1
|
Sex ratio and life history traits at reaching sexual maturity in the dioecious shrub Fuchsia parviflora: field and common garden experiments. JOURNAL OF TROPICAL ECOLOGY 2021. [DOI: 10.1017/s0266467421000043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractFuchsia parviflora is a dioecious shrub that depends on biotic pollination for reproduction. Previous studies suggest that the male plants produce more flowers, and male-biased sex ratios have been found in some natural populations. To assess whether the biased sex ratios found between genders in natural populations are present at the point at which plants reach sexual maturity, and to identify possible trade-offs between growth and reproduction, we performed a common garden experiment. Finally, to complement the information of the common garden experiment, we estimated the reproductive biomass allocation between genders in one natural population. Sex ratios at reaching sexual maturity in F. parviflora did not differ from 0.5, except in one population, which was the smallest seedling population. We found no differences between genders in terms of the probability of germination or flowering. When flowering began, female plants were taller than males and the tallest plants of both genders required more time to reach sexual maturity. Males produced significantly more flowers than females, and the number of flowers increased with plant height in both genders. Finally, in the natural population studied, the investment in reproductive biomass was seven-fold greater in female plants than in male plants. Our results showed no evidence of possible trade-offs between growth and reproduction. Despite the fact that female plants invest more in reproductive biomass, they were taller than the males after flowering, possibly at the expense of herbivory defence.
Collapse
|
2
|
Varga S, Soulsbury CD. Environmental stressors affect sex ratios in sexually dimorphic plant sexual systems. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:890-898. [PMID: 32333831 DOI: 10.1111/plb.13125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/29/2020] [Indexed: 06/11/2023]
Abstract
Revealing the environmental pressures determining the frequency of females amongst populations of sexually dimorphic plants is a key research question. Analyses of sex ratio variation have been mainly done in dioecious plants, which misses key plant sexual systems that might represent intermediate stages in the evolution of dioecy from hermaphroditism. We investigated female frequency across populations of sexually dimorphic plant species in relation to environmental stressors (temperature, precipitation), totaling 342 species, 2011 populations, representing 40 orders and three different sexual systems (dioecy, gynodioecy and subdioecy). We also included the biome where the population was located to test how female frequency may vary more broadly with climate conditions. After correcting for phylogeny, our results for gynodioecious systems showed a positive relationship between female frequency and increased environmental stress, with the main effects being temperature-related. Subdioecious systems also showed strong positive relationships with temperature, and positive and negative relationships related to precipitation, while no significant effects on sex ratio in dioecious plants were detected. Combined, we show that female frequencies in an intermediate sexual system on the pathway from hermaphroditism to dioecy respond strongly to environmental stressors and have different selective agents driving female frequency.
Collapse
Affiliation(s)
- S Varga
- School of Life Sciences, University of Lincoln, Joseph Banks Laboratories, Lincoln, LN6 7TS, UK
| | - C D Soulsbury
- School of Life Sciences, University of Lincoln, Joseph Banks Laboratories, Lincoln, LN6 7TS, UK
| |
Collapse
|
3
|
Sex-Related Differences in Growth, Herbivory, and Defense of Two Salix Species. FORESTS 2020. [DOI: 10.3390/f11040450] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sex-related differences in sex ratio, growth, and herbivory are widely documented in many dioecious plants. The common pattern is for males to grow faster than females and to be less well-defended against herbivores, but Salix is an exception. To study sex-related differences in the patterns of resource allocation for growth and defense in willows, we conducted a large-scale field experiment to investigate the flowering sex ratio, mortality, growth traits, insect herbivory and content of defensive substances in three Salix populations comprising two species. Results demonstrate that the two Salix suchowensis Cheng populations have a female bias in the sex ratio, whereas no bias is found in the S. triandra L. population. Male individuals in the S. suchowensis populations have significantly higher mortality rates than females. However, the mortality rate of S. triandra population has no gender difference. This finding may be one of the explanations for the difference in sex ratio between the two species. The females are larger in height, ground diameter, and biomass, and have a higher nutritional quality (N concentration) than males in both species. Nevertheless, slow-growing males have a higher concentration of the defense chemical (total phenol) and lower degrees of insect herbivory than females. Additionally, biomass is positively correlated with herbivory and negatively correlated with defense in the two willow species. It is concluded that the degrees of herbivory would have a great influence on resource allocation for growth and defense. Meanwhile, it also provides important implications for understanding the evolution of dioecy.
Collapse
|
4
|
Pucholt P, Hallingbäck HR, Berlin S. Allelic incompatibility can explain female biased sex ratios in dioecious plants. BMC Genomics 2017; 18:251. [PMID: 28335728 PMCID: PMC5364565 DOI: 10.1186/s12864-017-3634-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 03/16/2017] [Indexed: 12/29/2022] Open
Abstract
Background Biased sex ratios are common among dioecious plant species despite the theoretical prediction of selective advantage of even sex ratios. Albeit the high prevalence of deviations from even sex ratios, the genetic causes to sex biases are rarely known outside of a few model species. Here we present a mechanism underlying the female biased sex ratio in the dioecious willow species Salix viminalis. Results We compared the segregation pattern of genome-wide single nucleotide polymorphism markers in two contrasting bi-parental pedigree populations, the S3 with even sex ratio and the S5 with a female biased sex ratio. With the segregation analysis and comparison between the two populations, we were able to demonstrate that sex determination and sex ratio distortion are controlled by different genetic mechanisms. We furthermore located the sex ratio distorter locus to a Z/W-gametologous region on chromosome 15, which was in close linkage with the sex determination locus. Interestingly, all males in the population with biased sex ratio have in this sex ratio distorter locus the same genotype, meaning that males with the Z1/Z3-genotype were missing from the population, thereby creating the 2:1 female biased sex ratio. Conclusions We attribute the absence of Z1/Z3 males to an allelic incompatibility between maternally and paternally inherited alleles in this sex ratio distorter locus. Due to the tight linkage with the sex determination locus only male individuals are purged from the population at an early age, presumably before or during seed development. We showed that such allelic incompatibility could be stably maintained over evolutionary times through a system of overdominant or pseudooverdominant alleles. Thus, it is possible that the same mechanism generates the female biased sex ratio in natural willow populations. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3634-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pascal Pucholt
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, P.O. Box 7080, SE - 75007, Uppsala, Sweden.
| | - Henrik R Hallingbäck
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, P.O. Box 7080, SE - 75007, Uppsala, Sweden.,Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center, Swedish University of Agricultural Sciences, SE - 90183, Umeå, Sweden
| | - Sofia Berlin
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, P.O. Box 7080, SE - 75007, Uppsala, Sweden
| |
Collapse
|
5
|
Yang Y, Jiang H, Wang M, Korpelainen H, Li C. Male poplars have a stronger ability to balance growth and carbohydrate accumulation than do females in response to a short-term potassium deficiency. PHYSIOLOGIA PLANTARUM 2015; 155:400-413. [PMID: 25615581 DOI: 10.1111/ppl.12325] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 01/09/2015] [Accepted: 01/14/2015] [Indexed: 06/04/2023]
Abstract
Potassium (K) deficiency influences plant performance, such as ion uptake and carbohydrate transport. However, little is known about differences between males and females in response to K deficiency. In this study, dry matter accumulation, photosynthetic capacity, allocation patterns of K(+) , Na(+) and carbohydrates, and ultrastructural changes in males and females of Populus cathayana exposed to K deficiency were investigated. The results indicated that males maintained a significantly higher K(+) content and K(+) /Na(+) ratio in leaves and stems than did females under K deficiency. Moreover, K deficiency significantly increased the sucrose content of females, whereas no significant effect on males was detected. In addition, a comparative analysis showed that males allocated more resources to roots, while females allocated more to leaves, which resulted in sexually different root/shoot (R/S) ratios. Transmission electron microscopic (TEM) observations showed that males suffered fewer injuries than did females. These results suggested that males have a better ability to cope with K deficiency. In addition, the combined effects of salinity and K deficiency on poplars were studied. The results indicated that salt stress aggravates the negative effects caused by K deficiency. Taken together, our study provided evidence for gender-specific strategies in ion and carbohydrate allocation in poplars exposed to a short-term K deficiency. In leaves and stems, the lower K(+) accumulation inhibited sucrose translocation and resulted in a decreased R/S ratio, which may contribute to males having a stronger ability to balance growth and carbohydrate accumulation when compared with females.
Collapse
Affiliation(s)
- Yanni Yang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Hao Jiang
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| | - Maolin Wang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Helena Korpelainen
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Chunyang Li
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
6
|
Che-Castaldo C, Crisafulli CM, Bishop JG, Fagan WF. What causes female bias in the secondary sex ratios of the dioecious woody shrub Salix sitchensis colonizing a primary successional landscape? AMERICAN JOURNAL OF BOTANY 2015; 102:1309-1322. [PMID: 26290554 DOI: 10.3732/ajb.1500143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 07/14/2015] [Indexed: 06/04/2023]
Abstract
UNLABELLED • PREMISE OF THE STUDY Females often outnumber males in Salix populations, although the mechanisms behind female bias are not well understood and could be caused by both genetic and ecological factors. We investigated several ecological factors that could bias secondary sex ratios of Salix sitchensis colonizing Mount St. Helens after the 1980 eruption.• METHODS We determined whether S. sitchensis secondary sex ratios varied across disturbance zones created by the eruption and across mesic and hydric habitats within each zone. For one population, we tracked adult mortality, whole-plant reproductive allocation, the number of stems, and plant size for 2 years. In a field experiment, we created artificial streams to test whether vegetative reproduction via stem fragments was sex-biased.• KEY RESULTS We found a consistent 2:1 female bias in S. sitchensis secondary sex ratios across all disturbance zones and habitats. Despite female plants sometimes allocating more resources (in terms of carbon, nitrogen, and phosphorus) to reproduction than males, we found no evidence of sex-biased mortality. The establishment rate of S. sitchensis experimental stems did not differ between the sexes, indicating that vegetative reproduction was not distorting secondary sex ratios.• CONCLUSIONS We hypothesize that S. sitchensis secondary sex ratios depend on either early-acting genetic factors affecting the seed sex ratio or sex-specific germination or survival rates before maturity, as opposed to factors associated with reproduction in adult plants.
Collapse
Affiliation(s)
| | - Charlie M Crisafulli
- United States Forest Service, Pacific Northwest Research Station, Olympia, Washington 98512 USA
| | - John G Bishop
- Washington State University, School of Biological Sciences, Vancouver, Washington 98686 USA
| | - William F Fagan
- University of Maryland, Department of Biology, College Park, Maryland 20742 USA
| |
Collapse
|
7
|
Varga S, Kytöviita MM. Sex ratio and spatial distribution of male and female Antennaria dioica (Asteraceae) plants. ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY 2011. [DOI: 10.1016/j.actao.2011.05.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Does landscape fragmentation influence sex ratio of dioecious plants? A case study of Pistacia chinensis in the Thousand-Island Lake region of China. PLoS One 2011; 6:e22903. [PMID: 21829667 PMCID: PMC3150414 DOI: 10.1371/journal.pone.0022903] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Accepted: 07/08/2011] [Indexed: 11/22/2022] Open
Abstract
The Thousand-Island Lake region in Zhejiang Province, China is a highly fragmented landscape with a clear point-in-time of fragmentation as a result of flooding to form the reservoir. Islands in the artificial lake were surveyed to examine how population sex ratio of a dioecious plant specie Pistacia chinensis B. was affected by landscape fragmentation. A natural population on the mainland near the lake was also surveyed for comparison. Population size, sex ratio and diameter at breast height (DBH) of individuals were measured over 2 years. More than 1,500 individuals, distributed in 31 populations, were studied. Soil nitrogen in the different populations was measured to identify the relationship between sex ratio and micro-environmental conditions. In accordance with the results of many other reports on biased sex ratio in relation to environmental gradient, we found that poor soil nitrogen areas fostered male-biased populations. In addition, the degree of sex ratio bias increased with decreasing population size and population connectivity. The biased sex ratios were only found in younger individuals (less than 50 years old) in small populations, while a stable 1∶1 sex ratio was found in the large population on the mainland. We concluded that the effects of landscape fragmentation on the dioecious population sex ratio were mainly achieved in relation to changing soil nitrogen conditions in patches and pollen limitation within and among populations. Large populations could maintain a more suitable environment in terms of nutrient conditions and pollen flow, subsequently maintaining a stable sex ratio in dioecious plant populations. Both micro-environmental factors and spatial structure should be considered in fragmented landscape for the conservation of dioecious plant species.
Collapse
|
9
|
Guillon JM, Bottein J. A spatially explicit model of sex ratio evolution in response to sex-biased dispersal. Theor Popul Biol 2011; 80:141-9. [PMID: 21570994 DOI: 10.1016/j.tpb.2011.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 04/12/2011] [Accepted: 04/28/2011] [Indexed: 11/28/2022]
Abstract
Sex-biased dispersal occurs in all seed plants and many animal species. Theoretical models have shown that sex-biased dispersal can lead to evolutionarily stable biased sex ratios. Here, we use a spatially explicit chessboard model to simulate the evolution of sex ratio in response to sex-biased dispersal range and sex-biased dispersal rate. Two life cycles are represented in the model: one in which both sexes disperse before mating (DDM), the other in which males disperse before mating and mated females or zygotes disperse after mating (DMD). Model parameters include factors like dispersal rate, dispersal range, number of individuals per patch, and habitat heterogeneity. When dispersal range is sex biased, we find that, in a homogeneous environment, the sex ratio is generally biased towards the sex that disperses more widely (sex ratio range: 0.47-0.52). In a heterogeneous environment, the sex ratio is generally biased towards the more dispersive sex in good habitats, and towards the less dispersive sex in poor habitats (sex ratio range: 0-1). This is opposite to the effect of sex-biased dispersal rate, which favours the production of the more dispersive sex in poor habitats and the less dispersive sex in good habitats (sex ratio range: 0-1). To allow for a comparison with theoretical predictions, data concerning sex-biased dispersal and habitat-dependent sex ratios should thus incorporate information about the spatial scale of both dispersal and environmental heterogeneity.
Collapse
Affiliation(s)
- Jean-Michel Guillon
- Laboratoire Ecologie, Systématique et Evolution, AgroParisTech, CNRS, Université Paris-Sud, Orsay, France.
| | | |
Collapse
|
10
|
Nitrogen deposition limits photosynthetic response to elevated CO2 differentially in a dioecious species. Oecologia 2010; 165:41-54. [PMID: 20809407 DOI: 10.1007/s00442-010-1763-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 08/15/2010] [Indexed: 10/19/2022]
Abstract
Sexual dimorphisms of dioecious plants are important in controlling and maintaining sex ratios under changing climate environments. Yet, little is known about sex-specific responses to elevated CO(2) with soil nitrogen (N) deposition. To investigate sex-related physiological and biochemical responses to elevated CO(2) with N deposition, Populus cathayana Rehd. was employed as a model species. The cuttings were subjected to two CO(2) regimes (350 and 700 μmol mol(-1)) with two N levels (0 and 5 g N m(-2) year(-1)). Our results showed that elevated CO(2) and N deposition separately increased the total number of leaves, leaf area (LA), leaf mass, net photosynthetic rate (P(n)), light saturated photosynthetic rate (P(max)), chlorophyll a (Chl a), and chlorophyll a to chlorophyll b ratio (Chl a/b) in both males and females of P. cathayana. However, the effects on LA, leaf mass, P(n), P(max), Chl a and Chl a/b were weakened under the combined treatment of elevated CO(2) and N deposition. Males had higher leaf mass, P(n), P(max), apparent quantum yield (Φ), carboxylation efficiency (CE), Chl a, Chl a/b, leaf N, and root carbon to N ratio (C/N) than did females under elevated CO(2) with N deposition. In contrast to males, females had significantly higher levels of soluble sugars in leaves and greater starch accumulation in roots and stems under the same condition. The results of the present work imply that P. cathayana females are more responsive and suffer from greater negative effects on growth and photosynthetic capacity than do males when grown under elevated CO(2) with soil N deposition.
Collapse
|
11
|
|
12
|
Abstract
Seed samples collected from female Urtica dioica plants in the field showed considerable inter-family variation in the sex ratio (faction of males). To investigate the inheritance pattern of the sex ratio trait, crosses were performed between individual male and female plants from different sex ratio families. Our results suggest, at least for the families studied here, that maternal parents strongly contribute to the variation in the primary sex ratio. Furthermore, progeny sex ratios from reciprocal crosses were significantly different and resembled the sex ratios produced by their maternal parents. We discuss the possible mechanisms underlying maternal control.
Collapse
Affiliation(s)
- G A Glawe
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | | |
Collapse
|
13
|
Stehlik I, Barrett SCH. POLLINATION INTENSITY INFLUENCES SEX RATIOS IN DIOECIOUS RUMEX NIVALIS, A WIND-POLLINATED PLANT. Evolution 2006. [DOI: 10.1111/j.0014-3820.2006.tb01199.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Stehlik I, Barrett SCH. POLLINATION INTENSITY INFLUENCES SEX RATIOS IN DIOECIOUS RUMEX NIVALIS, A WIND-POLLINATED PLANT. Evolution 2006. [DOI: 10.1554/06-026.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Tsang AC, Corlett RT. Reproductive biology of the Ilex species (Aquifoliaceae) in Hong Kong, China. ACTA ACUST UNITED AC 2005. [DOI: 10.1139/b05-131] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fourteen wild species of shrubs and trees in the dioecious genus Ilex occur in Hong Kong (22°N, 114°E). All species flowered and formed fruits once each year. Sex ratios at flowering were male biased in all but one large population studied and, in most cases, this bias could not be explained by earlier flowering in males or higher female mortality. Apis cerana accounted for >87% of flower visits in all species and there was a significant positive relationship across species between the number of visits per flower per hour and the estimated mean number of flowers on a plant. The large green fruits of Ilex chapaensis Merr. were consumed only by masked palm civets, Paguma larvata, while the red or black fruits of other species were consumed by birds. The rate of fruit removal across species was positively related to sugar content and negatively related to phenolic and saponin contents. The mean number of pyrenes per fruit was 4.0–6.2 and the mean percentage of pyrenes containing seeds was 49%–90%. Most embryos were immature (heart shaped) at fruit maturity, but <50% of embryos developed further in some species. Floral investment was 0.93–5.84 times higher in male plants, but total reproductive investment was 0.62–8.3 higher in females.
Collapse
Affiliation(s)
- Anita C.W. Tsang
- Department of Ecology & Biodiversity, University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Richard T. Corlett
- Department of Ecology & Biodiversity, University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
16
|
de Jong TJ, Batenburg JC, Klinkhamer PG. Distance-dependent pollen limitation of seed set in some insect-pollinated dioecious plants. ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY 2005. [DOI: 10.1016/j.actao.2005.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|