1
|
Fousse M, Fassbender K, Schunk SJ, Schmidt T, Stögbauer J. Apheresis treatment in autoimmune neurological diseases: Predictors of good clinical outcome and success of follow-up therapy with B-cell depletion. J Neurol Sci 2024; 461:123050. [PMID: 38768532 DOI: 10.1016/j.jns.2024.123050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/14/2024] [Accepted: 05/13/2024] [Indexed: 05/22/2024]
Abstract
OBJECTIVE Apheresis treatment (AT) is an established standard of treatment in various neurological autoimmune diseases. Since not all patients equally benefit from AT, we saw the need to investigate the effect of different clinical, paraclinical and technical-apparative factors on the clinical outcome. Additionally, we wanted to find out whether patients who improved due to AT continue to be clinically stable under B-cell depletion (BCD). METHODS We screened all patients (n = 358) with neurological diseases who received AT at the Medical center of the University of the Saarland in the past 20 years. Different factors (e.g., age, sex, duration until onset of AT, type of AT, number of cycles, csf parameters) were analyzed retrospectively. Clinical disability was measured using the modified Rankin scale (mRS), visual acuity and the Expanded Disability Status Scale (EDSS). RESULTS 335 patients, categorized into 11 different autoimmune diagnosis groups, received a total of 2669 treatment cycles and showed a statistically significant improvement in mRS with AT (p < 0.001). Patients in American Society for Apheresis (ASFA) categories I (p = 0.013) and II (p = 0.035) showed a significantly greater benefit under AT than those in category III. The clinical outcome was better with shorter duration until AT onset, more cycles of AT, and more plasma volume exchanged and the presence of an autoimmune antibody. Patients who initially profited had a significantly more stable course of the disease after 1-Year-BCD (p = 0.039). DISCUSSION In the present study, we were able to identify various significant factors influencing the outcome of patients due to AT. Furthermore, we could show that patients with a response to AT can benefit from BCD follow-up therapy.
Collapse
Affiliation(s)
- Mathias Fousse
- Department of Neurology, Saarland University Medical Center, 66421 Homburg, Germany
| | - Klaus Fassbender
- Department of Neurology, Saarland University Medical Center, 66421 Homburg, Germany
| | - Stefan J Schunk
- Department of Internal Medicine IV - Nephrology and Hypertension, Saarland University Medical Center, 66421 Homburg, Germany
| | - Tina Schmidt
- Department of Transplant and Infection Immunology, Saarland University, 66421 Homburg, Germany
| | - Jakob Stögbauer
- Department of Neurology, Saarland University Medical Center, 66421 Homburg, Germany.
| |
Collapse
|
2
|
Niu J, Zhang L, Hu N, Cui L, Liu M. Long-term follow-up of relapse and remission of CIDP in a Chinese cohort. BMJ Neurol Open 2024; 6:e000651. [PMID: 38770161 PMCID: PMC11103238 DOI: 10.1136/bmjno-2024-000651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/28/2024] [Indexed: 05/22/2024] Open
Abstract
Objective We aim to describe the long-term outcome of chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) after immune treatment in a Chinese cohort. Methods Between March 2015 and March 2023, 89 patients fulfilling the criteria for CIDP were followed up for a median of 22 months after treatment. Nine had positive antibodies against nodal-paranodal cell-adhesion molecules. Patients were treated according to clinical requirements with prednisone, intravenous immunoglobulin (IVIg) and/or immunosuppressant. Results A total of 78/89 patients had decreased inflammatory neuropathy cause and treatment (INCAT) scores at the last follow-up. For CIDP patients treated with steroids, 35 were stable without relapse after cessation or with a small maintenance dose; 2 relapsed at a high dose (20 mg/day); 15 relapsed at a low dosage (<20 mg/day) and 11 did not respond. The INCAT before treatment was significantly lower in those without relapse (median INCAT 2 vs 3, p=0.030). IVIg was effective in 37/52 CIDP patients. 28 CIDP patients and 4 autoimmune nodopathy patients were treated with immunosuppressants. The average INCAT was 3.3±1.9 before and 1.9±1.3 after immunosuppressant treatment (p=0.001) in CIDP. Conclusion The long-term prognosis of CIDP patients was generally favourable. Nearly half of our patients treated with steroid were stable without relapse after cessation or with a small maintenance dose. The risk of relapse was higher in those with high INCAT. We recommend slowly tapering prednisone based on clinical judgement.
Collapse
Affiliation(s)
- Jingwen Niu
- Department of Neurology, Peking Union Medical College Hospital, Beijing, China
| | - Lei Zhang
- Department of Neurology, Peking Union Medical College Hospital, Beijing, China
| | - Nan Hu
- Department of Neurology, Peking Union Medical College Hospital, Beijing, China
| | - Liying Cui
- Department of Neurology, Peking Union Medical College Hospital, Beijing, China
| | - Mingsheng Liu
- Department of Neurology, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
3
|
Zou Y, Kamoi K, Zong Y, Zhang J, Yang M, Ohno-Matsui K. Vaccines and the Eye: Current Understanding of the Molecular and Immunological Effects of Vaccination on the Eye. Int J Mol Sci 2024; 25:4755. [PMID: 38731972 PMCID: PMC11084287 DOI: 10.3390/ijms25094755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Vaccination is a public health cornerstone that protects against numerous infectious diseases. Despite its benefits, immunization implications on ocular health warrant thorough investigation, particularly in the context of vaccine-induced ocular inflammation. This review aimed to elucidate the complex interplay between vaccination and the eye, focusing on the molecular and immunological pathways implicated in vaccine-associated ocular adverse effects. Through an in-depth analysis of recent advancements and the existing literature, we explored various mechanisms of vaccine-induced ocular inflammation, such as direct infection by live attenuated vaccines, immune complex formation, adjuvant-induced autoimmunity, molecular mimicry, hypersensitivity reactions, PEG-induced allergic reactions, Type 1 IFN activation, free extracellular RNA, and specific components. We further examined the specific ocular conditions associated with vaccination, such as uveitis, optic neuritis, and retinitis, and discussed the potential impact of novel vaccines, including those against SARS-CoV-2. This review sheds light on the intricate relationships between vaccination, the immune system, and ocular tissues, offering insights into informed discussions and future research directions aimed at optimizing vaccine safety and ophthalmological care. Our analysis underscores the importance of vigilance and further research to understand and mitigate the ocular side effects of vaccines, thereby ensuring the continued success of vaccination programs, while preserving ocular health.
Collapse
Affiliation(s)
| | - Koju Kamoi
- Department of Ophthalmology and Visual Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; (Y.Z.); (Y.Z.); (J.Z.); (M.Y.); (K.O.-M.)
| | | | | | | | | |
Collapse
|
4
|
Rajabally YA. Chronic Inflammatory Demyelinating Polyradiculoneuropathy: Current Therapeutic Approaches and Future Outlooks. Immunotargets Ther 2024; 13:99-110. [PMID: 38435981 PMCID: PMC10906673 DOI: 10.2147/itt.s388151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/02/2024] [Indexed: 03/05/2024] Open
Abstract
Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is a treatable autoimmune disorder, for which different treatment options are available. Current first-line evidence-based therapies for CIDP include intravenous and subcutaneous immunoglobulins, corticosteroids and plasma exchanges. Despite lack of evidence, cyclophosphamide, rituximab and mycophenolate mofetil are commonly used in circumstances of refractoriness and, more debatably, of perceived overdependence on first-line therapies. Rituximab is currently the object of a randomized controlled trial for CIDP. Based on case series, and although rarely considered, haematopoietic autologous stem cell transplants may be effective in refractory disease, with low mortality and high remission rates. A new therapeutic option has appeared with efgartigimod, a neonatal Fc receptor blocker, recently shown to significantly lower relapse rate versus placebo, after withdrawal from previous immunotherapy. Other neonatal Fc receptor blockers, nipocalimab and batoclimab, are under study. The C1 complement-inhibitor SAR445088, acting in the proximal portion of the classical complement system, is currently the subject of a new study in treatment-responsive, refractory and treatment-naïve subjects. Finally, Bruton Tyrosine Kinase inhibitors, which exert anti-B cell effects, may represent another future research avenue. The widening of the therapeutic armamentarium enhances the need for improved evaluation of treatment effects and reliable biomarkers in CIDP.
Collapse
Affiliation(s)
- Yusuf A Rajabally
- Inflammatory Neuropathy Clinic, Department of Neurology, University Hospitals Birmingham, Birmingham, B15 2TH, United Kingdom
- Aston Medical School, Aston University, Birmingham, United Kingdom
| |
Collapse
|
5
|
Bus SR, de Haan RJ, Vermeulen M, van Schaik IN, Eftimov F. Intravenous immunoglobulin for chronic inflammatory demyelinating polyradiculoneuropathy. Cochrane Database Syst Rev 2024; 2:CD001797. [PMID: 38353301 PMCID: PMC10865446 DOI: 10.1002/14651858.cd001797.pub4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
BACKGROUND Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) causes progressive or relapsing weakness and numbness of the limbs, which lasts for at least two months. Uncontrolled studies have suggested that intravenous immunoglobulin (IVIg) could help to reduce symptoms. This is an update of a review first published in 2002 and last updated in 2013. OBJECTIVES To assess the efficacy and safety of intravenous immunoglobulin in people with chronic inflammatory demyelinating polyradiculoneuropathy. SEARCH METHODS We searched the Cochrane Neuromuscular Specialised Register, CENTRAL, MEDLINE, Embase, and two trials registers on 8 March 2023. SELECTION CRITERIA We selected randomised controlled trials (RCTs) and quasi-RCTs that tested any dose of IVIg versus placebo, plasma exchange, or corticosteroids in people with definite or probable CIDP. DATA COLLECTION AND ANALYSIS We used standard Cochrane methods. Our primary outcome was significant improvement in disability within six weeks after the start of treatment, as determined and defined by the study authors. Our secondary outcomes were change in mean disability score within six weeks, change in muscle strength (Medical Research Council (MRC) sum score) within six weeks, change in mean disability score at 24 weeks or later, frequency of serious adverse events, and frequency of any adverse events. We used GRADE to assess the certainty of evidence for our main outcomes. MAIN RESULTS We included nine RCTs with 372 participants (235 male) from Europe, North America, South America, and Israel. There was low statistical heterogeneity between the trial results, and the overall risk of bias was low for all trials that contributed data to the analysis. Five trials (235 participants) compared IVIg with placebo, one trial (20 participants) compared IVIg with plasma exchange, two trials (72 participants) compared IVIg with prednisolone, and one trial (45 participants) compared IVIg with intravenous methylprednisolone (IVMP). We included one new trial in this update, though it contributed no data to any meta-analyses. IVIg compared with placebo increases the probability of significant improvement in disability within six weeks of the start of treatment (risk ratio (RR) 2.40, 95% confidence interval (CI) 1.72 to 3.36; number needed to treat for an additional beneficial outcome (NNTB) 4, 95% CI 3 to 5; 5 trials, 269 participants; high-certainty evidence). Since each trial used a different disability scale and definition of significant improvement, we were unable to evaluate the clinical relevance of the pooled effect. IVIg compared with placebo improves disability measured on the Rankin scale (0 to 6, lower is better) two to six weeks after the start of treatment (mean difference (MD) -0.26 points, 95% CI -0.48 to -0.05; 3 trials, 90 participants; high-certainty evidence). IVIg compared with placebo probably improves disability measured on the Inflammatory Neuropathy Cause and Treatment (INCAT) scale (1 to 10, lower is better) after 24 weeks (MD 0.80 points, 95% CI 0.23 to 1.37; 1 trial, 117 participants; moderate-certainty evidence). There is probably little or no difference between IVIg and placebo in the frequency of serious adverse events (RR 0.82, 95% CI 0.36 to 1.87; 3 trials, 315 participants; moderate-certainty evidence). The trial comparing IVIg with plasma exchange reported none of our main outcomes. IVIg compared with prednisolone probably has little or no effect on the probability of significant improvement in disability four weeks after the start of treatment (RR 0.91, 95% CI 0.50 to 1.68; 1 trial, 29 participants; moderate-certainty evidence), and little or no effect on change in mean disability measured on the Rankin scale (MD 0.21 points, 95% CI -0.19 to 0.61; 1 trial, 24 participants; moderate-certainty evidence). There is probably little or no difference between IVIg and prednisolone in the frequency of serious adverse events (RR 0.45, 95% CI 0.04 to 4.69; 1 cross-over trial, 32 participants; moderate-certainty evidence). IVIg compared with IVMP probably increases the likelihood of significant improvement in disability two weeks after starting treatment (RR 1.46, 95% CI 0.40 to 5.38; 1 trial, 45 participants; moderate-certainty evidence). IVIg compared with IVMP probably has little or no effect on change in disability measured on the Rankin scale two weeks after the start of treatment (MD 0.24 points, 95% CI -0.15 to 0.63; 1 trial, 45 participants; moderate-certainty evidence) or on change in mean disability measured with the Overall Neuropathy Limitation Scale (ONLS, 1 to 12, lower is better) 24 weeks after the start of treatment (MD 0.03 points, 95% CI -0.91 to 0.97; 1 trial, 45 participants; moderate-certainty evidence). The frequency of serious adverse events may be higher with IVIg compared with IVMP (RR 4.40, 95% CI 0.22 to 86.78; 1 trial, 45 participants, moderate-certainty evidence). AUTHORS' CONCLUSIONS Evidence from RCTs shows that IVIg improves disability for at least two to six weeks compared with placebo, with an NNTB of 4. During this period, IVIg probably has similar efficacy to oral prednisolone and IVMP. Further placebo-controlled trials are unlikely to change these conclusions. In one large trial, the benefit of IVIg compared with placebo in terms of improved disability score persisted for 24 weeks. Further research is needed to assess the long-term benefits and harms of IVIg relative to other treatments.
Collapse
Affiliation(s)
- Sander Rm Bus
- Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Rob J de Haan
- Clinical Research Unit, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Marinus Vermeulen
- Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Ivo N van Schaik
- Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Filip Eftimov
- Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
6
|
van Doorn IN, Eftimov F, Wieske L, van Schaik IN, Verhamme C. Challenges in the Early Diagnosis and Treatment of Chronic Inflammatory Demyelinating Polyradiculoneuropathy in Adults: Current Perspectives. Ther Clin Risk Manag 2024; 20:111-126. [PMID: 38375075 PMCID: PMC10875175 DOI: 10.2147/tcrm.s360249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/14/2024] [Indexed: 02/21/2024] Open
Abstract
Diagnosing Chronic Inflammatory Demyelinating Polyneuropathy (CIDP) poses numerous challenges. The heterogeneous presentations of CIDP variants, its mimics, and the complexity of interpreting electrodiagnostic criteria are just a few of the many reasons for misdiagnoses. Early recognition and treatment are important to reduce the risk of irreversible axonal damage, which may lead to permanent disability. The diagnosis of CIDP is based on a combination of clinical symptoms, nerve conduction study findings that indicate demyelination, and other supportive criteria. In 2021, the European Academy of Neurology (EAN) and the Peripheral Nerve Society (PNS) published a revision on the most widely adopted guideline on the diagnosis and treatment of CIDP. This updated guideline now includes clinical and electrodiagnostic criteria for CIDP variants (previously termed atypical CIDP), updated supportive criteria, and sensory criteria as an integral part of the electrodiagnostic criteria. Due to its many rules and exceptions, this guideline is complex and misinterpretation of nerve conduction study findings remain common. CIDP is treatable with intravenous immunoglobulins, corticosteroids, and plasma exchange. The choice of therapy should be tailored to the individual patient's situation, taking into account the severity of symptoms, potential side effects, patient autonomy, and past treatments. Treatment responses should be evaluated as objectively as possible using disability and impairment scales. Applying these outcome measures consistently in clinical practice aids in recognizing the effectiveness (or lack thereof) of a treatment and facilitates timely consideration of alternative diagnoses or treatments. This review provides an overview of the current perspectives on the diagnostic process and first-line treatments for managing the disease.
Collapse
Affiliation(s)
- Iris N van Doorn
- Department of Neurology and Clinical Neurophysiology, Amsterdam Neuroscience and University of Amsterdam, Amsterdam UMC, location AMC, the Netherlands
| | - Filip Eftimov
- Department of Neurology and Clinical Neurophysiology, Amsterdam Neuroscience and University of Amsterdam, Amsterdam UMC, location AMC, the Netherlands
| | - Luuk Wieske
- Department of Neurology and Clinical Neurophysiology, Amsterdam Neuroscience and University of Amsterdam, Amsterdam UMC, location AMC, the Netherlands
- Department of Clinical Neurophysiology, Sint Antonius Hospital, Nieuwegein, the Netherlands
| | - Ivo N van Schaik
- Department of Neurology and Clinical Neurophysiology, Amsterdam Neuroscience and University of Amsterdam, Amsterdam UMC, location AMC, the Netherlands
- Sanquin Blood Supply Foundation, Amsterdam, the Netherlands
| | - Camiel Verhamme
- Department of Neurology and Clinical Neurophysiology, Amsterdam Neuroscience and University of Amsterdam, Amsterdam UMC, location AMC, the Netherlands
| |
Collapse
|
7
|
Hussein G, Liu B, Yadav SK, Warsame M, Jamil R, Surani SR, Khan SA. Plasmapheresis in the ICU. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:2152. [PMID: 38138254 PMCID: PMC10744423 DOI: 10.3390/medicina59122152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023]
Abstract
Therapeutic plasma exchange (TPE) is a treatment paradigm used to remove harmful molecules from the body. In short, it is a technique that employs a process that functions partially outside the body and involves the replacement of the patient's plasma. It has been used in the ICU for a number of different disease states, for some as a first-line treatment modality and for others as a type of salvage therapy. This paper provides a brief review of the principles, current applications, and potential future directions of TPE in critical care settings.
Collapse
Affiliation(s)
- Guleid Hussein
- Mayo Clinic Health System, Mankato, MN 56001, USA; (B.L.); (S.K.Y.); (M.W.)
| | - Bolun Liu
- Mayo Clinic Health System, Mankato, MN 56001, USA; (B.L.); (S.K.Y.); (M.W.)
| | - Sumeet K. Yadav
- Mayo Clinic Health System, Mankato, MN 56001, USA; (B.L.); (S.K.Y.); (M.W.)
| | - Mohamed Warsame
- Mayo Clinic Health System, Mankato, MN 56001, USA; (B.L.); (S.K.Y.); (M.W.)
| | - Ramsha Jamil
- Sindh Medical College, Jinnah Sindh Medical University, Karachi 75510, Pakistan;
| | - Salim R. Surani
- Department of Anesthesiology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Medicine and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Syed A. Khan
- Mayo Clinic Health System, Mankato, MN 56001, USA; (B.L.); (S.K.Y.); (M.W.)
| |
Collapse
|
8
|
Mallick R, Carlton R, Van Stiphout J. A Budget Impact Model of Maintenance Treatment of Chronic Inflammatory Demyelinating Polyneuropathy with IgPro20 (Hizentra) Relative to Intravenous Immunoglobulin in the United States. PHARMACOECONOMICS - OPEN 2023; 7:243-255. [PMID: 36757567 PMCID: PMC9910243 DOI: 10.1007/s41669-023-00386-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/03/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Chronic inflammatory demyelinating polyneuropathy (CIDP) is a rare, progressive autoimmune disease causing peripheral nervous system dysfunction. Guidelines recommend immunoglobulin (IG) therapy as an immunomodulatory agent in CIDP. Drawbacks and unmet needs with intravenous immunoglobulin (IVIG) include adverse effects and wear-off effects, along with the burden of administration based on site of care. Subcutaneous administration of Hizentra, a subcutaneous immunoglobulin (SCIG) reduces patient burden by allowing self-administration outside the hospital setting and has fewer adverse events (AEs). OBJECTIVE We aimed to compare the expected cost of treatment and the budget impact of Hizentra compared with IVIG for maintenance treatment of CIDP in the United States. METHODS A decision tree model was developed to estimate the expected budget impact of maintenance treatment with Hizentra for US stakeholders. The model adopts primarily a US integrated delivery network perspective and, secondarily, a commercial perspective over a 1-year time horizon. Pharmacy costs were based on a payment mix of average sales price (73%), wholesale acquisition cost (2%), and average wholesale price (25%). Costs in the model reflect 2022 US dollars. In accordance with the International Society for Pharmacoeconomics and Outcomes Research (ISPOR) guidelines and recommendations for budget impact modeling, no discounting was performed. The PATH clinical study of Hizentra maintenance in CIDP was used to determine clinical inputs for relapse rates at initial assessment (24 weeks) and at 52 weeks for Hizentra. The ICE clinical study of Gamunex maintenance in CIDP was the basis of relapse rates for Gamunex (and other IVIGs). Literature-based estimates were obtained for infusion costs by site of care, costs of IVIG infusion-related complications, and significant IVIG AE rates. Hizentra AE rates from the US Hizentra prescribing information were assessed but were not included in the model as the AEs in CIDP were mild, easily treated, and self-limited. Sensitivity analyses and scenario analyses were conducted to evaluate variations from the base case. RESULTS The model showed that a Hizentra starting dose of 0.2 g/kg is expected to result in annual cost savings of US$32,447 per patient compared with IVIG. For a hypothetical 25-million-member plan, the budget impact of a 10% market share shift from IVIG to Hizentra is expected to result in savings of US$2,296,235. CONCLUSION This analysis projects that Hizentra is likely associated with favorable economic benefit compared with IVIG in managing CIDP.
Collapse
Affiliation(s)
| | - Rashad Carlton
- Xcenda L.L.C., 5025 Plano Parkway, Carrollton, TX, 75010, USA.
| | | |
Collapse
|
9
|
Fehmi J, Bellanti R, Misbah SA, Bhattacharjee A, Rinaldi S. Treatment of CIDP. Pract Neurol 2023; 23:46-53. [PMID: 36109154 DOI: 10.1136/pn-2021-002991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2022] [Indexed: 02/02/2023]
Abstract
Chronic inflammatory demyelinating polyneuropathy is a disabling but treatable disorder. However, misdiagnosis is common, and it can be difficult to optimise its treatment. Various agents are used both for first and second line. First-line options are intravenous immunoglobulin, corticosteroids and plasma exchange. Second-line therapies may be introduced as steroid-sparing agents or as more potent escalation therapy. It is also important to consider symptomatic treatment of neuropathic pain and non-pharmacological interventions. We discuss the evidence for the various treatments and explain the practicalities of the different approaches. We also outline strategies for monitoring response and assessing the ongoing need for therapy.
Collapse
Affiliation(s)
- Janev Fehmi
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Roberto Bellanti
- Neurology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Siraj A Misbah
- Clinical Immunology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | | - Simon Rinaldi
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
10
|
Younger DS. On the path to evidence-based therapy in neuromuscular disorders. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:315-358. [PMID: 37562877 DOI: 10.1016/b978-0-323-98818-6.00007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Neuromuscular disorders encompass a diverse group of acquired and genetic diseases characterized by loss of motor functionality. Although cure is the goal, many therapeutic strategies have been envisioned and are being studied in randomized clinical trials and entered clinical practice. As in all scientific endeavors, the successful clinical translation depends on the quality and translatability of preclinical findings and on the predictive value and feasibility of the clinical models. This chapter focuses on five exemplary diseases: childhood spinal muscular atrophy (SMA), Charcot-Marie-Tooth (CMT) disorders, chronic inflammatory demyelinating polyradiculoneuropathy (CIDP), acquired autoimmune myasthenia gravis (MG), and Duchenne muscular dystrophy (DMD), to illustrate the progress made on the path to evidenced-based therapy.
Collapse
Affiliation(s)
- David S Younger
- Department of Clinical Medicine and Neuroscience, CUNY School of Medicine, New York, NY, United States; Department of Medicine, Section of Internal Medicine and Neurology, White Plains Hospital, White Plains, NY, United States.
| |
Collapse
|
11
|
Fargeot G, Gitiaux C, Magy L, Pereon Y, Delmont E, Viala K, Echaniz-Laguna A. French recommendations for the management of adult & pediatric chronic inflammatory demyelinating polyradiculoneuropathy (CIDP). Rev Neurol (Paris) 2022; 178:953-968. [PMID: 36182621 DOI: 10.1016/j.neurol.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 05/31/2022] [Accepted: 06/05/2022] [Indexed: 11/22/2022]
Abstract
Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is a rare autoimmune disorder of the peripheral nervous system, primarily affecting the myelin sheath. The pathophysiology of CIDP is complex, involving both humoral and cellular immunity. The diagnosis of CIDP should be suspected in patients with symmetrical proximal and distal motor weakness and distal sensory symptoms of progressive onset, associated with decreased/abolished tendon reflexes. Treatments include intraveinous immunoglobulins, steroids and plasma exchange, with usually an induction phase followed by a maintenance therapy with progressive weaning. Treatment should be rapidly initiated to prevent axonal degeneration, which may compromise recovery. CIDP outcome is variable, ranging from mild distal paresthesiae to complete loss of ambulation. There have been several breakthroughs in the diagnosis and management of CIDP the past ten years, e.g. discovery of antibodies against the node of Ranvier, contribution of nerve ultrasound and magnetic resonance imaging to diagnosis, and demonstration of subcutaneous immunoglobulins efficiency. This led us to elaborate French recommendations for the management of adult & pediatric CIDP patients. These recommendations include diagnosis assessment, treatment, and follow-up.
Collapse
Affiliation(s)
- G Fargeot
- Neurophysiology Department, Pitié-Salpêtrière Hospital, AP-HP, Paris, France.
| | - C Gitiaux
- Department of Paediatric Neurophysiology, Necker-Enfants-Malades Hospital, AP-HP, Paris University, Paris, France
| | - L Magy
- Department of Neurology, National Reference Center for 'Rare Peripheral Neuropathies', University Hospital of Limoges, Limoges, France
| | - Y Pereon
- CHU Nantes, Centre de Référence Maladies Neuromusculaires AOC, Filnemus, Euro-NMD, Explorations Fonctionnelles, Hôtel-Dieu, Nantes, France
| | - E Delmont
- Reference Center for Neuromuscular Diseases and ALS Timone University Hospital, Aix-Marseille University, Marseille, France
| | - K Viala
- Neurophysiology Department, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - A Echaniz-Laguna
- Neurology Department, CHU de Bicêtre, AP-HP, Le-Kremlin-Bicêtre, France; French National Reference Center for Rare Neuropathies (NNERF), Le-Kremlin-Bicêtre, France; Inserm U1195, Paris-Saclay University, Le-Kremlin-Bicêtre, France
| |
Collapse
|
12
|
Allen JA, Lewis RA. Treatment of Chronic Inflammatory Demyelinating Polyneuropathy. Muscle Nerve 2022; 66:552-557. [PMID: 35994242 DOI: 10.1002/mus.27709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/06/2022]
Abstract
Chronic inflammatory demyelinating polyneuropathy (CIDP) is a chronic peripheral polyneuropathy that results in disability through immune mediated nerve injury, but which not uncommonly has residual and irreversible neurologic deficits after the active inflammatory component of the disorder has been treated. Management of the condition entails addressing both the abnormal immune activity that drives ongoing or active deficits while also managing residual symptoms through supportive interventions. Immune based treatments are grounded in several important principles. First, early treatment is guided by evidence-based proven effective therapies that sequentially escalate depending on the response. Second, optimization or personalization of first line treatments is needed in order to understand the ideal dose for any given patient, and whether long term treatment is needed at all. Third, although many immunosuppressive agents may be utilized in non-responding patients or when intravenous immunoglobulin (IVIG)/corticosteroid sparing intervention is desired, all are unproven and require a delicate balance between risk, cost, and unknown likelihood of benefit that is tailored to each individual patient's unique circumstances. There is no reliable disease activity biomarker that can be used to guide treatment - a reality that makes it very challenging to optimize treatment to individual patient needs. Serial clinical assessments are key to understanding the value of continued immunotherapy or if long-term therapy is needed at all. Regardless of the immunotherapy status of a patient, equally important is addressing residual deficits through supportive interventions including physical therapy, adaptive equipment, pain management, and emotional support. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jeffrey A Allen
- Department of Neurology, University of Minnesota, Minneapolis, MN
| | - Richard A Lewis
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
13
|
Ameenudeen S, Kashif M, Banerjee S, Srinivasan H, Pandurangan AK, Waseem M. Cellular and Molecular Machinery of Neuropathic Pain: an Emerging Insight. CURRENT PHARMACOLOGY REPORTS 2022; 8:227-235. [PMID: 35646513 PMCID: PMC9125010 DOI: 10.1007/s40495-022-00294-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/17/2022] [Indexed: 12/04/2022]
Abstract
Purpose of Review Neuropathic pain (NP) has been ubiquitously characterized by lesion and its linked somatosensory system either the central nervous system (CNS) or peripheral nervous system (PNS) This PNS episode is the most prevalent site of NP origin and is found to be associated with afferent nerve fibers carrying pain signals from injured/trauma site to the CNS including the brain. Several kinds of pharmacotherapeutic drugs shuch as analgesics, anti-convulsants, and anti-depressants are being employed for the its possible interventions. The NP has been a great interest to follow different pathophysiological mechanisms which are often considered to correlate with the metabolic pathways and its mediated disease. There is paucity of knowledge to make such mechanism via NP. Recent Finding Most notably, recent pandemic outbreak of COVID-19 has also been reported in chronic pain mediated diabetes, inflammatory disorders, and cancers. There is an increasing incidence of NP and its complex mechanism has now led to identify the possible investigations of responsible genes and proteins via bioinformatics tools. The analysis might be more instrumental as collecting the genes from pain genetic database, analyzing the variants through differential gene expression (DEG) and constructing the protein–protein interaction (PPI) networks and thereby determining their upregulating and downregulating pathways. Summary This review sheds a bright light towards several mechanisms at both cellular and molecular level, correlation of NP-mediated disease mechanism and possible cell surface biomarkers (receptors), and identified genes could be more promising for their pharmacological targets.
Collapse
Affiliation(s)
- Shabnam Ameenudeen
- School of Life Sciences, BS Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, 600048 Tamil Nadu India
| | - Mohd. Kashif
- School of Life Sciences, BS Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, 600048 Tamil Nadu India
| | - Subhamoy Banerjee
- Department of Basic Science and Humanities, Institute of Engineering and Management, Sector V, Salt Lake, Kolkata, 700091 India
| | - Hemalatha Srinivasan
- School of Life Sciences, BS Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, 600048 Tamil Nadu India
| | - Ashok Kumar Pandurangan
- School of Life Sciences, BS Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, 600048 Tamil Nadu India
| | - Mohammad Waseem
- School of Life Sciences, BS Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, 600048 Tamil Nadu India
| |
Collapse
|
14
|
Rigal J, Quarto E, Boue L, Balabaud L, Thompson W, Cloché T, Bourret S, Le Huec JC. Original Surgical Treatment and Long-term Follow-up for Chronic Inflammatory Demyelinating Polyradiculoneuropathy Causing A Compressive Cervical Myelopathy. Neurospine 2022; 19:472-477. [PMID: 35588760 PMCID: PMC9260558 DOI: 10.14245/ns.2143232.616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 03/21/2022] [Indexed: 11/19/2022] Open
Abstract
Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is a chronic relapsing disease of unknown aetiology. The diagnosis of this disease is still very complicated. The treatment is medical but, in some cases, a surgical decompression might be required. In rare cases it develops a radicular hypertrophy that can cause a cervical myelopathy; this pathology should be put in differential diagnosis with neurofibromatosis 1 (NF-1) and Charcot Marie Tooth (CMT) syndromes. The cases of CIDP cervical myelopathy reported in the literature are rare and even more rarely a surgical decompression was described. Here we report a first and unique case of CIDP cervical myelopathy treated with an open-door laminoplasty technique with 10-years post-operative follow-up (FU). The surgical decompression revealed to be effective in stopping the progression of myelopathy without destabilizing the spine. The patient that before surgery presented a severe tetra-paresis could return to walk and gained back his self-care autonomy. At 10-years FU he didn't complain of neck pain and didn't develop a cervical kyphosis. In case of cervical myelopathy caused by radicular hypertrophy CIDP should be kept in mind in the differential diagnosis and an open-door laminoplasty is indicated to stop myelopathy progression.
Collapse
Affiliation(s)
- Julien Rigal
- Vertebra, Polyclinique Bordeaux Nord Aquitaine, Bordeaux, France
| | - Emanuele Quarto
- Vertebra, Polyclinique Bordeaux Nord Aquitaine, Bordeaux, France
| | - Lisa Boue
- Vertebra, Polyclinique Bordeaux Nord Aquitaine, Bordeaux, France
| | - Laurent Balabaud
- Vertebra, Polyclinique Bordeaux Nord Aquitaine, Bordeaux, France
| | - Wendy Thompson
- Vertebra, Polyclinique Bordeaux Nord Aquitaine, Bordeaux, France
| | - Thibault Cloché
- Vertebra, Polyclinique Bordeaux Nord Aquitaine, Bordeaux, France
| | - Stephane Bourret
- Vertebra, Polyclinique Bordeaux Nord Aquitaine, Bordeaux, France
| | | |
Collapse
|
15
|
Current and Emerging Pharmacotherapeutic Interventions for the Treatment of Peripheral Nerve Disorders. Pharmaceuticals (Basel) 2022; 15:ph15050607. [PMID: 35631433 PMCID: PMC9144529 DOI: 10.3390/ph15050607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/26/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Abstract
Peripheral nerve disorders are caused by a range of different aetiologies. The range of causes include metabolic conditions such as diabetes, obesity and chronic kidney disease. Diabetic neuropathy may be associated with severe weakness and the loss of sensation, leading to gangrene and amputation in advanced cases. Recent studies have indicated a high prevalence of neuropathy in patients with chronic kidney disease, also known as uraemic neuropathy. Immune-mediated neuropathies including Guillain-Barré syndrome and chronic inflammatory demyelinating polyradiculoneuropathy may cause significant physical disability. As survival rates continue to improve in cancer, the prevalence of treatment complications, such as chemotherapy-induced peripheral neuropathy, has also increased in treated patients and survivors. Notably, peripheral neuropathy associated with these conditions may be chronic and long-lasting, drastically affecting the quality of life of affected individuals, and leading to a large socioeconomic burden. This review article explores some of the major emerging clinical and experimental therapeutic agents that have been investigated for the treatment of peripheral neuropathy due to metabolic, toxic and immune aetiologies.
Collapse
|
16
|
Svačina MKR, Lehmann HC. Chronic Inflammatory Demyelinating Polyneuropathy (CIDP): Current Therapies and Future Approaches. Curr Pharm Des 2022; 28:854-862. [PMID: 35339172 DOI: 10.2174/1381612828666220325102840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/08/2022] [Indexed: 11/22/2022]
Abstract
Chronic inflammatory demyelinating polyneuropathy (CIDP) is an acquired immune-mediated polyradiculoneuropathy leading to disability via inflammatory demyelination of peripheral nerves. Various therapeutic approaches with different mechanisms of action are established for the treatment of CIDP. Of those, corticosteroids, intravenous or subcutaneous immunoglobulin, or plasma exchange are established first-line therapies as suggested by the recently revised EAN/PNS guidelines for the management of CIDP. In special cases, immunosuppressants or rituximab may be used. Novel therapeutic approaches currently undergoing clinical studies include molecules or monoclonal antibodies interacting with Fc receptors on immune cells to alleviate immune-mediated neuronal damage. Despite various established therapies and the current development of novel therapeutics, treatment of CIDP remains challenging due to an inter-individually heterogeneous disease course and the lack of surrogate parameters to predict the risk of clinical deterioration.
Collapse
Affiliation(s)
- Martin K R Svačina
- Department of Neurology, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Helmar C Lehmann
- Department of Neurology, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| |
Collapse
|
17
|
Koneczny I, Tzartos J, Mané-Damas M, Yilmaz V, Huijbers MG, Lazaridis K, Höftberger R, Tüzün E, Martinez-Martinez P, Tzartos S, Leypoldt F. IgG4 Autoantibodies in Organ-Specific Autoimmunopathies: Reviewing Class Switching, Antibody-Producing Cells, and Specific Immunotherapies. Front Immunol 2022; 13:834342. [PMID: 35401530 PMCID: PMC8986991 DOI: 10.3389/fimmu.2022.834342] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/28/2022] [Indexed: 12/24/2022] Open
Abstract
Organ-specific autoimmunity is often characterized by autoantibodies targeting proteins expressed in the affected tissue. A subgroup of autoimmunopathies has recently emerged that is characterized by predominant autoantibodies of the IgG4 subclass (IgG4-autoimmune diseases; IgG4-AID). This group includes pemphigus vulgaris, thrombotic thrombocytopenic purpura, subtypes of autoimmune encephalitis, inflammatory neuropathies, myasthenia gravis and membranous nephropathy. Although the associated autoantibodies target specific antigens in different organs and thus cause diverse syndromes and diseases, they share surprising similarities in genetic predisposition, disease mechanisms, clinical course and response to therapies. IgG4-AID appear to be distinct from another group of rare immune diseases associated with IgG4, which are the IgG4-related diseases (IgG4-RLD), such as IgG4-related which have distinct clinical and serological properties and are not characterized by antigen-specific IgG4. Importantly, IgG4-AID differ significantly from diseases associated with IgG1 autoantibodies targeting the same organ. This may be due to the unique functional characteristics of IgG4 autoantibodies (e.g. anti-inflammatory and functionally monovalent) that affect how the antibodies cause disease, and the differential response to immunotherapies of the IgG4 producing B cells/plasmablasts. These clinical and pathophysiological clues give important insight in the immunopathogenesis of IgG4-AID. Understanding IgG4 immunobiology is a key step towards the development of novel, IgG4 specific treatments. In this review we therefore summarize current knowledge on IgG4 regulation, the relevance of class switching in the context of health and disease, describe the cellular mechanisms involved in IgG4 production and provide an overview of treatment responses in IgG4-AID.
Collapse
Affiliation(s)
- Inga Koneczny
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - John Tzartos
- Neuroimmunology, Tzartos NeuroDiagnostics, Athens, Greece
- 2nd Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Marina Mané-Damas
- Research Group Neuroinflammation and Autoimmunity, Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Vuslat Yilmaz
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Maartje G. Huijbers
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands
| | - Konstantinos Lazaridis
- Department of Immunology, Laboratory of Immunology, Hellenic Pasteur Institute, Athens, Greece
| | - Romana Höftberger
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Erdem Tüzün
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Pilar Martinez-Martinez
- Research Group Neuroinflammation and Autoimmunity, Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Socrates Tzartos
- Neuroimmunology, Tzartos NeuroDiagnostics, Athens, Greece
- Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| | - Frank Leypoldt
- Neuroimmunology, Institute of Clinical Chemistry and Department of Neurology, UKSH Kiel/Lübeck, Kiel University, Kiel, Germany
| |
Collapse
|
18
|
Van den Bergh PYK, van Doorn PA, Hadden RDM, Avau B, Vankrunkelsven P, Allen JA, Attarian S, Blomkwist-Markens PH, Cornblath DR, Eftimov F, Goedee HS, Harbo T, Kuwabara S, Lewis RA, Lunn MP, Nobile-Orazio E, Querol L, Rajabally YA, Sommer C, Topaloglu HA. European Academy of Neurology/Peripheral Nerve Society guideline on diagnosis and treatment of chronic inflammatory demyelinating polyradiculoneuropathy: Report of a joint Task Force-Second revision. Eur J Neurol 2021; 28:3556-3583. [PMID: 34327760 DOI: 10.1111/ene.14959] [Citation(s) in RCA: 207] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To revise the 2010 consensus guideline on chronic inflammatory demyelinating polyradiculoneuropathy (CIDP). METHODS Seventeen disease experts, a patient representative, and two Cochrane methodologists constructed 12 Population/Intervention/Comparison/Outcome (PICO) questions regarding diagnosis and treatment to guide the literature search. Data were extracted and summarized in GRADE summary of findings (for treatment PICOs) or evidence tables (for diagnostic PICOs). RESULTS Statements were prepared according to the GRADE Evidence-to-Decision frameworks. Typical CIDP and CIDP variants were distinguished. The previous term "atypical CIDP" was replaced by "CIDP variants" because these are well characterized entities (multifocal, focal, distal, motor, or sensory CIDP). The levels of diagnostic certainty were reduced from three (definite, probable, possible CIDP) to only two (CIDP and possible CIDP), because the diagnostic accuracy of criteria for probable and definite CIDP did not significantly differ. Good Practice Points were formulated for supportive criteria and investigations to be considered to diagnose CIDP. The principal treatment recommendations were: (a) intravenous immunoglobulin (IVIg) or corticosteroids are strongly recommended as initial treatment in typical CIDP and CIDP variants; (b) plasma exchange is strongly recommended if IVIg and corticosteroids are ineffective; (c) IVIg should be considered as first-line treatment in motor CIDP (Good Practice Point); (d) for maintenance treatment, IVIg, subcutaneous immunoglobulin or corticosteroids are recommended; (e) if the maintenance dose of any of these is high, consider either combination treatments or adding an immunosuppressant or immunomodulatory drug (Good Practice Point); and (f) if pain is present, consider drugs against neuropathic pain and multidisciplinary management (Good Practice Point).
Collapse
Affiliation(s)
- Peter Y K Van den Bergh
- Neuromuscular Reference Centre, Department of Neurology, University Hospital Saint-Luc, Brussels, Belgium
| | - Pieter A van Doorn
- Department of Neurology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | | - Bert Avau
- Cochrane Belgium, CEBAM, Leuven, Belgium and CEBaP, Belgian Red Cross, Mechelen, Belgium
| | | | - Jeffrey A Allen
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Shahram Attarian
- Centre de Référence des Maladies Neuromusculaires et de la SLA, APHM, CHU Timone, Marseille, France
| | | | - David R Cornblath
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Filip Eftimov
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - H Stephan Goedee
- Department of Neuromuscular Disorders, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Thomas Harbo
- Department of Neurology, Århus University Hospital, Århus, Denmark
| | - Satoshi Kuwabara
- Department of Neurology, Chiba University Hospital, Chiba, Japan
| | - Richard A Lewis
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Michael P Lunn
- Department of Neurology and MRC Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, London, UK
| | - Eduardo Nobile-Orazio
- Neuromuscular and Neuroimmunology Service, IRCCS Humanitas Clinical and Research Center, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Luis Querol
- Neuromuscular Diseases Unit-Neurology Department, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - Yusuf A Rajabally
- Regional Neuromuscular Service, Neurology, Queen Elizabeth Hospital Birmingham, Birmingham, UK
| | - Claudia Sommer
- Neurology Clinic, University Hospital Würzburg, Würzburg, Germany
| | | |
Collapse
|
19
|
Van den Bergh PYK, van Doorn PA, Hadden RDM, Avau B, Vankrunkelsven P, Allen JA, Attarian S, Blomkwist-Markens PH, Cornblath DR, Eftimov F, Goedee HS, Harbo T, Kuwabara S, Lewis RA, Lunn MP, Nobile-Orazio E, Querol L, Rajabally YA, Sommer C, Topaloglu HA. European Academy of Neurology/Peripheral Nerve Society guideline on diagnosis and treatment of chronic inflammatory demyelinating polyradiculoneuropathy: Report of a joint Task Force-Second revision. J Peripher Nerv Syst 2021; 26:242-268. [PMID: 34085743 DOI: 10.1111/jns.12455] [Citation(s) in RCA: 205] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/14/2022]
Abstract
To revise the 2010 consensus guideline on chronic inflammatory demyelinating polyradiculoneuropathy (CIDP). Seventeen disease experts, a patient representative, and two Cochrane methodologists constructed 12 Population/Intervention/Comparison/Outcome (PICO) questions regarding diagnosis and treatment to guide the literature search. Data were extracted and summarized in GRADE summary of findings (for treatment PICOs) or evidence tables (for diagnostic PICOs). Statements were prepared according to the GRADE Evidence-to-Decision frameworks. Typical CIDP and CIDP variants were distinguished. The previous term "atypical CIDP" was replaced by "CIDP variants" because these are well characterized entities (multifocal, focal, distal, motor, or sensory CIDP). The levels of diagnostic certainty were reduced from three (definite, probable, possible CIDP) to only two (CIDP and possible CIDP), because the diagnostic accuracy of criteria for probable and definite CIDP did not significantly differ. Good Practice Points were formulated for supportive criteria and investigations to be considered to diagnose CIDP. The principal treatment recommendations were: (a) intravenous immunoglobulin (IVIg) or corticosteroids are strongly recommended as initial treatment in typical CIDP and CIDP variants; (b) plasma exchange is strongly recommended if IVIg and corticosteroids are ineffective; (c) IVIg should be considered as first-line treatment in motor CIDP (Good Practice Point); (d) for maintenance treatment, IVIg, subcutaneous immunoglobulin or corticosteroids are recommended; (e) if the maintenance dose of any of these is high, consider either combination treatments or adding an immunosuppressant or immunomodulatory drug (Good Practice Point); and (f) if pain is present, consider drugs against neuropathic pain and multidisciplinary management (Good Practice Point).
Collapse
Affiliation(s)
- Peter Y K Van den Bergh
- Neuromuscular Reference Centre, Department of Neurology, University Hospital Saint-Luc, Brussels, Belgium
| | - Pieter A van Doorn
- Department of Neurology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | | - Bert Avau
- Cochrane Belgium, CEBAM, Leuven, Belgium and CEBaP, Belgian Red Cross, Mechelen, Belgium
| | | | - Jeffrey A Allen
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Shahram Attarian
- Centre de Référence des Maladies Neuromusculaires et de la SLA, APHM, CHU Timone, Marseille, France
| | | | - David R Cornblath
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Filip Eftimov
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - H Stephan Goedee
- Department of Neuromuscular Disorders, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Thomas Harbo
- Department of Neurology, Århus University Hospital, Århus, Denmark
| | - Satoshi Kuwabara
- Department of Neurology, Chiba University Hospital, Chiba, Japan
| | - Richard A Lewis
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Michael P Lunn
- Department of Neurology and MRC Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, London, UK
| | - Eduardo Nobile-Orazio
- Neuromuscular and Neuroimmunology Service, IRCCS Humanitas Clinical and Research Center, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Luis Querol
- Neuromuscular Diseases Unit-Neurology Department, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - Yusuf A Rajabally
- Regional Neuromuscular Service, Neurology, Queen Elizabeth Hospital Birmingham, Birmingham, UK
| | - Claudia Sommer
- Neurology Clinic, University Hospital Würzburg, Würzburg, Germany
| | | |
Collapse
|
20
|
Burt RK, Tappenden P, Balabanov R, Han X, Quigley K, Snowden JA, Sharrack B. The Cost Effectiveness of Immunoglobulin vs. Hematopoietic Stem Cell Transplantation for CIDP. Front Neurol 2021; 12:645263. [PMID: 33828522 PMCID: PMC8019941 DOI: 10.3389/fneur.2021.645263] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/22/2021] [Indexed: 12/22/2022] Open
Abstract
Background: Intravenous immunoglobulin (IVIG) is effective as standard first line therapy for chronic inflammatory demyelinating polyradiculoneuropathy (CIDP), but some patients remain dependent on its long-term use. Recently, we have reported that autologous non-myeloablative hematopoietic stem cell transplantation (HSCT) is an effective second line therapy for CIDP. Objectives: To compare the cost of chronic IVIG vs. autologous HSCT (a one-time therapy), we collected data on patients with CIDP undergoing HSCT between 2017 and 2019. This was compared with published literature on the costs and efficacy defined by the Inflammatory Neuropathy Cause And Treatment (INCAT) disability score, Medical Research Council (MRC) sum score, hand grip strength, and SF-36 quality of life (QOL) for CIDP. Methods: Between 2017 and 2019, nineteen patients with chronic CIDP (mean disease treatment duration prior to HSCT of 6 years) underwent autologous HSCT with mean cost of $108,577 per patient (range $56,327-277,119, standard deviation $53,092). After HSCT, 80% of patients remain IVIG and immune treatment free for up to 5 years. In comparison, published cost of IVIG treatment in the USA for an average CIDP patient exceeds $136,000 per year. Despite remaining treatment free, HSCT demonstrated greater improvement in efficacy compared to immunoglobulins. Recommendations: Given the long-term treatment-free remission and better outcome measurements, autologous HSCT is more cost effective than long-term IVIG treatment in patients with chronic CIDP. However, costs will depend on patient selection, the HSCT regimen, and regional variations. Further analysis of the health economics, i.e., cost/outcome ratio, of HSCT as therapy for chronically IVIG dependent CIDP is warranted.
Collapse
Affiliation(s)
- Richard K. Burt
- Division of Immunotherapy, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Paul Tappenden
- Health Economics and Decision Science, School of Health and Related Research, University of Sheffield, Sheffield, United Kingdom
| | - Roumen Balabanov
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Xiaoqiang Han
- Division of Immunotherapy, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Kathleen Quigley
- Division of Immunotherapy, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - John A. Snowden
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, University of Sheffield, Sheffield, United Kingdom
| | - Basil Sharrack
- Academic Department of Neuroscience and Sheffield, NIHR Translational Neuroscience BRC, Sheffield Teaching Hospitals NHS Foundation Trust, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
21
|
Koike H, Katsuno M. Pathophysiology of Chronic Inflammatory Demyelinating Polyneuropathy: Insights into Classification and Therapeutic Strategy. Neurol Ther 2020; 9:213-227. [PMID: 32410146 PMCID: PMC7606443 DOI: 10.1007/s40120-020-00190-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Indexed: 01/11/2023] Open
Abstract
Chronic inflammatory demyelinating polyneuropathy (CIDP) is classically defined as polyneuropathy with symmetric involvement of the proximal and distal portions of the limbs. In addition to this "typical CIDP", the currently prevailing diagnostic criteria proposed by the European Federation of Neurological Societies and Peripheral Nerve Society (EFNS/PNS) define "atypical CIDP" as encompassing the multifocal acquired demyelinating sensory and motor (MADSAM), distal acquired demyelinating symmetric (DADS), pure sensory, pure motor, and focal subtypes. Although macrophage-induced demyelination is considered pivotal to the pathogenesis of CIDP, recent studies have indicated the presence of distinctive mechanisms initiated by autoantibodies against paranodal junction proteins, such as neurofascin 155 and contactin 1. These findings led to the emergence of the concept of nodopathy or paranodopathy. Patients with these antibodies tend to show clinical features compatible with typical CIDP or DADS, particularly the latter. In contrast, classical macrophage-induced demyelination is commonly found in some patients in each major subtype, including the typical CIDP, DADS, MADSAM, and pure sensory subtypes. Differences in the distribution of lesions and the repair processes underlying demyelination by Schwann cells may determine the differences among subtypes. In particular, the preferential involvement of proximal and distal nerve segments has been suggested to occur in typical CIDP, whereas the involvement of the middle nerve segments is conspicuous in MADSAM. These findings suggest that humoral rather than cellular immunity predominates in the former because nerve roots and neuromuscular junctions lack blood-nerve barriers. Treatment for CIDP consists of intravenous immunoglobulin (IVIg) therapy, steroids, and plasma exchange, either alone or in combination. However, patients with anti-neurofascin 155 and contactin 1 antibodies are refractory to IVIg. It has been suggested that rituximab, a monoclonal antibody to CD20, could have efficacy in these patients. Further studies are needed to validate the CIDP subtypes defined by the EFNS/PNS from the viewpoint of pathogenesis and establish therapeutic strategies based on the pathophysiologies specific to each subtype.
Collapse
Affiliation(s)
- Haruki Koike
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
22
|
Malik A, Berry R, Fung BM, Tabibian JH. Association between chronic inflammatory demyelinating polyneuropathy and gastrointestinal malignancies. Clin J Gastroenterol 2020; 14:1-13. [PMID: 33146871 DOI: 10.1007/s12328-020-01281-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/20/2020] [Indexed: 11/29/2022]
Abstract
Chronic inflammatory demyelinating polyneuropathy (CIDP) is an uncommon and under-recognized immune-mediated disorder of the peripheral nervous system. It is associated with both infectious and non-infectious etiologies and presents in several variant forms. In rare instances, CIDP has been reported in association with gastrointestinal (esophageal, hepatic, colorectal, and pancreatic) malignancies. The diagnosis of malignancy is typically preceded by weeks to months by that of CIDP, though the inverse may also be seen. As with other etiologies of CIDP, cases associated with gastrointestinal malignancies are often treated with corticosteroids, intravenous immunoglobulins, and/or plasma exchange, with improvement or resolution of neurological symptoms in the majority of cases. In this review, we provide a practical overview of CIDP, with an emphasis on recognizing the clinical association between CIDP and gastrointestinal malignancies.
Collapse
Affiliation(s)
- Adnan Malik
- Division of Hepatology, Loyola University Medical Center, Maywood, IL, USA
| | - Rani Berry
- Department of Internal Medicine, UCLA Ronald Reagan Medical Center, Los Angeles, CA, USA
| | - Brian M Fung
- Department of Medicine, Olive View-UCLA Medical Center, Sylmar, CA, USA
| | - James H Tabibian
- Division of Gastroenterology, Olive View-UCLA Medical Center, 14445 Olive View Dr, Sylmar, CA, 2B-182, USA. .,David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
23
|
Stino AM, Naddaf E, Dyck PJ, Dyck PJB. Chronic inflammatory demyelinating polyradiculoneuropathy-Diagnostic pitfalls and treatment approach. Muscle Nerve 2020; 63:157-169. [PMID: 32914902 DOI: 10.1002/mus.27046] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 12/19/2022]
Abstract
Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is characterized by progressive weakness and sensory loss, often affecting patients' ability to walk and perform activities of daily living independently. With the lack of a diagnostic biomarker, the diagnosis relies on clinical suspicion, clinical findings, and the demonstration of demyelinating changes on electrodiagnostic (EDx) testing and nerve pathology. As a result, patients can often be misdiagnosed with CIDP and unnecessarily treated with immunotherapy. Interpreting the EDx testing and cerebrospinal fluid findings in light of the clinical phenotype, recognizing atypical forms of CIDP, and screening for CIDP mimickers are the mainstays of the approach to patients suspected of having CIDP, and are detailed in this review. We also review the currently available treatment options, including intravenous immunoglobulin (IVIg), corticosteroids (CCS), and plasma exchange (PE), and discuss how to approach treatment-refractory cases. Finally, we emphasize the need to adopt objective outcome measures to monitor treatment response.
Collapse
Affiliation(s)
- Amro M Stino
- Division of Neuromuscular Medicine, Department of Neurology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Elie Naddaf
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Peter J Dyck
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - P James B Dyck
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
24
|
Rajabally YA, Fatehi F. Outcome measures for chronic inflammatory demyelinating polyneuropathy in research: relevance and applicability to clinical practice. Neurodegener Dis Manag 2020; 9:259-266. [PMID: 31580223 DOI: 10.2217/nmt-2019-0009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Outcome measures are recommended in the management of chronic inflammatory demyelinating polyneuropathy (CIDP). Various scales have been proposed in recent years, some now commonly utilized in daily clinical practice. The available evidence base relies itself on randomized controlled trial data obtained over the past 30 years, with several studies using different primary and secondary outcomes. We here review the different outcome measures used in CIDP research in relation to those currently recommended for clinical management. We consider the evidence base for CIDP treatment from the primary and secondary outcomes used in these studies and attempt to assess how this may relate to current clinical practice of routine evaluation of treatment effects and long-term monitoring.
Collapse
Affiliation(s)
- Yusuf A Rajabally
- School of Life & Health Sciences & Aston Medical School, Aston University, Birmingham, UK.,Regional Neuromuscular Service, University Hospitals Birmingham, Birmingham, UK
| | - Farzad Fatehi
- Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.,Aix Marseille University, CNRS (UMR 7339), Centre de Résonance Magnétique Biologique et Médicale, Faculté de Médecine, 27 bd. J. Moulin, 13005 Marseille, France
| |
Collapse
|
25
|
Lewis RA, Cornblath DR, Hartung HP, Sobue G, Lawo JP, Mielke O, Durn BL, Bril V, Merkies ISJ, Bassett P, Cleasby A, van Schaik IN. Placebo effect in chronic inflammatory demyelinating polyneuropathy: The PATH study and a systematic review. J Peripher Nerv Syst 2020; 25:230-237. [PMID: 32627277 PMCID: PMC7497019 DOI: 10.1111/jns.12402] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 11/28/2022]
Abstract
The Polyneuropathy And Treatment with Hizentra (PATH) study required subjects with chronic inflammatory demyelinating polyneuropathy (CIDP) to show dependency on immunoglobulin G (IgG) and then be restabilized on IgG before being randomized to placebo or one of two doses of subcutaneous immunoglobulin (SCIG). Nineteen of the 51 subjects (37%) randomized to placebo did not relapse over the next 24 weeks. This article explores the reasons for this effect. A post‐hoc analysis of the PATH placebo group was undertaken. A literature search identified other placebo‐controlled CIDP trials for review and comparison. In PATH, subjects randomized to placebo who did not relapse were significantly older, had more severe disease, and took longer to deteriorate in the IgG dependency period compared with those who relapsed. Published trials in CIDP, whose primary endpoint was stability or deterioration, had a mean non‐deterioration (placebo effect) of 43%, while trials with a primary endpoint of improvement had a placebo response of only 11%. Placebo is an important variable in the design of CIDP trials. Trials designed to show clinical improvement will have a significantly lower effect of this phenomenon than those designed to show stability or deterioration.
Collapse
Affiliation(s)
- Richard A Lewis
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - David R Cornblath
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hans-Peter Hartung
- Department of Neurology, UKD and Center for Neurology and Neuropsychiatry, LVR Klinikum, Heinrich Heine University, Düsseldorf, Germany
| | - Gens Sobue
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Orell Mielke
- CSL Behring, Marburg, King of Prussia, Pennsylvania, USA
| | - Billie L Durn
- CSL Behring, Marburg, King of Prussia, Pennsylvania, USA
| | - Vera Bril
- Ellen and Martin Prosserman Centre for Neuromuscular Diseases, Division of Neurology, Department of Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Ingemar S J Merkies
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands.,Curaçao Medical Center, Willemstad, Curaçao
| | | | | | - Ivo N van Schaik
- Department of Neurology, Amsterdam University Medical Centres, Amsterdam, The Netherlands.,The Netherlands and Spaarne Gasthuis, Haarlem, The Netherlands
| | | |
Collapse
|
26
|
Hematopoietic stem cell transplantation for chronic inflammatory demyelinating polyradiculoneuropathy. J Neurol 2020; 267:3378-3391. [DOI: 10.1007/s00415-020-10010-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 01/23/2023]
|
27
|
Di Stefano V, Barbone F, Ferrante C, Telese R, Vitale M, Onofrj M, Di Muzio A. Inflammatory polyradiculoneuropathies: Clinical and immunological aspects, current therapies, and future perspectives. EUR J INFLAMM 2020. [DOI: 10.1177/2058739220942340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Inflammatory polyradiculoneuropathies are heterogeneous disorders characterized by immune-mediated leukocyte infiltration of peripheral nerves and nerve roots leading to demyelination or axonal degeneration or both. Inflammatory polyradiculoneuropathies can be divided into acute and chronic: Guillain–Barré syndrome and chronic inflammatory demyelinating polyneuropathy and their variants. Despite major advances in immunology and molecular biology have been made in the last years, the pathogenesis of these disorders is not completely understood. This review summarizes the current literature of the clinical features and pathogenic mechanisms of inflammatory polyradiculoneuropathies and focuses on current therapies and new potential treatment for the future.
Collapse
Affiliation(s)
- Vincenzo Di Stefano
- Department of Neurosciences, Imaging and Clinical Sciences, “G. d’Annunzio” University, Chieti, Italy
| | - Filomena Barbone
- Department of Neurosciences, Imaging and Clinical Sciences, “G. d’Annunzio” University, Chieti, Italy
| | - Camilla Ferrante
- Department of Neurosciences, Imaging and Clinical Sciences, “G. d’Annunzio” University, Chieti, Italy
| | - Roberta Telese
- Department of Neurosciences, Imaging and Clinical Sciences, “G. d’Annunzio” University, Chieti, Italy
| | - Michela Vitale
- Department of Neurosciences, Imaging and Clinical Sciences, “G. d’Annunzio” University, Chieti, Italy
| | - Marco Onofrj
- Department of Neurosciences, Imaging and Clinical Sciences, “G. d’Annunzio” University, Chieti, Italy
| | - Antonio Di Muzio
- Department of Neurology, “SS. Annunziata” Hospital, Chieti, Italy
| |
Collapse
|
28
|
Qin Z, Huang Q, Zou J, Tang L, Hu Z, Tang X. Progress in Hematopoietic Stem Cell Transplantation for CIDP. Int J Med Sci 2020; 17:234-241. [PMID: 32038107 PMCID: PMC6990890 DOI: 10.7150/ijms.38363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 12/12/2019] [Indexed: 12/29/2022] Open
Abstract
Chronic inflammatory demyelinating polyneuropathy (CIDP) is a kind of autoimmune-mediated inflammation and demyelinating disease. The etiology is mainly related to autoimmune dysfunction. The conventional treatments of CIDP have relied on immunomodulation and inhibition therapies such as adrenal cortex hormone, intravenous immunoglobulin (IVIg) and plasma exchange. Hematopoietic stem cell transplantation (HSCT) is known as a novel therapy for autoimmune disorders, which provides the chance to cure CIDP. More than 70 patients with refractory CIDP have received HSCT. The clinical symptoms and electrophysiological examination results of most patients have been improved. However, the treatment still has risks. This review describes the pathogenesis of CIDP and the current conventional treatments, and highlights the application of HSCT in CIDP, including its efficacy and safety.
Collapse
Affiliation(s)
- Zhen Qin
- Department of Neurology, The Second Xiangya Hospital, Central South University, Renmin Road 139#, Changsha, 410011, Hunan, China
| | - Qianyi Huang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Renmin Road 139#, Changsha, 410011, Hunan, China
| | - Jiangying Zou
- Healing With Stem Cell Therapy Inc, PO Box 2289, Shawnee Mission, 66201, KS, USA
| | - Lisha Tang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Renmin Road 139#, Changsha, 410011, Hunan, China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Renmin Road 139#, Changsha, 410011, Hunan, China
| | - Xiangqi Tang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Renmin Road 139#, Changsha, 410011, Hunan, China
| |
Collapse
|
29
|
Padmanabhan A, Connelly-Smith L, Aqui N, Balogun RA, Klingel R, Meyer E, Pham HP, Schneiderman J, Witt V, Wu Y, Zantek ND, Dunbar NM, Schwartz GEJ. Guidelines on the Use of Therapeutic Apheresis in Clinical Practice - Evidence-Based Approach from the Writing Committee of the American Society for Apheresis: The Eighth Special Issue. J Clin Apher 2019; 34:171-354. [PMID: 31180581 DOI: 10.1002/jca.21705] [Citation(s) in RCA: 818] [Impact Index Per Article: 136.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The American Society for Apheresis (ASFA) Journal of Clinical Apheresis (JCA) Special Issue Writing Committee is charged with reviewing, updating and categorizing indications for the evidence-based use of therapeutic apheresis (TA) in human disease. Since the 2007 JCA Special Issue (Fourth Edition), the committee has incorporated systematic review and evidence-based approaches in the grading and categorization of apheresis indications. This Eighth Edition of the JCA Special Issue continues to maintain this methodology and rigor in order to make recommendations on the use of apheresis in a wide variety of diseases/conditions. The JCA Eighth Edition, like its predecessor, continues to apply the category and grading system definitions in fact sheets. The general layout and concept of a fact sheet that was introduced in the Fourth Edition, has largely been maintained in this edition. Each fact sheet succinctly summarizes the evidence for the use of TA in a specific disease entity or medical condition. The Eighth Edition comprises 84 fact sheets for relevant diseases and medical conditions, with 157 graded and categorized indications and/or TA modalities. The Eighth Edition of the JCA Special Issue seeks to continue to serve as a key resource that guides the utilization of TA in the treatment of human disease.
Collapse
Affiliation(s)
- Anand Padmanabhan
- Medical Sciences Institute & Blood Research Institute, Versiti & Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Laura Connelly-Smith
- Department of Medicine, Seattle Cancer Care Alliance & University of Washington, Seattle, Washington
| | - Nicole Aqui
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Rasheed A Balogun
- Department of Medicine, University of Virginia, Charlottesville, Virginia
| | - Reinhard Klingel
- Apheresis Research Institute, Cologne, Germany & First Department of Internal Medicine, University of Mainz, Mainz, Germany
| | - Erin Meyer
- Department of Hematology/Oncology/BMT/Pathology, Nationwide Children's Hospital, Columbus, Ohio
| | - Huy P Pham
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Jennifer Schneiderman
- Department of Pediatric Hematology/Oncology/Neuro-oncology/Stem Cell Transplant, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago, Illinois
| | - Volker Witt
- Department for Pediatrics, St. Anna Kinderspital, Medical University of Vienna, Vienna, Austria
| | - Yanyun Wu
- Bloodworks NW & Department of Laboratory Medicine, University of Washington, Seattle, Washington, Yale University School of Medicine, New Haven, Connecticut
| | - Nicole D Zantek
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Nancy M Dunbar
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | | |
Collapse
|
30
|
Farmakidis C, Dimachkie MM, Pasnoor M, Barohn RJ. Immunosuppressive and immunomodulatory therapies for neuromuscular diseases. Part I: Traditional agents. Muscle Nerve 2019; 61:5-16. [DOI: 10.1002/mus.26708] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/05/2019] [Accepted: 09/07/2019] [Indexed: 12/23/2022]
Affiliation(s)
| | - Mazen M. Dimachkie
- Neurology Department University of Kansas Medical Center Kansas City Kansas
| | - Mamatha Pasnoor
- Neurology Department University of Kansas Medical Center Kansas City Kansas
| | - Richard J. Barohn
- Neurology Department University of Kansas Medical Center Kansas City Kansas
| |
Collapse
|
31
|
Therapeutic Plasma Exchange in Guillain-Barre Syndrome and chronic inflammatory demyelinating polyradiculoneuropathy. Presse Med 2019; 48:338-346. [PMID: 31679897 DOI: 10.1016/j.lpm.2019.03.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 03/05/2019] [Indexed: 12/28/2022] Open
Abstract
Therapeutic plasma exchange (TPE) has been used as a treatment modality in many autoimmune disorders, including neurological conditions, such as Guillain-Barre syndrome (GBS) and chronic inflammatory demyelinating polyradiculoneuropathy (CIDP). The American Society for Apheresis (ASFA) publishes its guidelines on the use of therapeutic apheresis every 3 years based on published evidence to assist physicians with both the medical and technical aspects of apheresis consults. The ASFA Guidelines included the use of TPE in both GBS and CIDP as an acceptable first-line therapy, either alone and/or in conjunction with other therapeutic modalities. In this article, we briefly reviewed GBS and CIDP, discussed the role of apheresis in these conditions as well as various technical aspects of the TPE procedure, such as apheresis calculation, number of volume exchange, replacement fluid, and management of potential complications.
Collapse
|
32
|
Development of measures of polyneuropathy impairment in hATTR amyloidosis: From NIS to mNIS + 7. J Neurol Sci 2019; 405:116424. [PMID: 31445300 DOI: 10.1016/j.jns.2019.116424] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 07/26/2019] [Accepted: 08/07/2019] [Indexed: 12/12/2022]
Abstract
Hereditary transthyretin-mediated amyloidosis (hATTR amyloidosis) is a rare, life-threatening disease, caused by point mutations in the transthyretin gene. It is a heterogeneous, multisystem disease with rapidly progressing polyneuropathy (including sensory, motor, and autonomic impairments) and cardiac dysfunction. Measures used to assess polyneuropathy in other diseases have been tested as endpoints in hATTR amyloidosis clinical trials (i.e. Neuropathy Impairment Score [NIS], NIS-lower limb, and NIS + 7), yet the unique nature of the polyneuropathy in this disease has necessitated modifications to these scales. In particular, the heterogeneous impairment and the aggressive disease course have been key drivers in developing scales that better capture the disease burden and progression of polyneuropathy in hATTR amyloidosis. The modified NIS + 7 (mNIS + 7) scale was specifically designed to assess polyneuropathy impairment in patients with hATTR amyloidosis, and has been the primary endpoint in two recent, phase III studies in this disease. The mNIS + 7 uses highly standardized, quantitative, and referenced assessments to quantify decreased muscle weakness, muscle stretch reflexes, sensory loss, and autonomic impairment. Physicians using this scale in clinical trials should be specifically trained and monitored to minimize variability. This article discusses the different scales that have been/are being used to assess polyneuropathy in patients with hATTR amyloidosis, their correlation with other disease assessments, and reflects on how and why scales have evolved to the latest iteration of mNIS + 7.
Collapse
|
33
|
Rodríguez Y, Vatti N, Ramírez-Santana C, Chang C, Mancera-Páez O, Gershwin ME, Anaya JM. Chronic inflammatory demyelinating polyneuropathy as an autoimmune disease. J Autoimmun 2019; 102:8-37. [DOI: 10.1016/j.jaut.2019.04.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/13/2019] [Accepted: 04/23/2019] [Indexed: 12/12/2022]
|
34
|
Osman C, Jennings R, El-Ghariani K, Pinto A. Plasma exchange in neurological disease. Pract Neurol 2019; 20:92-99. [PMID: 31300488 DOI: 10.1136/practneurol-2019-002336] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2019] [Indexed: 01/08/2023]
Abstract
Plasma exchange is a highly efficient technique to remove circulating autoantibodies and other humoral factors rapidly from the vascular compartment. It was the first effective acute treatment for peripheral disorders such as Guillain-Barré syndrome and myasthenia gravis before intravenous immunoglobulin became available. The recent recognition of rapidly progressive severe antibody-mediated central nervous system disorders, such as neuromyelitis optica spectrum disorders and anti-N-methyl-D-aspartate-receptor encephalitis, has renewed interest in using plasma exchange for their acute treatment also. In this review we explain the principles and technical aspects of plasma exchange, review its current indications, and discuss the implications for its provision in the UK.
Collapse
Affiliation(s)
- Chinar Osman
- Neurosciences, Wessex Neurological Centre, Southampton, UK
| | | | - Khaled El-Ghariani
- Therapeutics and Tissue Services, NHS Blood and Transplant, Sheffield Teaching Hospitals NHS Trust and the University of Sheffield, Sheffield, UK
| | - Ashwin Pinto
- Neurosciences, Wessex Neurological Centre, Southampton, UK
| |
Collapse
|
35
|
Pham HP, Staley EM, Schwartz J. Therapeutic plasma exchange – A brief review of indications, urgency, schedule, and technical aspects. Transfus Apher Sci 2019; 58:237-246. [DOI: 10.1016/j.transci.2019.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
36
|
Kawano T, Shimamura M, Nakagami H, Iso T, Koriyama H, Takeda S, Baba K, Sasaki T, Sakaguchi M, Morishita R, Mochizuki H. Therapeutic Vaccine Against S100A9 (S100 Calcium-Binding Protein A9) Inhibits Thrombosis Without Increasing the Risk of Bleeding in Ischemic Stroke in Mice. Hypertension 2019; 72:1355-1364. [PMID: 30571223 DOI: 10.1161/hypertensionaha.118.11316] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Decreased adherence to daily ingestion of antiplatelet drugs is a critical issue, increasing mortality and morbidity in poststroke patients. As vaccination could be a promising approach to solving this, we designed an antiplatelet vaccine that inhibited S100A9 (S100 calcium-binding protein A9)/CD36 (cluster of differentiation 36) signaling in platelets, which was reported to be a key signal in arterial thrombosis, but not hemostasis. Immunization with this vaccine induced a sustainable increase in the anti-S100A9 antibody titer for >2 months and an additional booster immunization enhanced the antibody production further. The middle cerebral artery occlusion time was successfully prolonged in the vaccinated mice, which was comparable to that in mice treated with clopidogrel. The antithrombotic effect lasted for 84 days after the last vaccination, as well as after the booster immunization. Importantly, the bleeding time was not affected in the immunized mice. The antithrombotic effect was also observed in the common carotid artery, which was similar to that found in CD36-/- mice. Vascular injury increased the expression of S100A9 in the serum and phosphorylation of JNK (c-Jun N-terminal kinase) and VAV1 in the platelets, but these increases were inhibited in the immunized mice. Moreover, the S100A9 vaccine did not induce cell-mediated autoimmunity, as demonstrated by the enzyme-linked immunosorbent spot assay. Thus, immunization with the S100A9 vaccine resulted in long-term inhibition of thrombus formation through inhibition of increased S100A9/CD36 signaling without risk of bleeding or adverse autoimmune responses. Vaccination against S100A9 might be a novel therapy to prevent recurrent ischemic stroke.
Collapse
Affiliation(s)
- Tomohiro Kawano
- From the Department of Neurology (T.K., M.S., K.B., T.S., M.S., H.M.), Osaka University Graduate School of Medicine, Japan
- Department of Health Development and Medicine (T.K., M.S., H.N., H.K.), Osaka University Graduate School of Medicine, Japan
| | - Munehisa Shimamura
- From the Department of Neurology (T.K., M.S., K.B., T.S., M.S., H.M.), Osaka University Graduate School of Medicine, Japan
- Department of Health Development and Medicine (T.K., M.S., H.N., H.K.), Osaka University Graduate School of Medicine, Japan
| | - Hironori Nakagami
- Department of Health Development and Medicine (T.K., M.S., H.N., H.K.), Osaka University Graduate School of Medicine, Japan
| | - Tatsuya Iso
- Education and Research Support Center, Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Japan (T.I.)
| | - Hiroshi Koriyama
- Department of Health Development and Medicine (T.K., M.S., H.N., H.K.), Osaka University Graduate School of Medicine, Japan
| | - Shuko Takeda
- Department of Clinical Gene Therapy (S.T., R.M.), Osaka University Graduate School of Medicine, Japan
| | - Kosuke Baba
- From the Department of Neurology (T.K., M.S., K.B., T.S., M.S., H.M.), Osaka University Graduate School of Medicine, Japan
| | - Tsutomu Sasaki
- From the Department of Neurology (T.K., M.S., K.B., T.S., M.S., H.M.), Osaka University Graduate School of Medicine, Japan
| | - Manabu Sakaguchi
- From the Department of Neurology (T.K., M.S., K.B., T.S., M.S., H.M.), Osaka University Graduate School of Medicine, Japan
| | - Ryuichi Morishita
- Department of Clinical Gene Therapy (S.T., R.M.), Osaka University Graduate School of Medicine, Japan
| | - Hideki Mochizuki
- From the Department of Neurology (T.K., M.S., K.B., T.S., M.S., H.M.), Osaka University Graduate School of Medicine, Japan
| |
Collapse
|
37
|
Dyck PJB, Tracy JA. History, Diagnosis, and Management of Chronic Inflammatory Demyelinating Polyradiculoneuropathy. Mayo Clin Proc 2018; 93:777-793. [PMID: 29866282 DOI: 10.1016/j.mayocp.2018.03.026] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 03/21/2018] [Accepted: 03/28/2018] [Indexed: 12/15/2022]
Abstract
Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is probably the best recognized progressive immune-mediated peripheral neuropathy. It is characterized by a symmetrical, motor-predominant peripheral neuropathy that produces both distal and proximal weakness. Large-fiber abnormalities (weakness and ataxia) predominate, whereas small-fiber abnormalities (autonomic and pain) are less common. The pathophysiology of CIDP is inflammatory demyelination that manifests as slowed conduction velocities, temporal dispersion, and conduction block on nerve conduction studies and as segmental demyelination, onion-bulb formation, and endoneurial inflammatory infiltrates on nerve biopsies. Although spinal fluid protein levels are generally elevated, this finding is not specific for the diagnosis of ClDP. Other neuropathies can resemble CIDP, and it is important to identify these to ensure correct treatment of these various conditions. Consequently, metastatic bone surveys (for osteosclerotic myeloma), serum electrophoresis with immunofixation (for monoclonal gammopathies), and human immunodeficiency virus testing should be considered for testing in patients with suspected CIDP. Chronic inflammatory demyelinating polyradiculoneuropathy can present as various subtypes, the most common being the classical symmetrical polyradiculoneuropathy and the next most common being a localized asymmetrical form, multifocal CIDP. There are 3 well-established, first-line treatments of CIDP-corticosteroids, plasma exchange, and intravenous immunoglobulin-with most experts using intravenous immunoglobulin as first-line therapy. Newer immune-modulating drugs can be used in refractory cases. Treatment response in CIDP should be judged by objective measures (improvement in the neurological or electrophysiological examination), and treatment needs to be individualized to each patient.
Collapse
|
38
|
Mazzi G, Raineri A, Zucco M, Passadore P, Pomes A, Orazi B. Plasma-exchange in Chronic Peripheral Neurological Disorders. Int J Artif Organs 2018. [DOI: 10.1177/039139889902200109] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We investigated 19 patients affected by chronic peripheral neurological disorders treated with therapeutic plasma exchange (TPE) to verify the efficacy of the therapeutic protocol used in these diseases. Every patient was clinically considered after 5 TPE. Those who showed an improvement started chemotherapy and continued TPE at the rate of 2 procedures/week for 2 weeks, then 1 procedure/week for 1 month and finally 1 procedure every 2 weeks for 2 months. Intravenous immunoglobulins (IVIg) were infused at the end of apheretic treatment in one of the patients affected by neurological disorders due to monoclonal gammopathy undetermined significance. HCV-positive patients with cryoglobulins were treated with α-interferon (α-IFN) for 6 months before TPE. Eleven patients (58%) had a symptomatic improvement, 2 (1.5%) stopped TPE treatment owing to side effects and 6 (31.5%) did not respond to apheretic therapy. In order to improve the advantages of TPE we suggest using IVIg at the end of apheretic therapy, while in HCV-positive patients, at least one year of α-IFN therapy is required before initiating TPE.
Collapse
Affiliation(s)
- G. Mazzi
- Servizio Immunotrasfusionale, Azienda Ospedaliera “S. Maria degli Angeli”, Pordenone - Italy
| | - A. Raineri
- Servizio Immunotrasfusionale, Azienda Ospedaliera “S. Maria degli Angeli”, Pordenone - Italy
| | - M. Zucco
- Divisione di Neurologia, Azienda Ospedaliera “S. Maria degli Angeli”, Pordenone - Italy
| | - P. Passadore
- Divisione di Neurologia, Azienda Ospedaliera “S. Maria degli Angeli”, Pordenone - Italy
| | - A. Pomes
- Divisione di Neurologia, Azienda Ospedaliera “S. Maria degli Angeli”, Pordenone - Italy
| | - B.M. Orazi
- Servizio Immunotrasfusionale, Azienda Ospedaliera “S. Maria degli Angeli”, Pordenone - Italy
| |
Collapse
|
39
|
Nobile-Orazio E, Gallia F, Terenghi F, Bianco M. Comparing treatment options for chronic inflammatory neuropathies and choosing the right treatment plan. Expert Rev Neurother 2017; 17:755-765. [DOI: 10.1080/14737175.2017.1340832] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Eduardo Nobile-Orazio
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Milan, Italy
- Neuromuscular and Neuroimmunology Service, IRCCS Humanitas Clinical Institute, Milan, Italy
| | - Francesca Gallia
- Neuromuscular and Neuroimmunology Service, IRCCS Humanitas Clinical Institute, Milan, Italy
| | - Fabrizia Terenghi
- Neuromuscular and Neuroimmunology Service, IRCCS Humanitas Clinical Institute, Milan, Italy
| | - Mariangela Bianco
- Neuromuscular and Neuroimmunology Service, IRCCS Humanitas Clinical Institute, Milan, Italy
| |
Collapse
|
40
|
Mahdi‐Rogers M, Brassington R, Gunn AA, van Doorn PA, Hughes RAC. Immunomodulatory treatment other than corticosteroids, immunoglobulin and plasma exchange for chronic inflammatory demyelinating polyradiculoneuropathy. Cochrane Database Syst Rev 2017; 5:CD003280. [PMID: 28481421 PMCID: PMC6481566 DOI: 10.1002/14651858.cd003280.pub5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is a disease that causes progressive or relapsing and remitting weakness and numbness. It is probably caused by an autoimmune process. Immunosuppressive or immunomodulatory drugs would be expected to be beneficial. This review was first published in 2003 and has been updated most recently in 2016. OBJECTIVES To assess the effects of immunomodulatory and immunosuppressive agents other than corticosteroids, immunoglobulin, and plasma exchange in CIDP. SEARCH METHODS On 24 May 2016, we searched the Cochrane Neuromuscular Specialised Register, the Cochrane Central Register of Controlled Trials (CENTRAL; 2016, Issue 4) in the Cochrane Library, MEDLINE, Embase, CINAHL, and LILACS for completed trials, and clinical trial registers for ongoing trials. We contacted the authors of the trials identified and other disease experts seeking other published and unpublished trials. SELECTION CRITERIA We sought randomised and quasi-randomised trials of all immunosuppressive agents, such as azathioprine, cyclophosphamide, methotrexate, ciclosporin, mycophenolate mofetil, and rituximab, and all immunomodulatory agents, such as interferon (IFN) alfa and IFN beta, in participants fulfilling standard diagnostic criteria for CIDP. We included all comparisons of these agents with placebo, another treatment, or no treatment. DATA COLLECTION AND ANALYSIS We used standard methodological procedures expected by Cochrane. We wanted to measure the change in disability after one year as our primary outcome. Our secondary outcomes were change in disability after four or more weeks (from randomisation); change in impairment after at least one year; change in maximum motor nerve conduction velocity and compound muscle action potential amplitude after one year; and for participants who were receiving corticosteroids or intravenous immunoglobulin (IVIg), the amount of this medication given during at least one year after randomisation. Participants with one or more serious adverse events during the first year was also a secondary outcome. MAIN RESULTS Four trials fulfilled the selection criteria: one of azathioprine (27 participants), two of IFN beta-1a (77 participants in total) and one of methotrexate (60 participants). The risk of bias was considered low in the trials of IFN beta-1a and methotrexate but high in the trial of azathioprine. None of the trials showed significant benefit in any of the outcomes selected by their authors. The results of the outcomes which approximated most closely to the primary outcome for this review were as follows.In the azathioprine trial there was a median improvement in the Neuropathy Impairment Scale (scale range 0 to 280) after nine months of 29 points (range 49 points worse to 84 points better) in the azathioprine and prednisone treated participants compared with 30 points worse (range 20 points worse to 104 points better) in the prednisone alone group. There were no reports of adverse events.In a cross-over trial of IFN beta-1a with 20 participants, the treatment periods were 12 weeks. The median improvement in the Guy's Neurological Disability Scale (range 1 to 10) was 0.5 grades (interquartile range (IQR) 1.8 grades better to zero grade change) in the IFN beta-1a treatment period and 0.5 grades (IQR 1.8 grades better to 1.0 grade worse) in the placebo treatment period. There were no serious adverse events in either treatment period.In a parallel group trial of IFN beta-1a with 67 participants, none of the outcomes for this review was available. The trial design involved withdrawal from ongoing IVIg treatment. The primary outcome used by the trial authors was total IVIg dose administered from week 16 to week 32 in the placebo group compared with the IFN beta-1a groups. This was slightly but not significantly lower in the combined IFN beta-1a groups (1.20 g/kg) compared with the placebo group (1.34 g/kg, P = 0.75). There were four participants in the IFN beta-1a group and none in the placebo group with one or more serious adverse events, risk ratio (RR) 4.50 (95% confidence interval (CI) 0.25 to 80.05).The methotrexate trial had a similar design involving withdrawal from ongoing corticosteroid or IVIg treatment. At the end of the trial (approximately 40 weeks) there was no significant difference in the change in the Overall Neuropathy Limitations Scale, a disability scale (scale range 0 to 12), the median change being 0 (IQR -1 to 0) in the methotrexate group and 0 (IQR -0.75 to 0) in the placebo group. These changes in disability might have been confounded by the reduction in corticosteroid or IVIg dose required by the protocol. There were three participants in the methotrexate group and one in the placebo with one or more serious adverse events, RR 3.56 (95% CI 0.39 to 32.23). AUTHORS' CONCLUSIONS Low-quality evidence from randomised trials does not show significant benefit from azathioprine or interferon beta-1a and moderate-quality evidence from one randomised trial does not show significant benefit from a relatively low dose of methotrexate for the treatment of CIDP. None of the trials was large enough to rule out small or moderate benefit. The evidence from observational studies is insufficient to avoid the need for randomised controlled trials to discover whether these drugs are beneficial. Future trials should have improved designs, more sensitive outcome measures relevant to people with CIDP, and longer treatment durations.
Collapse
Affiliation(s)
| | - Ruth Brassington
- National Hospital for Neurology and NeurosurgeryQueen Square Centre for Neuromuscular DiseasesPO Box 114LondonUKWC1N 3BG
| | - Angela A Gunn
- National Hospital for Neurology and NeurosurgeryMRC Centre for Neuromuscular DiseasesPO Box 114LondonUKWC1N 3BG
| | - Pieter A van Doorn
- Erasmus University Medical CenterDepartment of NeurologyPO Box 2040RotterdamNetherlands3000 CA
| | - Richard AC Hughes
- National Hospital for Neurology and NeurosurgeryMRC Centre for Neuromuscular DiseasesPO Box 114LondonUKWC1N 3BG
| | | |
Collapse
|
41
|
Schwartz J, Padmanabhan A, Aqui N, Balogun RA, Connelly-Smith L, Delaney M, Dunbar NM, Witt V, Wu Y, Shaz BH. Guidelines on the Use of Therapeutic Apheresis in Clinical Practice-Evidence-Based Approach from the Writing Committee of the American Society for Apheresis: The Seventh Special Issue. J Clin Apher 2017; 31:149-62. [PMID: 27322218 DOI: 10.1002/jca.21470] [Citation(s) in RCA: 276] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The American Society for Apheresis (ASFA) Journal of Clinical Apheresis (JCA) Special Issue Writing Committee is charged with reviewing, updating, and categorizing indications for the evidence-based use of therapeutic apheresis in human disease. Since the 2007 JCA Special Issue (Fourth Edition), the Committee has incorporated systematic review and evidence-based approaches in the grading and categorization of apheresis indications. This Seventh Edition of the JCA Special Issue continues to maintain this methodology and rigor to make recommendations on the use of apheresis in a wide variety of diseases/conditions. The JCA Seventh Edition, like its predecessor, has consistently applied the category and grading system definitions in the fact sheets. The general layout and concept of a fact sheet that was used since the fourth edition has largely been maintained in this edition. Each fact sheet succinctly summarizes the evidence for the use of therapeutic apheresis in a specific disease entity. The Seventh Edition discusses 87 fact sheets (14 new fact sheets since the Sixth Edition) for therapeutic apheresis diseases and medical conditions, with 179 indications, which are separately graded and categorized within the listed fact sheets. Several diseases that are Category IV which have been described in detail in previous editions and do not have significant new evidence since the last publication are summarized in a separate table. The Seventh Edition of the JCA Special Issue serves as a key resource that guides the utilization of therapeutic apheresis in the treatment of human disease. J. Clin. Apheresis 31:149-162, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Joseph Schwartz
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Anand Padmanabhan
- Blood Center of Wisconsin, Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Nicole Aqui
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Rasheed A Balogun
- Division of Nephrology, University of Virginia, Charlottesville, Virginia
| | - Laura Connelly-Smith
- Department of Medicine, Seattle Cancer Care Alliance and University of Washington, Seattle, Washington
| | - Meghan Delaney
- Bloodworks Northwest, Department of Laboratory Medicine, University of Washington, Seattle, Washington
| | - Nancy M Dunbar
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Volker Witt
- Department for Pediatrics, St. Anna Kinderspital, Medical University of Vienna, Vienna, Austria
| | - Yanyun Wu
- Bloodworks Northwest, Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Beth H Shaz
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York.,New York Blood Center, Department of Pathology.,Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
42
|
Therapeutic plasma exchange in chronic dysimmune peripheral neuropathies: A 10-year retrospective study. J Clin Apher 2017; 32:413-422. [DOI: 10.1002/jca.21530] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 02/05/2017] [Accepted: 02/08/2017] [Indexed: 12/14/2022]
|
43
|
Oaklander AL, Lunn MPT, Hughes RAC, van Schaik IN, Frost C, Chalk CH. Treatments for chronic inflammatory demyelinating polyradiculoneuropathy (CIDP): an overview of systematic reviews. Cochrane Database Syst Rev 2017; 1:CD010369. [PMID: 28084646 PMCID: PMC5468847 DOI: 10.1002/14651858.cd010369.pub2] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is a chronic progressive or relapsing and remitting disease that usually causes weakness and sensory loss. The symptoms are due to autoimmune inflammation of peripheral nerves. CIPD affects about 2 to 3 per 100,000 of the population. More than half of affected people cannot walk unaided when symptoms are at their worst. CIDP usually responds to treatments that reduce inflammation, but there is disagreement about which treatment is most effective. OBJECTIVES To summarise the evidence from Cochrane systematic reviews (CSRs) and non-Cochrane systematic reviews of any treatment for CIDP and to compare the effects of treatments. METHODS We considered all systematic reviews of randomised controlled trials (RCTs) of any treatment for any form of CIDP. We reported their primary outcomes, giving priority to change in disability after 12 months.Two overview authors independently identified published systematic reviews for inclusion and collected data. We reported the quality of evidence using GRADE criteria. Two other review authors independently checked review selection, data extraction and quality assessments.On 31 October 2016, we searched the Cochrane Database of Systematic Reviews, the Database of Abstracts of Reviews of Effects (in theCochrane Library), MEDLINE, Embase, and CINAHL Plus for systematic reviews of CIDP. We supplemented the RCTs in the existing CSRs by searching on the same date for RCTs of any treatment of CIDP (including treatment of fatigue or pain in CIDP), in the Cochrane Neuromuscular Specialised Register, CENTRAL, MEDLINE, Embase, and CINAHL Plus. MAIN RESULTS Five CSRs met our inclusion criteria. We identified 23 randomised trials, of which 15 had been included in these CSRs. We were unable to compare treatments as originally planned, because outcomes and outcome intervals differed. CorticosteroidsIt is uncertain whether daily oral prednisone improved impairment compared to no treatment because the quality of the evidence was very low (1 trial, 28 participants). According to moderate-quality evidence (1 trial, 41 participants), six months' treatment with high-dose monthly oral dexamethasone did not improve disability more than daily oral prednisolone. Observational studies tell us that prolonged use of corticosteroids sometimes causes serious side-effects. Plasma exchangeAccording to moderate-quality evidence (2 trials, 59 participants), twice-weekly plasma exchange produced more short-term improvement in disability than sham exchange. In the largest observational study, 3.9% of plasma exchange procedures had complications. Intravenous immunoglobulinAccording to high-quality evidence (5 trials, 269 participants), intravenous immunoglobulin (IVIg) produced more short-term improvement than placebo. Adverse events were more common with IVIg than placebo (high-quality evidence), but serious adverse events were not (moderate-quality evidence, 3 trials, 315 participants). One trial with 19 participants provided moderate-quality evidence of little or no difference in short-term improvement of impairment with plasma exchange in comparison to IVIg. There was little or no difference in short-term improvement of disability with IVIg in comparison to oral prednisolone (moderate-quality evidence; 1 trial, 29 participants) or intravenous methylprednisolone (high-quality evidence; 1 trial, 45 participants). One unpublished randomised open trial with 35 participants found little or no difference in disability after three months of IVIg compared to oral prednisone; this trial has not yet been included in a CSR. We know from observational studies that serious adverse events related to IVIg do occur. Other immunomodulatory treatmentsIt is uncertain whether the addition of azathioprine (2 mg/kg) to prednisone improved impairment in comparison to prednisone alone, as the quality of the evidence is very low (1 trial, 27 participants). Observational studies show that adverse effects truncate treatment in 10% of people.According to low-quality evidence (1 trial, 60 participants), compared to placebo, methotrexate 15 mg/kg did not allow more participants to reduce corticosteroid or IVIg doses by 20%. Serious adverse events were no more common with methotrexate than with placebo, but observational studies show that methotrexate can cause teratogenicity, abnormal liver function, and pulmonary fibrosis.According to moderate-quality evidence (2 trials, 77 participants), interferon beta-1a (IFN beta-1a) in comparison to placebo, did not allow more people to withdraw from IVIg. According to moderate-quality evidence, serious adverse events were no more common with IFN beta-1a than with placebo.We know of no other completed trials of immunosuppressant or immunomodulatory agents for CIDP. Other treatmentsWe identified no trials of treatments for fatigue or pain in CIDP. Adverse effectsNot all trials routinely collected adverse event data; when they did, the quality of evidence was variable. Adverse effects in the short, medium, and long term occur with all interventions. We are not able to make reliable comparisons of adverse events between the interventions included in CSRs. AUTHORS' CONCLUSIONS We cannot be certain based on available evidence whether daily oral prednisone improves impairment compared to no treatment. However, corticosteroids are commonly used, based on widespread availability, low cost, very low-quality evidence from observational studies, and clinical experience. The weakness of the evidence does not necessarily mean that corticosteroids are ineffective. High-dose monthly oral dexamethasone for six months is probably no more or less effective than daily oral prednisolone. Plasma exchange produces short-term improvement in impairment as determined by neurological examination, and probably produces short-term improvement in disability. IVIg produces more short-term improvement in disability than placebo and more adverse events, although serious side effects are probably no more common than with placebo. There is no clear difference in short-term improvement in impairment with IVIg when compared with intravenous methylprednisolone and probably no improvement when compared with either oral prednisolone or plasma exchange. According to observational studies, adverse events related to difficult venous access, use of citrate, and haemodynamic changes occur in 3% to17% of plasma exchange procedures.It is uncertain whether azathioprine is of benefit as the quality of evidence is very low. Methotrexate may not be of benefit and IFN beta-1a is probably not of benefit.We need further research to identify predictors of response to different treatments and to compare their long-term benefits, safety and cost-effectiveness. There is a need for more randomised trials of immunosuppressive and immunomodulatory agents, routes of administration, and treatments for symptoms of CIDP.
Collapse
Affiliation(s)
| | - Michael PT Lunn
- National Hospital for Neurology and NeurosurgeryDepartment of Neurology and MRC Centre for Neuromuscular DiseasesQueen SquareLondonUKWC1N 3BG
| | - Richard AC Hughes
- National Hospital for Neurology and NeurosurgeryMRC Centre for Neuromuscular DiseasesPO Box 114Queen SquareLondonUKWC1N 3BG
| | - Ivo N van Schaik
- Academic Medical Centre, University of AmsterdamDepartment of NeurologyMeibergdreef 9PO Box 22700AmsterdamNetherlands1100 DE
| | - Chris Frost
- London School of Hygiene & Tropical MedicineDepartment of Medical StatisticsKeppel StreetLondonUKWC1E 7HT
| | - Colin H Chalk
- McGill UniversityDepartment of Neurology & NeurosurgeryMontreal General Hospital ‐ Room L7‐3131650 Cedar AvenueMontrealQCCanadaH3G 1A4
| | | |
Collapse
|
44
|
Bril V, Blanchette CM, Noone JM, Runken MC, Gelinas D, Russell JW. The dilemma of diabetes in chronic inflammatory demyelinating polyneuropathy. J Diabetes Complications 2016; 30:1401-7. [PMID: 27389526 PMCID: PMC5528142 DOI: 10.1016/j.jdiacomp.2016.05.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 05/03/2016] [Accepted: 05/06/2016] [Indexed: 12/13/2022]
Abstract
PURPOSE We reviewed the literature on chronic inflammatory demyelinating polyneuropathy (CIDP) in diabetes mellitus (DM) and explored real-world data on the prevalence and treatment of CIDP within DM. METHODS A literature search of Scopus was performed for the terms chronic inflammatory demyelinating polyradiculoneuropathy, chronic inflammatory demyelinating polyneuropathy, CIDP, and prevalence, incidence, epidemiology, or diabetes; peripheral neuropathy and prevalence or diabetes. We also searched through the reference lists of the resulting publications for additional findings that may have been missed. Additional publications on guidelines for the diagnosis of CIDP and diabetic neuropathy were also included. A descriptive analysis of the 2009-2013 PharMetrics Plus™ Database was performed to estimate the prevalence and treatment of CIDP within the DM population. RESULTS There is an increasing body of literature suggesting that the prevalence of CIDP tends to be higher in diabetic patients, especially in those of older age. Our real-world data seem to support published findings from the literature. For the total cohort (N=101,321,694), the percent prevalence of CIDP (n=8,173) was 0.008%; DM (n=4,026,740) was 4%. The percent prevalence of CIDP without DM (n=5,986) was 0.006%; CIDP with DM (n=2,187) was 9-fold higher at 0.054%. For patients >50years old, there was a significantly higher percentage of CIDP with DM than CIDP without DM. Approximately 50% of CIDP patients were treated with IVIg, 23%-24% with steroids, 1%-2% with PE, and 20%-23% received no treatment. CONCLUSIONS In addition to the growing evidence of higher prevalence of CIDP in DM, our findings reinforce the need for heightened awareness of the association of CIDP and DM.
Collapse
Affiliation(s)
- Vera Bril
- Division of Neurology, University of Toronto, 200 Elizabeth St, 5EC-309, TGH, Toronto, ON, M5G 2C4, Canada
| | - Christopher M Blanchette
- Department of Public Health Sciences, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28223, USA
| | - Joshua M Noone
- Department of Public Health Sciences, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28223, USA
| | - M Chris Runken
- Department of Medical Affairs, Grifols, 79 TW Alexander Dr. Bldg 4101 Research Commons, Research Triangle Park, NC 27709, USA
| | - Deborah Gelinas
- Department of Medical Affairs, Grifols, 79 TW Alexander Dr. Bldg 4101 Research Commons, Research Triangle Park, NC 27709, USA
| | - James W Russell
- Department of Neurology, University of Maryland School of Medicine, and VA Maryland Health Care System, 110S Paca Street, 3S-129, Baltimore, MD, 21201, USA.
| |
Collapse
|
45
|
Abstract
Electrophysiologic studies provide objective data concerning nerve and muscle function. This information enables the diagnosis of disease states and monitoring of disease progression. This chapter describes the changes in electrophysiologic function in both prediabetes and diabetes and discusses the utility of this testing in patients with diabetes. Both the strengths and limitations of electrophysiology are discussed.
Collapse
|
46
|
Acute Disseminated Encephalomyelitis. J Clin Apher 2016; 31:163-202. [PMID: 27322219 DOI: 10.1002/jca.21474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
47
|
Kleyman I, Brannagan TH. Treatment of chronic inflammatory demyelinating polyneuropathy. Curr Neurol Neurosci Rep 2016; 15:47. [PMID: 26008811 DOI: 10.1007/s11910-015-0563-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Chronic inflammatory demyelinating polyneuropathy (CIDP) is one of the acquired demyelinating neuropathies and is considered to be immune mediated. Diagnosis is typically based on clinical history, neurologic examination, electrophysiologic studies, CSF studies, and pathologic examination. Early diagnosis and treatment is important to prevent irreversible axonal loss and optimize improvement in function. The first-line agents for treatment are intravenous immunoglobulin (IVIg), corticosteroids, and plasmapheresis, which have all been demonstrated to be effective in controlled studies. Studies have not shown a significant difference between these three treatments, and the initial choice of therapy is often based on availability, cost, ease of administration, and side effect profile. If patients do not respond to one of these agents, they may respond to one of the others and sometimes in combination. If the first-line agents are not effective, chemotherapeutic or immunosuppressive agents may be considered. There are limited controlled studies of these modalities, and they are often used in conjunction with a first-line treatment. The majority of patients require long-term therapy to maintain a response and to prevent relapse.
Collapse
Affiliation(s)
- Inna Kleyman
- Peripheral Neuropathy Center, Neurological Institute, Columbia University, College of Physicians and Surgeons, 710 W 168th St, box 163, New York, NY, 10032, USA,
| | | |
Collapse
|
48
|
Complete neurologic and cognitive recovery after plasmapheresis in a patient with chronic inflammatory demyelinating polyneuropathy after allogeneic hematopoietic stem cell transplantation. Wien Klin Wochenschr 2016; 128:384-6. [PMID: 26919852 PMCID: PMC4875051 DOI: 10.1007/s00508-016-0972-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 02/10/2016] [Indexed: 11/16/2022]
Abstract
Neurologic complications after allogeneic hematopoietic stem cell transplantation (HSCT) are rare but poorly understood. We present a case report of a 57-year-old-male patient who was diagnosed in 2009 with acute myeloid leukemia (AML). He received two standard induction chemotherapies, as well as a following consolidation. Six months later, an allogeneic HSCT was performed. Shortly after HSCT the patient developed progressive polyneuropathy of the lower legs and hypoesthesia. Five months later a severe dementia followed. All images of the brain and spine showed no specific pathologies. High dose corticosteroids and immunoglobulins did not improve the neurologic symptoms. Due to severe worsening of the neuropsychiatric status and the clinical presentation, chronic inflammatory demyelinating polyneuropathy (CIDP) was suspected. Therefore, the patient received ten cycles of plasmapheresis. The patient showed a significant improvement of the neuropsychiatric symptoms and cognitive status. CONCLUSIONS: Immune mediated neuropathies after allogeneic HSCT, such as CIDP, have great variability in symptoms and presentation and are challenging to diagnose and treat. Plasmapheresis is a safe and efficient treatment for patients with unclear persisting autoimmune neuropathy after HSCT.
Collapse
|
49
|
Therapeutic Plasma Exchange in Patients with Neurologic Disorders: Review of 63 Cases. Indian J Hematol Blood Transfus 2016; 33:97-105. [PMID: 28194064 DOI: 10.1007/s12288-016-0661-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 02/16/2016] [Indexed: 12/16/2022] Open
Abstract
Therapeutic plasma exchange (TPE) is a procedure that reduces circulating autoantibodies of the patients. TPE is commonly used in neurological disorders where autoimmunity plays a major role. We report our experience with regard to the indications, adverse events and outcomes of plasma exchange in neurological disorders. Sixty-three patients were included to this retrospective study. Median age was 48 years (range 1-85), there was a predominance of males. Neurological indications included Guillain-Barrè syndrome (n = 22), myasthenia gravis (n = 21), chronic inflammatory demyelinating polyneuropathy (n = 7), polymyositis (n = 3), multifocal motor neuropathy (n = 2), acute disseminated encephalomyelitis (n = 2), neuromyelitis optica (n = 2), multiple sclerosis (n = 2), limbic encephalitis (n = 1) and transverse myelitis (n = 1). TPE was frontline therapy in 57 % of the patients (n = 36). Total number of TPE sessions was 517; median number of sessions per patient was 8 (range 1-66). TPE was done through a central venous access in 97 % and through a peripheral venous access in 3 % of the patients. Human albumin was used as replacement fluid in 49 %, hydroxyethyl starch (HES) in 49 % and fresh frozen plasma in 2 % of the cases. Adverse reactions were recorded in 60 % of the patients. Total ratio of complications in 517 TPE procedures was 10.8 % and these were mild and manageable such as allergic reactions and hypotension. Overall response rate was 81 %. Interestingly, complication and response rates were similar in both HES and human albumin groups. We conclude that TPE is an effective treatment in neurologic diseases in which autoimmunity plays an important role in the pathogenesis and HES can be used instead of albumin as replacement fluid in these disorders, since it is cost-effective, has similar efficacy and complication rates.
Collapse
|
50
|
Mathis S, Vallat JM, Magy L. Novel immunotherapeutic strategies in chronic inflammatory demyelinating polyneuropathy. Immunotherapy 2016; 8:165-78. [PMID: 26809024 DOI: 10.2217/imt.15.107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is a chronic immune-mediated neuropathy: it is clinically heterogeneous (relapsing-remitting form, chronic progressive form, monophasic form or CIDP having a Guillain-Barré syndrome-like onset), but potentially treatable. Although its pathophysiology remains largely unknown, CIDP is considered an immune-mediated neuropathy. Therefore, many immunotherapies have been proposed in this peripheral nervous system disorder, the most known efficient treatments being intravenous immunoglobulin, corticosteroids and plasma exchange. However, these therapies remain unsatisfactory for many patients, so numerous other immunotherapeutic strategies have been evaluated, based on their immunosuppressant or immunomodulatory potency. We have performed a large review of the literature about treatment in CIDP, with a special emphasis on novel and alternative immunotherapeutic strategies.
Collapse
Affiliation(s)
- Stéphane Mathis
- Department of Neurology, University Hospital of Poitiers, 2 Rue de la Milétrie, 86021 Poitiers, France
| | - Jean-Michel Vallat
- Department of Neurology, Centre de Référence "Neuropathies Périphériques Rares", University Hospital of Limoges, 2 Avenue Martin Luther King, 87042 Limoges, France
| | - Laurent Magy
- Department of Neurology, Centre de Référence "Neuropathies Périphériques Rares", University Hospital of Limoges, 2 Avenue Martin Luther King, 87042 Limoges, France
| |
Collapse
|