1
|
Ringwald FG, Wucherpfennig L, Hagen N, Mücke J, Kaletta S, Eichinger M, Stahl M, Triphan SMF, Leutz-Schmidt P, Gestewitz S, Graeber SY, Kauczor HU, Alrajab A, Schenk JP, Sommerburg O, Mall MA, Knaup P, Wielpütz MO, Eisenmann U. Automated lung segmentation on chest MRI in children with cystic fibrosis. Front Med (Lausanne) 2024; 11:1401473. [PMID: 39606627 PMCID: PMC11600534 DOI: 10.3389/fmed.2024.1401473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Introduction Segmentation of lung structures in medical imaging is crucial for the application of automated post-processing steps on lung diseases like cystic fibrosis (CF). Recently, machine learning methods, particularly neural networks, have demonstrated remarkable improvements, often outperforming conventional segmentation methods. Nonetheless, challenges still remain when attempting to segment various imaging modalities and diseases, especially when the visual characteristics of pathologic findings significantly deviate from healthy tissue. Methods Our study focuses on imaging of pediatric CF patients [mean age, standard deviation (7.50 ± 4.6)], utilizing deep learning-based methods for automated lung segmentation from chest magnetic resonance imaging (MRI). A total of 165 standardized annual surveillance MRI scans from 84 patients with CF were segmented using the nnU-Net framework. Patient cases represented a range of disease severities and ages. The nnU-Net was trained and evaluated on three MRI sequences (BLADE, VIBE, and HASTE), which are highly relevant for the evaluation of CF induced lung changes. We utilized 40 cases for training per sequence, and tested with 15 cases per sequence, using the Sørensen-Dice-Score, Pearson's correlation coefficient (r), a segmentation questionnaire, and slice-based analysis. Results The results demonstrated a high level of segmentation performance across all sequences, with only minor differences observed in the mean Dice coefficient: BLADE (0.96 ± 0.05), VIBE (0.96 ± 0.04), and HASTE (0.95 ± 0.05). Additionally, the segmentation quality was consistent across different disease severities, patient ages, and sizes. Manual evaluation identified specific challenges, such as incomplete segmentations near the diaphragm and dorsal regions. Validation on a separate, external dataset of nine toddlers (2-24 months) demonstrated generalizability of the trained model achieving a Dice coefficient of 0.85 ± 0.03. Discussion and conclusion Overall, our study demonstrates the feasibility and effectiveness of using nnU-Net for automated segmentation of lung halves in pediatric CF patients, showing promising directions for advanced image analysis techniques to assist in clinical decision-making and monitoring of CF lung disease progression. Despite these achievements, further improvements are needed to address specific segmentation challenges and enhance generalizability.
Collapse
Affiliation(s)
- Friedemann G. Ringwald
- Institute of Medical Informatics, Heidelberg University, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Lena Wucherpfennig
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Niclas Hagen
- Institute of Medical Informatics, Heidelberg University, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Jonas Mücke
- Institute of Medical Informatics, Heidelberg University, Heidelberg, Germany
| | - Sebastian Kaletta
- Institute of Medical Informatics, Heidelberg University, Heidelberg, Germany
| | - Monika Eichinger
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Mirjam Stahl
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Simon M. F. Triphan
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Patricia Leutz-Schmidt
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Sonja Gestewitz
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Simon Y. Graeber
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Hans-Ulrich Kauczor
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Abdulsattar Alrajab
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Jens-Peter Schenk
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Olaf Sommerburg
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Division of Pediatric Pulmonology & Allergy and Cystic Fibrosis Center, Department of Pediatrics, University Hospital Heidelberg, Heidelberg, Germany
- Department of Translational Pulmonology, University Hospital Heidelberg, Heidelberg, Germany
| | - Marcus A. Mall
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Petra Knaup
- Institute of Medical Informatics, Heidelberg University, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Mark O. Wielpütz
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Urs Eisenmann
- Institute of Medical Informatics, Heidelberg University, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| |
Collapse
|
2
|
Ringshausen FC, Baumann I, de Roux A, Dettmer S, Diel R, Eichinger M, Ewig S, Flick H, Hanitsch L, Hillmann T, Koczulla R, Köhler M, Koitschev A, Kugler C, Nüßlein T, Ott SR, Pink I, Pletz M, Rohde G, Sedlacek L, Slevogt H, Sommerwerck U, Sutharsan S, von Weihe S, Welte T, Wilken M, Rademacher J, Mertsch P. [Management of adult bronchiectasis - Consensus-based Guidelines for the German Respiratory Society (DGP) e. V. (AWMF registration number 020-030)]. Pneumologie 2024; 78:833-899. [PMID: 39515342 DOI: 10.1055/a-2311-9450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Bronchiectasis is an etiologically heterogeneous, chronic, and often progressive respiratory disease characterized by irreversible bronchial dilation. It is frequently associated with significant symptom burden, multiple complications, and reduced quality of life. For several years, there has been a marked global increase in the prevalence of bronchiectasis, which is linked to a substantial economic burden on healthcare systems. This consensus-based guideline is the first German-language guideline addressing the management of bronchiectasis in adults. The guideline emphasizes the importance of thoracic imaging using CT for diagnosis and differentiation of bronchiectasis and highlights the significance of etiology in determining treatment approaches. Both non-drug and drug treatments are comprehensively covered. Non-pharmacological measures include smoking cessation, physiotherapy, physical training, rehabilitation, non-invasive ventilation, thoracic surgery, and lung transplantation. Pharmacological treatments focus on the long-term use of mucolytics, bronchodilators, anti-inflammatory medications, and antibiotics. Additionally, the guideline covers the challenges and strategies for managing upper airway involvement, comorbidities, and exacerbations, as well as socio-medical aspects and disability rights. The importance of patient education and self-management is also emphasized. Finally, the guideline addresses special life stages such as transition, family planning, pregnancy and parenthood, and palliative care. The aim is to ensure comprehensive, consensus-based, and patient-centered care, taking into account individual risks and needs.
Collapse
Affiliation(s)
- Felix C Ringshausen
- Klinik für Pneumologie und Infektiologie, Medizinische Hochschule Hannover (MHH), Hannover, Deutschland
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), Deutsches Zentrum für Lungenforschung (DZL), Hannover, Deutschland
- European Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG), Frankfurt, Deutschland
| | - Ingo Baumann
- Hals-, Nasen- und Ohrenklinik, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| | - Andrés de Roux
- Pneumologische Praxis am Schloss Charlottenburg, Berlin, Deutschland
| | - Sabine Dettmer
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), Deutsches Zentrum für Lungenforschung (DZL), Hannover, Deutschland
- Institut für Diagnostische und Interventionelle Radiologie, Medizinische Hochschule Hannover (MHH), Hannover, Deutschland
| | - Roland Diel
- Institut für Epidemiologie, Universitätsklinikum Schleswig-Holstein (UKSH), Kiel, Deutschland; LungenClinic Grosshansdorf, Airway Research Center North (ARCN), Deutsches Zentrum für Lungenforschung (DZL), Grosshansdorf, Deutschland
| | - Monika Eichinger
- Klinik für Diagnostische und Interventionelle Radiologie, Thoraxklinik am Universitätsklinikum Heidelberg, Heidelberg, Deutschland; Translational Lung Research Center Heidelberg (TLRC), Deutsches Zentrum für Lungenforschung (DZL), Heidelberg, Deutschland
| | - Santiago Ewig
- Thoraxzentrum Ruhrgebiet, Kliniken für Pneumologie und Infektiologie, EVK Herne und Augusta-Kranken-Anstalt Bochum, Bochum, Deutschland
| | - Holger Flick
- Klinische Abteilung für Pulmonologie, Universitätsklinik für Innere Medizin, LKH-Univ. Klinikum Graz, Medizinische Universität Graz, Graz, Österreich
| | - Leif Hanitsch
- Institut für Medizinische Immunologie, Charité - Universitätsmedizin Berlin, Freie Universität Berlin und Humboldt-Universität zu Berlin, Berlin, Deutschland
| | - Thomas Hillmann
- Ruhrlandklinik, Westdeutsches Lungenzentrum am Universitätsklinikum Essen, Essen, Deutschland
| | - Rembert Koczulla
- Abteilung für Pneumologische Rehabilitation, Philipps Universität Marburg, Marburg, Deutschland
| | | | - Assen Koitschev
- Klinik für Hals-, Nasen-, Ohrenkrankheiten, Klinikum Stuttgart - Olgahospital, Stuttgart, Deutschland
| | - Christian Kugler
- Abteilung Thoraxchirurgie, LungenClinic Grosshansdorf, Grosshansdorf, Deutschland
| | - Thomas Nüßlein
- Klinik für Kinder- und Jugendmedizin, Gemeinschaftsklinikum Mittelrhein gGmbH, Koblenz, Deutschland
| | - Sebastian R Ott
- Pneumologie/Thoraxchirurgie, St. Claraspital AG, Basel; Universitätsklinik für Pneumologie, Allergologie und klinische Immunologie, Inselspital, Universitätsspital und Universität Bern, Bern, Schweiz
| | - Isabell Pink
- Klinik für Pneumologie und Infektiologie, Medizinische Hochschule Hannover (MHH), Hannover, Deutschland
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), Deutsches Zentrum für Lungenforschung (DZL), Hannover, Deutschland
- European Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG), Frankfurt, Deutschland
| | - Mathias Pletz
- Institut für Infektionsmedizin und Krankenhaushygiene, Universitätsklinikum Jena, Jena, Deutschland
| | - Gernot Rohde
- Pneumologie/Allergologie, Medizinische Klinik 1, Universitätsklinikum Frankfurt, Goethe-Universität, Frankfurt am Main, Deutschland
| | - Ludwig Sedlacek
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Medizinische Hochschule Hannover (MHH), Hannover, Deutschland
| | - Hortense Slevogt
- Klinik für Pneumologie und Infektiologie, Medizinische Hochschule Hannover (MHH), Hannover, Deutschland
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), Deutsches Zentrum für Lungenforschung (DZL), Hannover, Deutschland
- Center for Individualised Infection Medicine, Hannover, Deutschland
| | - Urte Sommerwerck
- Klinik für Pneumologie, Allergologie, Schlaf- und Beatmungsmedizin, Cellitinnen-Severinsklösterchen Krankenhaus der Augustinerinnen, Köln, Deutschland
| | | | - Sönke von Weihe
- Abteilung Thoraxchirurgie, LungenClinic Grosshansdorf, Grosshansdorf, Deutschland
| | - Tobias Welte
- Klinik für Pneumologie und Infektiologie, Medizinische Hochschule Hannover (MHH), Hannover, Deutschland
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), Deutsches Zentrum für Lungenforschung (DZL), Hannover, Deutschland
- European Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG), Frankfurt, Deutschland
| | | | - Jessica Rademacher
- Klinik für Pneumologie und Infektiologie, Medizinische Hochschule Hannover (MHH), Hannover, Deutschland
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), Deutsches Zentrum für Lungenforschung (DZL), Hannover, Deutschland
- European Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG), Frankfurt, Deutschland
| | - Pontus Mertsch
- Medizinische Klinik und Poliklinik V, Klinikum der Universität München (LMU), Comprehensive Pneumology Center (CPC), Deutsches Zentrum für Lungenforschung (DZL), München, Deutschland
| |
Collapse
|
3
|
Frings M, Welsner M, Mousa C, Zensen S, Salhöfer L, Meetschen M, Beck N, Bos D, Westhölter D, Wienker J, Taube C, Umutlu L, Schaarschmidt BM, Forsting M, Haubold J, Sutharsan S, Opitz M. Low-dose high-resolution chest CT in adults with cystic fibrosis: intraindividual comparison between photon-counting and energy-integrating detector CT. Eur Radiol Exp 2024; 8:105. [PMID: 39298080 DOI: 10.1186/s41747-024-00502-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/02/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND Regular disease monitoring with low-dose high-resolution (LD-HR) computed tomography (CT) scans is necessary for the clinical management of people with cystic fibrosis (pwCF). The aim of this study was to compare the image quality and radiation dose of LD-HR protocols between photon-counting CT (PCCT) and energy-integrating detector system CT (EID-CT) in pwCF. METHODS This retrospective study included 23 pwCF undergoing LD-HR chest CT with PCCT who had previously undergone LD-HR chest CT with EID-CT. An intraindividual comparison of radiation dose and image quality was conducted. The study measured the dose-length product, volumetric CT dose index, effective dose and signal-to-noise ratio (SNR). Three blinded radiologists assessed the overall image quality, image sharpness, and image noise using a 5-point Likert scale ranging from 1 (deficient) to 5 (very good) for image quality and image sharpness and from 1 (very high) to 5 (very low) for image noise. RESULTS PCCT used approximately 42% less radiation dose than EID-CT (median effective dose 0.54 versus 0.93 mSv, p < 0.001). PCCT was consistently rated higher than EID-CT for overall image quality and image sharpness. Additionally, image noise was lower with PCCT compared to EID-CT. The average SNR of the lung parenchyma was lower with PCCT compared to EID-CT (p < 0.001). CONCLUSION In pwCF, LD-HR chest CT protocols using PCCT scans provided significantly better image quality and reduced radiation exposure compared to EID-CT. RELEVANCE STATEMENT In pwCF, regular follow-up could be performed through photon-counting CT instead of EID-CT, with substantial advantages in terms of both lower radiation exposure and increased image quality. KEY POINTS Photon-counting CT (PCCT) and energy-integrating detector system CT (EID-CT) were compared in 23 people with cystic fibrosis (pwCF). Image quality was rated higher for PCCT than for EID-CT. PCCT used approximately 42% less radiation dose and offered superior image quality than EID-CT.
Collapse
Affiliation(s)
- Marko Frings
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany.
| | - Matthias Welsner
- Department of Pulmonary Medicine, University Hospital Essen-Ruhrlandklinik, Essen, Germany
- Adult Cystic Fibrosis Center, Department of Pulmonary Medicine, University Hospital Essen-Ruhrlandklinik, Essen, Germany
| | - Christin Mousa
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Sebastian Zensen
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Luca Salhöfer
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Mathias Meetschen
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Nikolas Beck
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Denise Bos
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Dirk Westhölter
- Department of Pulmonary Medicine, University Hospital Essen-Ruhrlandklinik, Essen, Germany
| | - Johannes Wienker
- Department of Pulmonary Medicine, University Hospital Essen-Ruhrlandklinik, Essen, Germany
| | - Christian Taube
- Department of Pulmonary Medicine, University Hospital Essen-Ruhrlandklinik, Essen, Germany
| | - Lale Umutlu
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Benedikt M Schaarschmidt
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Michael Forsting
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Johannes Haubold
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Sivagurunathan Sutharsan
- Department of Pulmonary Medicine, University Hospital Essen-Ruhrlandklinik, Essen, Germany
- Adult Cystic Fibrosis Center, Department of Pulmonary Medicine, University Hospital Essen-Ruhrlandklinik, Essen, Germany
| | - Marcel Opitz
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| |
Collapse
|
4
|
Stahl M, Dohna M, Graeber SY, Sommerburg O, Renz DM, Pallenberg ST, Voskrebenzev A, Schütz K, Hansen G, Doellinger F, Steinke E, Thee S, Röhmel J, Barth S, Rückes-Nilges C, Berges J, Hämmerling S, Wielpütz MO, Naehrlich L, Vogel-Claussen J, Tümmler B, Mall MA, Dittrich AM. Impact of elexacaftor/tezacaftor/ivacaftor therapy on lung clearance index and magnetic resonance imaging in children with cystic fibrosis and one or two F508del alleles. Eur Respir J 2024; 64:2400004. [PMID: 38901883 PMCID: PMC11375515 DOI: 10.1183/13993003.00004-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 05/28/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND We recently demonstrated that elexacaftor/tezacaftor/ivacaftor (ETI) improves the lung clearance index (LCI) and abnormalities in lung morphology detected by magnetic resonance imaging (MRI) in adolescent and adult patients with cystic fibrosis (CF). However, real-world data on the effect of ETI on these sensitive outcomes of lung structure and function in school-age children with CF have not been reported. The aim of this study was therefore to examine the effect of ETI on the LCI and the lung MRI score in children aged 6-11 years with CF and one or two F508del alleles. METHODS This prospective, observational, multicentre, post-approval study assessed the longitudinal LCI up to 12 months and the lung MRI score before and 3 months after initiation of ETI. RESULTS A total of 107 children with CF including 40 heterozygous for F508del and a minimal function mutation (F/MF) and 67 homozygous for F508del (F/F) were enrolled in this study. Treatment with ETI improved the median (interquartile range (IQR)) LCI in F/MF (-1.0 (-2.0- -0.1); p<0.01) and F/F children (-0.8 (-1.9- -0.2); p<0.001) from 3 months onwards. Further, ETI improved the median (IQR) MRI global score in F/MF (-4.0 (-9.0-0.0); p<0.01) and F/F children (-3.5 (-7.3- -0.8); p<0.001). CONCLUSIONS ETI improves early abnormalities in lung ventilation and morphology in school-age children with CF and at least one F508del allele in a real-world setting. Our results support early initiation of ETI to reduce or even prevent lung disease progression in school-age children with CF.
Collapse
Affiliation(s)
- Mirjam Stahl
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
- M. Stahl, M. Dohna, S.Y. Graeber and O. Sommerburg contributed equally as first authors
| | - Martha Dohna
- Department for Radiology, Hannover Medical School, Hannover, Germany
- M. Stahl, M. Dohna, S.Y. Graeber and O. Sommerburg contributed equally as first authors
| | - Simon Y Graeber
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
- M. Stahl, M. Dohna, S.Y. Graeber and O. Sommerburg contributed equally as first authors
| | - Olaf Sommerburg
- Division of Pediatric Pulmonology and Allergy, and Cystic Fibrosis Center, Department of Pediatrics, University of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- M. Stahl, M. Dohna, S.Y. Graeber and O. Sommerburg contributed equally as first authors
| | - Diane M Renz
- Department for Radiology, Hannover Medical School, Hannover, Germany
| | - Sophia T Pallenberg
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- German Center for Lung Research, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Hannover Medical School, Hannover, Germany
| | | | - Katharina Schütz
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- German Center for Lung Research, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Hannover Medical School, Hannover, Germany
| | - Gesine Hansen
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- German Center for Lung Research, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), German Research Foundation (DFG), Hannover Medical School, Hannover, Germany
| | - Felix Doellinger
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Eva Steinke
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
| | - Stephanie Thee
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
| | - Jobst Röhmel
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
| | - Sandra Barth
- Department of Pediatrics, Justus Liebig University Giessen, Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Giessen, Germany
| | - Claudia Rückes-Nilges
- Department of Pediatrics, Justus Liebig University Giessen, Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Giessen, Germany
| | - Julian Berges
- Division of Pediatric Pulmonology and Allergy, and Cystic Fibrosis Center, Department of Pediatrics, University of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Susanne Hämmerling
- Division of Pediatric Pulmonology and Allergy, and Cystic Fibrosis Center, Department of Pediatrics, University of Heidelberg, Heidelberg, Germany
| | - Mark O Wielpütz
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany
| | - Lutz Naehrlich
- Department of Pediatrics, Justus Liebig University Giessen, Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Giessen, Germany
- L. Naehrlich, J. Vogel-Claussen, B. Tümmler, M.A. Mall and A-M. Dittrich contributed equally as senior authors
| | - Jens Vogel-Claussen
- Department for Radiology, Hannover Medical School, Hannover, Germany
- German Center for Lung Research, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Hannover Medical School, Hannover, Germany
- L. Naehrlich, J. Vogel-Claussen, B. Tümmler, M.A. Mall and A-M. Dittrich contributed equally as senior authors
| | - Burkhard Tümmler
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- German Center for Lung Research, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Hannover Medical School, Hannover, Germany
- L. Naehrlich, J. Vogel-Claussen, B. Tümmler, M.A. Mall and A-M. Dittrich contributed equally as senior authors
| | - Marcus A Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
- L. Naehrlich, J. Vogel-Claussen, B. Tümmler, M.A. Mall and A-M. Dittrich contributed equally as senior authors
| | - Anna-Maria Dittrich
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- German Center for Lung Research, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Hannover Medical School, Hannover, Germany
- L. Naehrlich, J. Vogel-Claussen, B. Tümmler, M.A. Mall and A-M. Dittrich contributed equally as senior authors
| |
Collapse
|
5
|
Triphan SMF, Bauman G, Konietzke P, Konietzke M, Wielpütz MO. Magnetic Resonance Imaging of Lung Perfusion. J Magn Reson Imaging 2024; 59:784-796. [PMID: 37466278 DOI: 10.1002/jmri.28912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023] Open
Abstract
"Lung perfusion" in the context of imaging conventionally refers to the delivery of blood to the pulmonary capillary bed through the pulmonary arteries originating from the right ventricle required for oxygenation. The most important physiological mechanism in the context of imaging is the so-called hypoxic pulmonary vasoconstriction (HPV, also known as "Euler-Liljestrand-Reflex"), which couples lung perfusion to lung ventilation. In obstructive airway diseases such as asthma, chronic-obstructive pulmonary disease (COPD), cystic fibrosis (CF), and asthma, HPV downregulates pulmonary perfusion in order to redistribute blood flow to functional lung areas in order to conserve optimal oxygenation. Imaging of lung perfusion can be seen as a reflection of lung ventilation in obstructive airway diseases. Other conditions that primarily affect lung perfusion are pulmonary vascular diseases, pulmonary hypertension, or (chronic) pulmonary embolism, which also lead to inhomogeneity in pulmonary capillary blood distribution. Several magnetic resonance imaging (MRI) techniques either dependent on exogenous contrast materials, exploiting periodical lung signal variations with cardiac action, or relying on intrinsic lung voxel attributes have been demonstrated to visualize lung perfusion. Additional post-processing may add temporal information and provide quantitative information related to blood flow. The most widely used and robust technique, dynamic-contrast enhanced MRI, is available in clinical routine assessment of COPD, CF, and pulmonary vascular disease. Non-contrast techniques are important research tools currently requiring clinical validation and cross-correlation in the absence of a viable standard of reference. First data on many of these techniques in the context of observational studies assessing therapy effects have just become available. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 5.
Collapse
Affiliation(s)
- Simon M F Triphan
- Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Grzegorz Bauman
- Division of Radiological Physics, Department of Radiology, University Hospital of Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Philip Konietzke
- Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Marilisa Konietzke
- Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Mark O Wielpütz
- Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
6
|
Wucherpfennig L, Triphan SMF, Wege S, Kauczor HU, Heussel CP, Sommerburg O, Stahl M, Mall MA, Eichinger M, Wielpütz MO. Elexacaftor/Tezacaftor/Ivacaftor Improves Bronchial Artery Dilatation Detected by Magnetic Resonance Imaging in Patients with Cystic Fibrosis. Ann Am Thorac Soc 2023; 20:1595-1604. [PMID: 37579262 DOI: 10.1513/annalsats.202302-168oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/14/2023] [Indexed: 08/16/2023] Open
Abstract
Rationale: Magnetic resonance imaging (MRI) detects improvements in mucus plugging and bronchial wall thickening, but not in lung perfusion in patients with cystic fibrosis (CF) treated with elexacaftor/tezacaftor/ivacaftor (ETI). Objectives: To determine whether bronchial artery dilatation (BAD), a key feature of advanced lung disease, indicates irreversibility of perfusion abnormalities and whether BAD could be reversed in CF patients treated with ETI. Methods: A total of 59 adults with CF underwent longitudinal chest MRI, including magnetic resonance angiography twice, comprising 35 patients with CF (mean age, 31 ± 7 yr) before (MRI1) and after (MRI2) at least 1 month (mean duration, 8 ± 4 mo) on ETI therapy and 24 control patients with CF (mean age, 31 ± 7 yr) without ETI. MRI was assessed using the validated chest MRI score, and the presence and total lumen area of BAD were assessed with commercial software. Results: The MRI global score was stable in the control group from MRI1 to MRI2 (mean difference, 1.1 [-0.3, 2.4]; P = 0.054), but it was reduced in the ETI group (-10.1 [-0.3, 2.4]; P < 0.001). In the control and ETI groups, BAD was present in almost all patients at baseline (95% and 94%, respectively), which did not change at MRI2. The BAD total lumen area did not change in the control group from MRI1 to MRI2 (1.0 mm2 [-0.2, 2.2]; P = 0.099) but decreased in the ETI group (-7.0 mm2 [-8.9, -5.0]; P < 0.001). This decrease correlated with improvements in the MRI global score (r = 0.540; P < 0.001). Conclusions: Our data show that BAD may be partially reversible under ETI therapy in adult patients with CF who have established disease.
Collapse
Affiliation(s)
- Lena Wucherpfennig
- Department of Diagnostic and Interventional Radiology
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, and
- Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
| | - Simon M F Triphan
- Department of Diagnostic and Interventional Radiology
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, and
- Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
| | - Sabine Wege
- Department of Pulmonology and Respiratory Medicine, Cystic Fibrosis Center, Thoracic Clinic, University Hospital Heidelberg, Heidelberg, Germany
| | - Hans-Ulrich Kauczor
- Department of Diagnostic and Interventional Radiology
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, and
- Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
| | - Claus P Heussel
- Department of Diagnostic and Interventional Radiology
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, and
- Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
| | - Olaf Sommerburg
- Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
- Department of Translational Pulmonology and
| | - Mirjam Stahl
- Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
- Department of Translational Pulmonology and
- Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, University of Heidelberg, Heidelberg, Germany
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - University Medicine Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research, Berlin, Germany; and
- Berlin Institute of Health at Charité - University Medicine Berlin, Berlin, Germany
| | - Marcus A Mall
- Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
- Department of Translational Pulmonology and
- Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, University of Heidelberg, Heidelberg, Germany
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - University Medicine Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research, Berlin, Germany; and
- Berlin Institute of Health at Charité - University Medicine Berlin, Berlin, Germany
| | - Monika Eichinger
- Department of Diagnostic and Interventional Radiology
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, and
- Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
| | - Mark O Wielpütz
- Department of Diagnostic and Interventional Radiology
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, and
- Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
| |
Collapse
|
7
|
Wucherpfennig L, Kauczor HU, Eichinger M, Wielpütz MO. [Magnetic resonance imaging of the lung : State of the art]. RADIOLOGIE (HEIDELBERG, GERMANY) 2023; 63:849-862. [PMID: 37851088 DOI: 10.1007/s00117-023-01229-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/04/2023] [Indexed: 10/19/2023]
Abstract
Due to the low proton density of the lung parenchyma and the rapid signal decay at the air-tissue interfaces, for a long time the lungs were difficult to access using magnetic resonance imaging (MRI); however, technical advances could address most of these obstacles. Pulmonary alterations associated with tissue proliferation ("plus pathologies"), can now be detected with high diagnostic accuracy because of the locally increased proton density. Compared to computed tomography (CT), MRI provides a comprehensive range of functional imaging procedures (respiratory mechanics, perfusion and ventilation). In addition, as a radiation-free noninvasive examination modality, it enables repeated examinations for assessment of the course or monitoring of the effects of treatment, even in children. This article discusses the technical aspects, gives suggestions for protocols and explains the role of MRI of the lungs in the routine assessment of various diseases.
Collapse
Affiliation(s)
- Lena Wucherpfennig
- Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Deutschland
- Translational Lung Research Center Heidelberg (TLRC), Deutsches Zentrum für Lungenforschung (DZL), Im Neuenheimer Feld 130.3, 69120, Heidelberg, Deutschland
- Klinik für Diagnostische und Interventionelle Radiologie mit Nuklearmedizin, Thoraxklinik am Universitätsklinikum Heidelberg, Röntgenstr. 1, 69126, Heidelberg, Deutschland
| | - Hans-Ulrich Kauczor
- Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Deutschland
- Translational Lung Research Center Heidelberg (TLRC), Deutsches Zentrum für Lungenforschung (DZL), Im Neuenheimer Feld 130.3, 69120, Heidelberg, Deutschland
- Klinik für Diagnostische und Interventionelle Radiologie mit Nuklearmedizin, Thoraxklinik am Universitätsklinikum Heidelberg, Röntgenstr. 1, 69126, Heidelberg, Deutschland
| | - Monika Eichinger
- Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Deutschland
- Translational Lung Research Center Heidelberg (TLRC), Deutsches Zentrum für Lungenforschung (DZL), Im Neuenheimer Feld 130.3, 69120, Heidelberg, Deutschland
- Klinik für Diagnostische und Interventionelle Radiologie mit Nuklearmedizin, Thoraxklinik am Universitätsklinikum Heidelberg, Röntgenstr. 1, 69126, Heidelberg, Deutschland
| | - Mark O Wielpütz
- Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Deutschland.
- Translational Lung Research Center Heidelberg (TLRC), Deutsches Zentrum für Lungenforschung (DZL), Im Neuenheimer Feld 130.3, 69120, Heidelberg, Deutschland.
- Klinik für Diagnostische und Interventionelle Radiologie mit Nuklearmedizin, Thoraxklinik am Universitätsklinikum Heidelberg, Röntgenstr. 1, 69126, Heidelberg, Deutschland.
| |
Collapse
|
8
|
Dettmer S, Weinheimer O, Sauer-Heilborn A, Lammers O, Wielpütz MO, Fuge J, Welte T, Wacker F, Ringshausen FC. Qualitative and quantitative evaluation of computed tomography changes in adults with cystic fibrosis treated with elexacaftor-tezacaftor-ivacaftor: a retrospective observational study. Front Pharmacol 2023; 14:1245885. [PMID: 37808186 PMCID: PMC10552920 DOI: 10.3389/fphar.2023.1245885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction: The availability of highly effective triple cystic fibrosis transmembrane conductance regulator (CFTR) modulator combination therapy with elexacaftor-tezacaftor-ivacaftor (ETI) has improved pulmonary outcomes and quality of life of people with cystic fibrosis (pwCF). The aim of this study was to assess computed tomography (CT) changes under ETI visually with the Brody score and quantitatively with dedicated software, and to correlate CT measures with parameters of clinical response. Methods: Twenty two adult pwCF with two consecutive CT scans before and after ETI treatment initiation were retrospectively included. CT was assessed visually employing the Brody score and quantitatively by YACTA, a well-evaluated scientific software computing airway dimensions and lung parenchyma with wall percentage (WP), wall thickness (WT), lumen area (LA), bronchiectasis index (BI), lung volume and mean lung density (MLD) as parameters. Changes in CT metrics were evaluated and the visual and quantitative parameters were correlated with each other and with clinical changes in sweat chloride concentration, spirometry [percent predicted of forced expiratory volume in one second (ppFEV1)] and body mass index (BMI). Results: The mean (SD) Brody score improved with ETI [55 (12) vs. 38 (15); p < 0.001], incl. sub-scores for mucus plugging, peribronchial thickening, and parenchymal changes (all p < 0.001), but not for bronchiectasis (p = 0.281). Quantitatve WP (p < 0.001) and WT (p = 0.004) were reduced, conversely LA increased (p = 0.003), and BI improved (p = 0.012). Lung volume increased (p < 0.001), and MLD decreased (p < 0.001) through a reduction of ground glass opacity areas (p < 0.001). Changes of the Brody score correlated with those of quantitative parameters, exemplarily WT with the sub-score for mucus plugging (r = 0.730, p < 0.001) and peribronchial thickening (r = 0.552, p = 0.008). Changes of CT parameters correlated with those of clinical response parameters, in particular ppFEV1 with the Brody score (r = -0.606, p = 0.003) and with WT (r = -0.538, p = 0.010). Discussion: Morphological treatment response to ETI can be assessed using the Brody score as well as quantitative CT parameters. Changes in CT correlated with clinical improvements. The quantitative analysis with YACTA proved to be an objective, reproducible and simple method for monitoring lung disease, particularly with regard to future interventional clinical trials.
Collapse
Affiliation(s)
- Sabine Dettmer
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Oliver Weinheimer
- Department of Diagnostic and Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Annette Sauer-Heilborn
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany
| | - Oliver Lammers
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Mark O. Wielpütz
- Department of Diagnostic and Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Jan Fuge
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany
| | - Tobias Welte
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany
| | - Frank Wacker
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Felix C. Ringshausen
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany
- European Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG), Frankfurt, Germany
| |
Collapse
|
9
|
Wielpütz MO. The Proton Is Not Enough: Opportunities of Combined Multinuclear MRI for Lung Functional Imaging. Chest 2023; 164:572-573. [PMID: 37689468 DOI: 10.1016/j.chest.2023.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 09/11/2023] Open
Affiliation(s)
- Mark O Wielpütz
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, and Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany.
| |
Collapse
|
10
|
Stahl M, Roehmel J, Eichinger M, Doellinger F, Naehrlich L, Kopp MV, Dittrich AM, Lee C, Sommerburg O, Tian S, Xu T, Wu P, Joshi A, Ray P, Duncan ME, Wielpütz MO, Mall MA. Effects of Lumacaftor/Ivacaftor on Cystic Fibrosis Disease Progression in Children 2 through 5 Years of Age Homozygous for F508del-CFTR: A Phase 2 Placebo-controlled Clinical Trial. Ann Am Thorac Soc 2023; 20:1144-1155. [PMID: 36943405 PMCID: PMC10405608 DOI: 10.1513/annalsats.202208-684oc] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 03/21/2023] [Indexed: 03/23/2023] Open
Abstract
Rationale: Lumacaftor/ivacaftor (LUM/IVA) was shown to be safe and well tolerated in children 2 through 5 years of age with cystic fibrosis (CF) homozygous for F508del-CFTR in a Phase 3 open-label study. Improvements in sweat chloride concentration, markers of pancreatic function, and lung clearance index2.5 (LCI2.5), along with increases in growth parameters, suggested the potential for early disease modification with LUM/IVA treatment. Objective: To further assess the effects of LUM/IVA on CF disease progression in children 2 through 5 years of age using chest magnetic resonance imaging (MRI). Methods: This Phase 2 study had two parts: a 48-week, randomized, double-blind, placebo-controlled treatment period in which children 2 through 5 years of age with CF homozygous for F508del-CFTR received either LUM/IVA or placebo (Part 1) followed by an open-label period in which all children received LUM/IVA for an additional 48 weeks (Part 2). The results from Part 1 are reported. The primary endpoint was absolute change from baseline in chest MRI global score at Week 48. Secondary endpoints included absolute change in LCI2.5 through Week 48 and absolute changes in weight-for-age, stature-for-age, and body mass index-for-age z-scores at Week 48. Additional endpoints included absolute changes in sweat chloride concentration, fecal elastase-1 levels, serum immunoreactive trypsinogen, and fecal calprotectin through Week 48. The primary endpoint was analyzed using Bayesian methods, where the actual Bayesian posterior probability of LUM/IVA being superior to placebo in the chest MRI global score at Week 48 was calculated using a vague normal prior distribution; secondary and additional endpoints were analyzed using descriptive summary statistics. Results: Fifty-one children were enrolled and received LUM/IVA (n = 35) or placebo (n = 16). For the change in chest MRI global score at Week 48, the Bayesian posterior probability of LUM/IVA being better than placebo (treatment difference, <0; higher score indicates greater abnormality) was 76%; the mean treatment difference was -1.5 (95% credible interval, -5.5 to 2.6). Treatment with LUM/IVA also led to within-group numerical improvements in LCI2.5, growth parameters, and biomarkers of pancreatic function as well as greater decreases in sweat chloride concentration compared with placebo from baseline through Week 48. Safety data were consistent with the established safety profile of LUM/IVA. Conclusions: This placebo-controlled study suggests the potential for early disease modification with LUM/IVA treatment, including that assessed by chest MRI, in children as young as 2 years of age. Clinical trial registered with www.clinicaltrials.gov (NCT03625466).
Collapse
Affiliation(s)
- Mirjam Stahl
- Department of Pediatric Respiratory Medicine, Immunology, and Critical Care Medicine and
- German Center for Lung Research, Associated Partner Site, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Jobst Roehmel
- Department of Pediatric Respiratory Medicine, Immunology, and Critical Care Medicine and
| | - Monika Eichinger
- Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik, and
| | - Felix Doellinger
- Department of Radiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lutz Naehrlich
- Department of Pediatrics, Justus Liebig University Giessen, Giessen, Germany
- Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Matthias V. Kopp
- Pediatric Respiratory Medicine, Department of Pediatrics, Inselspital, University of Bern, Bern, Switzerland
- Airway Research Center North, German Center for Lung Research, Grosshansdorf, Germany
| | - Anna-Maria Dittrich
- Department for Pediatric Pulmonology, Allergology, and Neonatology and
- BREATH, German Center for Lung Research, Hannover Medical School, Hannover, Germany; and
| | | | - Olaf Sommerburg
- Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
- Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, Department of Pediatrics, Heidelberg University Hospital, Heidelberg, Germany
| | - Simon Tian
- Vertex Pharmaceuticals Incorporated, Boston, Massachusetts
| | - Tu Xu
- Vertex Pharmaceuticals Incorporated, Boston, Massachusetts
| | - Pan Wu
- Vertex Pharmaceuticals Incorporated, Boston, Massachusetts
| | - Aniket Joshi
- Vertex Pharmaceuticals Incorporated, Boston, Massachusetts
| | - Partha Ray
- Vertex Pharmaceuticals Incorporated, Boston, Massachusetts
| | | | - Mark O. Wielpütz
- Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik, and
| | - Marcus A. Mall
- Department of Pediatric Respiratory Medicine, Immunology, and Critical Care Medicine and
- German Center for Lung Research, Associated Partner Site, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
11
|
Abstract
The need for airway imaging is defined by the limited sensitivity of common clinical tests like spirometry, lung diffusion (DLCO) and blood gas analysis to early changes of peripheral airways and to inhomogeneous regional distribution of lung function deficits. Therefore, X-ray and computed tomography (CT) are frequently used to complement the standard tests.As an alternative, magnetic resonance imaging (MRI) offers radiation-free lung imaging, but at lower spatial resolution. Non-contrast enhanced MRI shows healthy airways down to the first subsegmental level/4th order (CT: eighth). Bronchiectasis can be identified by wall thickening and fluid accumulation. Smaller airways become visible, when altered by peribronchiolar inflammation or mucus retention (tree-in-bud sign).The strength of MRI is functional imaging. Dynamic, time-resolved MRI directly visualizes expiratory airway collapse down to the lobar level (CT: segmental level). Obstruction of even smaller airways becomes visible as air trapping on the expiratory scans. MRI with hyperpolarized noble gases (3He, 129Xe) directly shows the large airways and peripheral lung ventilation. Dynamic contrast-enhanced MRI (DCE MRI) indirectly shows airway dysfunction as perfusion deficits resulting from hypoxic vasoconstriction of the dependent lung volumes. Further promising scientific approaches such as non-contrast enhanced, ventilation-/perfusion-weighted MRI from periodic signal changes of respiration and blood flow are in development.In summary, MRI of the lungs and airways excels with its unique combination of morphologic and functional imaging capacities for research (e.g., in chronic obstructive lung disease or asthma) as well as for clinical imaging (e.g., in cystic fibrosis).
Collapse
Affiliation(s)
- Juergen Biederer
- Christian-Albrechts-Universität zu Kiel, Faculty of Medicine, Kiel, Germany.,University of Latvia, Faculty of Medicine, Raina bulvaris, Riga, Latvia.,Translational Lung Research Center Heidelberg (TLRC), Member of the German Lung Research Center (DZL), Im Neuenheimer Feld, Heidelberg, Germany.,Department of Diagnostic and interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
| |
Collapse
|
12
|
Wucherpfennig L, Triphan SM, Weinheimer O, Eichinger M, Wege S, Eberhardt R, Puderbach MU, Kauczor HU, Heussel CP, Heussel G, Wielpütz MO. Reproducibility of pulmonary magnetic resonance angiography in adults with muco-obstructive pulmonary disease. Acta Radiol 2023; 64:1038-1046. [PMID: 35876445 DOI: 10.1177/02841851221111486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Recent studies support magnetic resonance angiography (MRA) as a diagnostic tool for pulmonary arterial disease. PURPOSE To determine MRA image quality and reproducibility, and the dependence of MRA image quality and reproducibility on disease severity in patients with chronic obstructive pulmonary disease (COPD) and cystic fibrosis (CF). MATERIAL AND METHODS Twenty patients with COPD (mean age 66.5 ± 8.9 years; FEV1% = 42.0 ± 13.3%) and 15 with CF (mean age 29.3 ± 9.3 years; FEV1% = 66.6 ± 15.8%) underwent morpho-functional chest magnetic resonance imaging (MRI) including time-resolved MRA twice one month apart (MRI1, MRI2), and COPD patients underwent non-contrast computed tomography (CT). Image quality was assessed visually using standardized subjective 5-point scales. Contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR) were measured by regions of interest. Disease severity was determined by spirometry, a well-evaluated chest MRI score, and by computational CT emphysema index (EI) for COPD. RESULTS Subjective image quality was diagnostic for all MRA at MRI1 and MRI2 (mean score = 4.7 ± 0.6). CNR and SNR were 4 43.8 ± 8.7 and 50.5 ± 8.7, respectively. Neither image quality score nor CNR or SNR correlated with FEV1% or chest MRI score for COPD and CF (r = 0.239-0.248). CNR and SNR did not change from MRI1 to MRI2 (P = 0.434-0.995). Further, insignificant differences in CNR and SNR between MRA at MRI1 and MRI2 did not correlate with FEV1% nor chest MRI score in COPD and CF (r = -0.238-0.183), nor with EI in COPD (r = 0.100-0.111). CONCLUSION MRA achieved diagnostic quality in COPD and CF patients and was highly reproducible irrespective of disease severity. This supports MRA as a robust alternative to CT in patients with underlying muco-obstructive lung disease.
Collapse
Affiliation(s)
- Lena Wucherpfennig
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, 27178University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Lung Research Center (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik, 27178University Hospital Heidelberg, Heidelberg, Germany
| | - Simon Mf Triphan
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, 27178University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Lung Research Center (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik, 27178University Hospital Heidelberg, Heidelberg, Germany
| | - Oliver Weinheimer
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, 27178University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Lung Research Center (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik, 27178University Hospital Heidelberg, Heidelberg, Germany
| | - Monika Eichinger
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, 27178University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Lung Research Center (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik, 27178University Hospital Heidelberg, Heidelberg, Germany
| | - Sabine Wege
- Department of Pulmonology and Respiratory Medicine, Thoraxklinik, 27178University Hospital Heidelberg, Heidelberg, Germany
| | - Ralf Eberhardt
- Department of Pulmonology and Respiratory Medicine, Thoraxklinik, 27178University Hospital Heidelberg, Heidelberg, Germany
- Department of Pulmonology and Internal intensive care, Asklepios Clinic Barmbek, Hamburg, Germany
| | - Michael U Puderbach
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, 27178University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Lung Research Center (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik, 27178University Hospital Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology, Hufeland Hospital, Bad Langensalza, Germany
| | - Hans-Ulrich Kauczor
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, 27178University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Lung Research Center (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik, 27178University Hospital Heidelberg, Heidelberg, Germany
| | - Claus P Heussel
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, 27178University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Lung Research Center (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik, 27178University Hospital Heidelberg, Heidelberg, Germany
| | - Gudula Heussel
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik, 27178University Hospital Heidelberg, Heidelberg, Germany
| | - Mark O Wielpütz
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, 27178University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Lung Research Center (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik, 27178University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
13
|
Steinke E, Sommerburg O, Graeber SY, Joachim C, Labitzke C, Nissen G, Ricklefs I, Rudolf I, Kopp MV, Dittrich AM, Mall MA, Stahl M. TRACK-CF prospective cohort study: Understanding early cystic fibrosis lung disease. Front Med (Lausanne) 2023; 9:1034290. [PMID: 36687447 PMCID: PMC9853074 DOI: 10.3389/fmed.2022.1034290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/05/2022] [Indexed: 01/09/2023] Open
Abstract
Background Lung disease as major cause for morbidity in patients with cystic fibrosis (CF) starts early in life. Its large phenotypic heterogeneity is partially explained by the genotype but other contributing factors are not well delineated. The close relationship between mucus, inflammation and infection, drives morpho-functional alterations already early in pediatric CF disease, The TRACK-CF cohort has been established to gain insight to disease onset and progression, assessed by lung function testing and imaging to capture morpho-functional changes and to associate these with risk and protective factors, which contribute to the variation of the CF lung disease progression. Methods and design TRACK-CF is a prospective, longitudinal, observational cohort study following patients with CF from newborn screening or clinical diagnosis throughout childhood. The study protocol includes monthly telephone interviews, quarterly visits with microbiological sampling and multiple-breath washout and as well as a yearly chest magnetic resonance imaging. A parallel biobank has been set up to enable the translation from the deeply phenotyped cohort to the validation of relevant biomarkers. The main goal is to determine influencing factors by the combined analysis of clinical information and biomaterials. Primary endpoints are the lung clearance index by multiple breath washout and semi-quantitative magnetic resonance imaging scores. The frequency of pulmonary exacerbations, infection with pro-inflammatory pathogens and anthropometric data are defined as secondary endpoints. Discussion This extensive cohort includes children after diagnosis with comprehensive monitoring throughout childhood. The unique composition and the use of validated, sensitive methods with the attached biobank bears the potential to decisively advance the understanding of early CF lung disease. Ethics and trial registration The study protocol was approved by the Ethics Committees of the University of Heidelberg (approval S-211/2011) and each participating site and is registered at clinicaltrials.gov (NCT02270476).
Collapse
Affiliation(s)
- Eva Steinke
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité–Universitätsmedizin Berlin, Berlin, Germany,German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany,Berlin Institute of Health (BIH) at Charité, Berlin, Germany,*Correspondence: Eva Steinke ✉
| | - Olaf Sommerburg
- Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, Department of Translational Pulmonology, University of Heidelberg, Heidelberg, Germany,Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Simon Y. Graeber
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité–Universitätsmedizin Berlin, Berlin, Germany,German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany,Berlin Institute of Health (BIH) at Charité, Berlin, Germany
| | - Cornelia Joachim
- Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, Department of Translational Pulmonology, University of Heidelberg, Heidelberg, Germany,Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Christiane Labitzke
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Gyde Nissen
- Division of Pediatric Pneumology and Allergology, University of Lübeck, Lübeck, Germany,Airway Research Center North (ARCN), German Center for Lung Research (DZL), Lübeck, Germany
| | - Isabell Ricklefs
- Division of Pediatric Pneumology and Allergology, University of Lübeck, Lübeck, Germany,Airway Research Center North (ARCN), German Center for Lung Research (DZL), Lübeck, Germany
| | - Isa Rudolf
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany,Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Matthias V. Kopp
- Division of Pediatric Pneumology and Allergology, University of Lübeck, Lübeck, Germany,Airway Research Center North (ARCN), German Center for Lung Research (DZL), Lübeck, Germany,Division of Respiratory Medicine, Department of Pediatrics, University Children's Hospital, Inselspital, University of Bern, Bern, Switzerland
| | - Anna-Maria Dittrich
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany,Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Marcus A. Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité–Universitätsmedizin Berlin, Berlin, Germany,German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany,Berlin Institute of Health (BIH) at Charité, Berlin, Germany
| | - Mirjam Stahl
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité–Universitätsmedizin Berlin, Berlin, Germany,German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany,Berlin Institute of Health (BIH) at Charité, Berlin, Germany
| |
Collapse
|
14
|
Anti-Aspergillus fumigatus IgG in patients with bronchiectasis and its relationship with clinical outcome. Arch Microbiol 2022; 204:728. [DOI: 10.1007/s00203-022-03345-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/07/2022] [Accepted: 11/16/2022] [Indexed: 11/26/2022]
|
15
|
Sommerburg O, Wielpütz MO. [Update on cystic fibrosis : From neonatal screening to causal treatment]. RADIOLOGIE (HEIDELBERG, GERMANY) 2022; 62:981-994. [PMID: 36278998 DOI: 10.1007/s00117-022-01076-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Cystic fibrosis (CF) is a multiorgan disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Approximately 90% of the morbidity and mortality are caused by pulmonary involvement. The mean life expectancy of patients with CF in 2020 was more than 52 years in Germany. The introduction of neonatal screening for CF and the development of a causally acting CFTR modulator treatment have clearly improved the prognosis of these patients. As an introduction, this article describes important aspects of CF in this context in order to go into details of the CF neonatal screening which was introduced in Germany in 2016.
Collapse
Affiliation(s)
- Olaf Sommerburg
- Sektion für Pädiatrische Pneumologie, Allergologie und Mukoviszdose-Zentrum, Zentrum für Kinder- und Jugendmedizin, Klinik III, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Deutschland.
- Translational Lung Research Center Heidelberg (TLRC), Deutsches Zentrum für Lungenforschung (DZL), Im Neuenheimer Feld 156, 69120, Heidelberg, Deutschland.
| | - Mark Oliver Wielpütz
- Translational Lung Research Center Heidelberg (TLRC), Deutsches Zentrum für Lungenforschung (DZL), Im Neuenheimer Feld 156, 69120, Heidelberg, Deutschland
- Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Deutschland
| |
Collapse
|
16
|
Durhan G, Düzgün SA, Baytar Y, Akpınar MG, Demirkazık FB, Arıyürek OM. Two in one: Overlapping CT findings of COVID-19 and underlying lung diseases. Clin Imaging 2022; 93:60-69. [PMID: 36395576 PMCID: PMC9651998 DOI: 10.1016/j.clinimag.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 10/28/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is associated with pneumonia and has various pulmonary manifestations on computed tomography (CT). Although COVID-19 pneumonia is usually seen as bilateral predominantly peripheral ground-glass opacities with or without consolidation, it can present with atypical radiological findings and resemble the imaging findings of other lung diseases. Diagnosis of COVID-19 pneumonia is much more challenging for both clinicians and radiologists in the presence of pre-existing lung disease. The imaging features of COVID-19 and underlying lung disease can overlap and obscure the findings of each other. Knowledge of the radiological findings of both diseases and possible complications, correct diagnosis, and multidisciplinary consensus play key roles in the appropriate management of diseases. In this pictorial review, the chest CT findings are presented of patients with underlying lung diseases and overlapping COVID-19 pneumonia and the various reasons for radiological lung abnormalities in these patients are discussed.
Collapse
|
17
|
张 娜, 刘 建, 褚 亚, 帅 金, 黄 坤. [Clinical and gene mutation features of cystic fibrosis: an analysis of 8 cases]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2022; 24:771-777. [PMID: 35894192 PMCID: PMC9336621 DOI: 10.7499/j.issn.1008-8830.2203015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES To study the clinical features and gene mutation sites of children with cystic fibrosis (CF), in order to improve the understanding of CF to reduce misdiagnosis and missed diagnosis. METHODS A retrospective analysis was performed on the medical records of 8 children with CF who were diagnosed in Hebei Children's Hospital from 2018 to 2021. RESULTS Among the 8 children with CF, there were 5 boys and 3 girls, with an age of 3-48 months (median 8 months) at diagnosis, and the age of onset ranged from 0 to 24 months (median 2.5 months). Clinical manifestations included recurrent respiratory infection in 7 children, sinusitis in 3 children, bronchiectasis in 4 children, diarrhea in 8 children, fatty diarrhea in 3 children, suspected pancreatic insufficiency in 6 children, pancreatic cystic fibrosis in 1 child, malnutrition in 5 children, and pseudo-Bartter syndrome in 4 children. The most common respiratory pathogens were Pseudomonas aeruginosa (4 children). A total of 16 mutation sites were identified by high-throughput sequencing, multiplex ligation-dependent probe amplification, and Sanger sequencing, including 5 frameshift mutations, 4 nonsense mutations, 4 missense mutations, 2 exon deletions, and 1 splice mutation. CFTR mutations were found in all 8 children. p.G970D was the most common mutation (3 children), and F508del mutation was observed in one child. Four novel mutations were noted: deletion exon15, c.3796_3797dupGA(p.I1267Kfs*12), c.2328dupA(p.V777Sfs*2), and c.2950G>A(p.D984N). CONCLUSIONS p.G970D is the most common mutation type in children with CF. CF should be considered for children who have recurrent respiratory infection or test positive for Pseudomonas aeruginosa, with or without digestive manifestations or pseudo-Bartter syndrome.
Collapse
|
18
|
Migliorisi G, Collura M, Ficili F, Pensabene T, Bongiorno D, Collura A, Di Bernardo F, Stefani S. Elexacaftor-Tezacaftor-Ivacaftor as a Final Frontier in the Treatment of Cystic Fibrosis: Definition of the Clinical and Microbiological Implications in a Case-Control Study. Pharmaceuticals (Basel) 2022; 15:ph15050606. [PMID: 35631432 PMCID: PMC9145356 DOI: 10.3390/ph15050606] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 02/01/2023] Open
Abstract
The use of modulator drugs that target the Cystic Fibrosis transmembrane conductance regulator (CFTR) is the final frontier in the treatment of Cystic Fibrosis (CF), a genetic multiorgan disease. F508del is the most common mutation causing defective formation and function of CFTR. Elexacaftor-tezacaftor-ivacaftor is the first triple combination of CFTR modulators. Herein, we report on a one-year case-control study that involved 26 patients with at least one F508del mutation. Patients were assigned to two similar groups, and patients with the worse clinical condition received treatment with the triple combination therapy. The study aimed to define the clinical and especially microbiological implications of treatment administration. The treatment provided significant clinical benefits in terms of respiratory, pancreatic, and sweat function. After one year of therapy, airway infection rates decreased and pulmonary exacerbations were dramatically reduced. Finally, treated patients reported a surprising improvement in their quality of life. The use of triple combination therapy has become essential in most CF people carrying the F508del mutation. Although the clinical and instrumental benefits of treatment are thoroughly known, further investigations are needed to properly define its microbiological respiratory implications and establish the real advantage of life-long treatment with elexacaftor-tezacaftor-ivacaftor.
Collapse
Affiliation(s)
- Giuseppe Migliorisi
- Unit of Clinical Microbiology, ARNAS Civico-Di Cristina-Benfratelli, 90127 Palermo, Italy; (G.M.); (T.P.); (A.C.); (F.D.B.)
| | - Mirella Collura
- Cystic Fibrosis and Respiratory Pediatric Center, Children’s Hospital G. Di Cristina, ARNAS Civico-Di Cristina-Benfratelli, 90127 Palermo, Italy; (M.C.); (F.F.)
| | - Francesca Ficili
- Cystic Fibrosis and Respiratory Pediatric Center, Children’s Hospital G. Di Cristina, ARNAS Civico-Di Cristina-Benfratelli, 90127 Palermo, Italy; (M.C.); (F.F.)
| | - Tiziana Pensabene
- Unit of Clinical Microbiology, ARNAS Civico-Di Cristina-Benfratelli, 90127 Palermo, Italy; (G.M.); (T.P.); (A.C.); (F.D.B.)
| | - Dafne Bongiorno
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy;
| | - Antonina Collura
- Unit of Clinical Microbiology, ARNAS Civico-Di Cristina-Benfratelli, 90127 Palermo, Italy; (G.M.); (T.P.); (A.C.); (F.D.B.)
| | - Francesca Di Bernardo
- Unit of Clinical Microbiology, ARNAS Civico-Di Cristina-Benfratelli, 90127 Palermo, Italy; (G.M.); (T.P.); (A.C.); (F.D.B.)
| | - Stefania Stefani
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy;
- Correspondence: ; Tel.: +39-0954781232
| |
Collapse
|
19
|
Zeimpekis KG, Kellenberger CJ, Geiger J. Assessment of lung density in pediatric patients using three-dimensional ultrashort echo-time and four-dimensional zero echo-time sequences. Jpn J Radiol 2022; 40:722-729. [PMID: 35237890 PMCID: PMC8890957 DOI: 10.1007/s11604-022-01258-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/17/2022] [Indexed: 11/28/2022]
Abstract
Purpose Lung magnetic resonance imaging (MRI) using conventional sequences is limited due to strong signal loss by susceptibility effects of aerated lung. Our aim is to assess lung signal intensity in children on ultrashort echo-time (UTE) and zero echo-time (ZTE) sequences. We hypothesize that lung signal intensity can be correlated to lung physical density. Materials and methods Lung MRI was performed in 17 children with morphologically normal lungs (median age: 4.7 years, range 15 days to 17 years). Both lungs were manually segmented in UTE and ZTE images and the average signal intensities were extracted. Lung-to-background signal ratios (LBR) were compared for both sequences and between both patient groups using non-parametric tests and correlation analysis. Anatomical region-of-interest (ROI) analysis was performed for the normal cohort for assessment of the anteroposterior lung gradient. Results There was no significant difference between LBR of normal lungs using UTE and ZTE (p < 0.05). Both sequences revealed a LBR age-dependency with a high negative correlation for UTE (Rs = – 0.77; range 2.98–1.41) and ZTE (Rs = – 0.82; range 2.66–1.38)). Signal-to-noise (SNR) and contrast-to-noise ratios (CNR) were age-dependent for both sequences. SNR was higher for children up to 2 years old with 3D UTE Cones while for the rest it was higher with 4D ZTE. CNR was similar for both sequences. Posterior lung areas exhibited higher signal intensity compared to anterior ones (UTE 9.4% and ZTE 12% higher), both with high correlation coefficients (R2UTE = 0.94, R2ZTE = 0.97). Conclusion The ZTE sequence can measure signal intensity similarly to UTE in pediatric patients. Both sequences reveal an age- and gravity-dependency of LBR.
Collapse
Affiliation(s)
- Konstantinos G Zeimpekis
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, 3010, Bern, Switzerland.
| | - Christian J Kellenberger
- Department of Diagnostic Imaging, University Children's Hospital Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland.,Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Julia Geiger
- Department of Diagnostic Imaging, University Children's Hospital Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland.,Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
Practical protocol for lung magnetic resonance imaging and common clinical indications. Pediatr Radiol 2022; 52:295-311. [PMID: 34037828 PMCID: PMC8150155 DOI: 10.1007/s00247-021-05090-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/23/2021] [Accepted: 04/20/2021] [Indexed: 12/22/2022]
Abstract
Imaging speed, spatial resolution and availability have made CT the favored cross-sectional imaging modality for evaluating various respiratory diseases of children - but only for the price of a radiation exposure. MRI is increasingly being appreciated as an alternative to CT, not only for offering three-dimensional (3-D) imaging without radiation exposure at only slightly inferior spatial resolution, but also for its superior soft-tissue contrast and exclusive morpho-functional imaging capacities beyond the scope of CT. Continuing technical improvements and experience with this so far under-utilized modality contribute to a growing acceptance of MRI for an increasing number of indications, in particular for pediatric patients. This review article provides the reader with practical easy-to-use protocols for common clinical indications in children. This is intended to encourage pediatric radiologists to appreciate the new horizons for applications of this rapidly evolving technique in the field of pediatric respiratory diseases.
Collapse
|
21
|
Dournes G, Benlala I, Laurent F. Contrast-enhanced Magnetic Resonance Imaging Does Not Detect a Progression in Lung Morphological Score in Preschool Children with Cystic Fibrosis. Am J Respir Crit Care Med 2022; 205:134. [PMID: 34731588 PMCID: PMC8865590 DOI: 10.1164/rccm.202107-1747le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- Gaël Dournes
- University Bordeaux Bordeaux, France.,University Hospital Center of Bordeaux Pessac, France
| | - Ilyes Benlala
- University Bordeaux Bordeaux, France.,University Hospital Center of Bordeaux Pessac, France
| | - François Laurent
- University Bordeaux Bordeaux, France.,University Hospital Center of Bordeaux Pessac, France
| |
Collapse
|
22
|
Magnetic resonance imaging of cystic fibrosis: Multi-organ imaging in the age of CFTR modulator therapies. J Cyst Fibros 2021; 21:e148-e157. [PMID: 34879996 DOI: 10.1016/j.jcf.2021.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 12/18/2022]
|
23
|
Hassanzad M, Kiani A, Abedini A, Ghaffaripour H, Emami H, Alizadeh N, Zoghi G, Hashemi S, Velayati AA. Lung ultrasound for the diagnosis of cystic fibrosis pulmonary exacerbation. BMC Pulm Med 2021; 21:353. [PMID: 34743707 PMCID: PMC8572653 DOI: 10.1186/s12890-021-01728-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/03/2021] [Indexed: 01/03/2023] Open
Abstract
Background High-resolution computed tomography (HRCT) is the gold standard for the evaluation of cystic fibrosis (CF) lung disease; however, lung ultrasound (LUS) is being increasingly used for the assessment of lung in these patients due to its lower cost, availability, and lack of irradiation. We aimed to determine the diagnostic performance of LUS for the evaluation of CF pulmonary exacerbation. Methods This cross-sectional study included patients with CF pulmonary exacerbation admitted to Masih Daneshvari Hospital, Tehran, Iran, from March 21, 2020 to March 20, 2021. Age, gender, and body mass index (BMI) of the patients were recorded. All patients underwent chest X-ray (CXR), HRCT, and LUS on admission. Pleural thickening, atelectasis, air bronchogram, B-line, and consolidation were noted in LUS and then compared with the corresponding findings in CXR and HRCT. Taking HRCT findings as reference, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and diagnostic accuracy (DA) of LUS and CXR for the detection of each pulmonary abnormality were determined. Results Of the 30 patients included in this study, with a mean age of 19.62 ± 5.53 years, 14 (46.7%) were male. Of the 15 patients aged 2–20 years, BMI was below the 5th percentile in 10 (66.7%), within the 5–10 percentiles in 1 (6.7%), 10–25 percentiles in 3 (20%), and 25-50 percentiles in 1 (6.7%). The mean BMI for 15 patients > 20 years was 18.03 ± 2.53 kg/m2. LUS had better diagnostic performance compared to CXR for the detection of air bronchogram, consolidation, and pleural thickening (area under the receiver operating characteristic curve [AUROC]: 0.966 vs. 0.483, 0.900 vs. 0.575, and 0.656 vs. 0.531, respectively). Also, LUS was 100% and 96.7% specific for the diagnosis of pleural effusion and atelectasis, respectively. Conclusions LUS appears to be superior to CXR and comparable with HRCT for the evaluation of CF pulmonary exacerbation, especially in terms of air bronchogram and consolidation detection. LUS can be used to lengthen the HRCT evaluation intervals in this regard or utilized along with HRCT for better evaluation of CF pulmonary exacerbation.
Collapse
Affiliation(s)
- Maryam Hassanzad
- Pediatric Respiratory Diseases Research Center (PRDRC), National Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arda Kiani
- Chronic Respiratory Diseases Research Center, National Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefeh Abedini
- Chronic Respiratory Diseases Research Center, National Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hoseinali Ghaffaripour
- Pediatric Respiratory Diseases Research Center (PRDRC), National Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Habib Emami
- Tobacco Prevention and Control Research Center, National Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloufar Alizadeh
- Department of Biostatistics, National Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazal Zoghi
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Saeed Hashemi
- Pediatric Respiratory Diseases Research Center (PRDRC), National Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ali Akbar Velayati
- Mycobacteriology Research Center (MRC), National Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Luan X, Le Y, Jagadeeshan S, Murray B, Carmalt JL, Duke T, Beazley S, Fujiyama M, Swekla K, Gray B, Burmester M, Campanucci VA, Shipley A, Machen TE, Tam JS, Ianowski JP. cAMP triggers Na + absorption by distal airway surface epithelium in cystic fibrosis swine. Cell Rep 2021; 37:109795. [PMID: 34610318 DOI: 10.1016/j.celrep.2021.109795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/05/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022] Open
Abstract
A controversial hypothesis pertaining to cystic fibrosis (CF) lung disease is that the CF transmembrane conductance regulator (CFTR) channel fails to inhibit the epithelial Na+ channel (ENaC), yielding increased Na+ reabsorption and airway dehydration. We use a non-invasive self-referencing Na+-selective microelectrode technique to measure Na+ transport across individual folds of distal airway surface epithelium preparations from CFTR-/- (CF) and wild-type (WT) swine. We show that, under unstimulated control conditions, WT and CF epithelia exhibit similar, low rates of Na+ transport that are unaffected by the ENaC blocker amiloride. However, in the presence of the cyclic AMP (cAMP)-elevating agents forskolin+IBMX (isobutylmethylxanthine), folds of WT tissues secrete large amounts of Na+, while CFTR-/- tissues absorb small, but potentially important, amounts of Na+. In cAMP-stimulated conditions, amiloride inhibits Na+ absorption in CFTR-/- tissues but does not affect secretion in WT tissues. Our results are consistent with the hypothesis that ENaC-mediated Na+ absorption may contribute to dehydration of CF distal airways.
Collapse
Affiliation(s)
- Xiaojie Luan
- Department of Anatomy Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Yen Le
- Department of Anatomy Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Santosh Jagadeeshan
- Department of Anatomy Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Brendan Murray
- Department of Anatomy Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - James L Carmalt
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Tanya Duke
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Shannon Beazley
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Masako Fujiyama
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kurtis Swekla
- Animal Care and Research Support, Research Excellence and Innovation, University of Saskatchewan, Saskatoon, SK, Canada
| | - Bridget Gray
- Animal Care and Research Support, Research Excellence and Innovation, University of Saskatchewan, Saskatoon, SK, Canada
| | - Monique Burmester
- Animal Care Unit, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Veronica A Campanucci
- Department of Anatomy Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada; Respiratory Research Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Terry E Machen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Julian S Tam
- Department of Medicine, Division of Respirology, Critical Care, and Sleep Medicine, Royal University Hospital, University of Saskatchewan, Saskatoon, SK, Canada; Respiratory Research Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Juan P Ianowski
- Department of Anatomy Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada; Respiratory Research Centre, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
25
|
Goralski JL. Foretelling Early Lung Disease Progression in CF: The Combined Benefits of MRI and Newborn Screen. Am J Respir Crit Care Med 2021; 204:880-881. [PMID: 34384036 PMCID: PMC8534612 DOI: 10.1164/rccm.202107-1727ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Affiliation(s)
- Jennifer L Goralski
- University of North Carolina at Chapel Hill, 2331, Medicine, Chapel Hill, North Carolina, United States;
| |
Collapse
|
26
|
Geiger J, Zeimpekis KG, Jung A, Moeller A, Kellenberger CJ. Clinical application of ultrashort echo-time MRI for lung pathologies in children. Clin Radiol 2021; 76:708.e9-708.e17. [PMID: 34120734 DOI: 10.1016/j.crad.2021.05.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/20/2021] [Indexed: 01/05/2023]
Abstract
Lung magnetic resonance imaging (MRI) is considered to be challenging, because the low proton density of the tissue, fast signal decay, and respiratory artefacts hamper adequate image quality. MRI of the lungs and thorax is increasingly used in the paediatric population, because it is a radiation-free alternative to chest CT. Recently, ultrashort echo-time (UTE) sequences have been introduced into clinical MRI protocols, in order to improve the contrast-to-noise ratio due to reduced susceptibility artefacts and to depict structural alterations comparable to CT. The purpose of this review is to provide an overview of various clinical conditions and pathologies in the paediatric chest depicted by an UTE sequence, the so-called three-dimensional (3D) Cones sequence, in comparison with conventional MRI sequences. Besides describing typical features of cystic fibrosis, we present UTE application in other more or less common paediatric lung pathologies, for instance, interstitial pneumopathies, pulmonary infections, and congenital pulmonary malformations.
Collapse
Affiliation(s)
- J Geiger
- Department of Diagnostic Imaging, University Children's Hospital Zürich, Zürich, Switzerland; University of Zürich, University Children's Hospital Zürich, Zürich, Switzerland.
| | - K G Zeimpekis
- Department of Nuclear Medicine, University Hospital Zürich, Zürich, Switzerland; Department of Electrical Engineering and Information Technology, ETH Zürich, Zürich, Switzerland
| | - A Jung
- University of Zürich, University Children's Hospital Zürich, Zürich, Switzerland; Division of Respiratory Medicine and Cystic Fibrosis, University Children's Hospital Zürich, Zürich, Switzerland
| | - A Moeller
- University of Zürich, University Children's Hospital Zürich, Zürich, Switzerland; Division of Respiratory Medicine and Cystic Fibrosis, University Children's Hospital Zürich, Zürich, Switzerland
| | - C J Kellenberger
- Department of Diagnostic Imaging, University Children's Hospital Zürich, Zürich, Switzerland; University of Zürich, University Children's Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
27
|
Triphan SMF, Weinheimer O, Gutberlet M, Heußel CP, Vogel-Claussen J, Herth F, Vogelmeier CF, Jörres RA, Kauczor HU, Wielpütz MO, Biederer J, Jobst BJ. Echo Time-Dependent Observed Lung T 1 in Patients With Chronic Obstructive Pulmonary Disease in Correlation With Quantitative Imaging and Clinical Indices. J Magn Reson Imaging 2021; 54:1562-1571. [PMID: 34050576 DOI: 10.1002/jmri.27746] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND There is a clinical need for imaging-derived biomarkers for the management of chronic obstructive pulmonary disease (COPD). Observed pulmonary T1 (T1 (TE)) depends on the echo-time (TE) and reflects regional pulmonary function. PURPOSE To investigate the potential diagnostic value of T1 (TE) for the assessment of lung disease in COPD patients by determining correlations with clinical parameters and quantitative CT. STUDY TYPE Prospective non-randomized diagnostic study. POPULATION Thirty COPD patients (67.7 ± 6.6 years). Data from a previous study (15 healthy volunteers [26.2 ± 3.9 years) were used as reference. FIELD STRENGTH/SEQUENCE Study participants were examined at 1.5 T using dynamic contrast-enhanced three-dimensional gradient echo keyhole perfusion sequence and a multi-echo inversion recovery two-dimensional UTE (ultra-short TE) sequence for T1 (TE) mapping at TE1-5 = 70 μsec, 500 μsec, 1200 μsec, 1650 μsec, and 2300 μsec. ASSESSMENT Perfusion images were scored by three radiologists. T1 (TE) was automatically quantified. Computed tomography (CT) images were quantified in software (qCT). Clinical parameters including pulmonary function testing were also acquired. STATISTICAL TESTS Spearman rank correlation coefficients (ρ) were calculated between T1 (TE) and perfusion scores, clinical parameters and qCT. A P-value <0.05 was considered statistically significant. RESULTS Median values were T1 (TE1-5 ) = 644 ± 78 msec, 835 ± 92 msec, 835 ± 87 msec, 831 ± 131 msec, 893 ± 220 msec, all significantly shorter than previously reported in healthy subjects. A significant increase of T1 was observed from TE1 to TE2 , with no changes from TE2 to TE3 (P = 0.48), TE3 to TE4 (P = 0.94) or TE4 to TE5 (P = 0.02) which demonstrates an increase at shorter TEs than in healthy subjects. Moderate to strong Spearman's correlations between T1 and parameters including the predicted diffusing capacity for carbon monoxide (DLCO, ρ < 0.70), mean lung density (MLD, ρ < 0.72) and the perfusion score (ρ > -0.69) were found. Overall, correlations were strongest at TE2 , weaker at TE1 and rarely significant at TE4 -TE5 . DATA CONCLUSION In COPD patients, the increase of T1 (TE) with TE occurred at shorter TEs than previously found in healthy subjects. Together with the lack of correlation between T1 and clinical parameters of disease at longer TEs, this suggests that T1 (TE) quantification in COPD patients requires shorter TEs. The TE-dependence of correlations implies that T1 (TE) mapping might be developed further to provide diagnostic information beyond T1 at a single TE. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Simon M F Triphan
- Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany.,Translational Lung Research Center Heidelberg, Member of the German Lung Research Center, Heidelberg, Germany.,Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Oliver Weinheimer
- Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany.,Translational Lung Research Center Heidelberg, Member of the German Lung Research Center, Heidelberg, Germany.,Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Marcel Gutberlet
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Member of the German Center for Lung Research, Hannover, Germany
| | - Claus P Heußel
- Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany.,Translational Lung Research Center Heidelberg, Member of the German Lung Research Center, Heidelberg, Germany.,Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Jens Vogel-Claussen
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Member of the German Center for Lung Research, Hannover, Germany
| | - Felix Herth
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany.,Department of Pneumology and Critical Care Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Claus F Vogelmeier
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Member of the German Center for Lung Research, Marburg, Germany
| | - Rudolf A Jörres
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Hans-Ulrich Kauczor
- Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany.,Translational Lung Research Center Heidelberg, Member of the German Lung Research Center, Heidelberg, Germany.,Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Mark O Wielpütz
- Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany.,Translational Lung Research Center Heidelberg, Member of the German Lung Research Center, Heidelberg, Germany.,Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Jürgen Biederer
- Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany.,Translational Lung Research Center Heidelberg, Member of the German Lung Research Center, Heidelberg, Germany.,Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Bertram J Jobst
- Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany.,Translational Lung Research Center Heidelberg, Member of the German Lung Research Center, Heidelberg, Germany.,Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
28
|
Quantification of Phenotypic Variability of Lung Disease in Children with Cystic Fibrosis. Genes (Basel) 2021; 12:genes12060803. [PMID: 34070354 PMCID: PMC8229033 DOI: 10.3390/genes12060803] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/15/2021] [Accepted: 05/19/2021] [Indexed: 12/28/2022] Open
Abstract
Cystic fibrosis (CF) lung disease has the greatest impact on the morbidity and mortality of patients suffering from this autosomal-recessive multiorgan disorder. Although CF is a monogenic disorder, considerable phenotypic variability of lung disease is observed in patients with CF, even in those carrying the same mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene or CFTR mutations with comparable functional consequences. In most patients with CF, lung disease progresses from childhood to adulthood, but is already present in infants soon after birth. In addition to the CFTR genotype, the variability of early CF lung disease can be influenced by several factors, including modifier genes, age at diagnosis (following newborn screening vs. clinical symptoms) and environmental factors. The early onset of CF lung disease requires sensitive, noninvasive measures to detect and monitor changes in lung structure and function. In this context, we review recent progress with using multiple-breath washout (MBW) and lung magnetic resonance imaging (MRI) to detect and quantify CF lung disease from infancy to adulthood. Further, we discuss emerging data on the impact of variability of lung disease severity in the first years of life on long-term outcomes and the potential use of this information to improve personalized medicine for patients with CF.
Collapse
|
29
|
Brown R, Small DM, Doherty DF, Holsinger L, Booth R, Williams R, Ingram RJ, Elborn JS, Mall MA, Taggart CC, Weldon S. Therapeutic Inhibition of Cathepsin S Reduces Inflammation and Mucus Plugging in Adult βENaC-Tg Mice. Mediators Inflamm 2021; 2021:6682657. [PMID: 33828414 PMCID: PMC8004367 DOI: 10.1155/2021/6682657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/28/2021] [Accepted: 02/10/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Elevated levels of the cysteine protease cathepsin S (CatS) are associated with chronic mucoobstructive lung diseases such as cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD). We have previously demonstrated that prophylactic treatment with a CatS inhibitor from birth reduces inflammation, mucus plugging, and lung tissue damage in juvenile β-epithelial Na+ channel-overexpressing transgenic (βENaC-Tg) mice with chronic inflammatory mucoobstructive lung disease. In this study, we build upon this work to examine the effects of therapeutic intervention with a CatS inhibitor in adult βENaC-Tg mice with established disease. METHODS βENaC-Tg mice and wild-type (WT) littermates were treated with a CatS inhibitor from 4 to 6 weeks of age, and CatS-/- βENaC-Tg mice were analysed at 6 weeks of age. Bronchoalveolar lavage (BAL) fluid inflammatory cell counts were quantified, and lung tissue destruction and mucus obstruction were analysed histologically. RESULTS At 6 weeks of age, βENaC-Tg mice developed significant airway inflammation, lung tissue damage, and mucus plugging when compared to WT mice. CatS-/- βENaC-Tg mice and βENaC-Tg mice receiving inhibitor had significantly reduced airway mononuclear and polymorphonuclear (PMN) cell counts as well as mucus plugging. However, in contrast to CatS-/- βENaC-Tg mice, therapeutic inhibition of CatS in βENaC-Tg mice had no effect on established emphysema-like lung tissue damage. CONCLUSIONS These results suggest that while early CatS targeting may be required to prevent the onset and progression of lung tissue damage, therapeutic CatS targeting effectively inhibited airway inflammation and mucus obstruction. These results indicate the important role CatS may play in the pathogenesis and progression of mucoobstructive lung disease.
Collapse
Affiliation(s)
- Ryan Brown
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Donna M. Small
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Declan F. Doherty
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | | | | | - Richard Williams
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Rebecca J. Ingram
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - J. Stuart Elborn
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Marcus A. Mall
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Pediatric Pulmonology, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Clifford C. Taggart
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Sinéad Weldon
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| |
Collapse
|
30
|
Vij N. Prognosis-Based Early Intervention Strategies to Resolve Exacerbation and Progressive Lung Function Decline in Cystic Fibrosis. J Pers Med 2021; 11:jpm11020096. [PMID: 33546140 PMCID: PMC7913194 DOI: 10.3390/jpm11020096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 12/14/2022] Open
Abstract
Cystic fibrosis (CF) is a genetic disease caused by a mutation(s) in the CF transmembrane regulator (CFTR), where progressive decline in lung function due to recurring exacerbations is a major cause of mortality. The initiation of chronic obstructive lung disease in CF involves inflammation and exacerbations, leading to mucus obstruction and lung function decline. Even though clinical management of CF lung disease has prolonged survival, exacerbation and age-related lung function decline remain a challenge for controlling the progressive lung disease. The key to the resolution of progressive lung disease is prognosis-based early therapeutic intervention; thus, the development of novel diagnostics and prognostic biomarkers for predicting exacerbation and lung function decline will allow optimal management of the lung disease. Hence, the development of real-time lung function diagnostics such as forced oscillation technique (FOT), impulse oscillometry system (IOS), and electrical impedance tomography (EIT), and novel prognosis-based intervention strategies for controlling the progression of chronic obstructive lung disease will fulfill a significant unmet need for CF patients. Early detection of CF lung inflammation and exacerbations with the timely resolution will not only prolong survival and reduce mortality but also improve quality of life while reducing significant health care costs due to recurring hospitalizations.
Collapse
Affiliation(s)
- Neeraj Vij
- Precision Theranostics Inc., Baltimore, MD 21202, USA; or or ; Tel.: +1-240-623-0757
- VIJ Biotech, Baltimore, MD 21202, USA
- Department of Pediatrics & Pulmonary Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
31
|
Goralski JL, Stewart NJ, Woods JC. Novel imaging techniques for cystic fibrosis lung disease. Pediatr Pulmonol 2021; 56 Suppl 1:S40-S54. [PMID: 32592531 PMCID: PMC7808406 DOI: 10.1002/ppul.24931] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/25/2020] [Indexed: 12/24/2022]
Abstract
With an increasing number of patients with cystic fibrosis (CF) receiving highly effective CFTR (cystic fibrosis transmembrane regulator protein) modulator therapy, particularly at a young age, there is an increasing need to identify imaging tools that can detect and regionally visualize mild CF lung disease and subtle changes in disease state. In this review, we discuss the latest developments in imaging modalities for both structural and functional imaging of the lung available to CF clinicians and researchers, from the widely available, clinically utilized imaging methods for assessing CF lung disease-chest radiography and computed tomography-to newer techniques poised to become the next phase of clinical tools-structural/functional proton and hyperpolarized gas magnetic resonance imaging (MRI). Finally, we provide a brief discussion of several newer lung imaging techniques that are currently available only in selected research settings, including chest tomosynthesis, and fluorinated gas MRI. We provide an update on the clinical and/or research status of each technique, with a focus on sensitivity, early disease detection, and possibilities for monitoring treatment efficacy.
Collapse
Affiliation(s)
- Jennifer L Goralski
- UNC Cystic Fibrosis Center, Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Division of Pulmonary and Critical Care Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Division of Pediatric Pulmonology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Neil J Stewart
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital, Cincinnati, Ohio.,Department of Infection, Immunity & Cardiovascular Disease, POLARIS Group, Imaging Sciences, University of Sheffield, Sheffield, UK
| | - Jason C Woods
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio.,Department of Radiology, Cincinnati Children's Hospital, Cincinnati, Ohio
| |
Collapse
|
32
|
Zeimpekis KG, Geiger J, Wiesinger F, Delso G, Kellenberger CJ. Three-dimensional magnetic resonance imaging ultrashort echo-time cones for assessing lung density in pediatric patients. Pediatr Radiol 2021; 51:57-65. [PMID: 32860525 PMCID: PMC7796870 DOI: 10.1007/s00247-020-04791-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 05/18/2020] [Accepted: 07/29/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND MRI of lung parenchyma is challenging because of the rapid decay of signal by susceptibility effects of aerated lung on routine fast spin-echo sequences. OBJECTIVE To assess lung signal intensity in children on ultrashort echo-time sequences in comparison to a fast spin-echo technique. MATERIALS AND METHODS We conducted a retrospective study of lung MRI obtained in 30 patients (median age 5 years, range 2 months to 18 years) including 15 with normal lungs and 15 with cystic fibrosis. On a fast spin-echo sequence with radial readout and an ultrashort echo-time sequence, both lungs were segmented and signal intensities were extracted. We compared lung-to-background signal ratios and histogram analysis between the two patient cohorts using non-parametric tests and correlation analysis. RESULTS On ultrashort echo-time the lung-to-background ratio was age-dependent, ranging from 3.15 to 1.33 with high negative correlation (Rs = -0.86). Signal in posterior dependent portions of the lung was 18% and 11% higher than that of the anterior lung for age groups 0-2 and 2-18 years, respectively. The fast spin-echo sequence showed no variation of signal ratios by age or location, with a median of 0.99 (0.98-1.02). Histograms of ultrashort echo-time slices between controls and children with aggravated cystic fibrosis with mucus plugging and wall thickening exhibited significant discrepancies that differentiated between normal and pathological lungs. CONCLUSION Signal intensity of lung on ultrashort echo-time is higher than that on fast spin-echo sequences, is age-dependent and shows a gravity-dependent anterior to posterior gradient. This signal variation appears similar to lung density described on CT.
Collapse
Affiliation(s)
- Konstantinos G. Zeimpekis
- grid.412004.30000 0004 0478 9977Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland ,grid.5801.c0000 0001 2156 2780Department of Information Technology and Electrical Engineering, ETH, Zürich, Switzerland
| | - Julia Geiger
- grid.412341.10000 0001 0726 4330Department of Diagnostic Imaging, University Children’s Hospital Zürich, Zürich, Switzerland ,grid.412341.10000 0001 0726 4330Children’s Research Center, University Children’s Hospital Zürich, Zürich, Switzerland
| | | | - Gaspar Delso
- grid.418143.b0000 0001 0943 0267GE Healthcare, Waukesha, WI USA
| | - Christian J. Kellenberger
- grid.412341.10000 0001 0726 4330Department of Diagnostic Imaging, University Children’s Hospital Zürich, Zürich, Switzerland ,grid.412341.10000 0001 0726 4330Children’s Research Center, University Children’s Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
33
|
Lung MRI assessment with high-frequency noninvasive ventilation at 3 T. Magn Reson Imaging 2020; 74:64-73. [DOI: 10.1016/j.mri.2020.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 08/12/2020] [Accepted: 09/02/2020] [Indexed: 12/14/2022]
|
34
|
Tagliati C, Lanza C, Pieroni G, Amici L, Carotti M, Giuseppetti GM, Giovagnoni A. Ultra-low-dose chest CT in adult patients with cystic fibrosis using a third-generation dual-source CT scanner. Radiol Med 2020; 126:544-552. [PMID: 33200307 DOI: 10.1007/s11547-020-01304-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/29/2020] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Chest computed tomography (CT) examinations are performed routinely in some cystic fibrosis (CF) centers in order to evaluate lung disease progression in CF patients. Continuous CT technological advancement in theory could allows a lower radiation exposure of CF patients during chest CT examinations without an image quality reduction, and this could become increasingly important over time in order to reduce the cumulative radiation dose effects given the continuous increase of CF patients predicted median survival. OBJECTIVE The aim of this study was to compare objective and subjective image quality and radiation dose between low-dose chest CT examinations performed in adult CF patients using a third-generation DSCT scanner and a 64-slices single-source CT (SSCT) scanner. MATERIALS AND METHODS Between January 2016 and August 2019, 81 CF patients underwent low-dose chest CT examinations using both a 64-slices SSCT scanner (2016-2017) and a third-generation DSCT scanner (2018-2019). Objective image noise standard deviation (INSD), signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), overall subjective image quality (OSIQ), subjective image noise (SIN), subjective evaluation of streaking artifacts (SA), movement artifacts (MA) and edge resolution (ER), dose-length product (DLP), volume computed tomography dose index (CTDIvol) and effective radiation dose (ERD) were compared between DSCT and SSCT examinations. DSCT examinations consisted in spiral inspiratory end expiratory acquisitions. SSCT examinations consisted in spiral inspiratory acquisitions and five axial expiratory ones. RESULTS DSCT protocol showed statistically significant lower spiral inspiratory phase mean DLP, CTDIvol and ERD than SSCT protocol, with a 25% DLP, CTDIvol and ERD reduction. DSCT protocol showed statistically significant higher overall (inspiratory and expiratory phases) mean DLP, CTDIvol and ERD than SSCT protocol, with a 40% DLP, CTDIvol and ERD increase. Objective image quality (INSD, SNR and CNR) and SIN differences were not statistically significant, but subjective evaluation of DSCT images showed statistically significant better OSIQ and ER, as well as statistically significant lower SA and MA with respect to SSCT images. CONCLUSIONS To our knowledge, this is the first study evaluating chest CT image quality and radiation dose in adult CF patients using a third-generation DSCT scanner, and it showed that technological advancements could be used in order to reduce radiation exposure of volumetric examinations. The spiral inspiratory dose reduction can be obtained with concomitant improvements in subjective image quality with comparable objective quality. This will probably allow a wider use of this imaging modality in order to assess bronchiectasis and will probably foster spiral expiratory acquisition for small airways disease evaluation.
Collapse
Affiliation(s)
- Corrado Tagliati
- School of Radiology, Università Politecnica Delle Marche, Ancona, Italy.
| | - Cecilia Lanza
- Department of Radiological Sciences, Azienda Ospedaliero Universitaria Ospedali Riuniti, Università Politecnica Delle Marche, Ancona, Italy
| | - Giovanni Pieroni
- Department of Radiological Sciences, Azienda Ospedaliero Universitaria Ospedali Riuniti, Università Politecnica Delle Marche, Ancona, Italy
| | - Lucia Amici
- Department of Radiological Sciences, Azienda Ospedaliero Universitaria Ospedali Riuniti, Università Politecnica Delle Marche, Ancona, Italy
| | - Marina Carotti
- Department of Radiological Sciences, Azienda Ospedaliero Universitaria Ospedali Riuniti, Università Politecnica Delle Marche, Ancona, Italy
| | - Gian Marco Giuseppetti
- Department of Radiological Sciences, Azienda Ospedaliero Universitaria Ospedali Riuniti, Università Politecnica Delle Marche, Ancona, Italy
| | - Andrea Giovagnoni
- Department of Radiological Sciences, Azienda Ospedaliero Universitaria Ospedali Riuniti, Università Politecnica Delle Marche, Ancona, Italy
| |
Collapse
|
35
|
Woods JC, Wild JM, Wielpütz MO, Clancy JP, Hatabu H, Kauczor HU, van Beek EJ, Altes TA. Current state of the art MRI for the longitudinal assessment of cystic fibrosis. J Magn Reson Imaging 2020; 52:1306-1320. [PMID: 31846139 PMCID: PMC7297663 DOI: 10.1002/jmri.27030] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 12/13/2022] Open
Abstract
Pulmonary MRI can now provide high-resolution images that are sensitive to early disease and specific to inflammation in cystic fibrosis (CF) lung disease. With specificity and function limited via computed tomography (CT), there are significant advantages to MRI. Many of the modern MRI techniques can be performed throughout life, and can be employed to understand changes over time, in addition to quantification of treatment response. Proton density and T1 /T2 contrast images can be obtained within a single breath-hold, providing depiction of structural abnormalities and active inflammation. Modern radial and/or spiral ultrashort echo-time (UTE) techniques rival CT in resolution for depiction and quantification of structure, for both airway and parenchymal abnormalities. Contrast perfusion MRI techniques are now utilized routinely to visualize changes in pulmonary and bronchial circulation that routinely occur in CF lung disease, and noncontrast techniques are moving closer to clinical translation. Functional information can be obtained from noncontrast proton images alone, using techniques such as Fourier decomposition. Hyperpolarized-gas MRI, increasingly using 129 Xe, is now becoming more widespread and has been demonstrated to have high sensitivity to early airway obstruction in CF via ventilation MRI. The sensitivity of 129 Xe MRI promises future use in personalized medicine, management of early CF lung disease, and in future clinical trials. By combining structural and functional techniques, with or without hyperpolarized gases, regional structure-function relationships can be obtained, giving insight into the pathophysiology of disease and improved clinical management. This article reviews the modern MRI techniques that can routinely be employed for CF lung disease in nearly any large medical center. Level of Evidence: 4 Technical Efficacy Stage: 5 J. Magn. Reson. Imaging 2019.
Collapse
Affiliation(s)
- Jason C. Woods
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati Children’s Hospital and University of Cincinnati; Cincinnati OH, USA
| | - Jim M. Wild
- Department of Radiology, University of Sheffield, Sheffield UK
| | - Mark O. Wielpütz
- Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center (TLRC) Heidelberg, German Center for lung Research (DZL), Heidelberg, Germany
| | - John P. Clancy
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati Children’s Hospital and University of Cincinnati; Cincinnati OH, USA
| | - Hiroto Hatabu
- Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Hans-Ulrich Kauczor
- Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center (TLRC) Heidelberg, German Center for lung Research (DZL), Heidelberg, Germany
| | - Edwin J.R. van Beek
- Edinburgh Imaging, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Talissa A Altes
- Department of Radiology, University of Missouri, Columbia, MO, USA
| |
Collapse
|
36
|
Abstract
CLINICAL ISSUE Disease severity and mortality in patients with cystic fibrosis (CF) is mainly determined by (progressive) pulmonary lung disease. Early diagnosis and therapy are important and of prognostic value to conserve lung function. STANDARD RADIOLOGICAL METHODS Primary imaging techniques for lung imaging are x‑ray and computed tomography (CT) to monitor disease severity and regional distribution. METHODICAL INNOVATIONS Radiation-free imaging techniques such as magnetic resonance imaging (MRI) have gained interest over the last decade in order to prevent radiation damage. PERFORMANCE The main findings of CF lung disease are airway wall thickening, bronchiectasis, and mucus plugging, which are found in up to 60% of preschool age children. Pleural abnormalities and consolidations are often associated with pulmonary exacerbation. Young CF patients often show a mosaic pattern as functional changes and also perfusion defects can be seen from birth in 50% of CF patients by contrast-enhanced perfusion imaging, and in up to 90% of adult patients, with varying degrees of severity. Dilated bronchial arteries indicate an increased risk for hemoptysis. ACHIEVEMENTS Proton MRI is the sole imaging technique that can show structural and functional lung changes in one examination. Structured assessment using a scoring system helps to systematically grade the extent and severity of all CF-associated changes. CONCLUSIONS Lung MRI for cystic fibrosis has been recently established as a clinical standard examination and is routinely performed at experienced centers. More recently, it has also been used as an endpoint within the framework of clinical studies.
Collapse
|
37
|
[Cystic fibrosis and computed tomography of the lungs]. Radiologe 2020; 60:791-801. [PMID: 32621155 DOI: 10.1007/s00117-020-00713-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
With its high detail of morphological changes in lung parenchyma and airways as well as the possibilities for three-dimensional reconstruction, computed tomography (CT) represents a solid tool for the diagnosis and follow-up in patients suffering from cystic fibrosis (CF). Guidelines for standardized CT image acquisition in CF patients are still missing. In the mostly younger CF patients, an important issue is the well-considered use of radiation in CT imaging. The use of intravenous contrast agent is mainly restricted to acute emergency diagnostics. Typical morphological findings in CF lung disease are bronchiectasis, mucus plugging, or signs of decreased ventilation (air trapping) which can be detected with CT even in early stages. Various scoring systems that have become established over time are used to grade disease severity and for structured follow-up, e.g., in clinical research studies. With the technical development of CT, a number of postprocessing software tools were developed to help clinical reporting and overcome interreader differences for a standardized quantification. As an imaging modality free of ionizing radiation, magnetic resonance imaging (MRI) is becoming increasingly important in the diagnosis and follow-up of CF patients and is already frequently a substitute for CT for long-term follow-up at numerous specialized centers.
Collapse
|
38
|
|
39
|
Triphan SMF, Stahl M, Jobst BJ, Sommerburg O, Kauczor HU, Schenk JP, Alrajab A, Eichinger M, Mall MA, Wielpütz MO. Echo Time-Dependence of Observed Lung T 1 in Patients With Cystic Fibrosis and Correlation With Clinical Metrics. J Magn Reson Imaging 2020; 52:1645-1654. [PMID: 32613717 DOI: 10.1002/jmri.27271] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Noninvasive monitoring of early abnormalities and therapeutic intervention in cystic fibrosis (CF) lung disease using MRI is important. Lung T1 mapping has shown potential for local functional imaging without contrast material. Recently, it was discovered that observed lung T1 depends on the measurement echo time (TE). PURPOSE To examine TE-dependence of observed T1 in patients with CF and its correlation with clinical metrics. STUDY TYPE Prospective. POPULATION In all, 75 pediatric patients with CF (8.6 ± 6.1 years, range 0.1-23 years), with 32 reexamined after 1 year. FIELD STRENGTH/SEQUENCE Patients were examined at 1.5T using an established MRI protocol and a multiecho inversion recovery 2D ultrashort echo time (UTE) sequence for T1 (TE) mapping at five TEs including TE1 = 70 μs. ASSESSMENT Morphological and perfusion MRI were assessed by a radiologist (M.W.) with 11 years of experience using an established CF-MRI scoring system. T1 (TE) was quantified automatically. Clinical data including spirometry (FEV1pred%) and lung clearance index (LCI) were collected. STATISTICAL TESTS T1 (TE) was correlated with the CF-MRI score, clinical data, and LCI. RESULTS T1 (TE) showed a different curvature in CF than in healthy adults: T1 at TE1 was shorter in CF (1157 ms ± 73 ms vs. 1047 ms ± 70 ms, P < 0.001), but longer at TE3 (1214 ms ± 72 ms vs. 1314 ms ± 68 ms, P < 0.001) and later TEs. The correlations of T1 (TE) with patient age (ρTE1-TE5 = -0.55, -0.44, -0.24, -0.30, -0.22), and LCI (ρTE1-TE5 = -0.43, -0.42, -0.33, 0.27, -0.22) were moderate at ultra-short to short TE (P < 0.001) but decreased for longer TE. Moderate but similar correlations at all TE were found with MRI perfusion score (ρTE1-TE5 = -0.43, -0.51, -0.47, -0.46, -0.44) and FEV1pred% (ρTE1-TE5 = +0.44, +0.44, +0.43, +0.40, +0.39) (P < 0.05). DATA CONCLUSION TE should be considered when measuring lung T1 , since observed differences between CF and healthy subjects strongly depend on TE. The different variation of correlation coefficients with TE for structural vs. functional metrics implies that TE-dependence holds additional information which may help to discern effects of tissue structural abnormalities and abnormal perfusion. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY STAGE: 1 J. MAGN. RESON. IMAGING 2020;52:1645-1654.
Collapse
Affiliation(s)
- Simon M F Triphan
- Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Lung Research Center (DZL), Heidelberg, Germany.,Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Mirjam Stahl
- Translational Lung Research Center Heidelberg (TLRC), German Lung Research Center (DZL), Heidelberg, Germany.,Department of Pediatrics III, Division of Pediatric Pulmonology & Allergy and Cystic Fibrosis Center, University of Heidelberg, Heidelberg, Germany
| | - Bertram J Jobst
- Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Lung Research Center (DZL), Heidelberg, Germany.,Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Olaf Sommerburg
- Translational Lung Research Center Heidelberg (TLRC), German Lung Research Center (DZL), Heidelberg, Germany.,Department of Pediatrics III, Division of Pediatric Pulmonology & Allergy and Cystic Fibrosis Center, University of Heidelberg, Heidelberg, Germany
| | - Hans-Ulrich Kauczor
- Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Lung Research Center (DZL), Heidelberg, Germany.,Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Jens-Peter Schenk
- Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany
| | - Abdulsattar Alrajab
- Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany
| | - Monika Eichinger
- Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Lung Research Center (DZL), Heidelberg, Germany.,Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Marcus A Mall
- Translational Lung Research Center Heidelberg (TLRC), German Lung Research Center (DZL), Heidelberg, Germany.,Department of Pediatrics III, Division of Pediatric Pulmonology & Allergy and Cystic Fibrosis Center, University of Heidelberg, Heidelberg, Germany.,Department of Pediatric Pulmonology, Immunology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Mark O Wielpütz
- Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Lung Research Center (DZL), Heidelberg, Germany.,Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
40
|
Three-dimensional Ultrashort Echotime Magnetic Resonance Imaging for Combined Morphologic and Ventilation Imaging in Pediatric Patients With Pulmonary Disease. J Thorac Imaging 2020; 36:43-51. [PMID: 32453280 DOI: 10.1097/rti.0000000000000537] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE Ultrashort echotime (UTE) sequences aim to improve the signal yield in pulmonary magnetic resonance imaging (MRI). We demonstrate the initial results of spiral 3-dimensional (3D) UTE-MRI for combined morphologic and functional imaging in pediatric patients. METHODS Seven pediatric patients with pulmonary abnormalities were included in this observational, prospective, single-center study, with the patients having the following conditions: cystic fibrosis (CF) with middle lobe atelectasis, CF with allergic bronchopulmonary aspergillosis, primary ciliary dyskinesia, air trapping, congenital lobar overinflation, congenital pulmonary airway malformation, and pulmonary hamartoma.Patients were scanned during breath-hold in 5 breathing states on a 3-Tesla system using a prototypical 3D stack-of-spirals UTE sequence. Ventilation maps and signal intensity maps were calculated. Morphologic images, ventilation-weighted maps, and signal intensity maps of the lungs of each patient were assessed intraindividually and compared with reference examinations. RESULTS With a scan time of ∼15 seconds per breathing state, 3D UTE-MRI allowed for sufficient imaging of both "plus" pathologies (atelectasis, inflammatory consolidation, and pulmonary hamartoma) and "minus" pathologies (congenital lobar overinflation, congenital pulmonary airway malformation, and air trapping). Color-coded maps of normalized signal intensity and ventilation increased diagnostic confidence, particularly with regard to "minus" pathologies. UTE-MRI detected new atelectasis in an asymptomatic CF patient, allowing for rapid and successful therapy initiation, and it was able to reproduce atelectasis and hamartoma known from multidetector computed tomography and to monitor a patient with allergic bronchopulmonary aspergillosis. CONCLUSION 3D UTE-MRI using a stack-of-spirals trajectory enables combined morphologic and functional imaging of the lungs within ~115 second acquisition time and might be suitable for monitoring a wide spectrum of pulmonary diseases.
Collapse
|
41
|
McKelvey MC, Weldon S, McAuley DF, Mall MA, Taggart CC. Targeting Proteases in Cystic Fibrosis Lung Disease. Paradigms, Progress, and Potential. Am J Respir Crit Care Med 2020; 201:141-147. [PMID: 31626562 DOI: 10.1164/rccm.201906-1190pp] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
| | | | - Daniel F McAuley
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Marcus A Mall
- Department of Pediatric Pulmonology, Immunology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany; and.,German Center for Lung Research, Berlin, Germany
| | | |
Collapse
|
42
|
Affiliation(s)
- Mark O Wielpütz
- From the Translational Lung Research Center (TLRC), German Lung Research Center (DZL), University of Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany; Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany; and Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
43
|
Renz DM, Dohna M, Böttcher J, Kaireit TF, Pfeil A, Streitparth F, Vogel-Claussen J. Magnetresonanztomographie der Lunge bei zystischer Fibrose. Monatsschr Kinderheilkd 2020. [DOI: 10.1007/s00112-020-00890-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Konietzke P, Mueller J, Wuennemann F, Wagner WL, Schenk JP, Alrajab A, Kauczor HU, Stahl M, Mall MA, Wielpütz MO, Sommerburg O. The value of chest magnetic resonance imaging compared to chest radiographs with and without additional lung ultrasound in children with complicated pneumonia. PLoS One 2020; 15:e0230252. [PMID: 32191736 PMCID: PMC7082029 DOI: 10.1371/journal.pone.0230252] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 02/25/2020] [Indexed: 01/15/2023] Open
Abstract
Introduction In children with pneumonia, chest x-ray (CXR) is typically the first imaging modality used for diagnostic work-up. Repeated CXR or computed tomography (CT) are often necessary if complications such as abscesses or empyema arise, thus increasing radiation exposure. The aim of this retrospective study was to evaluate the potential of radiation-free chest magnetic resonance imaging (MRI) to detect complications at baseline and follow-up, compared to CXR with and without additional lung ultrasound (LUS). Methods Paired MRI and CXR scans were retrospectively reviewed by two blinded readers for presence and severity of pulmonary abscess, consolidation, bronchial wall thickening, mucus plugging and pleural effusion/empyema using a chest MRI scoring system. The scores for MRI and CXR were compared at baseline and follow-up. Furthermore, the MRI scores at baseline with and without contrast media were evaluated. Results 33 pediatric patients (6.3±4.6 years), who had 33 paired MRI and CXR scans at baseline and 12 at follow-up were included. MRI detected significantly more lung abscess formations with a prevalence of 72.7% compared to 27.3% by CXR at baseline (p = 0.001), whereas CXR+LUS was nearly as good as MRI. MRI also showed a higher sensitivity in detecting empyema (p = 0.003). At follow-up, MRI also showed a slightly better sensitivity regarding residual abscesses. The overall severity of disease was rated higher on MRI. Contrast material did not improve detection of abscesses or empyema by MRI. Conclusion CXR and LUS seem to be sufficient in most cases. In cases where LUS cannot be realized or the combination of CXR+LUS might be not sufficient, MRI, as a radiation free modality, should be preferred to CT. Furthermore, the admission of contrast media is not mandatory in this context.
Collapse
Affiliation(s)
- Philip Konietzke
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
- * E-mail:
| | - Jan Mueller
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Felix Wuennemann
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Willi L. Wagner
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Jens-Peter Schenk
- Department of Diagnostic and Interventional Radiology, Section Pediatric Radiology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Abdulsattar Alrajab
- Department of Diagnostic and Interventional Radiology, Section Pediatric Radiology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Hans-Ulrich Kauczor
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Mirjam Stahl
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Translational Pulmonology and Division of Pediatric Pulmonology & Allergy and Cystic Fibrosis Center, University Hospital of Heidelberg, Heidelberg, Germany
- Department of Pediatric Pulmonology, Immunology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Marcus A. Mall
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Translational Pulmonology and Division of Pediatric Pulmonology & Allergy and Cystic Fibrosis Center, University Hospital of Heidelberg, Heidelberg, Germany
- Department of Pediatric Pulmonology, Immunology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Mark O. Wielpütz
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Olaf Sommerburg
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Translational Pulmonology and Division of Pediatric Pulmonology & Allergy and Cystic Fibrosis Center, University Hospital of Heidelberg, Heidelberg, Germany
| |
Collapse
|
45
|
Deep learning to automate Brasfield chest radiographic scoring for cystic fibrosis. J Cyst Fibros 2020; 19:131-138. [DOI: 10.1016/j.jcf.2019.04.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/27/2019] [Accepted: 04/21/2019] [Indexed: 12/15/2022]
|
46
|
Leutz-Schmidt P, Eichinger M, Stahl M, Sommerburg O, Biederer J, Kauczor HU, Puderbach MU, Mall MA, Wielpütz MO. Ten years of chest MRI for patients with cystic fibrosis : Translation from the bench to clinical routine. Radiologe 2019; 59:10-20. [PMID: 31172247 DOI: 10.1007/s00117-019-0553-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Despite recent advances in our knowledge about the pathophysiology and treatment of cystic fibrosis (CF), pulmonary involvement remains the most important determinant of morbidity and mortality in patients with CF. Since lung function testing may not be sensitive enough for subclinical disease progression, and because young children may have normal spirometry results over a longer period of time, imaging today plays an increasingly important role in clinical routine and research for the monitoring of CF lung disease. In this regard, chest magnetic resonance imaging (MRI) could serve as a radiation-free modality for structural and functional lung imaging. METHODS Our research agenda encompassed the entire process of development, implementation, and validation of appropriate chest MRI protocols for use with infant and adult CF patients alike. RESULTS After establishing a general MRI protocol for state-of-the-art clinical 1.5-T scanners based on the available sequence technology, a semiquantitative scoring system was developed followed by cross-validation of the method against the established modalities of computed tomography, radiography, and lung function testing. Cross-sectional studies were then set up to determine the sensitivity of the method for the interindividual variation of the disease and for changes in disease severity after treatment. Finally, the MRI protocol was implemented at multiple sites to be validated in a multicenter setting. CONCLUSION After more than a decade, lung MRI has become a valuable tool for monitoring CF in clinical routine application and as an endpoint for clinical studies.
Collapse
Affiliation(s)
- Patricia Leutz-Schmidt
- Department of Diagnostic and Interventional Radiology, Subdivision Pulmonary Imaging, University Hospital of Heidelberg, University of Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany. .,Translational Lung Research Center Heidelberg (TLRC), German Lung Research Center (DZL), Im Neuenheimer Feld 156, 69120, Heidelberg, Germany. .,Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik, University Hospital of Heidelberg, Röntgenstr. 1, 69126, Heidelberg, Germany.
| | - Monika Eichinger
- Department of Diagnostic and Interventional Radiology, Subdivision Pulmonary Imaging, University Hospital of Heidelberg, University of Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Lung Research Center (DZL), Im Neuenheimer Feld 156, 69120, Heidelberg, Germany.,Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik, University Hospital of Heidelberg, Röntgenstr. 1, 69126, Heidelberg, Germany
| | - Mirjam Stahl
- Translational Lung Research Center Heidelberg (TLRC), German Lung Research Center (DZL), Im Neuenheimer Feld 156, 69120, Heidelberg, Germany.,Division of Pediatric Pulmonology & Allergy and Cystic Fibrosis Center, Department of Pediatrics, University of Heidelberg, Heidelberg, Germany.,Department of Translational Pulmonology, University Hospital Heidelberg, Im Neuenheimer Feld 156, 69120, Heidelberg, Germany
| | - Olaf Sommerburg
- Translational Lung Research Center Heidelberg (TLRC), German Lung Research Center (DZL), Im Neuenheimer Feld 156, 69120, Heidelberg, Germany.,Division of Pediatric Pulmonology & Allergy and Cystic Fibrosis Center, Department of Pediatrics, University of Heidelberg, Heidelberg, Germany.,Department of Translational Pulmonology, University Hospital Heidelberg, Im Neuenheimer Feld 156, 69120, Heidelberg, Germany
| | - Jürgen Biederer
- Department of Diagnostic and Interventional Radiology, Subdivision Pulmonary Imaging, University Hospital of Heidelberg, University of Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Lung Research Center (DZL), Im Neuenheimer Feld 156, 69120, Heidelberg, Germany.,Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik, University Hospital of Heidelberg, Röntgenstr. 1, 69126, Heidelberg, Germany.,Faculty of Medicine, University of Latvia, Raina bulvaris 19, LV-1586, Riga, Latvia
| | - Hans-Ulrich Kauczor
- Department of Diagnostic and Interventional Radiology, Subdivision Pulmonary Imaging, University Hospital of Heidelberg, University of Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Lung Research Center (DZL), Im Neuenheimer Feld 156, 69120, Heidelberg, Germany.,Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik, University Hospital of Heidelberg, Röntgenstr. 1, 69126, Heidelberg, Germany.,Department of Translational Pulmonology, University Hospital Heidelberg, Im Neuenheimer Feld 156, 69120, Heidelberg, Germany
| | - Michael U Puderbach
- Department of Diagnostic and Interventional Radiology, Subdivision Pulmonary Imaging, University Hospital of Heidelberg, University of Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Lung Research Center (DZL), Im Neuenheimer Feld 156, 69120, Heidelberg, Germany.,Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik, University Hospital of Heidelberg, Röntgenstr. 1, 69126, Heidelberg, Germany.,Department of Diagnostic and Interventional Radiology, Hufeland Hospital, Rudolph-Weiss-Straße 1-5, 99947, Bad Langensalza, Germany
| | - Marcus A Mall
- Translational Lung Research Center Heidelberg (TLRC), German Lung Research Center (DZL), Im Neuenheimer Feld 156, 69120, Heidelberg, Germany.,Department of Translational Pulmonology, University Hospital Heidelberg, Im Neuenheimer Feld 156, 69120, Heidelberg, Germany.,Department of Pediatric Pulmonology, Immunology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.,Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Str. 2, 10178, Berlin, Germany
| | - Mark O Wielpütz
- Department of Diagnostic and Interventional Radiology, Subdivision Pulmonary Imaging, University Hospital of Heidelberg, University of Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Lung Research Center (DZL), Im Neuenheimer Feld 156, 69120, Heidelberg, Germany.,Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik, University Hospital of Heidelberg, Röntgenstr. 1, 69126, Heidelberg, Germany
| |
Collapse
|
47
|
Benlala I, Hocke F, Macey J, Bui S, Berger P, Laurent F, Dournes G. Quantification of MRI T2-weighted High Signal Volume in Cystic Fibrosis: A Pilot Study. Radiology 2019; 294:186-196. [PMID: 31660805 DOI: 10.1148/radiol.2019190797] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Background In patients with cystic fibrosis (CF), pulmonary structures with high MRI T2 signal intensity relate to inflammatory changes in the lung and bronchi. These areas of pathologic abnormalities can serve as imaging biomarkers. The feasibility of automated quantification is unknown. Purpose To quantify the MRI T2 high-signal-intensity lung volume and T2-weighted volume-intensity product (VIP) by using a black-blood T2-weighted radial fast spin-echo sequence in participants with CF. Materials and Methods Healthy individuals and study participants with CF were prospectively enrolled between January 2017 and November 2017. All participants underwent a lung MRI protocol including T2-weighted radial fast spin-echo sequence. Participants with CF also underwent pulmonary function tests the same day. Participants with CF exacerbation underwent repeat MRI after their treatment with antibiotics. Two observers supervised automated quantification of T2-weighted high-signal-intensity volume (HSV) and T2-weighted VIP independently, and the average score was chosen as consensus. Statistical analysis used the Mann-Whitney test for comparison of medians, correlations used the Spearman test, comparison of paired medians used the Wilcoxon signed rank test, and reproducibility was evaluated by using intraclass correlation coefficient. Results In 10 healthy study participants (median age, 21 years [age range, 18-27 years]; six men) and 12 participants with CF (median age, 18 years [age range, 9-40 years]; eight men), T2-weighted HSV was equal to 0% and 4.1% (range, 0.1%-17%), respectively, and T2-weighted VIP was equal to 0 msec and 303 msec (range, 39-1012 msec), respectively (P < .001). In participants with CF, T2-weighted HSV or T2-weighted VIP were associated with forced expiratory volume in 1 second percentage predicted (ρ = -0.88 and ρ = -0.94, respectively; P < .001). In six participants with CF exacerbation and follow-up after treatment, a decrease in both T2-weighted HSV and T2-weighted VIP was observed (P = .03). The intra- and interobserver reproducibility of MRI were good (intraclass correlation coefficients, >0.99 and >0.99, respectively). Conclusion In patients with cystic fibrosis (CF), automated quantification of lung MRI high-signal-intensity volume was reproducible and correlated with pulmonary function testing severity, and it improved after treatment for CF exacerbation. © RSNA, 2019 Online supplemental material is available for this article. See also the editorial by Revel and Chassagnon in this issue.
Collapse
Affiliation(s)
- Ilyes Benlala
- From the Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France (I.B., P.B., F.L., G.D.); Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France (I.B., P.B., F.L., G.D.); and CHU de Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service d'Exploration Fonctionnelle Respiratoire, Unité de Pneumologie Pédiatrique, CIC 1401, F-33600 Pessac, France (I.B., F.H., J.M., S.B., P.B., F.L., G.D.)
| | - François Hocke
- From the Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France (I.B., P.B., F.L., G.D.); Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France (I.B., P.B., F.L., G.D.); and CHU de Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service d'Exploration Fonctionnelle Respiratoire, Unité de Pneumologie Pédiatrique, CIC 1401, F-33600 Pessac, France (I.B., F.H., J.M., S.B., P.B., F.L., G.D.)
| | - Julie Macey
- From the Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France (I.B., P.B., F.L., G.D.); Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France (I.B., P.B., F.L., G.D.); and CHU de Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service d'Exploration Fonctionnelle Respiratoire, Unité de Pneumologie Pédiatrique, CIC 1401, F-33600 Pessac, France (I.B., F.H., J.M., S.B., P.B., F.L., G.D.)
| | - Stéphanie Bui
- From the Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France (I.B., P.B., F.L., G.D.); Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France (I.B., P.B., F.L., G.D.); and CHU de Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service d'Exploration Fonctionnelle Respiratoire, Unité de Pneumologie Pédiatrique, CIC 1401, F-33600 Pessac, France (I.B., F.H., J.M., S.B., P.B., F.L., G.D.)
| | - Patrick Berger
- From the Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France (I.B., P.B., F.L., G.D.); Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France (I.B., P.B., F.L., G.D.); and CHU de Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service d'Exploration Fonctionnelle Respiratoire, Unité de Pneumologie Pédiatrique, CIC 1401, F-33600 Pessac, France (I.B., F.H., J.M., S.B., P.B., F.L., G.D.)
| | - François Laurent
- From the Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France (I.B., P.B., F.L., G.D.); Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France (I.B., P.B., F.L., G.D.); and CHU de Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service d'Exploration Fonctionnelle Respiratoire, Unité de Pneumologie Pédiatrique, CIC 1401, F-33600 Pessac, France (I.B., F.H., J.M., S.B., P.B., F.L., G.D.)
| | - Gaël Dournes
- From the Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France (I.B., P.B., F.L., G.D.); Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France (I.B., P.B., F.L., G.D.); and CHU de Bordeaux, Service d'Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service d'Exploration Fonctionnelle Respiratoire, Unité de Pneumologie Pédiatrique, CIC 1401, F-33600 Pessac, France (I.B., F.H., J.M., S.B., P.B., F.L., G.D.)
| |
Collapse
|
48
|
Wielpütz MO, Eichinger M, Wege S, Eberhardt R, Mall MA, Kauczor HU, Puderbach MU, Risse F, Heußel CP, Heußel G. Midterm Reproducibility of Chest Magnetic Resonance Imaging in Adults with Clinically Stable Cystic Fibrosis and Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2019; 200:103-107. [DOI: 10.1164/rccm.201812-2356le] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Mark O. Wielpütz
- University Hospital of HeidelbergHeidelberg, Germany
- German Center for Lung ResearchHeidelberg, Germany
| | - Monika Eichinger
- University Hospital of HeidelbergHeidelberg, Germany
- German Center for Lung ResearchHeidelberg, Germany
| | - Sabine Wege
- University Hospital of HeidelbergHeidelberg, Germany
| | - Ralf Eberhardt
- University Hospital of HeidelbergHeidelberg, Germany
- German Center for Lung ResearchHeidelberg, Germany
| | - Marcus A. Mall
- University Hospital of HeidelbergHeidelberg, Germany
- German Center for Lung ResearchHeidelberg, Germany
- University of HeidelbergHeidelberg, Germany
- Charité-Universitätsmedizin BerlinBerlin, Germany
- Berlin Institute of HealthBerlin, Germany
| | - Hans-Ulrich Kauczor
- University Hospital of HeidelbergHeidelberg, Germany
- German Center for Lung ResearchHeidelberg, Germany
| | - Michael U. Puderbach
- University Hospital of HeidelbergHeidelberg, Germany
- German Center for Lung ResearchHeidelberg, Germany
- Hufeland HospitalBad Langensalza, Germanyand
| | - Frank Risse
- Boehringer Ingelheim Pharma GmbH & Co. KGBiberach an der Riß, Germany
| | - Claus P. Heußel
- University Hospital of HeidelbergHeidelberg, Germany
- German Center for Lung ResearchHeidelberg, Germany
| | - Gudula Heußel
- University Hospital of HeidelbergHeidelberg, Germany
- German Center for Lung ResearchHeidelberg, Germany
| |
Collapse
|
49
|
Lin S, Lin M, Lau K. Efficacy of model-based iterative reconstruction in cystic fibrosis assessment using CT. Clin Radiol 2019; 74:569.e19-569.e27. [DOI: 10.1016/j.crad.2019.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/11/2019] [Indexed: 02/03/2023]
|
50
|
Stahl M, Wielpütz MO, Ricklefs I, Dopfer C, Barth S, Schlegtendal A, Graeber SY, Sommerburg O, Diekmann G, Hüsing J, Koerner-Rettberg C, Nährlich L, Dittrich AM, Kopp MV, Mall MA. Preventive Inhalation of Hypertonic Saline in Infants with Cystic Fibrosis (PRESIS). A Randomized, Double-Blind, Controlled Study. Am J Respir Crit Care Med 2019; 199:1238-1248. [DOI: 10.1164/rccm.201807-1203oc] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Mirjam Stahl
- Department of Translational Pulmonology
- Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, Department of Pediatrics, and
- Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
| | - Mark O. Wielpütz
- Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
- Department of Radiology, German Cancer Research Center, Heidelberg, Germany
| | - Isabell Ricklefs
- Division of Pediatric Allergology and Pneumology, Department of Pediatrics, Medical University of Lübeck, Lübeck, Germany
- Airway Research Center North, German Center for Lung Research, Lübeck, Germany
| | - Christian Dopfer
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease, German Center for Lung Research, Hannover, Germany
| | - Sandra Barth
- Department of Pediatrics, Justus-Liebig-University Giessen, Giessen, Germany
- Universities Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Anne Schlegtendal
- Department of Pediatric Pulmonology, University Children’s Hospital of Ruhr University Bochum at St. Josef-Hospital, Bochum, Germany
| | - Simon Y. Graeber
- Department of Translational Pulmonology
- Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, Department of Pediatrics, and
- Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
- Department of Pediatric Pulmonology, Immunology and Intensive Care Medicine, Charité–Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany; and
| | - Olaf Sommerburg
- Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, Department of Pediatrics, and
- Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
| | - Gesa Diekmann
- Division of Pediatric Allergology and Pneumology, Department of Pediatrics, Medical University of Lübeck, Lübeck, Germany
- Airway Research Center North, German Center for Lung Research, Lübeck, Germany
| | - Johannes Hüsing
- Coordination Center for Clinical Trials, Heidelberg University Hospital, Heidelberg, Germany
| | - Cordula Koerner-Rettberg
- Department of Pediatric Pulmonology, University Children’s Hospital of Ruhr University Bochum at St. Josef-Hospital, Bochum, Germany
| | - Lutz Nährlich
- Department of Pediatrics, Justus-Liebig-University Giessen, Giessen, Germany
- Universities Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Anna-Maria Dittrich
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease, German Center for Lung Research, Hannover, Germany
| | - Matthias V. Kopp
- Division of Pediatric Allergology and Pneumology, Department of Pediatrics, Medical University of Lübeck, Lübeck, Germany
- Airway Research Center North, German Center for Lung Research, Lübeck, Germany
| | - Marcus A. Mall
- Department of Translational Pulmonology
- Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, Department of Pediatrics, and
- Translational Lung Research Center Heidelberg, German Center for Lung Research, Heidelberg, Germany
- Department of Pediatric Pulmonology, Immunology and Intensive Care Medicine, Charité–Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany; and
| |
Collapse
|