1
|
Cheng Y, Liu Y, Lin L, Li D, Peng L, Zheng K, Tao J, Li M. The effects of Tripterygium wilfordii Hook F on renal outcomes in type 2 diabetic kidney disease patients with severe proteinuria: a single-center cohort study. Ren Fail 2024; 46:2295425. [PMID: 38178377 PMCID: PMC10773657 DOI: 10.1080/0886022x.2023.2295425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 12/11/2023] [Indexed: 01/06/2024] Open
Abstract
AIM Tripterygium wilfordii Hook F (TwHF) has been shown to substantially reduce proteinuria in patients with diabetic kidney disease (DKD); however, the effect of TwHF on renal outcomes in DKD remains unknown. Accordingly, we aimed to establish the effects of TwHF on renal outcomes in patients with DKD. METHODS Overall, 124 patients with DKD, induced by type 2 diabetes mellitus, with 24-h proteinuria > 2 g, and an estimated glomerular filtration rate > 30 mL/min/1.73 m2 were retrospectively investigated. The renal outcomes were defined as doubling serum creatinine levels or end-stage kidney disease. Kaplan-Meier curves and Cox regression analyses were performed to analyze prognostic factors for renal outcomes. RESULTS By the end of the follow-up, renal outcomes were observed in 23 and 11 patients in the non-TwHF and TwHF groups, respectively (p = 0.006). TwHF significantly reduced the risk of renal outcomes (adjusted hazard ratio [HR] 0.271, 95% confidence interval [CI] 0.111-0.660, p = 0.004) in patients with chronic kidney disease (CKD) G3 (adjusted HR 0.274, 95%CI 0.081-0.932, p = 0.039). Based on the Kaplan-Meier analysis, 1- and 3-year proportions of patients without renal outcomes were significantly lower in the non-TwHF group than those in the TwHF group (92.8% vs. 95.5% and 47.2% vs. 76.8%, respectively; p = 0.0018). CONCLUSION In DKD patients with severe proteinuria, TwHF could prevent DKD progression, especially in patients with CKD G3. A randomized clinical trial is needed to elucidate the benefits of TwHF on renal outcomes in patients with DKD.
Collapse
Affiliation(s)
- Yaqi Cheng
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yuhao Liu
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Liling Lin
- Department of Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Danni Li
- Department of Emergency, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liying Peng
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ke Zheng
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jianling Tao
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Mingxi Li
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Lv C, Cheng T, Zhang B, Sun K, Lu K. Triptolide protects against podocyte injury in diabetic nephropathy by activating the Nrf2/HO-1 pathway and inhibiting the NLRP3 inflammasome pathway. Ren Fail 2023; 45:2165103. [PMID: 36938748 PMCID: PMC10035962 DOI: 10.1080/0886022x.2023.2165103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
Objectives: Diabetic nephropathy (DN) is the most common microvascular complication of diabetes mellitus. This study investigated the mechanism of triptolide (TP) in podocyte injury in DN.Methods: DN mouse models were established by feeding with a high-fat diet and injecting with streptozocin and MPC5 podocyte injury models were induced by high-glucose (HG), followed by TP treatment. Fasting blood glucose and renal function indicators, such as 24 h urine albumin (UAlb), serum creatinine (SCr), blood urea nitrogen (BUN), and kidney/body weight ratio of mice were examined. H&E and TUNEL staining were performed for evaluating pathological changes and apoptosis in renal tissue. The podocyte markers, reactive oxygen species (ROS), oxidative stress (OS), serum inflammatory cytokines, nuclear factor-erythroid 2-related factor 2 (Nrf2) pathway-related proteins, and pyroptosis were detected by Western blotting and corresponding kits. MPC5 cell viability and pyroptosis were evaluated by MTT and Hoechst 33342/PI double-fluorescence staining. Nrf2 inhibitor ML385 was used to verify the regulation of TP on Nrf2.Results: TP improved renal function and histopathological injury of DN mice, alleviated podocytes injury, reduced OS and ROS by activating the Nrf2/heme oxygenase-1 (HO-1) pathway, and weakened pyroptosis by inhibiting the nod-like receptor (NLR) family pyrin domain containing 3 (NLRP3) inflammasome pathway. In vitro experiments further verified the inhibition of TP on OS and pyroptosis by mediating the Nrf2/HO-1 and NLRP3 inflammasome pathways. Inhibition of Nrf2 reversed the protective effect of TP on MPC5 cells.Conclusions: Overall, TP alleviated podocyte injury in DN by inhibiting OS and pyroptosis via Nrf2/ROS/NLRP3 axis.
Collapse
Affiliation(s)
- Chenlei Lv
- Department of Nephrology, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Tianyang Cheng
- Department of Nephrology, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Bingbing Zhang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ke Sun
- Department of Nephrology, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Keda Lu
- Department of Nephrology, The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Jiang S, Feng J, Jiang Y, Lu Z, Kong J, Li X, Lian H, Zhang F, Li Y, Li J. Triptolide attenuates CCL 4-induced liver fibrosis by regulating the differentiation of CD 4+ T cells in mice. Int Immunopharmacol 2023; 125:111206. [PMID: 37956491 DOI: 10.1016/j.intimp.2023.111206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/26/2023] [Accepted: 11/07/2023] [Indexed: 11/15/2023]
Abstract
Liver fibrosis is a major global health issue, and immune dysregulation is a main contributor. Triptolide is a natural immunosuppressive agent with demonstrated effectiveness in ameliorating liver fibrosis, but whether it exerts anti-liver fibrotic effects via immunoregulation remains obscure. In this study, first, by employing a CCL4-induced liver fibrosis mouse model, we demonstrated that triptolide could alleviate pathological damage to liver tissue and attenuate liver function damaged by CCL4. In addition, triptolide inhibited the expression of liver fibrotic markers such as hydroxyproline, collagen type IV, hyaluronidase, laminin, and procollagen type III, and the protein expression of α-SMA in CCL4-induced liver fibrosis. Second, with the help of network pharmacology, we predicted that triptolide's anti-liver fibrotic effects might occur through the regulation of Th17, Th1, and Th2 cell differentiation, which indicated that triptolide might mitigate liver fibrosis via immunoregulation. Finally, multiplex immunoassays and flow cytometry were adopted to verify this prediction. The results suggested that triptolide could reverse the aberrant expression of inflammatory cytokines caused by CCL4 and regulate the differentiation of Th1, Th2, Th17, and Treg cells. In conclusion, triptolide could attenuate CCL4-induced liver fibrosis by regulating the differentiation of CD4+ T cells. The results obtained in this study extended the application of triptolide and introduced a new mechanism of triptolide's anti-liver fibrotic effects.
Collapse
Affiliation(s)
- Shiyuan Jiang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jing Feng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yanling Jiang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhihao Lu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jingwei Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xueming Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Hui Lian
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Fang Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yu Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jian Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
4
|
Liu Y, Lv Y, Zhang T, Huang T, Lang Y, Sheng Q, Liu Y, Kong Z, Gao Y, Lu S, Yang M, Luan Y, Wang X, Lv Z. T cells and their products in diabetic kidney disease. Front Immunol 2023; 14:1084448. [PMID: 36776877 PMCID: PMC9909022 DOI: 10.3389/fimmu.2023.1084448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/02/2023] [Indexed: 01/27/2023] Open
Abstract
Diabetic kidney disease (DKD) is the most common cause of end-stage renal disease and has gradually become a public health problem worldwide. DKD is increasingly recognized as a comprehensive inflammatory disease that is largely regulated by T cells. Given the pivotal role of T cells and T cells-producing cytokines in DKD, we summarized recent advances concerning T cells in the progression of type 2 diabetic nephropathy and provided a novel perspective of immune-related factors in diabetes. Specific emphasis is placed on the classification of T cells, process of T cell recruitment, function of T cells in the development of diabetic kidney damage, and potential treatments and therapeutic strategies involving T cells.
Collapse
Affiliation(s)
- Yue Liu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yaodong Lv
- Department of Neurology, Yantai Yuhuangding Hospital, Shandong University, Yantai, China
| | - Tingwei Zhang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Tongtong Huang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yating Lang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qinghao Sheng
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yingxiao Liu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhijuan Kong
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ying Gao
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shangwei Lu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Meilin Yang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yaqi Luan
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xining Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhimei Lv
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
5
|
Molecular Mechanistic Pathways Targeted by Natural Compounds in the Prevention and Treatment of Diabetic Kidney Disease. Molecules 2022; 27:molecules27196221. [PMID: 36234757 PMCID: PMC9571643 DOI: 10.3390/molecules27196221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 12/03/2022] Open
Abstract
Diabetic kidney disease (DKD) is one of the most common complications of diabetes, and its prevalence is still growing rapidly. However, the efficient therapies for this kidney disease are still limited. The pathogenesis of DKD involves glucotoxicity, lipotoxicity, inflammation, oxidative stress, and renal fibrosis. Glucotoxicity and lipotoxicity can cause oxidative stress, which can lead to inflammation and aggravate renal fibrosis. In this review, we have focused on in vitro and in vivo experiments to investigate the mechanistic pathways by which natural compounds exert their effects against the progression of DKD. The accumulated and collected data revealed that some natural compounds could regulate inflammation, oxidative stress, renal fibrosis, and activate autophagy, thereby protecting the kidney. The main pathways targeted by these reviewed compounds include the Nrf2 signaling pathway, NF-κB signaling pathway, TGF-β signaling pathway, NLRP3 inflammasome, autophagy, glycolipid metabolism and ER stress. This review presented an updated overview of the potential benefits of these natural compounds for the prevention and treatment of DKD progression, aimed to provide new potential therapeutic lead compounds and references for the innovative drug development and clinical treatment of DKD.
Collapse
|
6
|
Gao J, Liang Z, Zhao F, Liu X, Ma N. Triptolide inhibits oxidative stress and inflammation via the microRNA-155-5p/brain-derived neurotrophic factor to reduce podocyte injury in mice with diabetic nephropathy. Bioengineered 2022; 13:12275-12288. [PMID: 35603354 PMCID: PMC9275869 DOI: 10.1080/21655979.2022.2067293] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Diabetic nephropathy (DN) is a complication of diabetes. This study sought to explore the mechanism of triptolide (TP) in podocyte injury in DN. DN mice were induced by high-fat diet&streptozocin and treated with TP. Fasting blood glucose, 24 h urine microalbumin (UMA), the pathological changes of renal tissues, and ultrastructure of renal podocytes were observed. Podocytes (MPC5) were induced by high-glucose (HG) in vitro and treated with TP or microRNA (miR)-155-5p mimics, with Irbesartan as positive control. Reactive oxygen species (ROS) and levels of oxidative stress (OS) and inflammatory factors in MPC5 were detected. The levels of miR-155-5p, podocyte marker protein Nephrin, and inflammatory factors in mice and MPC5 were detected. The targeting relationship between miR-155-5p and brain-derived neurotrophic factor (BDNF) was verified. The expression levels of BDNF were detected. miR-155-5p mimics and overexpressed (oe)-BDNF plasmids were co-transfected into mouse podocytes treated with HG and TP. TP reduced fasting glucose and 24 h UMA of DN mice, alleviated the pathological damage and podocyte injury, up-regulated Nephrin level, and down-regulated miR-155-5p. TP down-regulated the high expression of miR-155-5p in HG-induced MPC5 cells and inhibited HG-induced OS and inflammatory injury, and the improvement effect of TP was better than Irbesartan. Overexpression of miR-155-5p reversed the protective effect of TP on injured mouse podocytes. miR-155-5p targeted BDNF. oe-BDNF reversed the inhibitory effect of oe-miR-155-5p on TP protection on podocyte injury in mice. Overall, TP up-regulated BDNF by inhibiting miR-155-5p, thus inhibiting OS and inflammatory damage and alleviating podocyte injury in DN mice.
Collapse
Affiliation(s)
- Jian Gao
- The First Department of Nephrology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Zheng Liang
- The First Department of Nephrology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Fei Zhao
- The First Department of Nephrology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Xiaojing Liu
- The First Department of Nephrology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Ning Ma
- The First Department of Nephrology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| |
Collapse
|
7
|
Xie D, Li K, Ma T, Jiang H, Wang F, Huang M, Sheng Z, Xie Y. Therapeutic Effect and Safety of Tripterygium Glycosides Combined With Western Medicine on Type 2 Diabetic Kidney Disease: A Meta-Analysis. Clin Ther 2022; 44:246-256.e10. [DOI: 10.1016/j.clinthera.2021.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/23/2021] [Accepted: 12/09/2021] [Indexed: 02/08/2023]
|
8
|
Liu J, Zhang Y, Sheng H, Liang C, Liu H, Moran Guerrero JA, Lu Z, Mao W, Dai Z, Liu X, Zhang L. Hyperoside Suppresses Renal Inflammation by Regulating Macrophage Polarization in Mice With Type 2 Diabetes Mellitus. Front Immunol 2021; 12:733808. [PMID: 34925317 PMCID: PMC8678409 DOI: 10.3389/fimmu.2021.733808] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/04/2021] [Indexed: 12/29/2022] Open
Abstract
Accumulating evidence reveals that both inflammation and lymphocyte dysfunction play a vital role in the development of diabetic nephropathy (DN). Hyperoside (HPS) or quercetin-3-O-galactoside is an active flavonoid glycoside mainly found in the Chinese herbal medicine Tu-Si-Zi. Although HPS has a variety of pharmacological effects, including anti-oxidative and anti-apoptotic activities as well as podocyte-protective effects, its underlying anti-inflammatory mechanisms remain unclear. Herein, we investigated the therapeutic effects of HPS on murine DN and the potential mechanisms responsible for its efficacy. We used C57BLKS/6J Lepdb/db mice and a high glucose (HG)-induced bone marrow-derived macrophage (BMDM) polarization system to investigate the potentially protective effects of HPS on DN. Our results showed that HPS markedly reduced diabetes-induced albuminuria and glomerular mesangial matrix expansion, accompanied with a significant improvement of fasting blood glucose level, hyperlipidaemia and body weight. Mechanistically, pretreatment with HPS effectively regulated macrophage polarization by shifting proinflammatory M1 macrophages (F4/80+CD11b+CD86+) to anti-inflammatory M2 ones (F4/80+CD11b+CD206+) in vivo and in bone marrow-derived macrophages (BMDMs) in vitro, resulting in the inhibition of renal proinflammatory macrophage infiltration and the reduction in expression of monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor (TNF-α) and inducible nitric oxide synthase (iNOS) while increasing expression of anti-inflammatory cytokine Arg-1 and CD163/CD206 surface molecules. Unexpectedly, pretreatment with HPS suppressed CD4+ T cell proliferation in a coculture model of IL-4-induced M2 macrophages and splenic CD4+ T cells while promoting their differentiation into CD4+IL-4+ Th2 and CD4+Foxp3+ Treg cells. Taken together, we demonstrate that HPS ameliorates murine DN via promoting macrophage polarization from an M1 to M2 phenotype and CD4+ T cell differentiation into Th2 and Treg populations. Our findings may be implicated for the treatment of DN in clinic.
Collapse
Affiliation(s)
- Jialing Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Nephrology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yanmei Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Nephrology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongqin Sheng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Nephrology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chunling Liang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Section of Immunology and Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Huazhen Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Section of Immunology and Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | | | - Zhaoyu Lu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Nephrology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Mao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Nephrology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhenhua Dai
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Section of Immunology and Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Diseases, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Zhenhua Dai, ; Xusheng Liu, ; Lei Zhang,
| | - Xusheng Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Nephrology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Zhenhua Dai, ; Xusheng Liu, ; Lei Zhang,
| | - Lei Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Nephrology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Section of Immunology and Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
- *Correspondence: Zhenhua Dai, ; Xusheng Liu, ; Lei Zhang,
| |
Collapse
|
9
|
Shao M, Ye C, Bayliss G, Zhuang S. New Insights Into the Effects of Individual Chinese Herbal Medicines on Chronic Kidney Disease. Front Pharmacol 2021; 12:774414. [PMID: 34803715 PMCID: PMC8599578 DOI: 10.3389/fphar.2021.774414] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/20/2021] [Indexed: 12/22/2022] Open
Abstract
The clinical and experimental study into the effects of Chinese herbal medicines on chronic kidney disease has evolved over the past 40 years with new insight into their mechanism and evidence of their clinical effects. Among the many traditional Chinese herbs examined in chronic renal disease, five were found to have evidence of sufficient clinical efficacy, high frequency of use, and well-studied mechanism. They are: Abelmoschus manihot and Huangkui capsule, Salvia miltiorrhiza and its components (tanshinone II A, salvianolic acid A and B); Rhizoma coptidis and its monomer berberine; Tripterygium wilfordii and its components (triptolide, tripterygium glycosides); Kudzu root Pueraria and its monomer Puerarin. These Chinese herbal medications have pharmaceutical effects against fibrosis, inflammation and oxidative stress and also promote renal repair and regeneration. This article reviews their clinical efficacy, anti-fibrotic effects in animal models, and molecular mechanism of action.
Collapse
Affiliation(s)
- Minghai Shao
- Department of Nephrology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chaoyang Ye
- Department of Nephrology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - George Bayliss
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, United States
| | - Shougang Zhuang
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, United States.,Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Liang D, Mai H, Ruan F, Fu H. The Efficacy of Triptolide in Preventing Diabetic Kidney Diseases: A Systematic Review and Meta-Analysis. Front Pharmacol 2021; 12:728758. [PMID: 34658869 PMCID: PMC8517526 DOI: 10.3389/fphar.2021.728758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/12/2021] [Indexed: 12/09/2022] Open
Abstract
Ethnopharmacological Relevance: Triptolide (TP), the primary biologically active ingredient of Tripterygium wilfordii Hook F (TWHF), possesses the potential to solve the shortcomings of TWHF in treating diabetic kidney disease (DKD) in the clinic. Aim of the Study: We conducted a meta-analysis to evaluate the efficacy of TP in treating DKD and offer solid evidence for further clinical applications of TP. Materials and Methods: Eight databases (CNKI, VIP, CBM, WanFang, PubMed, Web of Science, EMBASE, and Cochrane library) were electronically searched for eligible studies until October 17, 2020. We selected animal experimental studies using TP versus renin-angiotensin system inhibitors or nonfunctional liquids to treat DKD by following the inclusion and exclusion criteria. Two researchers independently extracted data from the included studies and assessed the risk of bias with the Systematic Review Centre for Laboratory Animal Experimentation Risk of Bias tool. Fixed-effects meta-analyses, subgroup analyses, and meta-regression were conducted using RevMan 5.3 software. Inplasy registration number: INPLASY2020100042. Results: Twenty-six studies were included. Meta-analysis showed that TP significantly reduced albuminuria (14 studies; standardized mean difference SMD: -1.44 [-1.65, -1.23], I2 = 87%), urine albumin/urine creatinine ratio (UACR) (8 studies; SMD: -5.03 [-5.74, -4.33], I2 = 84%), total proteinuria (4 studies; SMD: -3.12 [-3.75, -2.49], I2 = 0%), serum creatinine (18 studies; SMD: -0.30 [-0.49, -0.12], I2 = 76%), and blood urea nitrogen (12 studies; SMD: -0.40 [-0.60, -0.20], I2 value = 55%) in DKD animals, compared to the vehicle control. However, on comparing TP to the renin-angiotensin system (RAS) inhibitors in DKD treatment, there was no marked difference in ameliorating albuminuria (3 studies; SMD: -0.35 [-0.72, 0.02], I2 = 41%), serum creatinine (3 studies; SMD: -0.07 [-0.62, 0.48], I2 = 10%), and blood urea nitrogen (2 studies; SMD: -0.35 [-0.97, 0.28], I2 = 0%). Of note, TP exhibited higher capacities in reducing UACR (2 studies; SMD: -0.66 [-1.31, -0.01], I2 = 0%) and total proteinuria (2 studies; SMD: -1.18 [-1.86, -2049], I2 = 0%). Meta-regression implicated that the efficacy of TP in reducing DKD albuminuria was associated with applied dosages. In addition, publication bias has not been detected on attenuating albuminuria between TP and RAS inhibitors after the diagnosis of DKD. Systematic Review Registration: https://clinicaltrials.gov/, identifier INPLASY2020100042.
Collapse
Affiliation(s)
- Dongning Liang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The First Medical College, Southern Medical University, Guangzhou, China
| | - Hanwen Mai
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The First Medical College, Southern Medical University, Guangzhou, China
| | - Fangyi Ruan
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The First Medical College, Southern Medical University, Guangzhou, China
| | - Haiyan Fu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
11
|
Tao M, Zheng D, Liang X, Wu D, Hu K, Jin J, He Q. Tripterygium glycoside suppresses epithelial‑to‑mesenchymal transition of diabetic kidney disease podocytes by targeting autophagy through the mTOR/Twist1 pathway. Mol Med Rep 2021; 24:592. [PMID: 34165172 PMCID: PMC8222798 DOI: 10.3892/mmr.2021.12231] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 03/25/2021] [Indexed: 12/23/2022] Open
Abstract
Tripterygium glycoside (TG) is a traditional Chinese medicine extract with immunosuppressive, anti-inflammatory and anti-renal fibrosis effects. Epithelial-mesenchymal transition (EMT) and cell apoptosis are considered to be the major cause of podocyte injury in diabetic kidney disease (DKD). However, it remains unknown as to whether TG is able to alleviate podocyte injury to prevent DKD progression. Therefore, the present study aimed to clarify the podocyte protective effects of TG on DKD. TG, Twist1 small interfering RNA (siRNA) and Twist1 overexpression vector were added to DKD mouse serum-induced podocytes in vitro. Autophagic and EMT activities were evaluated by immunofluorescence staining and western blot analysis. Apoptotic activity was evaluated by Annexin V-FITC/PI flow cytometric analysis. The results revealed that after treatment with DKD mouse serum, autophagy was decreased, whereas EMT and apoptotic rate were increased, in podocytes. In addition, Twist1 expression was increased in DKD-induced podocytes. Furthermore, following Twist1-small interfering RNA transfection, the DKD-induced podocyte EMT and apoptotic rate were markedly reduced, indicating that Twist1 may be a promising therapeutic target for DKD. The present results also revealed that overexpression of Twist1 increased podocyte apoptosis, although this was decreased after TG treatment, indicating that TG may exhibit a protective effect on podocytes by inhibiting the Twist1 signaling pathway. After the addition of 3-benzyl-5-((2-nitrophenoxy) methyl)-dihydrofuran-2(3H)-one, an activator of mTORC1, the effects of TG on podocyte EMT, apoptosis and the autophagy were reversed. These findings indicated that TG may alleviate EMT and apoptosis by upregulating autophagy through the mTOR/Twist1 signaling pathway in DKD.
Collapse
Affiliation(s)
- Mei Tao
- Department of Nephrology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China
| | - Danna Zheng
- Department of Nephrology, Zhejiang Provincial People's Hospital and Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Xudong Liang
- Department of Nephrology, Zhejiang Provincial People's Hospital and Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Diandian Wu
- Department of Nephrology, Zhejiang Provincial People's Hospital and Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Kang Hu
- Department of Nephrology, Zhejiang Provincial People's Hospital and Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Juan Jin
- Department of Nephrology, Zhejiang Provincial People's Hospital and Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Qiang He
- Department of Nephrology, Zhejiang Provincial People's Hospital and Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
12
|
Wang Y, Liu T, Ma F, Lu X, Mao H, Zhou W, Yang L, Li P, Zhan Y. A Network Pharmacology-Based Strategy for Unveiling the Mechanisms of Tripterygium Wilfordii Hook F against Diabetic Kidney Disease. J Diabetes Res 2020; 2020:2421631. [PMID: 33274236 PMCID: PMC7695487 DOI: 10.1155/2020/2421631] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/01/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Diabetic kidney disease (DKD) poses a major public-health burden globally. Tripterygium wilfordii Hook F (TwHF) is a widely employed herbal medicine in decreasing albuminuria among diabetic patients. However, a holistic network pharmacology strategy to investigate the active components and therapeutic mechanism underlying DKD is still unavailable. METHODS We collected TwHF ingredients and their targets by traditional Chinese Medicine databases (TCMSP). Then, we obtained DKD targets from GeneCards and OMIM and collected and analyzed TwHF-DKD common targets using the STRING database. Protein-protein interaction (PPI) network was established by Cytoscape and analyzed by MCODE plugin to get clusters. In addition, the cytoHubba software was used to identify hub genes. Finally, all the targets of clusters were subjected for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses via DAVID. RESULTS A total of 51 active ingredients in TwHF were identified and hit by 88 potential targets related to DKD. Compounds correspond to more targets include kaempferol, beta-sitosterol, stigmasterol, and Triptoditerpenic acid B, which appeared to be high-potential compounds. Genes with higher degree including VEGFA, PTGS2, JUN, MAPK8, and HSP90AA1 are hub genes of TwHF against DKD, which are involved in inflammation, insulin resistance, and lipid homeostasis. Kaempferol and VEGFA were represented as the uppermost active ingredient and core gene of TwHF in treating DKD, respectively. DAVID results indicated that TwHF may play a role in treating DKD through AGE-RAGE signaling pathway, IL-17 signaling pathway, TNF signaling pathway, insulin resistance, and calcium signaling pathway (P < 0.05). CONCLUSION Kaempferol and VEGFA were represented as the uppermost active ingredient and core gene of TwHF in treating DKD, respectively. The key mechanisms of TwHF against DKD might be involved in the reduction of renal inflammation by downregulating VEGFA.
Collapse
Affiliation(s)
- Yuyang Wang
- Department of Nephrology, Guang'anmen Hospital of China Academy of Traditional Chinese Medical Sciences, Beijing 100053, China
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tongtong Liu
- Department of Nephrology, Guang'anmen Hospital of China Academy of Traditional Chinese Medical Sciences, Beijing 100053, China
| | - Fang Ma
- Department of Nephrology, Guang'anmen Hospital of China Academy of Traditional Chinese Medical Sciences, Beijing 100053, China
| | - Xiaoguang Lu
- Department of Nephrology, Guang'anmen Hospital of China Academy of Traditional Chinese Medical Sciences, Beijing 100053, China
| | - Huimin Mao
- Department of Nephrology, Guang'anmen Hospital of China Academy of Traditional Chinese Medical Sciences, Beijing 100053, China
| | - Weie Zhou
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Liping Yang
- Department of Nephrology, Guang'anmen Hospital of China Academy of Traditional Chinese Medical Sciences, Beijing 100053, China
| | - Ping Li
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yongli Zhan
- Department of Nephrology, Guang'anmen Hospital of China Academy of Traditional Chinese Medical Sciences, Beijing 100053, China
| |
Collapse
|
13
|
Huang WJ, Liu WJ, Xiao YH, Zheng HJ, Xiao Y, Jia Q, Jiang HX, Zhu ZB, Xia CH, Han XT, Sun RX, Nan H, Feng ZD, Wang SD, Zhao JX. Tripterygium and its extracts for diabetic nephropathy: Efficacy and pharmacological mechanisms. Biomed Pharmacother 2020; 121:109599. [DOI: 10.1016/j.biopha.2019.109599] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/21/2019] [Accepted: 10/26/2019] [Indexed: 01/04/2023] Open
|
14
|
Yuan K, Li X, Lu Q, Zhu Q, Jiang H, Wang T, Huang G, Xu A. Application and Mechanisms of Triptolide in the Treatment of Inflammatory Diseases-A Review. Front Pharmacol 2019; 10:1469. [PMID: 31866868 PMCID: PMC6908995 DOI: 10.3389/fphar.2019.01469] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 11/13/2019] [Indexed: 12/19/2022] Open
Abstract
Bioactive compounds from medicinal plants with anti-inflammatory and immunosuppressive effects have been emerging as important sources of drugs for the treatment of inflammatory disorders. Triptolide, a diterpene triepoxide, is a pharmacologically active compound isolated from Tripterygium wilfordii Hook F (TwHF) that is used as a remedy for inflammatory and autoimmune diseases. As the most promising bioactive compound obtained from TwHF, triptolide has attracted considerable interest recently, especially for its potent anti-inflammatory and immunosuppressive activities. Over the past few years, an increasing number of studies have been published emphasizing the value of triptolide in the treatment of diverse inflammatory disorders. Here, we systematically review the mechanism of action and the therapeutic properties of triptolide in various inflammatory diseases according to different systematic organs, including lupus nephritis, inflammatory bowel disease, asthma, and rheumatoid arthritis with pubmed and Embase. Based on this review, potential research strategies might contribute to the clinical application of triptolide in the future.
Collapse
Affiliation(s)
- Kai Yuan
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaohong Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Qingyi Lu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Qingqing Zhu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Haixu Jiang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Ting Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Guangrui Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Anlong Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.,State Key Laboratory of Biocontrol, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, China
| |
Collapse
|
15
|
Yu ZW, Zhang J, Li X, Wang Y, Fu YH, Gao XY. A new research hot spot: The role of NLRP3 inflammasome activation, a key step in pyroptosis, in diabetes and diabetic complications. Life Sci 2019; 240:117138. [PMID: 31809715 DOI: 10.1016/j.lfs.2019.117138] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/26/2019] [Accepted: 11/30/2019] [Indexed: 01/06/2023]
Abstract
Pyroptosis is a form of cell death mediated by gasdermin D (GSDMD); it is characterised by NLRP3 inflammasome activation, caspase activation, cell membrane pore formation, and the release of interleukin-1β and interleukin-18. NLRP3 inflammasome activation plays a central role in pyroptosis. Recent research has suggested that NLRP3 inflammasome activation may be involved in the occurrence and development of diabetes mellitus and its associated complications. This finding provided the impetus for us to clarify the significance of pyroptosis in diabetes. In this review, we summarise the current understanding of the molecular mechanisms involved in pyroptosis, as well as recent advances in the role of NLRP3 inflammasome activation and pyroptosis in the development of diabetes and diabetic complications.
Collapse
Affiliation(s)
- Zi-Wei Yu
- Department of Endocrinology, The First Clinical Hospital of Harbin Medical University, Harbin 150001, China
| | - Jing Zhang
- Department of Endocrinology, The Heilongjiang Provincial Hospital, Harbin 150001, China
| | - Xin Li
- Department of Endocrinology, The First Clinical Hospital of Harbin Medical University, Harbin 150001, China
| | - Ying Wang
- Department of Endocrinology, The First Clinical Hospital of Harbin Medical University, Harbin 150001, China
| | - Yu-Hong Fu
- Department of Endocrinology, The First Clinical Hospital of Harbin Medical University, Harbin 150001, China
| | - Xin-Yuan Gao
- Department of Endocrinology, The First Clinical Hospital of Harbin Medical University, Harbin 150001, China.
| |
Collapse
|
16
|
Activation of natural killer T cells contributes to triptolide-induced liver injury in mice. Acta Pharmacol Sin 2018; 39:1847-1854. [PMID: 30013034 DOI: 10.1038/s41401-018-0084-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/19/2018] [Indexed: 12/24/2022] Open
Abstract
Triptolide (TP) is the main active ingredient of Tripterygium wilfordii Hook.f, which has attracted great interest due to its promising efficacy for autoimmune diseases and tumors. However, severe adverse reactions, especially hepatotoxicity, have restricted its approval in the market. In the present study we explored the role of hepatic natural killer T (NKT) cells in the pathogenesis of TP-induced liver injury in mice. TP (600 μg/kg/day, i.g.) was administered to female mice for 1, 3, or 5 days. We found that administration of TP dose-dependently induced hepatotoxicity, evidenced by the body weight reduction, elevated serum ALT and AST levels, as well as significant histopathological changes in the livers. However, the mice were resistant to the development of TP-induced liver injury when their NKT cells were depleted by injection of anti-NK1.1 mAb (200 μg, i.p.) on days -2 and -1 before TP administration. We further revealed that TP administration activated NKT cells, dominantly releasing Th1 cytokine IFN-γ, recruiting neutrophils and macrophages, and leading to liver damage. After anti-NK1.1 injection, however, the mice mainly secreted Th2 cytokine IL-4 in the livers and exhibited a significantly lower percentage of hepatic infiltrating neutrophils and macrophages upon TP challenge. The activation of NKT cells was associated with the upregulation of Toll-like receptor (TLR) signaling pathway. Collectively, these results demonstrate a novel role of NKT cells contributing to the mechanisms of TP-induced liver injury. More importantly, the regulation of NKT cells may promote effective measures that control drug-induced liver injury.
Collapse
|
17
|
Wang JM, Chen RX, Zhang LL, Ding NN, Liu C, Cui Y, Cheng YX. In vivo protective effects of chlorogenic acid against triptolide-induced hepatotoxicity and its mechanism. PHARMACEUTICAL BIOLOGY 2018; 56:626-631. [PMID: 31070533 PMCID: PMC6300082 DOI: 10.1080/13880209.2018.1527370] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
CONTEXT Triptolide (TP) has outstanding biological activities, but it induces toxicities, particular hepatotoxicity, severely limiting its clinical application. Chlorogenic acid (CGA) has prominently medicinal and nutritional values. However, until now, it is not known whether CGA could mitigate TP-induced hepatotoxicity. OBJECTIVE This study explored the possible protection of CGA against TP-induced hepatotoxicity and its potential mechanisms, for the first time. MATERIAL AND METHODS KM mice were treated orally with TP at a single dose of 1 mg/kg at 4 h after being treated with CGA (10, 20 and 40 mg/kg) for seven continuous days. Blood samples were collected at 24 h after TP administration for measurement of serum biomarkers, and hepatic tissues for analysis of potential mechanisms. RESULTS TP treatment-induced acute hepatotoxicity manifested by the significant elevation in serum alanine transaminase (93.9 U/L), aspartate transaminase (185.8 U/L) and hepatic malondialdehyde (0.637 μmol/mg protein), and the remarkable reduction in hepatic glutathione (1.425 μg/mg protein), glutathione S-transferase, glutathione peroxidase, superoxide dismutase and catalase (91.7, 320.7, 360.6 and 140.7 U/mg protein, respectively). In contrast, pretreatment with CGA for 7 days effectively attenuated acute liver injury and oxidative stress caused by TP with each ED50 of 44.4, 57.1, 46.6, 22.2, 40.9, 58.1, 86.4 and 61.0 mg/kg, respectively. Furthermore, pretreatment with CGA promoted the accumulation of Nrf2 into the nucleus, and up-regulated mRNA expression of Nrf2-target downstream genes. DISCUSSION AND CONCLUSIONS Combined CGA medication may probably reduce the risk of TP poisoning, and in-depth mechanisms can be developed around the signal molecules of Nrf2.
Collapse
Affiliation(s)
- Jun-Ming Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, China
- CONTACT Jun-Ming Wang College of Pharmacy, Henan University of Chinese Medicine, East Jinshui Road & Boxue road, Zhengzhou 450046, China
| | - Rong-Xing Chen
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Lu-Lu Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ning-Ning Ding
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Chen Liu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ying Cui
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, China
| | | |
Collapse
|
18
|
Xue M, Cheng Y, Han F, Chang Y, Yang Y, Li X, Chen L, Lu Y, Sun B, Chen L. Triptolide Attenuates Renal Tubular Epithelial-mesenchymal Transition Via the MiR-188-5p-mediated PI3K/AKT Pathway in Diabetic Kidney Disease. Int J Biol Sci 2018; 14:1545-1557. [PMID: 30263007 PMCID: PMC6158722 DOI: 10.7150/ijbs.24032] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 02/16/2018] [Indexed: 01/06/2023] Open
Abstract
Triptolide possesses the trait of renal protection. Epithelial-mesenchymal transition (EMT) is closely linked to the pathogenesis of diabetic kidney disease (DKD). MicroRNAs have recently emerged as critical regulators of DKD. However, it is poorly understood whether triptolide alleviates renal EMT by regulating microRNAs in DKD. In this study, we found that triptolide decreased albuminuria, improved the renal structure and reduced renal EMT in rats with DKD. Furthermore, activation of the PI3K/AKT signaling pathway was increased in diabetic rats, which was partly reversed by triptolide. Triptolide also alleviated glucose-induced EMT in HK-2 cells in vitro. PI3K/AKT signaling pathway activation was reduced after triptolide treatment. Moreover, triptolide decreased the increase in miR-188-5p expression stimulated by high glucose levels in HK-2 cells. miR-188-5p inhibited PTEN expression by directly interacting with the PTEN 3'-untranslated region. Additionally, downregulation of miR-188-5p, which imitates the effects of triptolide, attenuated the activation of the PI3K/AKT pathway and HG-induced EMT, whereas miR-188-5p overexpression reversed the effects of triptolide on the PI3K/AKT pathway and EMT. In conclusion, we demonstrated that triptolide ameliorates renal EMT via the PI3K/AKT signaling pathway through the interaction between miR-188-5p and PTEN, indicating that miR-188-5p may be a therapeutic target of triptolide in DKD.
Collapse
Affiliation(s)
- Mei Xue
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University
| | - Ying Cheng
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University
| | - Fei Han
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University
| | - Yunpeng Chang
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University
| | - Yang Yang
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University
| | - Xiaoyu Li
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University
| | - Li Chen
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University
| | - Yunhong Lu
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University
| | - Bei Sun
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University
| | - Liming Chen
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University
| |
Collapse
|
19
|
Zhao D, Li S, Liao T, Wei Y, Liu M, Han F, Luo Z, Liu X, Sun Q. Triptolide inhibits donor-specific antibody production and attenuates mixed antibody-mediated renal allograft injury. Am J Transplant 2018; 18:1083-1095. [PMID: 29178433 DOI: 10.1111/ajt.14602] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 11/12/2017] [Accepted: 11/16/2017] [Indexed: 01/25/2023]
Abstract
Donor-specific antibodies (DSAs) are major mediators of renal allograft injury, and strategies to inhibit DSAs are important in promoting long-term graft survival. Triptolide exhibits a wide spectrum of antiinflammatory and immunosuppressive activities, and in autoimmune diseases it inhibits autoantibody levels. In this study, we investigated the suppressive role of triptolide in the generation of DSAs in transplant recipients. We found that triptolide treatment of skin allograft recipients in mice significantly suppressed the development of circulating anti-donor-specific IgG and effectively alleviated DSA-mediated renal allograft injury, which led to prolonged allograft survival. In vitro studies revealed that triptolide inhibited the differentiation of B cells into CD138+ CD27++ plasma cells; reduced the levels of IgA, IgG, and IgM secreted by plasma cells; and repressed somatic hypermutation and class switch recombination of B cells. Moreover, triptolide-treated recipients showed reduced numbers of B cells, plasma cells, and memory B cells in spleens and decreased numbers of T, B, natural killer (NK) cells, and macrophages infiltrating grafts. These findings highlight the importance of triptolide in suppressing DSAs and establish triptolide as a novel therapeutic agent for antibody-mediated allograft rejection.
Collapse
Affiliation(s)
- Daqiang Zhao
- Organ Transplantation Research Institute, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Siwen Li
- Organ Transplantation Research Institute, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tao Liao
- Organ Transplantation Research Institute, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuan Wei
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Mingyu Liu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Fei Han
- Organ Transplantation Research Institute, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zihuan Luo
- Organ Transplantation Research Institute, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaonan Liu
- Organ Transplantation Research Institute, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qiquan Sun
- Organ Transplantation Research Institute, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
20
|
Su Z, Sun H, Ao M, Zhao C. Atomic Force Microscopy Study of the Anti-inflammatory Effects of Triptolide on Rheumatoid Arthritis Fibroblast-like Synoviocytes. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2017; 23:1002-1012. [PMID: 28743324 DOI: 10.1017/s1431927617012399] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
High-resolution atomic force microscopy (AFM) was used for the in situ evaluation of the anti-inflammatory effects of triptolide on rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS) to understand the anti-RA effects of triptolide, based on the morphological and biophysical changes observed in RA-FLS. RA-FLS have been reported to play a primary role in inflammatory bone destruction during the development of RA and thus are regarded as an important target for RA treatment. Triptolide pretreatment significantly inhibited tumor necrosis factor-α-induced expression of the interleukin (IL)-1β, IL-6, and IL-8 genes in MH7A cells. Using AFM, we showed that triptolide-induced morphological damage in MH7A cells by inducing significant ultrastructure changes in the membrane, which were closely related to triptolide-induced apoptosis in MH7A cells. Using force measurements determined with AFM, triptolide was shown to increase the stiffness of MH7A cells. These findings not only revealed the strong anti-inflammatory effects of triptolide on RA-FLS, highlighting triptolide as a potential anti-RA agent, but also revealed the possible use of AFM for studying anti-inflammatory responses in RA-FLS, which we expect to be developed into a potential tool for anti-RA drug studies in RA-FLS.
Collapse
Affiliation(s)
- Zhanhui Su
- Hebei Key Laboratory of Research and Development for Traditional Chinese Medicine, Institute of Chinese Materia Medica, Chengde Medical College, Chengde 067000, China
| | - Han Sun
- Chengde Nursing Vocational College, Chengde 067000, China
| | - Man Ao
- Affiliated Hospital of Chengde Medical College, Chengde 067000, China
| | - Chunying Zhao
- Hebei Key Laboratory of Research and Development for Traditional Chinese Medicine, Institute of Chinese Materia Medica, Chengde Medical College, Chengde 067000, China
| |
Collapse
|
21
|
Han F, Xue M, Chang Y, Li X, Yang Y, Sun B, Chen L. Triptolide Suppresses Glomerular Mesangial Cell Proliferation in Diabetic Nephropathy Is Associated with Inhibition of PDK1/Akt/mTOR Pathway. Int J Biol Sci 2017; 13:1266-1275. [PMID: 29104493 PMCID: PMC5666525 DOI: 10.7150/ijbs.20485] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 08/28/2017] [Indexed: 02/07/2023] Open
Abstract
Mesangial cell proliferation has been identified as a mainly contributing factor to glomerulosclerosis, which is typical of diabetic nephropathy. However, the specific mechanisms and therapies remain unclear. PDK1 is a critical regulator of cell proliferation, but the specific role of PDK1 in diabetic nephropathy has not been fully illuminated. In the current study, we demonstrated that triptolide (TP) ameliorated albuminuria in the high fat diet/STZ-induced diabetic rats. TP also suppressed the increased proliferating cell markers Ki-67 and PCNA in the kidney tissues. Our results of MTT and cell cycle analysis further confirmed that TP significantly inhibited mesangial cell proliferation, and the inhibition of PDK1/Akt/mTOR pathway might be the underlying mechanisms. In addition, we also found that the PDK1 activator (PS48) could reverse the cell proliferation inhibition role of TP. These data suggest that TP may be useful in prevention of diabetic glomerulosclerosis and that PDK1/Akt/mTOR pathway might be the underlying mechanism.
Collapse
Affiliation(s)
| | | | | | | | | | - Bei Sun
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University
| | - Liming Chen
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University
| |
Collapse
|
22
|
Li XY, Wang SS, Han Z, Han F, Chang YP, Yang Y, Xue M, Sun B, Chen LM. Triptolide Restores Autophagy to Alleviate Diabetic Renal Fibrosis through the miR-141-3p/PTEN/Akt/mTOR Pathway. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 9:48-56. [PMID: 29246323 PMCID: PMC5602517 DOI: 10.1016/j.omtn.2017.08.011] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 08/22/2017] [Accepted: 08/22/2017] [Indexed: 11/04/2022]
Abstract
Fibrosis is the major pathological feature of diabetic kidney disease (DKD). Autophagy, a process to maintain metabolic homeostasis, is obviously inhibited in DKD. Triptolide (TP) is a traditional Chinese medicine extract known for immune suppression and anti-inflammatory and anti-cancer activities. In this study, we investigated the effects of TP on autophagy and fibrosis in DKD. TP restored autophagy and alleviated fibrosis in DKD rats and high-glucose-incubated human mesangial cells. After we applied 3-methyladenine (an autophagy inhibitor) and autophagy-related gene 5-small interfering RNA (siRNA), we found that the improvement of fibrosis on TP was related to the restoration of autophagy. In addition, miR-141-3p levels were increased under high glucose but reduced after TP treatment. miR-141-3p overexpression aggravated the fibrosis and restrained the autophagy further, while miR-141-3p inhibition imitated the effects of TP. As an action target, phosphatase and tensin homolog (PTEN) showed corresponding opposite changes. After PTEN-siRNA transfection, the effects of TP on autophagy and fibrosis were inhibited. PTEN levels were downregulated, with downstream phosphorylated protein kinase B (Akt) and the mammalian target of rapamycin (mTOR) upregulated in high glucose, which were reversed by TP treatment. These findings indicate that TP alleviates fibrosis by restoring autophagy through the miR-141-3p/PTEN/Akt/mTOR pathway and is a novel therapeutic option for DKD.
Collapse
Affiliation(s)
- Xiao-Yu Li
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China
| | - Shan-Shan Wang
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China
| | - Zhe Han
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China
| | - Fei Han
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China
| | - Yun-Peng Chang
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China
| | - Yang Yang
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China
| | - Mei Xue
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China
| | - Bei Sun
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China.
| | - Li-Ming Chen
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|