing during the insertion stage of an autoinjector can help improve drug product administration. We perform experiments to investigate the interfacial motion and hydrodynamic shear due to the acceleration and deceleration of syringes. The goal is to explore the role of fluid properties, air gap size, and syringe acceleration on the interface dynamics caused by autoinjector activation. We used a simplified autoinjector platform to record the syringe and liquid motion without any view obstruction. Water and silicone oil with the same viscosity are used as the model fluids. Particle Image Velocimetry (PIV) is employed to measure the velocity field. Simultaneous shadowgraph visualization captures the air entrainment. Our in-house PIV and image processing algorithms are used to quantify the hydrodynamic stress and interfacial area to investigate the effects of various autoinjector design parameters and fluid types on liquid sloshing. The results indicate that reducing the air gap volume and syringe acceleration/deceleration mitigate the interface area and effective shear. Moreover, the interfacial area and induced hydrodynamic stress decrease with the Fr=U/aD, where U is the interface velocity, a is the maximum syringe acceleration, and D is the syringe diameter.
Collapse
Affiliation(s)
- Javad Eshraghi
- Department of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA; Eli Lilly and Company, Indianapolis, Indiana, USA.
| | - Zhongwang Dou
- Department of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | | | - Galen Shi
- Eli Lilly and Company, Indianapolis, Indiana, USA.
| | | | - Arezoo M Ardekani
- Department of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Pavlos P Vlachos
- Department of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
24
|
Alternative Routes of Administration for Therapeutic Antibodies—State of the Art. Antibodies (Basel) 2022; 11:antib11030056. [PMID: 36134952 PMCID: PMC9495858 DOI: 10.3390/antib11030056] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Background: For the past two decades, there has been a huge expansion in the development of therapeutic antibodies, with 6 to 10 novel entities approved each year. Around 70% of these Abs are delivered through IV injection, a mode of administration allowing rapid and systemic delivery of the drug. However, according to the evidence presented in the literature, beyond the reduction of invasiveness, a better efficacy can be achieved with local delivery. Consequently, efforts have been made toward the development of innovative methods of administration, and in the formulation and engineering of novel Abs to improve their therapeutic index. Objective: This review presents an overview of the routes of administration used to deliver Abs, different from the IV route, whether approved or in the clinical evaluation stage. We provide a description of the physical and biological fundamentals for each route of administration, highlighting their relevance with examples of clinically-relevant Abs, and discussing their strengths and limitations. Methods: We reviewed and analyzed the current literature, published as of the 1 April 2022 using MEDLINE and EMBASE databases, as well as the FDA and EMA websites. Ongoing trials were identified using clinicaltrials.gov. Publications and data were identified using a list of general keywords. Conclusions: Apart from the most commonly used IV route, topical delivery of Abs has shown clinical successes, improving drug bioavailability and efficacy while reducing side-effects. However, additional research is necessary to understand the consequences of biological barriers associated with local delivery for Ab partitioning, in order to optimize delivery methods and devices, and to adapt Ab formulation to local delivery. Novel modes of administration for Abs might in fine allow a better support to patients, especially in the context of chronic diseases, as well as a reduction of the treatment cost.
Collapse
|
25
|
Rahimi E, Gomez H, Ardekani AM. Transport and distribution of biotherapeutics in different tissue layers after subcutaneous injection. Int J Pharm 2022; 626:122125. [PMID: 35988855 DOI: 10.1016/j.ijpharm.2022.122125] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 08/09/2022] [Accepted: 08/14/2022] [Indexed: 10/15/2022]
Abstract
The subcutaneous injection is the main route of administration for monoclonal antibodies (mAbs) and several other biotherapeutics due to the patient comfort and cost-effectiveness. However, their transport and distribution after subcutaneous injection is poorly understood. Here, we exploit a three-dimensional poroelastic model to find the biomechanical response of the tissue, including interstitial pressure and tissue deformation during the injection. We quantify the drug concentration inside the tissue. We start with a single-layer model of the tissue. We show that during injection, the difference between the permeability of the solvent and solute will result in a higher drug concentration proportional to the inverse permeability ratio. Then we study the role of tissue layered properties with primary layers, including epidermis, dermis, subcutaneous (SQ), and muscle layers, on tissue biomechanical response to injection and drug transport. We show that the drug will distribute mainly in the SQ layer due to its lower elastic moduli. Finally, we study the effect of secondary tissue elements like the deep fascia layer and the network of septa fibers inside the SQ tissue. We use the Voronoi algorithm to create random geometry of the septa network. We show how drugs accumulate around these tissue components as observed in experimental SQ injection. Next, we study the effect of injection rate on drug concentration. We show how higher injection rates will slightly increase the drug concentration around septa fibers. Finally we demonstrate how the concentration dependent viscosity will increase the concentration of biotherapeutics in the direction of septa fibers. .
Collapse
Affiliation(s)
- Ehsan Rahimi
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Hector Gomez
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Arezoo M Ardekani
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
26
|
Belote A, Reece S, Robinson S, Jensen H, CarlLee S, Clark M, Parnell S, Geels C, Newton J. Noninferiority of Subcutaneous Versus Intravenous Casirivimab/Imdevimab for Outpatient Treatment of SARS-CoV-2 in a Real-World Setting. Monoclon Antib Immunodiagn Immunother 2022; 41:210-213. [PMID: 35920868 DOI: 10.1089/mab.2022.0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Monoclonal antibody (mAb) therapy has emerged as one of the mainstay treatment options for SARS-CoV-2. To improve speed of delivery and decrease bedside nursing needs, subcutaneous (SC) delivery of mAbs has been explored as an alternative to standard intravenous (IV) administration. To date, data regarding the effectiveness of SC compared with IV mAb are lacking. This retrospective cohort analysis conducted between April 2021 and August 2021 compared hospitalization rates among patients receiving IV versus SC administration of casirivimab/imdevimab (Regen-COV) at a single institution in Arkansas. Casirivimab/imdevimab was a promising mAb therapy utilized during the height of the Delta variant surge of the SARS-CoV-2 pandemic. Before resistance developed by the Omicron variant, casirivimab/imdevimab was utilized for outpatient treatment of SARS-CoV-2 patients at risk of deterioration. Primary outcomes of this investigation were the 30-day post-treatment rate of hospitalization and intensive care unit (ICU) care during hospitalization. There was no increased risk of hospitalization or ICU care with SC administration compared with IV administration. As SARS-CoV-2 continues to mutate into variants such as Omicron and develop resistance to existing mAbs, these preliminary findings of noninferiority of SC versus IV warrant ongoing investigation into SC administration of other mAbs.
Collapse
Affiliation(s)
- Alex Belote
- Department of Internal Medicine, University of Arkansas for Medical Sciences Northwest, Fayetteville, Arkansas, USA
| | - Sharon Reece
- Department of Family and Preventive Medicine, University of Arkansas for Medical Sciences Northwest, Fayetteville, Arkansas, USA
| | - Samantha Robinson
- Department of Mathematical Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| | - Hanna Jensen
- Department of Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Sheena CarlLee
- Department of Internal Medicine, University of Arkansas for Medical Sciences Northwest, Fayetteville, Arkansas, USA
| | - Megan Clark
- College of Medicine, University of Arkansas for Medical Sciences Northwest, Fayetteville, Arkansas, USA
| | - Spencer Parnell
- College of Medicine, University of Arkansas for Medical Sciences Northwest, Fayetteville, Arkansas, USA
| | - Caroline Geels
- College of Medicine, University of Arkansas for Medical Sciences Northwest, Fayetteville, Arkansas, USA
| | - James Newton
- Department of Infectious Disease, Infection Prevention, Control, and Treatment, Washington Regional Medical Center, Fayetteville, Arkansas, USA
| |
Collapse
|
27
|
Gao X, Lee J, Deshpande K, Kang DW, Fathallah AM, Kagan L. Mechanistic Modeling of the Effect of Recombinant Human Hyaluronidase (rHuPH20) on Subcutaneous Delivery of Cetuximab in Rats. Pharm Res 2022; 39:1867-1880. [PMID: 35778631 DOI: 10.1007/s11095-022-03294-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/16/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE To evaluate the duration of effect of rHuPH20 on SC absorption of cetuximab and to develop a mechanistic pharmacokinetic model linking the kinetics of rHuPH20 action with hyaluronan (HA) homeostasis and absorption of cetuximab from the SC space. METHODS Serum pharmacokinetics of cetuximab was evaluated after IV and SC dosing at 0.4 and 10 mg/kg (control groups). In test groups, SC cetuximab was administered simultaneously with rHuPH20 (Co-Injection) or 12 h after injection of rHuPH20 (Pre-Injection). Mechanistic pharmacokinetic model was developed to simultaneously capture cetuximab kinetics in all groups. RESULTS Administration of rHuPH20 resulted in a faster absorption of cetuximab; the difference between co-injection and pre-injection groups appeared to be dependent on the dose level. The model combined three major components: kinetics of rHuPH20 at SC site; HA homeostasis and its disruption by rHuPH20; and cetuximab systemic disposition and the effect of HA disruption on cetuximab SC absorption. The model provided good description of experimental data obtained in this study and collected previously. CONCLUSIONS Proposed model can serve as a potential translational framework for capturing the effect of rHuPH20 across multiple preclinical species and in human studies and can be used for optimization of SC delivery of biotherapeutics.
Collapse
Affiliation(s)
- Xizhe Gao
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA
- Center of Excellence for Pharmaceutical Translational Research and Education, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Jongbong Lee
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA
| | - Kiran Deshpande
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA
- Center of Excellence for Pharmaceutical Translational Research and Education, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - David W Kang
- Halozyme Therapeutics Inc., San Diego, California, 92121, USA
| | | | - Leonid Kagan
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA.
- Center of Excellence for Pharmaceutical Translational Research and Education, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA.
| |
Collapse
|
28
|
Bendicho-Lavilla C, Seoane-Viaño I, Otero-Espinar FJ, Luzardo-Álvarez A. Fighting type 2 diabetes: Formulation strategies for peptide-based therapeutics. Acta Pharm Sin B 2022; 12:621-636. [PMID: 35256935 PMCID: PMC8897023 DOI: 10.1016/j.apsb.2021.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/27/2021] [Accepted: 05/15/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus is a major health problem with increasing prevalence at a global level. The discovery of insulin in the early 1900s represented a major breakthrough in diabetes management, with further milestones being subsequently achieved with the identification of glucagon-like peptide-1 (GLP-1) and the introduction of GLP-1 receptor agonists (GLP-1 RAs) in clinical practice. Moreover, the subcutaneous delivery of biotherapeutics is a well-established route of administration generally preferred over the intravenous route due to better patient compliance and prolonged drug absorption. However, current subcutaneous formulations of GLP-1 RAs present pharmacokinetic problems that lead to adverse reactions and treatment discontinuation. In this review, we discuss the current challenges of subcutaneous administration of peptide-based therapeutics and provide an overview of the formulations available for the different routes of administration with improved bioavailability and reduced frequency of administration.
Collapse
Affiliation(s)
- Carlos Bendicho-Lavilla
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), Santiago de Compostela 15782, Spain
- Paraquasil Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela 15706, Spain
| | - Iria Seoane-Viaño
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), Santiago de Compostela 15782, Spain
- Paraquasil Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela 15706, Spain
| | - Francisco J. Otero-Espinar
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), Santiago de Compostela 15782, Spain
- Paraquasil Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela 15706, Spain
| | - Asteria Luzardo-Álvarez
- Paraquasil Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela 15706, Spain
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Sciences, Campus de Lugo, University of Santiago de Compostela, Lugo 27002, Spain
| |
Collapse
|
29
|
Girelli A, Beck C, Bäuerle F, Matsarskaia O, Maier R, Zhang F, Wu B, Lang C, Czakkel O, Seydel T, Schreiber F, Roosen-Runge F. Molecular Flexibility of Antibodies Preserved Even in the Dense Phase after Macroscopic Phase Separation. Mol Pharm 2021; 18:4162-4169. [PMID: 34637319 PMCID: PMC8564753 DOI: 10.1021/acs.molpharmaceut.1c00555] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Antibody therapies are typically based on high-concentration formulations that need to be administered subcutaneously. These conditions induce several challenges, inter alia a viscosity suitable for injection, sufficient solution stability, and preservation of molecular function. To obtain systematic insights into the molecular factors, we study the dynamics on the molecular level under strongly varying solution conditions. In particular, we use solutions of antibodies with poly(ethylene glycol), in which simple cooling from room temperature to freezing temperatures induces a transition from a well-dispersed solution into a phase-separated and macroscopically arrested system. Using quasi-elastic neutron scattering during in situ cooling ramps and in prethermalized measurements, we observe a strong decrease in antibody diffusion, while internal flexibility persists to a significant degree, thus ensuring the movement necessary for the preservation of molecular function. These results are relevant for a more dynamic understanding of antibodies in high-concentration formulations, which affects the formation of transient clusters governing the solution viscosity.
Collapse
Affiliation(s)
- Anita Girelli
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Christian Beck
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany.,Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Famke Bäuerle
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Olga Matsarskaia
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Ralph Maier
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Fajun Zhang
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Baohu Wu
- Jülich Centre for Neutron Science JCNS at MLZ, Forschungszentrum Jülich, Lichtenbergstraße 1, 85748 Garching, Germany
| | - Christian Lang
- Jülich Centre for Neutron Science JCNS at MLZ, Forschungszentrum Jülich, Lichtenbergstraße 1, 85748 Garching, Germany
| | - Orsolya Czakkel
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Tilo Seydel
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Frank Schreiber
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Felix Roosen-Runge
- Department of Biomedical Science and Biofilms-Research Center for Biointerfaces (BRCB), Malmö University, 205 06 Malmö, Sweden
| |
Collapse
|
30
|
Tsumura K, Hsu W, Mimura M, Horiuchi A, Shiraki K. Lowering the viscosity of a high-concentration antibody solution by protein-polyelectrolyte complex. J Biosci Bioeng 2021; 133:17-24. [PMID: 34629298 DOI: 10.1016/j.jbiosc.2021.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/21/2022]
Abstract
High-concentration and low-viscosity antibody formulations are necessary when administering these solutions subcutaneously (SC) due to limitations on injection volume. Here we show a method to decrease the viscosity of monoclonal antibody solution by protein-polyelectrolyte complex (PPC) with poly-l-glutamic acid (polyE). The viscosity of omalizumab solutions was 90 cP at the concentration of 150 mg/mL. In the presence of 20-50 mM polyE, the viscosity of PPC solution of 150 mg/mL omalizumab dramatically decreased below 10 cP due to the formation of crowded solution. The crowded state of PPC, named aggregated PPC (A-PPC), contained water droplets with a diameter of 10 μm or larger with low antibody concentrations. In the presence of 60 mM or more polyE, the omalizumab solution was transparent with the viscosity of 40 cP or less, named soluble PPC (S-PPC). More importantly, the solutions of both A-PPC and S-PPC were fully redissolved by the addition of phosphate saline buffer confirmed by secondary structure, the amount of aggregates, and binding activity to antigen.
Collapse
Affiliation(s)
- Keisuke Tsumura
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - WeiLin Hsu
- Research and Development Center, Terumo Corporation, Nakai-machi, Ashigarakami-gun, Kanagawa 259-0151, Japan
| | - Masahiro Mimura
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Aiko Horiuchi
- Research and Development Center, Terumo Corporation, Nakai-machi, Ashigarakami-gun, Kanagawa 259-0151, Japan
| | - Kentaro Shiraki
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan.
| |
Collapse
|
31
|
Rahimi E, Aramideh S, Han D, Gomez H, Ardekani AM. Transport and lymphatic uptake of monoclonal antibodies after subcutaneous injection. Microvasc Res 2021; 139:104228. [PMID: 34547346 DOI: 10.1016/j.mvr.2021.104228] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/22/2021] [Accepted: 07/24/2021] [Indexed: 02/06/2023]
Abstract
The subcutaneous injection has emerged to become a feasible self-administration practice for biotherapeutics due to the patient comfort and cost-effectiveness. However, the available knowledge about transport and absorption of these agents after subcutaneous injection is limited. Here, a mathematical framework to study the subcutaneous drug delivery of mAbs from injection to lymphatic uptake is presented. A three-dimensional poroelastic model is exploited to find the biomechanical response of the tissue by taking into account tissue deformation during the injection. The results show that including tissue deformability noticeably changes tissue poromechanical response due to the significant dependence of interstitial pressure on the tissue deformation. Moreover, the importance of the amount of lymph fluid at the injection site and the injection rate on the drug uptake to lymphatic capillaries is highlighted. Finally, variability of lymphatic uptake due to uncertainty in parameters including tissue poromechanical and lymphatic absorption parameters is evaluated. It is found that interstitial pressure due to injection is the major contributing factor in short-term lymphatic absorption, while the amount of lymph fluid at the site of injection determines the long-term absorption of the drug. Finally, it is shown that the lymphatic uptake results are consistent with experimental data available in the literature.
Collapse
Affiliation(s)
- Ehsan Rahimi
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, United States of America
| | - Soroush Aramideh
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, United States of America
| | - Dingding Han
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, United States of America
| | - Hector Gomez
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, United States of America
| | - Arezoo M Ardekani
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, United States of America.
| |
Collapse
|
32
|
Westhovens R, Wiland P, Zawadzki M, Ivanova D, Kasay AB, El-Khouri EC, Balázs É, Shevchuk S, Eliseeva L, Stanislavchuk M, Yatsyshyn R, Hrycaj P, Jaworski J, Zhdan V, Trefler J, Shesternya P, Lee SJ, Kim SH, Suh JH, Lee SG, Han NR, Yoo DH. Efficacy, pharmacokinetics and safety of subcutaneous versus intravenous CT-P13 in rheumatoid arthritis: a randomized phase I/III trial. Rheumatology (Oxford) 2021; 60:2277-2287. [PMID: 33230526 PMCID: PMC8121438 DOI: 10.1093/rheumatology/keaa580] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/22/2020] [Indexed: 12/16/2022] Open
Abstract
Objective To assess non-inferiority of s.c. to i.v. CT-P13 in RA. Methods Patients with active RA and inadequate response to MTX participated in this phase I/III double-blind study at 76 sites. Patients received CT-P13 i.v. 3 mg/kg [week (W) 0 and W2] before randomization (1:1) at W6 to CT-P13 s.c. via pre-filled syringe (PFS) 120 mg biweekly until W28, or CT-P13 i.v. 3 mg/kg every 8 weeks until W22. Randomization was stratified by country, W2 serum CRP and W6 body weight. From W30, all patients received CT-P13 s.c. In a usability sub-study, patients received CT-P13 s.c. via auto-injector (W46–54) then PFS (W56–64). The primary endpoint was change (decrease) from baseline in disease activity score in 28 joints (DAS28)-CRP at W22 (non-inferiority margin: −0.6). Results Of 357 patients enrolled, 343 were randomized to CT-P13 s.c. (n = 167) or CT-P13 i.v. (n = 176) at W6. The least-squares mean change (decrease) from baseline (standard error) in DAS28-CRP at W22 was 2.21 (0.22) for CT-P13 s.c. (n = 162) and 1.94 (0.21) for CT-P13 i.v. [n = 168; difference 0.27 (95% CI: 0.02, 0.52)], establishing non-inferiority. Efficacy findings were similar between arms at W54. Safety was similar between arms throughout: 92 (54.8%; CT-P13 s.c.) and 117 (66.9%; CT-P13 i.v.) patients experienced treatment-emergent adverse events (from W6). There were no treatment-related deaths or new safety findings. Usability was similar for CT-P13 s.c. via auto-injector or PFS. Conclusion CT-P13 s.c. was non-inferior to CT-P13 i.v. in active RA. The convenience of s.c. administration could benefit patients. Trial registration ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT03147248.
Collapse
Affiliation(s)
- Rene Westhovens
- Skeletal Biology and Engineering Research Center KU Leuven, Rheumatology University Hospital Leuven, Leuven, Belgium
| | | | | | - Delina Ivanova
- Diagnostic and Consulting Center Aleksandrovska, Sofia, Bulgaria
| | | | | | - Éva Balázs
- Csongrád Megyei Dr. Bugyi István Kórház, Szentes, Hungary
| | - Sergii Shevchuk
- National Pirogov Memorial Medical University, Vinnytsia, Ukraine
| | | | | | - Roman Yatsyshyn
- Ivano-Frankivsk Regional Clinical Hospital, Ivano-Frankivsk, Ukraine
| | | | | | - Vyacheslav Zhdan
- Poltava Regional Clinical Hospital n.a. M.V. Sklifosovskyi, Poltava, Ukraine
| | | | | | | | | | | | | | - Noo Ri Han
- Celltrion, Inc., Incheon, Republic of Korea
| | - Dae Hyun Yoo
- Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea
| |
Collapse
|
33
|
Schreiber S, Ben-Horin S, Leszczyszyn J, Dudkowiak R, Lahat A, Gawdis-Wojnarska B, Pukitis A, Horynski M, Farkas K, Kierkus J, Kowalski M, Lee SJ, Kim SH, Suh JH, Kim MR, Lee SG, Ye BD, Reinisch W. Randomized Controlled Trial: Subcutaneous vs Intravenous Infliximab CT-P13 Maintenance in Inflammatory Bowel Disease. Gastroenterology 2021; 160:2340-2353. [PMID: 33676969 DOI: 10.1053/j.gastro.2021.02.068] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND & AIMS This study compared pharmacokinetics, symptomatic and endoscopic efficacy, safety, and immunogenicity of a subcutaneous formulation of the infliximab biosimilar CT-P13 (CT-P13 SC) vs intravenous CT-P13 (CT-P13 IV) in patients with inflammatory bowel disease (IBD). METHODS This randomized, multicenter, open-label, parallel-group, phase 1 study enrolled tumor necrosis factor inhibitor-naïve patients with active ulcerative colitis (total Mayo score 6-12 points with endoscopic subscore ≥2) or Crohn's disease (Crohn's Disease Activity Index 220-450 points) at 50 centers. After CT-P13 IV induction at Week (W) 0/W2, patients were randomized (1:1) to receive CT-P13 SC every 2 weeks (q2w) from W6 to W54 or CT-P13 IV every 8 weeks from W6 to W22. At W30, all patients receiving CT-P13 IV switched to CT-P13 SC q2w until W54. The primary endpoint was noninferiority of CT-P13 SC to CT-P13 IV for observed predose CT-P13 concentration at W22 (Ctrough,W22), concluded if the lower bound of the 2-sided 90% confidence interval (CI) for the ratio of geometric least-squares means exceeded 80%. RESULTS Overall, 66 and 65 patients were randomized to CT-P13 SC and CT-P13 IV, respectively. The primary endpoint of noninferiority was met with a geometric least-squares means ratio for Ctrough,W22 of 1154.17% (90% CI 786.37-1694.00; n = 59 [CT-P13 SC]; n = 57 [CT-P13 IV]). W30/W54 clinical remission rates were comparable between arms. Other efficacy, safety, and immunogenicity assessments were also broadly comparable between arms, including after switching. CONCLUSIONS The pharmacokinetic noninferiority of CT-P13 SC to CT-P13 IV, and the comparable efficacy, safety, and immunogenicity profiles, support the potential suitability of CT-P13 SC treatment in IBD. ClinicalTrials.gov ID: NCT02883452.
Collapse
Affiliation(s)
- Stefan Schreiber
- Department for Internal Medicine I, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Shomron Ben-Horin
- Gastroenterology Department, Chaim Sheba Medical Center and Sackler School of Medicine, Tel Aviv University, Tel-Hashomer, Israel
| | | | - Robert Dudkowiak
- Department of Gastroenterology, Melita Medical, Wroclaw, Poland; Department of Gastroenterology and Hepatology, Wroclaw Medical University, Wroclaw, Poland
| | - Adi Lahat
- Gastroenterology Department, Chaim Sheba Medical Center and Sackler School of Medicine, Tel Aviv University, Tel-Hashomer, Israel
| | - Beata Gawdis-Wojnarska
- Department of Gastroenterology, Twoja Przychodnia-Szczecińskie Centrum Medyczne, Szczecin, Poland
| | - Aldis Pukitis
- Center of Gastroenterology, Hepatology and Nutrition, Pauls Stradins Clinical University Hospital, Riga, Latvia
| | | | - Katalin Farkas
- Department of Clinical Pharmacology, Szent Imre Egyetemi Oktatókórház, Budapest, Hungary
| | - Jaroslaw Kierkus
- Department of Gastroenterology, Hepatology, Feeding Disorders and Pediatrics, The Children's Memorial Health Institute, Warsaw, Poland
| | - Maciej Kowalski
- Gastroenterology Department, Centrum Diagnostyczno-Lecznicze Barska sp. z o.o., Wloclawek, Poland
| | - Sang Joon Lee
- Clinical Development Division, Celltrion, Inc., Incheon, Republic of Korea
| | - Sung Hyun Kim
- Clinical Planning Department, Celltrion, Inc., Incheon, Republic of Korea
| | - Jee Hye Suh
- Clinical Planning Department, Celltrion, Inc., Incheon, Republic of Korea
| | - Mi Rim Kim
- Clinical Planning Department, Celltrion, Inc., Incheon, Republic of Korea
| | - Seul Gi Lee
- Biometrics Department, Celltrion, Inc., Incheon, Republic of Korea
| | - Byong Duk Ye
- Department of Gastroenterology and Inflammatory Bowel Disease Center, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea.
| | - Walter Reinisch
- Department of Internal Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
34
|
Felip E, Burotto M, Zvirbule Z, Herraez-Baranda LA, Chanu P, Kshirsagar S, Maiya V, Chan P, Pozzi E, Marchand M, Monchalin M, Tanaka K, Tosti N, Wang B, Restuccia E. Results of a Dose-Finding Phase 1b Study of Subcutaneous Atezolizumab in Patients With Locally Advanced or Metastatic Non-Small Cell Lung Cancer. Clin Pharmacol Drug Dev 2021; 10:1142-1155. [PMID: 33788415 PMCID: PMC8518371 DOI: 10.1002/cpdd.936] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/17/2021] [Indexed: 12/19/2022]
Abstract
Intravenous (IV) atezolizumab is approved for non-small cell lung and other cancers. Subcutaneous (SC) atezolizumab coformulated with recombinant human hyaluronidase, a permeation enhancer for SC dispersion and absorption, is being developed to improve treatment options, reduce burden, and increase efficiency for patients and practitioners. IMscin001 (NCT03735121), a 2-part, open-label, global, multicenter, phase 1b/3 study, is evaluating the pharmacokinetics (PK), safety, and efficacy of SC atezolizumab. The part 1 (phase 1b) objective was determination of an SC atezolizumab dose yielding a serum trough concentration (Ctrough ) comparable with IV. Patients enrolled in 3 cohorts received SC atezolizumab 1800 mg (thigh) once (cohort 1), 1200 mg (thigh) every 2 weeks for 3 cycles (cohort 2), or 1800 mg (abdomen) every 3 weeks cycle 1, then cycles 2 and 3 (thigh) every 3 weeks (cohort 3). In subsequent cycles, IV atezolizumab 1200 mg every 3 weeks was administered until loss of clinical benefit. SC atezolizumab 1800 mg every 3 weeks and 1200 mg every 2 weeks provided similar Ctrough and area under the curve values in cycle 1 to the corresponding IV atezolizumab reference, was well tolerated, and exhibited a safety profile consistent with the established IV formulation. Exposure following SC injection in the abdomen was lower (20%, 28%, and 27% for Ctrough , maximum concentration, and area under the concentration-time curve from time 0 to day 21, respectively) than in the thigh. Part 1 SC and IV PK data were analyzed using a population PK modeling approach, followed by simulations. Part 2 (phase 3) will now be initiated to demonstrate that SC atezolizumab PK exposure is not lower than that of IV.
Collapse
Affiliation(s)
- Enriqueta Felip
- Vall d'Hebron University Hospital and Institute of Oncology (VHIO), UVic-UCC, IOB-Quiron, Barcelona, Spain
| | | | | | | | | | | | - Vidya Maiya
- Genentech, Inc., South San Francisco, California, USA
| | - Phyllis Chan
- Genentech, Inc., South San Francisco, California, USA
| | | | | | | | | | - Nadia Tosti
- F. Hoffmann-La Roche, Ltd., Basel, Switzerland
| | - Bei Wang
- Genentech, Inc., South San Francisco, California, USA
| | | |
Collapse
|
35
|
Chowdhury EA, Meno-Tetang G, Chang HY, Wu S, Huang HW, Jamier T, Chandran J, Shah DK. Current progress and limitations of AAV mediated delivery of protein therapeutic genes and the importance of developing quantitative pharmacokinetic/pharmacodynamic (PK/PD) models. Adv Drug Deliv Rev 2021; 170:214-237. [PMID: 33486008 DOI: 10.1016/j.addr.2021.01.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/17/2022]
Abstract
While protein therapeutics are one of the most successful class of drug molecules, they are expensive and not suited for treating chronic disorders that require long-term dosing. Adeno-associated virus (AAV) mediated in vivo gene therapy represents a viable alternative, which can deliver the genes of protein therapeutics to produce long-term expression of proteins in target tissues. Ongoing clinical trials and recent regulatory approvals demonstrate great interest in these therapeutics, however, there is a lack of understanding regarding their cellular disposition, whole-body disposition, dose-exposure relationship, exposure-response relationship, and how product quality and immunogenicity affects these important properties. In addition, there is a lack of quantitative studies to support the development of pharmacokinetic-pharmacodynamic models, which can support the discovery, development, and clinical translation of this delivery system. In this review, we have provided a state-of-the-art overview of current progress and limitations related to AAV mediated delivery of protein therapeutic genes, along with our perspective on the steps that need to be taken to improve clinical translation of this therapeutic modality.
Collapse
|
36
|
Bramham JE, Podmore A, Davies SA, Golovanov AP. Comprehensive Assessment of Protein and Excipient Stability in Biopharmaceutical Formulations Using 1H NMR Spectroscopy. ACS Pharmacol Transl Sci 2021; 4:288-295. [PMID: 33659867 PMCID: PMC7906489 DOI: 10.1021/acsptsci.0c00188] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Indexed: 01/06/2023]
Abstract
Biopharmaceutical proteins are important drug therapies in the treatment of a range of diseases. Proteins, such as antibodies (Abs) and peptides, are prone to chemical and physical degradation, particularly at the high concentrations currently sought for subcutaneous injections, and so formulation conditions, including buffers and excipients, must be optimized to minimize such instabilities. Therefore, both the protein and small molecule content of biopharmaceutical formulations and their stability are critical to a treatment's success. However, assessing all aspects of protein and small molecule stability currently requires a large number of analytical techniques, most of which involve sample dilution or other manipulations which may themselves distort sample behavior. Here, we demonstrate the application of 1H nuclear magnetic resonance (NMR) spectroscopy to study both protein and small molecule content and stability in situ in high-concentration (100 mg/mL) Ab formulations. We show that protein degradation (aggregation or fragmentation) can be detected as changes in 1D 1H NMR signal intensity, while apparent relaxation rates are specifically sensitive to Ab fragmentation. Simultaneously, relaxation-filtered spectra reveal the presence and degradation of small molecule components such as excipients, as well as changes in general solution properties, such as pH. 1H NMR spectroscopy can thus provide a holistic overview of biopharmaceutical formulation content and stability, providing a preliminary characterization of degradation and acting as a triaging step to guide further analytical techniques.
Collapse
Affiliation(s)
- Jack E. Bramham
- Manchester
Institute of Biotechnology and School of Chemistry, Faculty of Science
and Engineering, The University of Manchester, Manchester M1 7DN, U.K.
| | - Adrian Podmore
- Dosage
Form Design & Development, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge CB21 6GH, U.K.
| | - Stephanie A. Davies
- Dosage
Form Design & Development, BioPharmaceuticals Development, R&D, AstraZeneca, Cambridge CB21 6GH, U.K.
| | - Alexander P. Golovanov
- Manchester
Institute of Biotechnology and School of Chemistry, Faculty of Science
and Engineering, The University of Manchester, Manchester M1 7DN, U.K.
| |
Collapse
|
37
|
In Situ Crosslinked Hydrogel Depot for Sustained Antibody Release Improves Immune Checkpoint Blockade Cancer Immunotherapy. NANOMATERIALS 2021; 11:nano11020471. [PMID: 33673289 PMCID: PMC7918828 DOI: 10.3390/nano11020471] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/06/2021] [Accepted: 02/09/2021] [Indexed: 01/22/2023]
Abstract
The therapeutic inhibition of immune checkpoints, including cytotoxic T lymphocyte-associated protein (CTLA)-4 and programmed cell death 1 (PD-1), through the use of function blocking antibodies can confer improved clinical outcomes by invigorating CD8+ T cell-mediated anticancer immunity. However, low rates of patient responses and the high rate of immune-related adverse events remain significant challenges to broadening the benefit of this therapeutic class, termed immune checkpoint blockade (ICB). To overcome these significant limitations, controlled delivery and release strategies offer unique advantages relevant to this therapeutic class, which is typically administered systemically (e.g., intravenously), but more recently, has been shown to be highly efficacious using locoregional routes of administration. As such, in this paper, we describe an in situ crosslinked hydrogel for the sustained release of antibodies blocking CTLA-4 and PD-1 signaling from a locoregional injection proximal to the tumor site. This formulation results in efficient and durable anticancer effects with a reduced systemic toxicity compared to the bolus delivery of free antibody using an equivalent injection route. This formulation and strategy thus represent an approach for achieving the efficient and safe delivery of antibodies for ICB cancer immunotherapy.
Collapse
|
38
|
Immunogenicity Challenges Associated with Subcutaneous Delivery of Therapeutic Proteins. BioDrugs 2021; 35:125-146. [PMID: 33523413 PMCID: PMC7848667 DOI: 10.1007/s40259-020-00465-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2020] [Indexed: 12/12/2022]
Abstract
The subcutaneous route of administration has provided convenient and non-inferior delivery of therapeutic proteins compared to intravenous infusion, but there is potential for enhanced immunogenicity toward subcutaneously administered proteins in a subset of patients. Unwanted anti-drug antibody response toward proteins or monoclonal antibodies upon repeated administration is shown to impact the pharmacokinetics and efficacy of multiple biologics. Unique immunogenicity challenges of the subcutaneous route have been realized through various preclinical and clinical examples, although subcutaneous delivery has often demonstrated comparable immunogenicity to intravenous administration. Beyond route of administration as a treatment-related factor of immunogenicity, certain product-related risk factors are particularly relevant to subcutaneously administered proteins. This review attempts to provide an overview of the mechanism of immune response toward proteins administered subcutaneously (subcutaneous proteins) and comments on product-related risk factors related to protein structure and stability, dosage form, and aggregation. A two-wave mechanism of antigen presentation in the immune response toward subcutaneous proteins is described, and interaction with dynamic antigen-presenting cells possessing high antigen processing efficiency and migratory activity may drive immunogenicity. Mitigation strategies for immunogenicity are discussed, including those in general use clinically and those currently in development. Mechanistic insights along with consideration of risk factors involved inspire theoretical strategies to provide antigen-specific, long-lasting effects for maintaining the safety and efficacy of therapeutic proteins.
Collapse
|
39
|
Seidel-Greven M, Addai-Mensah O, Spiegel H, Chiegoua Dipah GN, Schmitz S, Breuer G, Frempong M, Reimann A, Klockenbring T, Fischer R, Barth S, Fendel R. Isolation and light chain shuffling of a Plasmodium falciparum AMA1-specific human monoclonal antibody with growth inhibitory activity. Malar J 2021; 20:37. [PMID: 33430886 PMCID: PMC7798374 DOI: 10.1186/s12936-020-03548-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/12/2020] [Indexed: 11/25/2022] Open
Abstract
Background Plasmodium falciparum, the parasite causing malaria, affects populations in many endemic countries threatening mainly individuals with low malaria immunity, especially children. Despite the approval of the first malaria vaccine Mosquirix™ and very promising data using cryopreserved P. falciparum sporozoites (PfSPZ), further research is needed to elucidate the mechanisms of humoral immunity for the development of next-generation vaccines and alternative malaria therapies including antibody therapy. A high prevalence of antibodies against AMA1 in immune individuals has made this antigen one of the major blood-stage vaccine candidates. Material and methods Using antibody phage display, an AMA1-specific growth inhibitory human monoclonal antibody from a malaria-immune Fab library using a set of three AMA1 diversity covering variants (DiCo 1–3), which represents a wide range of AMA1 antigen sequences, was selected. The functionality of the selected clone was tested in vitro using a growth inhibition assay with P. falciparum strain 3D7. To potentially improve affinity and functional activity of the isolated antibody, a phage display mediated light chain shuffling was employed. The parental light chain was replaced with a light chain repertoire derived from the same population of human V genes, these selected antibodies were tested in binding tests and in functionality assays. Results The selected parental antibody achieved a 50% effective concentration (EC50) of 1.25 mg/mL. The subsequent light chain shuffling led to the generation of four derivatives of the parental clone with higher expression levels, similar or increased affinity and improved EC50 against 3D7 of 0.29 mg/mL. Pairwise epitope mapping gave evidence for binding to AMA1 domain II without competing with RON2. Conclusion We have thus shown that a compact immune human phage display library is sufficient for the isolation of potent inhibitory monoclonal antibodies and that minor sequence mutations dramatically increase expression levels in Nicotiana benthamiana. Interestingly, the antibody blocks parasite inhibition independently of binding to RON2, thus having a yet undescribed mode of action.
Collapse
Affiliation(s)
- Melanie Seidel-Greven
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstr.6, 52074, Aachen, Germany
| | - Otchere Addai-Mensah
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstr.6, 52074, Aachen, Germany.,Department of Medical Diagnostics, Faculty of Allied Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Holger Spiegel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstr.6, 52074, Aachen, Germany
| | - Gwladys Nina Chiegoua Dipah
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstr.6, 52074, Aachen, Germany
| | - Stefan Schmitz
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstr.6, 52074, Aachen, Germany
| | - Gudrun Breuer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstr.6, 52074, Aachen, Germany
| | - Margaret Frempong
- Department of Molecular Medicine, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Andreas Reimann
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstr.6, 52074, Aachen, Germany
| | - Torsten Klockenbring
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstr.6, 52074, Aachen, Germany
| | - Rainer Fischer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstr.6, 52074, Aachen, Germany.,Institute of Molecular Biotechnology (Biology VII), RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.,Purdue University, West Lafayette, IN, 47907, USA
| | - Stefan Barth
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstr.6, 52074, Aachen, Germany.,Department of Experimental Medicine and Immunotherapy, Institute of Applied Medical Engineering, RWTH Aachen University Clinic, Pauwelsstraße 20, 52074, Aachen, Germany.,South African Research Chair in Cancer Biotechnology, Department of Integrative Biomedical Sciences, and Medical Biotechnology & Immunotherapy Research Unit, Institute of Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Rolf Fendel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstr.6, 52074, Aachen, Germany. .,Institute of Tropical Medicine, University of Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany.
| |
Collapse
|
40
|
Particle Detection and Characterization for Biopharmaceutical Applications: Current Principles of Established and Alternative Techniques. Pharmaceutics 2020; 12:pharmaceutics12111112. [PMID: 33228023 PMCID: PMC7699340 DOI: 10.3390/pharmaceutics12111112] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/30/2022] Open
Abstract
Detection and characterization of particles in the visible and subvisible size range is critical in many fields of industrial research. Commercial particle analysis systems have proliferated over the last decade. Despite that growth, most systems continue to be based on well-established principles, and only a handful of new approaches have emerged. Identifying the right particle-analysis approach remains a challenge in research and development. The choice depends on each individual application, the sample, and the information the operator needs to obtain. In biopharmaceutical applications, particle analysis decisions must take product safety, product quality, and regulatory requirements into account. Biopharmaceutical process samples and formulations are dynamic, polydisperse, and very susceptible to chemical and physical degradation: improperly handled product can degrade, becoming inactive or in specific cases immunogenic. This article reviews current methods for detecting, analyzing, and characterizing particles in the biopharmaceutical context. The first part of our article represents an overview about current particle detection and characterization principles, which are in part the base of the emerging techniques. It is very important to understand the measuring principle, in order to be adequately able to judge the outcome of the used assay. Typical principles used in all application fields, including particle–light interactions, the Coulter principle, suspended microchannel resonators, sedimentation processes, and further separation principles, are summarized to illustrate their potentials and limitations considering the investigated samples. In the second part, we describe potential technical approaches for biopharmaceutical particle analysis as some promising techniques, such as nanoparticle tracking analysis (NTA), micro flow imaging (MFI), tunable resistive pulse sensing (TRPS), flow cytometry, and the space- and time-resolved extinction profile (STEP®) technology.
Collapse
|
41
|
Ibeanu N, Egbu R, Onyekuru L, Javaheri H, Tee Khaw P, R. Williams G, Brocchini S, Awwad S. Injectables and Depots to Prolong Drug Action of Proteins and Peptides. Pharmaceutics 2020; 12:E999. [PMID: 33096803 PMCID: PMC7589296 DOI: 10.3390/pharmaceutics12100999] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/29/2020] [Accepted: 10/12/2020] [Indexed: 12/30/2022] Open
Abstract
Proteins and peptides have emerged in recent years to treat a wide range of multifaceted diseases such as cancer, diabetes and inflammation. The emergence of polypeptides has yielded advancements in the fields of biopharmaceutical production and formulation. Polypeptides often display poor pharmacokinetics, limited permeability across biological barriers, suboptimal biodistribution, and some proclivity for immunogenicity. Frequent administration of polypeptides is generally required to maintain adequate therapeutic levels, which can limit efficacy and compliance while increasing adverse reactions. Many strategies to increase the duration of action of therapeutic polypeptides have been described with many clinical products having been developed. This review describes approaches to optimise polypeptide delivery organised by the commonly used routes of administration. Future innovations in formulation may hold the key to the continued successful development of proteins and peptides with optimal clinical properties.
Collapse
Affiliation(s)
- Nkiruka Ibeanu
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (N.I.); (R.E.); (L.O.); (H.J.); (G.R.W.); (S.B.)
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London EC1V 9EL, UK;
| | - Raphael Egbu
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (N.I.); (R.E.); (L.O.); (H.J.); (G.R.W.); (S.B.)
| | - Lesley Onyekuru
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (N.I.); (R.E.); (L.O.); (H.J.); (G.R.W.); (S.B.)
| | - Hoda Javaheri
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (N.I.); (R.E.); (L.O.); (H.J.); (G.R.W.); (S.B.)
| | - Peng Tee Khaw
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London EC1V 9EL, UK;
| | - Gareth R. Williams
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (N.I.); (R.E.); (L.O.); (H.J.); (G.R.W.); (S.B.)
| | - Steve Brocchini
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (N.I.); (R.E.); (L.O.); (H.J.); (G.R.W.); (S.B.)
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London EC1V 9EL, UK;
| | - Sahar Awwad
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (N.I.); (R.E.); (L.O.); (H.J.); (G.R.W.); (S.B.)
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London EC1V 9EL, UK;
| |
Collapse
|
42
|
Holstein M, Hung J, Feroz H, Ranjan S, Du C, Ghose S, Li ZJ. Strategies for high‐concentration drug substance manufacturing to facilitate subcutaneous administration: A review. Biotechnol Bioeng 2020; 117:3591-3606. [DOI: 10.1002/bit.27510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Melissa Holstein
- Biologics Process Development, Global Product Development and Supply Bristol‐Myers Squibb Co. Devens Massachusetts
| | - Jessica Hung
- Biologics Process Development, Global Product Development and Supply Bristol‐Myers Squibb Co. Devens Massachusetts
| | - Hasin Feroz
- Biologics Process Development, Global Product Development and Supply Bristol‐Myers Squibb Co. Devens Massachusetts
| | - Swarnim Ranjan
- Biologics Process Development, Global Product Development and Supply Bristol‐Myers Squibb Co. Devens Massachusetts
| | - Cheng Du
- Biologics Process Development, Global Product Development and Supply Bristol‐Myers Squibb Co. Devens Massachusetts
| | - Sanchayita Ghose
- Biologics Process Development, Global Product Development and Supply Bristol‐Myers Squibb Co. Devens Massachusetts
| | - Zheng Jian Li
- Biologics Process Development, Global Product Development and Supply Bristol‐Myers Squibb Co. Devens Massachusetts
| |
Collapse
|
43
|
Abstract
Antibody immunotherapy is revolutionizing modern medicine. The field has advanced dramatically over the past 40 years, driven in part by major advances in isolation and manufacturing technologies that have brought these important biologics to the forefront of modern medicine. However, the global uptake of monoclonal antibody (mAb) biologics is impeded by biophysical and biochemical liabilities, production limitations, the need for cold-chain storage and transport, as well as high costs of manufacturing and distribution. Some of these hurdles may be overcome through transient in vivo gene delivery platforms, such as non-viral synthetic plasmid DNA and messenger RNA vectors that are engineered to encode optimized mAb genes. These approaches turn the body into a biological factory for antibody production, eliminating many of the steps involved in bioprocesses and providing several other significant advantages, and differ from traditional gene therapy (permanent delivery) approaches. In this review, we focus on nucleic acid delivery of antibody employing synthetic plasmid DNA vector platforms, and RNA delivery, these being important approaches that are advancing simple, rapid, in vivo expression and having an impact in animal models of infectious diseases and cancer, among others.
Collapse
Affiliation(s)
- Ami Patel
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Mamadou A Bah
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - David B Weiner
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA.
| |
Collapse
|
44
|
Varkhede N, Forrest L. Understanding the Monoclonal Antibody Disposition after Subcutaneous Administration using a Minimal Physiologically based Pharmacokinetic Model. JOURNAL OF PHARMACY AND PHARMACEUTICAL SCIENCES 2019; 21:130s-148s. [PMID: 30011390 DOI: 10.18433/jpps30028] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE Monoclonal antibodies (mAbs) are commonly administered by subcutaneous (SC) route. However, bioavailability is often reduced after SC administration. In addition, the sequential transfer of mAbs through the SC tissue and lymphatic system is not completely understood. Therefore, major objectives of this study were a) To understand absorption of mAbs via the lymphatic system after SC administration using physiologically based pharmacokinetic (PBPK) modeling, and b) to demonstrate application of the model for prediction of SC pharmacokinetics (PK) of mAbs. METHODS A minimal PBPK model was constructed using various physiological parameters related to the SC injection site and lymphatic system. The remainder of the body organs were represented using a 2-compartment model (central and peripheral compartments), with parameters derived from available intravenous (IV) PK data. The IV and SC clinical PK data of a total of 10 mAbs were obtained from literature. The SC PK data were used to estimate the lymphatic trunk-lymph node (LN) clearance. RESULTS The mean estimated lymphatic trunk-LN clearance obtained from 37 SC PK profiles of mAbs was 0.00213 L/h (0.001332 to 0.002928, 95% confidence intervals). The estimated lymphatic trunk-LN clearance was greater for the mAbs with higher isoelectric point (pI). In addition, the estimated clearance increased with decrease in the bioavailability. CONCLUSION The minimal PBPK model identified SC injection site lymph flow, afferent and efferent lymph flows, and volumes associated with the SC injection site, lymphatic capillaries and lymphatic trunk-LN as important physiological parameters governing the absorption of mAbs after SC administration. The model may be used to predict PK of mAbs using the relationship of lymphatic trunk-LN clearance and the pI. In addition, the model can be used as a bottom platform to incorporate SC and lymphatic in vitro clearance data for mAb PK prediction in the future.
Collapse
Affiliation(s)
- Ninad Varkhede
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, USA
| | - Laird Forrest
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, USA
| |
Collapse
|
45
|
Boudreau A. Practical considerations for the integration of subcutaneous targeted therapies into the oncology clinic. Can Oncol Nurs J 2019; 29:267-270. [PMID: 31966017 PMCID: PMC6970019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023] Open
Abstract
The oncology clinic is changing, with an increasing number of cancer therapies becoming available as formulations for subcutaneous (SC) injection. Using targeted therapies, such as alemtuzumab, bortezomib, rituximab or trastuzumab, via SC injection can be advantageous for patients, healthcare professionals, and healthcare systems. However, their use can also present challenges, and nurses have a unique opportunity to positively influence the integration of SC agents in the clinic. This article summarizes practical suggestions for optimal administration of SC targeted therapies, and provides pragmatic considerations for managing the change process related to their adoption.
Collapse
Affiliation(s)
- Angela Boudreau
- Advanced Practice Nurse, Department of Nursing, Sunnybrook Odette Cancer Centre, 2075 Bayview Ave., Toronto, ON M4N 3M5,
| |
Collapse
|
46
|
Wang W, Ohtake S. Science and art of protein formulation development. Int J Pharm 2019; 568:118505. [PMID: 31306712 DOI: 10.1016/j.ijpharm.2019.118505] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 02/07/2023]
Abstract
Protein pharmaceuticals have become a significant class of marketed drug products and are expected to grow steadily over the next decade. Development of a commercial protein product is, however, a rather complex process. A critical step in this process is formulation development, enabling the final product configuration. A number of challenges still exist in the formulation development process. This review is intended to discuss these challenges, to illustrate the basic formulation development processes, and to compare the options and strategies in practical formulation development.
Collapse
Affiliation(s)
- Wei Wang
- Biological Development, Bayer USA, LLC, 800 Dwight Way, Berkeley, CA 94710, United States.
| | - Satoshi Ohtake
- Pharmaceutical Research and Development, Pfizer Biotherapeutics Pharmaceutical Sciences, Chesterfield, MO 63017, United States
| |
Collapse
|
47
|
Bhatnagar S, Khera E, Liao J, Eniola V, Hu Y, Smith DE, Thurber GM. Oral and Subcutaneous Administration of a Near-Infrared Fluorescent Molecular Imaging Agent Detects Inflammation in a Mouse Model of Rheumatoid Arthritis. Sci Rep 2019; 9:4661. [PMID: 30858419 PMCID: PMC6411963 DOI: 10.1038/s41598-019-38548-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 12/31/2018] [Indexed: 12/17/2022] Open
Abstract
Rheumatoid arthritis (RA) is an inflammatory autoimmune disease that causes irreversible damage to the joints. However, effective drugs exist that can stop disease progression, leading to intense interest in early detection and treatment monitoring to improve patient outcomes. Imaging approaches have the potential for early detection, but current methods lack sensitivity and/or are time-consuming and expensive. We examined potential routes for self-administration of molecular imaging agents in the form of subcutaneous and oral delivery of an integrin binding near-infrared (NIR) fluorescent imaging agent in an animal model of RA with the long-term goal of increasing safety and patient compliance for screening. NIR imaging has relatively low cost, uses non-ionizing radiation, and provides minimally invasive spatial and molecular information. This proof-of-principle study shows significant uptake of an IRDye800CW agent in inflamed joints of a collagen antibody induced arthritis (CAIA) mouse model compared to healthy joints, irrespective of the method of administration. The imaging results were extrapolated to clinical depths in silico using a 3D COMSOL model of NIR fluorescence imaging in a human hand to examine imaging feasability. With target to background concentration ratios greater than 5.5, which are achieved in the mouse model, these probes have the potential to identify arthritic joints following oral delivery at clinically relevant depths.
Collapse
Affiliation(s)
- Sumit Bhatnagar
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Eshita Khera
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Jianshan Liao
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Victoria Eniola
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Yongjun Hu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, United States
| | - David E Smith
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Greg M Thurber
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States.
| |
Collapse
|
48
|
Zharkov A, Barton B, Heinzmann D, Bakalos G, Schreitmüller T. Development pathways for subcutaneous formulations of biologics versus biosimilar development. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2019. [DOI: 10.1080/23808993.2019.1585806] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Artem Zharkov
- Global Product Development Medical Affairs, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Bettina Barton
- Global Product Development Medical Affairs, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | | | - Georgios Bakalos
- Global Product Development Medical Affairs, F. Hoffmann-La Roche Ltd, Basel, Switzerland
- Department of Biomathematics, University of Thessaly School of Medicine, Larisa, Greece
| | - Thomas Schreitmüller
- Global Product Development Medical Affairs, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| |
Collapse
|
49
|
Lyophilization of High-Concentration Protein Formulations. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2019. [DOI: 10.1007/978-1-4939-8928-7_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
50
|
Inotai A, Ágh T, Karpenko AW, Zemplényi A, Kaló Z. Behind the subcutaneous trastuzumab hype: evaluation of benefits and their transferability to Central Eastern European countries. Expert Rev Pharmacoecon Outcomes Res 2018; 19:105-113. [DOI: 10.1080/14737167.2019.1554437] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- András Inotai
- Syreon Research Institute, Budapest, Hungary
- Department of Health Policy and Health Economics, Eötvös Loránd University (ELTE), Budapest, Hungary
| | - Tamás Ágh
- Syreon Research Institute, Budapest, Hungary
| | - Alexei Willem Karpenko
- Erasmus School of Health Policy & Management, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Antal Zemplényi
- Syreon Research Institute, Budapest, Hungary
- Department of Pharmacoeconomics, University of Pécs, Pécs, Hungary
| | - Zoltán Kaló
- Syreon Research Institute, Budapest, Hungary
- Department of Health Policy and Health Economics, Eötvös Loránd University (ELTE), Budapest, Hungary
| |
Collapse
|