1
|
Tiwari R, Singh VK, Gautam V, Mehrotra S, Kumar R. Host directed immunotherapy for chronic infections and cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 144:355-388. [PMID: 39978972 DOI: 10.1016/bs.apcsb.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Host-directed immunotherapy (HDI) is emerging as a transformative strategy in managing chronic diseases by leveraging the host's immune system to combat disease. This innovative approach has shown promise in a range of conditions, including cancer and parasitic infections. In oncology, HDI aims to enhance the body's natural immune response against cancer cells through mechanisms such as immune checkpoint inhibition, monoclonal antibodies, and cytokine therapies. These strategies are designed to boost the immune system's ability to recognize and destroy tumors, improving patient outcomes and offering alternatives to traditional cancer treatments. Similarly, in parasitic infections, HDI focuses on strengthening the host's immune defenses to control and eradicate those infections. For diseases like malaria, leishmaniasis, and Chagas disease, HDI strategies may involve adjuvants or immune modulators that amplify the body's ability to target and eliminate parasites. By optimizing immune responses and reducing reliance on conventional treatments, HDI holds the potential to revolutionize therapeutic approaches across various chronic diseases. This chapter highlights the flexibility and potential of HDI in advancing treatments, offering novel ways for improving patient care and disease management.
Collapse
Affiliation(s)
- Rahul Tiwari
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras, Hindu University, Varanasi, India
| | - Vishal Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras, Hindu University, Varanasi, India
| | - Vibhav Gautam
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras, Hindu University, Varanasi, India
| | - Sanjana Mehrotra
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Rajiv Kumar
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras, Hindu University, Varanasi, India.
| |
Collapse
|
2
|
Kardeh S, Masjedi F, Faezi-Marian S, Shamsaeefar A, Torabi Jahromi M, Pakfetrat M, Roozbeh J. An Atypical Course of Visceral Leishmaniasis After Kidney Transplantation: A Case Report From Iran. Transplant Proc 2023; 55:1924-1926. [PMID: 37722929 DOI: 10.1016/j.transproceed.2023.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/06/2023] [Accepted: 07/31/2023] [Indexed: 09/20/2023]
Abstract
BACKGROUND Organ transplantation can lead to human visceral leishmaniasis (VL) transmission in humans. This report aims to describe the possible complications related to an atypical course of VL after kidney transplantation. CASE PRESENTATION A 61-year-old man who suffered end-stage renal failure received a deceased donor kidney transplant after 2 years of hemodialysis. Tacrolimus, mycophenolate mofetil, and prednisolone were used for immunosuppressive therapy, and renal function remained stable for 2.5 years. He was referred to our hospital because of fever and malaise. Physical and radiological examinations showed mild splenomegaly and cervical and inguinal lymphadenopathy. Laboratory data showed bicytopenia, elevated C-reactive protein, serum creatinine, and non-nephrotic proteinuria. Bone marrow biopsy aspiration showed no abnormality. Polymerase chain reaction confirmed the diagnosis of Leishmania infantum. Anti-leishmanial therapy was initiated with liposomal amphotericin B for 2 weeks, and the patient became clinically stable. So far, there has been no evidence of clinical or biological relapse, and kidney function is stable. CONCLUSIONS Considering that VL has become increasingly widespread in immunocompromised patients in endemic regions, especially in patients with transplants, it is crucial to screen and rule out VL as a cause of infection in these patients. The probability of this problem should be considered in every patient with a transplant in endemic and nonendemic areas. Furthermore, our study showed that through timely diagnosis using noninvasive methods and standard treatments, mortality caused by this disease can be properly prevented.
Collapse
Affiliation(s)
- Sina Kardeh
- Central Clinical School, Monash University, Melbourne, Australia
| | - Fatemeh Masjedi
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shima Faezi-Marian
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Shamsaeefar
- Department of Hepatobiliary Surgery, Abu-Ali-Sina Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsa Torabi Jahromi
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Pakfetrat
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jamshid Roozbeh
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
3
|
Gupta D, Singh PK, Yadav PK, Narender T, Patil UK, Jain SK, Chourasia MK. Emerging strategies and challenges of molecular therapeutics in antileishmanial drug development. Int Immunopharmacol 2023; 115:109649. [PMID: 36603357 DOI: 10.1016/j.intimp.2022.109649] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/16/2022] [Accepted: 12/24/2022] [Indexed: 01/05/2023]
Abstract
Molecular therapy refers to targeted therapies based on molecules which have been intelligently directed towards specific biomolecular structures and include small molecule drugs, monoclonal antibodies, proteins and peptides, DNA or RNA-based strategies, targeted chemotherapy and nanomedicines. Molecular therapy is emerging as the most effective strategy to combat the present challenges of life-threatening visceral leishmaniasis, where the successful human vaccine is currently unavailable. Moreover, current chemotherapy-based strategies are associated with the issues of ineffective targeting, unavoidable toxicities, invasive therapies, prolonged treatment, high treatment costs and the development of drug-resistant strains. Thus, the rational approach to antileishmanial drug development primarily demands critical exploration and exploitation of biochemical differences between host and parasite biology, immunocharacteristics of parasite homing, and host-parasite interactions at the molecular/cellular level. Following this, the novel technology-based designing and development of host and/or parasite-targeted therapeutics having leishmanicidal and immunomodulatory activity is utmost essential to improve treatment efficacy. Thus, the present review is focused on immunological and molecular checkpoint targets in host-pathogen interaction, and molecular therapeutic prospects for Leishmania intervention, and the challenges ahead.
Collapse
Affiliation(s)
- Deepak Gupta
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar 470003, M.P., India; Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Pankaj K Singh
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India; Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India
| | - Pavan K Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Tadigoppula Narender
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Umesh K Patil
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar 470003, M.P., India
| | - Sanjay K Jain
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar 470003, M.P., India
| | - Manish K Chourasia
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India.
| |
Collapse
|
4
|
Mahor H, Mukherjee A, Sarkar A, Saha B. Anti-leishmanial therapy: Caught between drugs and immune targets. Exp Parasitol 2023; 245:108441. [PMID: 36572088 DOI: 10.1016/j.exppara.2022.108441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/12/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022]
Abstract
Leishmaniasis is an enigmatic disease that has very restricted options for chemotherapy and none for prophylaxis. As a result, deriving therapeutic principles for curing the disease has been a major objective in Leishmania research for a long time. Leishmania is a protozoan parasite that lives within macrophages by subverting or switching cell signaling to the pathways that ensure its intracellular survival. Therefore, three groups of molecules aimed at blocking or eliminating the parasite, at least, in principle, include blockers of macrophage receptor- Leishmania ligand interaction, macrophage-activating small molecules, peptides and cytokines, and signaling inhibitors or activators. Macrophages also act as an antigen-presenting cell, presenting antigen to the antigen-specific T cells to induce activation and differentiation of the effector T cell subsets that either execute or suppress anti-leishmanial functions. Three groups of therapeutic principles targeting this sphere of Leishmania-macrophage interaction include antibodies that block pro-leishmanial response of T cells, ligands that activate anti-leishmanial T cells and the antigens for therapeutic vaccines. Besides these, prophylactic vaccines have been in clinical trials but none has succeeded so far. Herein, we have attempted to encompass all these principles and compose a comprehensive review to analyze the feasibility and adoptability of different therapeutics for leishmaniasis.
Collapse
Affiliation(s)
- Hima Mahor
- National Centre for Cell Science, Ganeshkhind, Pune, 411007, India
| | - Arka Mukherjee
- Trident Academy of Creative Technology, Bhubaneswar, 751024, Odisha, India
| | - Arup Sarkar
- Trident Academy of Creative Technology, Bhubaneswar, 751024, Odisha, India
| | - Bhaskar Saha
- National Centre for Cell Science, Ganeshkhind, Pune, 411007, India; Trident Academy of Creative Technology, Bhubaneswar, 751024, Odisha, India.
| |
Collapse
|
5
|
Lai JY, Ho JX, Kow ASF, Liang G, Tham CL, Ho YC, Lee MT. Interferon therapy and its association with depressive disorders - A review. Front Immunol 2023; 14:1048592. [PMID: 36911685 PMCID: PMC9992192 DOI: 10.3389/fimmu.2023.1048592] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/13/2023] [Indexed: 02/24/2023] Open
Abstract
Interferons (IFNs) are important in controlling the innate immune response to viral infections. Besides that, studies have found that IFNs also have antimicrobial, antiproliferative/antitumor and immunomodulatory effects. IFNs are divided into Type I, II and III. Type I IFNs, in particular IFN-α, is an approved treatment for hepatitis C. However, patients developed neuropsychological disorders during treatment. IFN-α induces proinflammatory cytokines, indoleamine 2,3-dioxygenase (IDO), oxidative and nitrative stress that intensifies the body's inflammatory response in the treatment of chronic inflammatory disease. The severity of the immune response is related to behavioral changes in both animal models and humans. Reactive oxygen species (ROS) is important for synaptic plasticity and long-term potentiation (LTP) in the hippocampus. However, excess ROS will generate highly reactive free radicals which may lead to neuronal damage and neurodegeneration. The limbic system regulates memory and emotional response, damage of neurons in this region is correlated with mood disorders. Due to the drawbacks of the treatment, often patients will not complete the treatment sessions, and this affects their recovery process. However, with proper management, this could be avoided. This review briefly describes the different types of IFNs and its pharmacological and clinical usages and a focus on IFN-α and its implications on depression.
Collapse
Affiliation(s)
- Jing Yung Lai
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Jian Xiang Ho
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| | | | - Gengfan Liang
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Chau Ling Tham
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Yu-Cheng Ho
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City, Taiwan
| | - Ming Tatt Lee
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Arts RJ, Ector GI, Bosch-Nicolau P, Molina I, McCall MB, van der Velden WJ, van Laarhoven A, de Mast Q, van Dorp S. A difficult to treat Leishmania infantum relapse after allogeneic stem cell transplantation. IDCases 2023; 32:e01753. [PMID: 37063784 PMCID: PMC10091026 DOI: 10.1016/j.idcr.2023.e01753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
Here we describe a complicated case of a relapsed Leishmania infantum infection after an allogeneic stem cell transplantation (allo-SCT) for primary myelofibrosis. Three years earlier the patient had been diagnosed with a hemophagocytic lymphohistiocytosis secondary to a visceral Leishmania infantum infection, for which he was effectively treated with a cumulative dose of 40 mg/kg liposomal amphotericin B. During the first disease episode he was also diagnosed with primary myelofibrosis for which he received medical follow-up. One year later ruxolitinib was started due to progressive disease. No Leishmania relapse occurred. Nevertheless, the marrow fibrosis progressed, and an allo-SCT was performed. Two months after allo-SCT prolonged fever and a persistent pancytopenia occurred, which was due to a relapse of visceral Leishmaniasis. The infection was refractory to a prolonged treatment with liposomal amphotericin B with a cumulative dose up to 100 mg/kg. Salvage treatment with miltefosine led to reduction of fever within a few days and was followed by a slow recovery of pancytopenia over the following months. The Leishmania parasite load by PCR started to decline and after 3.5 months no Leishmania DNA could be detected anymore and follow-up until ten months afterwards did not show a relapse.
Collapse
|
7
|
Magalhães LS, Melo EV, Damascena NP, Albuquerque ACB, Santos CNO, Rebouças MC, Bezerra MDO, Louzada da Silva R, de Oliveira FA, Santos PL, da Silva JS, Lipscomb MW, da Silva ÂM, de Jesus AR, de Almeida RP. Use of N-acetylcysteine as treatment adjuvant regulates immune response in visceral leishmaniasis: Pilot clinical trial and in vitro experiments. Front Cell Infect Microbiol 2022; 12:1045668. [PMID: 36506010 PMCID: PMC9730326 DOI: 10.3389/fcimb.2022.1045668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/03/2022] [Indexed: 11/25/2022] Open
Abstract
This investigation aimed to assess the effect of N-acetylcysteine (NAC) as an adjuvant treatment to alleviate visceral leishmaniasis (VL). The present work includes both blinded randomized clinical intervention and experimental in vitro studies. The clinical trial included 60 patients with VL randomly allocated into two groups: a test group (n = 30) treated with meglumine antimoniate plus NAC (SbV + NAC) and a control group (n = 30) treated with meglumine antimoniate only (SbV). The primary outcome was clinical cure (absence of fever, spleen and liver sizes reduction, and hematological improvement) in 180 days. The cure rate did not differ between the groups; both groups had similar results in all readout indices. The immunological parameters of the patients treated with SbV + NAC showed higher sCD40L in sera during treatment, and the levels of sCD40L were negatively correlated with Interleukin-10 (IL-10) serum levels. In addition, data estimation showed a negative correlation between the sCD40L levels and the spleen size in patients with VL. For the in vitro experiments, peripheral blood mononuclear cells (PBMCs) or PBMC-derived macrophages from healthy donors were exposed to soluble Leishmania antigen (SLA) or infected with stationary promastigotes of Leishmania infantum in the presence or absence of NAC. Results revealed that NAC treatment of SLA-stimulated PBMCs reduces the frequency of monocytes producing IL-10 and lowers the frequency of CD4+ and CD8+ T cells expressing (pro-)inflammatory cytokines. Together, these results suggest that NAC treatment may modulate the immune response in patients with VL, thus warranting additional investigations to support its case use as an adjuvant to antimony therapy for VL.
Collapse
Affiliation(s)
- Lucas Sousa Magalhães
- Laboratory of Immunology and Molecular Biology, University Hospital, Federal University of Sergipe, Aracaju, Brazil,Health Sciences Graduate Program, Federal University of Sergipe, Aracaju, Brazil,Sector of Parasitology and Pathology, Biological and Health Sciences Institute, Federal University of Alagoas, Maceió, Brazil
| | - Enaldo Vieira Melo
- Department of Medicine, University Hospital-Empresa Brasileira de Serviços Hospitalares (EBSERH), Federal University of Sergipe, Aracaju, Brazil
| | - Nayra Prata Damascena
- Department of Medicine, University Hospital-Empresa Brasileira de Serviços Hospitalares (EBSERH), Federal University of Sergipe, Aracaju, Brazil
| | - Adriana Cardoso Batista Albuquerque
- Department of Medicine, University Hospital-Empresa Brasileira de Serviços Hospitalares (EBSERH), Federal University of Sergipe, Aracaju, Brazil
| | - Camilla Natália Oliveira Santos
- Laboratory of Immunology and Molecular Biology, University Hospital, Federal University of Sergipe, Aracaju, Brazil,Health Sciences Graduate Program, Federal University of Sergipe, Aracaju, Brazil
| | - Mônica Cardozo Rebouças
- Laboratory of Immunology and Molecular Biology, University Hospital, Federal University of Sergipe, Aracaju, Brazil
| | - Mariana de Oliveira Bezerra
- Laboratory of Immunology and Molecular Biology, University Hospital, Federal University of Sergipe, Aracaju, Brazil,Department of Medicine, University Hospital-Empresa Brasileira de Serviços Hospitalares (EBSERH), Federal University of Sergipe, Aracaju, Brazil
| | - Ricardo Louzada da Silva
- Laboratory of Immunology and Molecular Biology, University Hospital, Federal University of Sergipe, Aracaju, Brazil,Department of Health Education, Federal University of Sergipe, Lagarto, Brazil
| | - Fabricia Alvisi de Oliveira
- Laboratory of Immunology and Molecular Biology, University Hospital, Federal University of Sergipe, Aracaju, Brazil
| | - Priscila Lima Santos
- Laboratory of Immunology and Molecular Biology, University Hospital, Federal University of Sergipe, Aracaju, Brazil,Health Sciences Graduate Program, Federal University of Sergipe, Aracaju, Brazil,Department of Health Education, Federal University of Sergipe, Lagarto, Brazil
| | - João Santana da Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Ângela Maria da Silva
- Laboratory of Immunology and Molecular Biology, University Hospital, Federal University of Sergipe, Aracaju, Brazil,Department of Medicine, University Hospital-Empresa Brasileira de Serviços Hospitalares (EBSERH), Federal University of Sergipe, Aracaju, Brazil
| | - Amélia Ribeiro de Jesus
- Laboratory of Immunology and Molecular Biology, University Hospital, Federal University of Sergipe, Aracaju, Brazil,Health Sciences Graduate Program, Federal University of Sergipe, Aracaju, Brazil,Department of Medicine, University Hospital-Empresa Brasileira de Serviços Hospitalares (EBSERH), Federal University of Sergipe, Aracaju, Brazil,Immunology Institute of Investigation (iii), National Institute of Science and Technology (INCT), Brazilian Research and Technology Council (CNPq), São Paulo, Brazil
| | - Roque Pacheco de Almeida
- Laboratory of Immunology and Molecular Biology, University Hospital, Federal University of Sergipe, Aracaju, Brazil,Health Sciences Graduate Program, Federal University of Sergipe, Aracaju, Brazil,Department of Medicine, University Hospital-Empresa Brasileira de Serviços Hospitalares (EBSERH), Federal University of Sergipe, Aracaju, Brazil,Immunology Institute of Investigation (iii), National Institute of Science and Technology (INCT), Brazilian Research and Technology Council (CNPq), São Paulo, Brazil,*Correspondence: Roque Pacheco de Almeida,
| |
Collapse
|
8
|
Gurjar D, Kumar Patra S, Bodhale N, Lenka N, Saha B. Leishmania intercepts IFN-γR signaling at multiple levels in macrophages. Cytokine 2022; 157:155956. [PMID: 35785668 DOI: 10.1016/j.cyto.2022.155956] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/13/2022] [Accepted: 06/24/2022] [Indexed: 11/26/2022]
Abstract
IFN-γ, a type 2 interferon and a cytokine, is critical for both innate and adaptive immunity. IFN-γ binds to the IFN-γRs on the cell membrane of macrophages, signals through JAK1-STAT-1 pathway and induces IFN-γ-stimulated genes (ISGs). As Leishmania amastigotes reside and replicate within macrophages, IFN-γ mediated macrophage activation eventuate in Leishmania elimination. As befits the principle of parasitism, the impaired IFN-γ responsiveness in macrophages ensures Leishmania survival. IFN-γ responsiveness is a function of integrated molecular events at multiple levels in the cells that express IFN-γ receptors. In Leishmania-infected macrophages, reduced IFN-γRα expression, impaired IFN-γRα and IFN-γRβ hetero-dimerization due to altered membrane lipid composition, reduced JAK-1 and STAT-1 phosphorylation but increased STAT-1 degradation and impaired ISGs induction collectively determine the IFN-γ responsiveness and the efficacy of IFN-γ induced antileishmanial function of macrophages. Therefore, parasite load is not only decided by the levels of IFN-γ produced but also by the IFN-γ responsiveness. Indeed, in Leishmania-infected patients, IFN-γ is produced but IFN-γ signalling is downregulated. However, the molecular mechanisms of IFN-γ responsiveness remain unclear. Therefore, we review the current understanding of IFN-γ responsiveness of Leishmania-infected macrophages.
Collapse
Affiliation(s)
- Dhiraj Gurjar
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | | | - Neelam Bodhale
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | - Nibedita Lenka
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India.
| | - Bhaskar Saha
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India.
| |
Collapse
|
9
|
Seth A, Kar S. Host-directed antileishmanial interventions: Harvesting unripe fruits to reach fruition. Int Rev Immunol 2022; 42:217-236. [PMID: 35275772 DOI: 10.1080/08830185.2022.2047670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Leishmaniasis is an exemplary paradigm of immune evasion, fraught with the perils of limited clinical assistance, escalating costs of treatment and made worse with the lack of suitable vaccine. While drugs remain central to large-scale disease control, the growing emergence of parasite resistance necessitates the need for combination therapy involving host-directed immunological agents. Also, since prolonged disease progression is associated with strong immune suppression of the host, augmentation of host immunity via restoration of the immunoregulatory circuit involving antigen-presenting cells and T-cells, activation of macrophage function and/or CD4+ T helper 1 cell differentiation may serve as an ideal approach to resolve severe cases of leishmaniasis. As such, therapies that embody a synergistic approach that involve direct killing of the parasite in addition to elevating host immunity are likely to pave the way for widespread elimination of leishmaniasis in the future. With this review, we aim to recapitulate the various immunotherapeutic agents found to hold promise in antileishmanial treatment both in vitro and in vivo. These include parasite-specific antigens, dendritic cell-targeted therapy, recombinant inhibitors of various components intrinsic to immune cell signaling and agonists or antagonists to immune cells and cytokines. We also summarize their abilities to direct therapeutic skewing of the host cell-immune response and review their potential to combat the disease either alone, or as adjunct modalities.
Collapse
Affiliation(s)
- Anuradha Seth
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Susanta Kar
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
10
|
Taghipour A, Abdoli A, Ramezani A, Abolghazi A, Mofazzal Jahromi MA, Maani S, Heidar Nejadi SM, Rasti S, Shams M, Ghasemi E. Leishmaniasis and Trace Element Alterations: a Systematic Review. Biol Trace Elem Res 2021; 199:3918-3938. [PMID: 33405078 DOI: 10.1007/s12011-020-02505-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/17/2020] [Indexed: 12/21/2022]
Abstract
Leishmaniasis is a worldwide prevalent parasitic infection caused by different species of the genus Leishmania. Clinically, the disease divided into three main forms, including visceral leishmaniasis (VL), cutaneous leishmaniasis (CL), and mucocutaneous leishmaniasis (MCL). There is no vaccine for human leishmaniasis and their treatment is challenging. Trace elements (TEs) alteration, including the selenium (Se), zinc (Zn), copper (Cu), ron (Fe), and magnesium (Mg) have been detected in patients with CL and VL as well as canine leishmaniasis. Because TEs play a pivotal role in the immune system, and host immune responses have crucial roles in defense against leishmaniasis, this systematic review aimed to summarize data regarding TEs alteration in human and animal leishmaniasis as well as the role of these elements as an adjuvant for treatment of leishmaniasis. In a setting of systematic review, we found 29 eligible articles (any date until October 1, 2020) regarding TEs in human CL (N = 12), human VL (N = 4), canine leishmaniasis (N = 3), and treatment of leishmaniasis based on TEs (N = 11), which one study examined the TEs level both in CL and VL patients. Our analysis demonstrated a significantly decreased level of Fe, Zn, and Se among human CL and canine leishmaniasis, and Zn and Fe in patients with VL. In contrast, an increased level of Cu in CL patients and Cu and Mg in VL patients and canine leishmaniasis was observed. Treatment of CL based zinc supplementation revealed enhancement of wound healing and diminished scar formation in human and experimentally infected animals. The results of this systematic review indicate that the TEs have important roles in leishmaniasis, which could be assessed as a prognosis factor in this disease. It is suggested that TEs could be prescribed as an adjuvant for the treatment of CL and VL patients.
Collapse
Affiliation(s)
- Ali Taghipour
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amir Abdoli
- Department of Parasitology and Mycology, School of Medicine, Jahrom University of Medical Sciences, PO Box 74148-46199, Ostad Motahari Ave, Jahrom, Iran.
- Zoonoses Research Center, Jahrom University of Medical Sciences, Jahrom, Iran.
| | - Afifeh Ramezani
- Student Research Committee, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Ahmad Abolghazi
- Department of Parasitology and Mycology, School of Medicine, Jahrom University of Medical Sciences, PO Box 74148-46199, Ostad Motahari Ave, Jahrom, Iran
- Zoonoses Research Center, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Mirza Ali Mofazzal Jahromi
- Department of Advanced Medical Sciences & Technologies, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
- Department of Laboratory Sciences, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
- Research Center for Noncommunicable Diseases, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Salar Maani
- Department of Parasitology and Mycology, School of Medicine, Jahrom University of Medical Sciences, PO Box 74148-46199, Ostad Motahari Ave, Jahrom, Iran
- Student Research Committee, Jahrom University of Medical Sciences, Jahrom, Iran
| | | | - Sima Rasti
- Department of Parasitology and Mycology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Morteza Shams
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Ezatollah Ghasemi
- Department of Medical Parasitology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| |
Collapse
|
11
|
Leishmaniasis: where are we and where are we heading? Parasitol Res 2021; 120:1541-1554. [PMID: 33825036 DOI: 10.1007/s00436-021-07139-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/24/2021] [Indexed: 01/19/2023]
Abstract
Leishmaniasis is a zoonotic disease in humans caused by the bite of a parasite-infected sandfly. The disease, widely referred to as "poor man's disease," affects millions of people worldwide. The clinical manifestation of the disease depends upon the species of the parasite and ranges from physical disfigurement to death if left untreated. Here, we review the past, present, and future of leishmaniasis in detail. The life cycle of Leishmania sp., along with its epidemiology, is discussed, and in addition, the line of therapeutics available for treatment currently is examined. The current status of the disease is critically evaluated, keeping emerging threats like human immunodeficiency virus (HIV) coinfection and post kala-azar dermal leishmaniasis (PKDL) into consideration. In summary, the review proposes a dire need for new therapeutics and reassessment of the measures and policies concerning emerging threats. New strategies are essential to achieve the goal of leishmaniasis eradication in the next few decades.
Collapse
|
12
|
High Content Analysis of Macrophage-Targeting EhPIb-Compounds against Cutaneous and Visceral Leishmania Species. Microorganisms 2021; 9:microorganisms9020422. [PMID: 33670713 PMCID: PMC7923059 DOI: 10.3390/microorganisms9020422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/31/2021] [Accepted: 02/12/2021] [Indexed: 01/29/2023] Open
Abstract
An immunostimulatory glycolipid molecule from the intestinal protozoan parasite Entamoeba histolytica (Eh) and its synthetic analogs derived from its phosphatidylinositol-b-anchor (EhPIb) previously showed considerable immunotherapeutic effects against Leishmania major infection in vitro and in vivo. Here, we describe a high content screening assay, based on primary murine macrophages. Parasites detection is based on a 90 kDA heat shock protein-specific staining, enabling the detection of several Leishmania species. We validated the assay using L. major, L. braziliensis, L. donovani, and L. infantum as well as investigated the anti-leishmanial activity of six immunostimulatory EhPIb-compounds (Eh-1 to Eh-6). Macrophages infected with dermotropic species were more sensitive towards treatment with the compounds as their viability showed a stronger reduction compared to macrophages infected with viscerotropic species. Most compounds caused a significant reduction of the infection rates and the parasite burdens depending on the infecting species. Only compound Eh-6 was found to have activity against all Leishmania species. Considering the challenges in anti-leishmanial drug discovery, we developed a multi-species screening assay capable of utilizing non-recombinant parasite strains, and demonstrated its usefulness by screening macrophage-targeting EhPIb-compounds showing their potential for the treatment of cutaneous and visceral leishmaniasis.
Collapse
|
13
|
Dutra BM, Rodrigues NLDC, Fonseca FRM, de Moura TR, Pacheco de Almeida R, de Jesus AR, Abreu TM, Pompeu MMDL, Teixeira CR, Teixeira MJ. CXCL10 immunomodulatory effect against infection caused by an antimony refractory isolate of Leishmania braziliensis in mice. Parasite Immunol 2020; 43:e12805. [PMID: 33131089 DOI: 10.1111/pim.12805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 11/28/2022]
Abstract
Leishmania braziliensis is the main causative agent of American tegumentary leishmaniasis in Brazil. Current treatment includes different drugs that have important side effects and identification of cases of parasite resistance to treatment support the search for new therapeutic strategies. Recent findings have indicated that CXCL10, a chemokine that recruits and activates Th1 cells, NK cells, macrophages, dendritic cells and B lymphocytes, is a potential alternative to treat Leishmania infection. Here, we tested CXCL10 immunotherapy against experimental infection caused by an antimony-resistant isolate of Leishmania braziliensis. Following infection, mice were treated with CXCL10 for 7 days after onset of lesions. We demonstrate that mice treated with CXCL10 controlled lesion progression and parasite burden more efficiently comparing to controls. An increased IFN-γ, IL-10, TGF-β and low IL-4 production combined with a distinct inflammatory infiltrate composed by activated macrophages, lymphocytes and granulomas was observed in the CXCL10-treated group comparing to controls. However, CXCL10 and Glucantime combined therapy did not improve CXCL10-induced protective effect. Our findings reinforce the potential of CXCL10 immunotherapy as an alternative treatment against infection caused by L. braziliensis resistant to conventional chemotherapy.
Collapse
Affiliation(s)
- Brunheld Maia Dutra
- Department of Pathology and Legal Medicine, Federal University of Ceará, Fortaleza, Brazil
| | | | | | | | | | - Amélia Ribeiro de Jesus
- Department of Internal Medicine and Pathology, Federal University of Sergipe, Aracajú, Brazil
| | - Ticiana Monteiro Abreu
- Department of Pathology and Legal Medicine, Federal University of Ceará, Fortaleza, Brazil
| | | | | | - Maria Jania Teixeira
- Department of Pathology and Legal Medicine, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
14
|
Zabolinejad N, Layegh P, Abbasi Shaye Z, Salehi M, Ghanizadeh S. Evaluating the effect of oral clarithromycin on acute cutaneous leishmaniasis lesions compared with systemic glucantime. J DERMATOL TREAT 2020; 33:1418-1423. [PMID: 32972289 DOI: 10.1080/09546634.2020.1825612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND AND AIM It is widely accepted that the high prevalence of leishmaniasis, demands the search for a tolerable effective treatment with the least side effects. This study aimed to evaluate the effect of treatment with clarithromycin on regression of lesions. MATERIALS AND METHODS This study was performed on 20 patients with leishmaniasis referred to dermatology clinic in 2017-2018. They were divided into two groups of intervention (500 mg oral clarithromycin twice a day) and control (20 mg/kg/day systematic glucantime). Induration size of lesions was recorded. RESULTS We had 20 patients with acute cutaneous leishmaniasis (CL) with 45 lesions in the control group and 49 lesions in the intervention group. In the control group, the mean number of lesions was 3 ± 2.8 and 5 ± 4.3 in each person in the control and intervention group (p=.63). The mean size of the largest diameter of lesions' induration at the beginning of the treatment was 19.81 ± 13 and 15.47 ± 15.6 mm in control and intervention group (p=.3) which changed to 1.59 and 0 respectively in three months after the treatment (p=.001). CONCLUSIONS We concluded oral clarithromycin had therapeutic effects on acute CL similar to systematic glucantime and could be considered as a safe and effective treatment option.
Collapse
Affiliation(s)
- Naghmeh Zabolinejad
- Cutaneous Leishmaniasis Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pouran Layegh
- Cutaneous Leishmaniasis Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Abbasi Shaye
- Clinical Research and Development Center of Akbar Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Salehi
- Department of Social Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Clinical Development Research Unit, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Somayeh Ghanizadeh
- Cutaneous Leishmaniasis Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
Roatt BM, de Oliveira Cardoso JM, De Brito RCF, Coura-Vital W, de Oliveira Aguiar-Soares RD, Reis AB. Recent advances and new strategies on leishmaniasis treatment. Appl Microbiol Biotechnol 2020; 104:8965-8977. [PMID: 32875362 DOI: 10.1007/s00253-020-10856-w] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/13/2020] [Accepted: 08/23/2020] [Indexed: 12/18/2022]
Abstract
Leishmaniasis is one of the most important tropical neglected diseases according to the World Health Organization. Even after more than a century, we still have few drugs for the disease therapy and their great toxicity and side effects put in check the treatment control program around the world. Moreover, the emergence of strains resistant to conventional drugs, co-infections such as HIV/Leishmania spp., the small therapeutic arsenal (pentavalent antimonials, amphotericin B and formulations, and miltefosine), and the low investment for the discovery/development of new drugs force researchers and world health agencies to seek new strategies to combat and control this important neglected disease. In this context, the aim of this review is to summarize new advances and new strategies used on leishmaniasis therapy addressing alternative and innovative treatment paths such as physical and local/topical therapies, combination or multi-drug uses, immunomodulation, drug repurposing, and the nanotechnology-based drug delivery systems.Key points• The treatment of leishmaniasis is a challenge for global health agencies.• Toxicity, side effects, reduced therapeutic arsenal, and drug resistance are the main problems.• New strategies and recent advances on leishmaniasis treatment are urgent.• Immunomodulators, nanotechnology, and drug repurposing are the future of leishmaniasis treatment.
Collapse
Affiliation(s)
- Bruno Mendes Roatt
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Morro do Cruzeiro, Ouro Preto, Minas Gerais, 35400-000, Brazil.,Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Morro do Cruzeiro, Ouro Preto, Minas Gerais, 35400-000, Brazil.,Instituto de Ciência e Tecnologia de Doenças Tropicais (INCT-DT), Salvador, Bahia, Brazil
| | - Jamille Mirelle de Oliveira Cardoso
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Morro do Cruzeiro, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Rory Cristiane Fortes De Brito
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Morro do Cruzeiro, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Wendel Coura-Vital
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Morro do Cruzeiro, Ouro Preto, Minas Gerais, 35400-000, Brazil.,Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-00, Brazil
| | - Rodrigo Dian de Oliveira Aguiar-Soares
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Morro do Cruzeiro, Ouro Preto, Minas Gerais, 35400-000, Brazil.,Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-00, Brazil
| | - Alexandre Barbosa Reis
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Morro do Cruzeiro, Ouro Preto, Minas Gerais, 35400-000, Brazil. .,Instituto de Ciência e Tecnologia de Doenças Tropicais (INCT-DT), Salvador, Bahia, Brazil. .,Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-00, Brazil.
| |
Collapse
|
16
|
Ikeogu NM, Akaluka GN, Edechi CA, Salako ES, Onyilagha C, Barazandeh AF, Uzonna JE. Leishmania Immunity: Advancing Immunotherapy and Vaccine Development. Microorganisms 2020; 8:E1201. [PMID: 32784615 PMCID: PMC7465679 DOI: 10.3390/microorganisms8081201] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 01/06/2023] Open
Abstract
Parasitic diseases still constitute a major global health problem affecting billions of people around the world. These diseases are capable of becoming chronic and result in high morbidity and mortality. Worldwide, millions of people die each year from parasitic diseases, with the bulk of those deaths resulting from parasitic protozoan infections. Leishmaniasis, which is a disease caused by over 20 species of the protozoan parasite belonging to the genus Leishmania, is an important neglected disease. According to the World Health Organization (WHO), an estimated 12 million people are currently infected in about 98 countries and about 2 million new cases occur yearly, resulting in about 50,000 deaths each year. Current treatment methods for leishmaniasis are not very effective and often have significant side effects. In this review, we discussed host immunity to leishmaniasis, various treatment options currently being utilized, and the progress of both immunotherapy and vaccine development strategies used so far in leishmaniasis. We concluded with insights into what the future holds toward the fight against this debilitating parasitic disease.
Collapse
Affiliation(s)
- Nnamdi M. Ikeogu
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (G.N.A.); (E.S.S.); (C.O.); (A.F.B.)
| | - Gloria N. Akaluka
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (G.N.A.); (E.S.S.); (C.O.); (A.F.B.)
| | - Chidalu A. Edechi
- Department of Pathology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 3P5, Canada;
| | - Enitan S. Salako
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (G.N.A.); (E.S.S.); (C.O.); (A.F.B.)
| | - Chukwunonso Onyilagha
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (G.N.A.); (E.S.S.); (C.O.); (A.F.B.)
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada
| | - Aida F. Barazandeh
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (G.N.A.); (E.S.S.); (C.O.); (A.F.B.)
| | - Jude E. Uzonna
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (G.N.A.); (E.S.S.); (C.O.); (A.F.B.)
| |
Collapse
|
17
|
Can We Harness Immune Responses to Improve Drug Treatment in Leishmaniasis? Microorganisms 2020; 8:microorganisms8071069. [PMID: 32709117 PMCID: PMC7409143 DOI: 10.3390/microorganisms8071069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/12/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023] Open
Abstract
Leishmaniasis is a vector-borne parasitic disease that has been neglected in priority for control and eradication of malaria, tuberculosis, and HIV/AIDS. Collectively, over one seventh of the world’s population is at risk of being infected with 0.7–1.2 million new infections reported annually. Clinical manifestations range from self-healing cutaneous lesions to fatal visceral disease. The first anti-leishmanial drugs were introduced in the 1950′s and, despite several shortcomings, remain the mainstay for treatment. Regardless of this and the steady increase in infections over the years, particularly among populations of low economic status, research on leishmaniasis remains under funded. This review looks at the drugs currently in clinical use and how they interact with the host immune response. Employing chemoimmunotherapeutic approaches may be one viable alternative to improve the efficacy of novel/existing drugs and extend their lifespan in clinical use.
Collapse
|
18
|
Antileishmanial Effects of Synthetic EhPIb Analogs Derived from the Entamoeba histolytica Lipopeptidephosphoglycan. Antimicrob Agents Chemother 2020; 64:AAC.00161-20. [PMID: 32393489 PMCID: PMC7318009 DOI: 10.1128/aac.00161-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/27/2020] [Indexed: 12/29/2022] Open
Abstract
With an estimated number of new cases annually of approximately 1.4 million, leishmaniasis belongs to the most important parasitic diseases in the world. Nevertheless, existing drugs against leishmaniasis in general have several drawbacks that urgently necessitate new drug development. A glycolipid molecule of the intestinal protozoan parasite Entamoeba histolytica and its synthetic analogs previously showed considerable immunotherapeutic effects against Leishmania major infection. With an estimated number of new cases annually of approximately 1.4 million, leishmaniasis belongs to the most important parasitic diseases in the world. Nevertheless, existing drugs against leishmaniasis in general have several drawbacks that urgently necessitate new drug development. A glycolipid molecule of the intestinal protozoan parasite Entamoeba histolytica and its synthetic analogs previously showed considerable immunotherapeutic effects against Leishmania major infection. Here, we designed and synthesized a series of new immunostimulatory compounds derived from the phosphatidylinositol b anchor of Entamoeba histolytica (EhPIb) subunit of the native compound and investigated their antileishmanial activity in vitro and in vivo in a murine model of cutaneous leishmaniasis. The new synthetic EhPIb analogs showed almost no toxicity in vitro. Treatment with the analogs significantly decreased the parasite load in murine and human macrophages in vitro. In addition, topical application of the EhPIb analog Eh-1 significantly reduced cutaneous lesions in the murine model, correlating with an increase in the production of selected Th1 cytokines. In addition, we could show in in vitro experiments that treatment with Eh-1 led to a decrease in mRNA expression of arginase-1 (Arg1) and interleukin 4 (IL-4), which are required by the parasites to circumvent their elimination by the immune response. The use of the host-targeting synthetic EhPIb compounds, either alone or in combination therapy with antiparasitic drugs, shows promise for treating cutaneous leishmaniasis and therefore might improve the current unsatisfactory status of chemotherapy against this infectious disease.
Collapse
|
19
|
Gonçalves AAM, Leite JC, Resende LA, Mariano RMDS, Silveira P, Melo-Júnior OADO, Ribeiro HS, de Oliveira DS, Soares DF, Santos TAP, Marques AF, Galdino AS, Martins-Filho OA, Dutra WO, da Silveira-Lemos D, Giunchetti RC. An Overview of Immunotherapeutic Approaches Against Canine Visceral Leishmaniasis: What Has Been Tested on Dogs and a New Perspective on Improving Treatment Efficacy. Front Cell Infect Microbiol 2019; 9:427. [PMID: 31921703 PMCID: PMC6930146 DOI: 10.3389/fcimb.2019.00427] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/29/2019] [Indexed: 12/14/2022] Open
Abstract
Visceral leishmaniasis (VL), caused by digenetic protozoa of the genus Leishmania, is the most severe form of leishmaniasis. Leishmania infantum is one of the species responsible for VL and the disease caused is considered a zoonosis whose main reservoir is the dog. Canine visceral leishmaniasis (CVL) can lead to the death of the animal if left untreated. Furthermore, the available pharmocologial treatment for CVL presents numerous disadvantages, such as relapses, toxicity, drug resistance, and the fact treated animals continue to be reservoirs when treatment fails to achieve parasitological cure. Moreover, the available VL control methods have not been adequate when it comes to controlling parasite transmission. Advances in immune response knowledge in recent years have led to a better understanding of VL pathogenesis, allowing new treatments to be developed based on immune system activation, often referred to as immunotherapy. In fact, well-defined protocols have been described, ranging from the use of immunomodulators to the use of vaccines. This treatment, which can also be associated with chemotherapy, has been shown to be effective in restoring or inducing an adequate immune response to reduce parasitic burden, leading to clinical improvement. This review focuses on immunotherapy directed at dogs infected by L. infantum, including a literature review of what has already been done in dogs. We also introduce a promising strategy to improve the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Ana Alice Maia Gonçalves
- Laboratory of Biology of Cell Interactions, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Jaqueline Costa Leite
- Laboratory of Biology of Cell Interactions, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Lucilene Aparecida Resende
- Laboratory of Biology of Cell Interactions, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Reysla Maria da Silveira Mariano
- Laboratory of Biology of Cell Interactions, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Patricia Silveira
- Laboratory of Biology of Cell Interactions, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Otoni Alves de Oliveira Melo-Júnior
- Laboratory of Biology of Cell Interactions, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Helen Silva Ribeiro
- Laboratory of Biology of Cell Interactions, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Diana Souza de Oliveira
- Laboratory of Biology of Cell Interactions, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Diogo Fonseca Soares
- Laboratory of Biology of Cell Interactions, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Thaiza Aline Pereira Santos
- Laboratory of Biology of Cell Interactions, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Alexandre Ferreira Marques
- Laboratory of Immuno-Proteome and Parasite Biology, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Olindo Assis Martins-Filho
- Laboratory of Diagnostic and Monitoring Biomarkers, René Rachou Institute, FIOCRUZ-Minas, Belo Horizonte, Brazil
| | - Walderez Ornelas Dutra
- Laboratory of Biology of Cell Interactions, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Denise da Silveira-Lemos
- Laboratory of Biology of Cell Interactions, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Rodolfo Cordeiro Giunchetti
- Laboratory of Biology of Cell Interactions, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
20
|
Immunotherapy in clinical canine leishmaniosis: a comparative update. Res Vet Sci 2019; 125:218-226. [PMID: 31280121 DOI: 10.1016/j.rvsc.2019.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 05/22/2019] [Accepted: 06/18/2019] [Indexed: 12/13/2022]
Abstract
Leishmaniosis due to Leishmania infantum is a complex infection that can affect both humans and dogs, and present a wide range of clinical signs and clinicopathological abnormalities. The conventional treatment of this disease is challenging due to the fact that complete parasitological cure commonly does not occur. Furthermore, treatment of the disease with the conventionally used drugs has several shortcomings. These include the need for long-term treatment, side effects and the formation of drug resistance. Moreover, it is important to highlight that the host immune responses play a crucial role in the outcome of this infection. For this reason, the use of immunotherapy in clinical leishmaniosis to improve the result of treatment with the conventional anti-leishmanial drugs by enhancing the immune response is imperative. The aim of this review is to provide a comparative overview of the wide range of immunotherapeutical approaches and strategies for the treatment of L. infantum infection in animals focusing on dogs.
Collapse
|
21
|
Khodabandeh M, Rostami A, Borhani K, Gamble HR, Mohammadi M. Treatment of resistant visceral leishmaniasis with interferon gamma in combination with liposomal amphotericin B and allopurinol. Parasitol Int 2019; 72:101934. [PMID: 31129197 DOI: 10.1016/j.parint.2019.101934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 10/26/2022]
Abstract
This report describes the first case of visceral leishmaniasis (VL) resistant to pentavalent antimonials and also the first use of combinational therapy in Iran. The patient was a two-year old boy, from a non-endemic area for leishmaniasis in northern Iran, presenting with pentavalent antimonial resistant VL. Additional treatment with conventional and liposomal amphotericin B was not effective. A complete cure was achieved following a three week treatment with liposomal amphotericin B (5 mg/kg/day for 5 days, then on the 14th and 21st days), allopurinol (25 mg/day for 5 days, then on the 14th and 21st days) and interferon gamma (50 μg/m2 subcutaneously three times weekly). Our results suggest a need for further studies to identify resistant Leishmania species and their susceptibility to different treatment regimens.
Collapse
Affiliation(s)
- Mahmoud Khodabandeh
- Department of Infectious Diseases, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Rostami
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Katayoun Borhani
- Department of Infectious Diseases, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - H Ray Gamble
- National Academy of Sciences, Washington, DC, USA
| | - Mohsen Mohammadi
- Non-Communicable Pediatric Diseases Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
22
|
Dayakar A, Chandrasekaran S, Kuchipudi SV, Kalangi SK. Cytokines: Key Determinants of Resistance or Disease Progression in Visceral Leishmaniasis: Opportunities for Novel Diagnostics and Immunotherapy. Front Immunol 2019; 10:670. [PMID: 31024534 PMCID: PMC6459942 DOI: 10.3389/fimmu.2019.00670] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 03/12/2019] [Indexed: 12/31/2022] Open
Abstract
Leishmaniasis is a parasitic disease of humans, highly prevalent in parts of the tropics, subtropics, and southern Europe. The disease mainly occurs in three different clinical forms namely cutaneous, mucocutaneous, and visceral leishmaniasis (VL). The VL affects several internal organs and is the deadliest form of the disease. Epidemiology and clinical manifestations of VL are variable based on the vector, parasite (e.g., species, strains, and antigen diversity), host (e.g., genetic background, nutrition, diversity in antigen presentation and immunity) and the environment (e.g., temperature, humidity, and hygiene). Chemotherapy of VL is limited to a few drugs which is expensive and associated with profound toxicity, and could become ineffective due to the parasites developing resistance. Till date, there are no licensed vaccines for humans against leishmaniasis. Recently, immunotherapy has become an attractive strategy as it is cost-effective, causes limited side-effects and do not suffer from the downside of pathogens developing resistance. Among various immunotherapeutic approaches, cytokines (produced by helper T-lymphocytes) based immunotherapy has received great attention especially for drug refractive cases of human VL. Therefore, a comprehensive knowledge on the molecular interactions of immune cells or components and on cytokines interplay in the host defense or pathogenesis is important to determine appropriate immunotherapies for leishmaniasis. Here, we summarized the current understanding of a wide-spectrum of cytokines and their interaction with immune cells that determine the clinical outcome of leishmaniasis. We have also highlighted opportunities for the development of novel diagnostics and intervention therapies for VL.
Collapse
Affiliation(s)
| | | | - Suresh V Kuchipudi
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Suresh K Kalangi
- Department of Biosciences, School of Sciences, Indrashil University, Mehsana, India
| |
Collapse
|
23
|
Kak G, Raza M, Tiwari BK. Interferon-gamma (IFN-γ): Exploring its implications in infectious diseases. Biomol Concepts 2018; 9:64-79. [PMID: 29856726 DOI: 10.1515/bmc-2018-0007] [Citation(s) in RCA: 379] [Impact Index Per Article: 54.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/20/2018] [Indexed: 12/12/2022] Open
Abstract
A key player in driving cellular immunity, IFN-γ is capable of orchestrating numerous protective functions to heighten immune responses in infections and cancers. It can exhibit its immunomodulatory effects by enhancing antigen processing and presentation, increasing leukocyte trafficking, inducing an anti-viral state, boosting the anti-microbial functions and affecting cellular proliferation and apoptosis. A complex interplay between immune cell activity and IFN-γ through coordinated integration of signals from other pathways involving cytokines and Pattern Recognition Receptors (PRRs) such as Interleukin (IL)-4, TNF-α, Lipopolysaccharide (LPS), Type-I Interferons (IFNS) etc. leads to initiation of a cascade of pro-inflammatory responses. Microarray data has unraveled numerous genes whose transcriptional regulation is influenced by IFN-γ. Consequently, IFN-γ stimulated cells display altered expression of many such target genes which mediate its downstream effector functions. The importance of IFN-γ is further reinforced by the fact that mice possessing disruptions in the IFN-γ gene or its receptor develop extreme susceptibility to infectious diseases and rapidly succumb to them. In this review, we attempt to elucidate the biological functions and physiological importance of this versatile cytokine. The functional implications of its biological activity in several infectious diseases and autoimmune pathologies are also discussed. As a counter strategy, many virulent pathogenic species have devised ways to thwart IFN-γ endowed immune-protection. Thus, IFN-γ mediated host-pathogen interactions are critical for our understanding of disease mechanisms and these aspects also manifest enormous therapeutic importance for the annulment of various infections and autoimmune conditions.
Collapse
Affiliation(s)
- Gunjan Kak
- From the Infectious Disease Immunology Lab, Dr. B R Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Mohsin Raza
- Department of Biochemistry, University of Delhi, South Campus, New Delhi, 110021, India
| | - Brijendra K Tiwari
- From the Infectious Disease Immunology Lab, Dr. B R Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| |
Collapse
|
24
|
Abstract
Treatment of Visceral Leishmaniasis (VL), a neglected tropical disease, is very challenging with few treatment options. Long duration of treatment and drug toxicity further limit the target of achieving VL elimination. Chemotherapy remains the treatment of choice. Single dose of liposomal amphotericin B (LAmB) and multidrug therapy (LAmB + miltefosine, LAmB + paromomycin (PM), or miltefosine + PM) are recommended treatment regimen for treatment of VL in Indian sub-continent. Combination therapy of pentavalent antimonials (Sbv) and PM in East Africa and LAmB in the Mediterranean region/South America remains the treatment of choice. Various drugs having anti-leishmania properties are in preclinical phase and need further development. An effective treatment and secondary prophylaxis of HIV-VL co-infection should be developed to decrease treatment failure and drug resistance.
Collapse
Affiliation(s)
- Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005
| | - Anup Singh
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005
| |
Collapse
|
25
|
Adriaensen W, Dorlo TPC, Vanham G, Kestens L, Kaye PM, van Griensven J. Immunomodulatory Therapy of Visceral Leishmaniasis in Human Immunodeficiency Virus-Coinfected Patients. Front Immunol 2018; 8:1943. [PMID: 29375567 PMCID: PMC5770372 DOI: 10.3389/fimmu.2017.01943] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/18/2017] [Indexed: 12/23/2022] Open
Abstract
Patients with visceral leishmaniasis (VL)–human immunodeficiency virus (HIV) coinfection experience increased drug toxicity and treatment failure rates compared to VL patients, with more frequent VL relapse and death. In the era of VL elimination strategies, HIV coinfection is progressively becoming a key challenge, because HIV-coinfected patients respond poorly to conventional VL treatment and play an important role in parasite transmission. With limited chemotherapeutic options and a paucity of novel anti-parasitic drugs, new interventions that target host immunity may offer an effective alternative. In this review, we first summarize current views on how VL immunopathology is significantly affected by HIV coinfection. We then review current clinical and promising preclinical immunomodulatory interventions in the field of VL and discuss how these may operate in the context of a concurrent HIV infection. Caveats are formulated as these interventions may unpredictably impact the delicate balance between boosting of beneficial VL-specific responses and deleterious immune activation/hyperinflammation, activation of latent provirus or increased HIV-susceptibility of target cells. Evidence is lacking to prioritize a target molecule and a more detailed account of the immunological status induced by the coinfection as well as surrogate markers of cure and protection are still required. We do, however, argue that virologically suppressed VL patients with a recovered immune system, in whom effective antiretroviral therapy alone is not able to restore protective immunity, can be considered a relevant target group for an immunomodulatory intervention. Finally, we provide perspectives on the translation of novel theories on synergistic immune cell cross-talk into an effective treatment strategy for VL–HIV-coinfected patients.
Collapse
Affiliation(s)
- Wim Adriaensen
- Unit of HIV and Neglected Tropical Diseases, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Thomas P C Dorlo
- Department of Pharmacy and Pharmacology, Antoni van Leeuwenhoek Hospital, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Guido Vanham
- Unit of Virology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Luc Kestens
- Unit of Immunology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Paul M Kaye
- Centre for Immunology and Infection, Department of Biology, Hull York Medical School, University of York, Heslington, York, United Kingdom
| | - Johan van Griensven
- Unit of HIV and Neglected Tropical Diseases, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| |
Collapse
|
26
|
Heras‐Mosteiro J, Monge‐Maillo B, Pinart M, Lopez Pereira P, Reveiz L, Garcia‐Carrasco E, Campuzano Cuadrado P, Royuela A, Mendez Roman I, López‐Vélez R. Interventions for Old World cutaneous leishmaniasis. Cochrane Database Syst Rev 2017; 12:CD005067. [PMID: 29192424 PMCID: PMC6485999 DOI: 10.1002/14651858.cd005067.pub5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Cutaneous leishmaniasis, caused by a parasitic infection, is considered one of the most serious skin diseases in many low- and middle-income countries. Old World cutaneous leishmaniasis (OWCL) is caused by species found in Africa, Asia, the Middle East, the Mediterranean, and India. The most commonly prescribed treatments are antimonials, but other drugs have been used with varying success. As OWCL tends to heal spontaneously, it is necessary to justify the use of systemic and topical treatments. This is an update of a Cochrane Review first published in 2008. OBJECTIVES To assess the effects of therapeutic interventions for the localised form of Old World cutaneous leishmaniasis. SEARCH METHODS We updated our searches of the following databases to November 2016: the Cochrane Skin Specialised Register, CENTRAL, MEDLINE, Embase, and LILACS. We also searched five trials registers and checked the reference lists of included studies for further references to relevant randomised controlled trials (RCTs). We wrote to national programme managers, general co-ordinators, directors, clinicians, WHO-EMRO regional officers of endemic countries, pharmaceutical companies, tropical medicine centres, and authors of relevant papers for further information about relevant unpublished and ongoing trials. We undertook a separate search for adverse effects of interventions for Old World cutaneous leishmaniasis in September 2015 using MEDLINE. SELECTION CRITERIA Randomised controlled trials of either single or combination treatments in immunocompetent people with OWCL confirmed by smear, histology, culture, or polymerase chain reaction. The comparators were either no treatment, placebo/vehicle, and/or another active compound. DATA COLLECTION AND ANALYSIS Two review authors independently assessed trials for inclusion and risk of bias and extracted data. We only synthesised data when we were able to identify at least two studies investigating similar treatments and reporting data amenable to pooling. We also recorded data about adverse effects from the corresponding search. MAIN RESULTS We included 89 studies (of which 40 were new to this update) in 10,583 people with OWCL. The studies included were conducted mainly in the Far or Middle East at regional hospitals, local healthcare clinics, and skin disease research centres. Women accounted for 41.5% of the participants (range: 23% to 80%). The overall mean age of participants was 25 years (range 12 to 56). Most studies lasted between two to six months, with the longest lasting two years; average duration was four months. Most studies were at unclear or high risk for most bias domains. A lack of blinding and reporting bias were present in almost 40% of studies. Two trials were at low risk of bias for all domains. Trials reported the causative species poorly.Here we provide results for the two main comparisons identified: itraconazole (200 mg for six to eight weeks) versus placebo; and paromomycin ointment (15% plus 10% urea, twice daily for 14 days) versus vehicle.In the comparison of oral itraconazole versus placebo, at 2.5 months' follow up, 85/125 participants in the itraconazole group achieved complete cure compared to 54/119 in the placebo group (RR 3.70, 95% CI 0.35 to 38.99; 3 studies; 244 participants). In one study, microbiological or histopathological cure of skin lesions only occurred in the itraconazole group after a mean follow-up of 2.5 months (RR 17.00, 95% CI 0.47 to 612.21; 20 participants). However, although the analyses favour oral itraconazole for these outcomes, we cannot be confident in the results due to the very low certainty evidence. More side effects of mild abdominal pain and nausea (RR 2.36, 95% CI 0.74 to 7.47; 3 studies; 204 participants) and mild abnormal liver function (RR 3.08, 95% CI 0.53 to 17.98; 3 studies; 84 participants) occurred in the itraconazole group (as well as reports of headaches and dizziness), compared with the placebo group, but again we rated the certainty of evidence as very low so are unsure of the results.When comparing paromomycin with vehicle, there was no difference in the number of participants who achieved complete cure (RR of 1.00, 95% CI 0.86, 1.17; 383 participants, 2 studies) and microbiological or histopathological cure of skin lesions after a mean follow-up of 2.5 months (RR 1.03, CI 0.88 to 1.20; 383 participants, 2 studies), but the paromomycin group had more skin/local reactions (such as inflammation, vesiculation, pain, redness, or itch) (RR 1.42, 95% CI 0.67 to 3.01; 4 studies; 713 participants). For all of these outcomes, the certainty of evidence was very low, meaning we are unsure about these results.Trial authors did not report the percentage of lesions cured after the end of treatment or speed of healing for either of these key comparisons. AUTHORS' CONCLUSIONS There was very low-certainty evidence to support the effectiveness of itraconazole and paromomycin ointment for OWCL in terms of cure (i.e. microbiological or histopathological cure and percentage of participants completely cured). Both of these interventions incited more adverse effects, which were mild in nature, than their comparisons, but we could draw no conclusions regarding safety due to the very low certainty of the evidence for this outcome.We downgraded the key outcomes in these two comparisons due to high risk of bias, inconsistency between the results, and imprecision. There is a need for large, well-designed international studies that evaluate long-term effects of current therapies and enable a reliable conclusion about treatments. Future trials should specify the species of leishmaniasis; trials on types caused by Leishmania infantum, L aethiopica, andL donovani are lacking. Research into the effects of treating women of childbearing age, children, people with comorbid conditions, and those who are immunocompromised would also be helpful.It was difficult to evaluate the overall efficacy of any of the numerous treatments due to the variable treatment regimens examined and because RCTs evaluated different Leishmania species and took place in different geographical areas. Some outcomes we looked for but did not find were degree of functional and aesthetic impairment, change in ability to detect Leishmania, quality of life, and emergence of resistance. There were only limited data on prevention of scarring.
Collapse
Affiliation(s)
- Julio Heras‐Mosteiro
- Rey Juan Carlos UniversityDepartment of Preventive Medicine and Public Health & Immunology and MicrobiologyAvda. Atenas s/nAlcorcónMadridSpain28922
- Ramón y Cajal University HospitalDepartment of Preventive Medicine and Public HealthMadridSpain
| | - Begoña Monge‐Maillo
- Ramón y Cajal University HospitalTropical Medicine & Clinical Parasitology, Infectious Diseases DepartmentCarretera de Colmenar Viejo km. 9,100MadridSpain28034
| | - Mariona Pinart
- c/o Cochrane Skin Group, The University of Nottingham, Nottingham, UKNottinghamUK
| | - Patricia Lopez Pereira
- Ramón y Cajal University HospitalDepartment of Preventive Medicine and Public HealthMadridSpain
| | | | - Emely Garcia‐Carrasco
- National Referral Centre for Tropical DiseasesInfectious Diseases DepartmentCtra Colmenar, Km 9,100.MadridSpain28034
| | - Pedro Campuzano Cuadrado
- Rey Juan Carlos UniversityDepartment of Preventive Medicine and Public Health & Immunology and MicrobiologyAvda. Atenas s/nAlcorcónMadridSpain28922
| | - Ana Royuela
- Biomedical Sciences Research Institute,Hospital Universitario Puerta de Hierro‐MajadahondaDepartment of BiostatisticsMajadahondaSpain28222
| | - Irene Mendez Roman
- The University of Nottinghamc/o Cochrane Skin GroupA103, King's Meadow CampusLenton LaneNottinghamSpainNG7 2NR
| | - Rogelio López‐Vélez
- Ramón y Cajal University HospitalTropical Medicine & Clinical Parasitology, Infectious Diseases DepartmentCarretera de Colmenar Viejo km. 9,100MadridSpain28034
| | | |
Collapse
|
27
|
Heras‐Mosteiro J, Monge‐Maillo B, Pinart M, Lopez Pereira P, Garcia‐Carrasco E, Campuzano Cuadrado P, Royuela A, Mendez Roman I, López‐Vélez R. Interventions for Old World cutaneous leishmaniasis. Cochrane Database Syst Rev 2017; 11:CD005067. [PMID: 29149474 PMCID: PMC6486265 DOI: 10.1002/14651858.cd005067.pub4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Cutaneous leishmaniasis, caused by a parasitic infection, is considered one of the most serious skin diseases in many low- and middle-income countries. Old World cutaneous leishmaniasis (OWCL) is caused by species found in Africa, Asia, the Middle East, the Mediterranean, and India. The most commonly prescribed treatments are antimonials, but other drugs have been used with varying success. As OWCL tends to heal spontaneously, it is necessary to justify the use of systemic and topical treatments. This is an update of a Cochrane Review first published in 2008. OBJECTIVES To assess the effects of therapeutic interventions for the localised form of Old World cutaneous leishmaniasis. SEARCH METHODS We updated our searches of the following databases to November 2016: the Cochrane Skin Specialised Register, CENTRAL, MEDLINE, Embase, and LILACS. We also searched five trials registers and checked the reference lists of included studies for further references to relevant randomised controlled trials (RCTs). We wrote to national programme managers, general co-ordinators, directors, clinicians, WHO-EMRO regional officers of endemic countries, pharmaceutical companies, tropical medicine centres, and authors of relevant papers for further information about relevant unpublished and ongoing trials. We undertook a separate search for adverse effects of interventions for Old World cutaneous leishmaniasis in September 2015 using MEDLINE. SELECTION CRITERIA Randomised controlled trials of either single or combination treatments in immunocompetent people with OWCL confirmed by smear, histology, culture, or polymerase chain reaction. The comparators were either no treatment, placebo/vehicle, and/or another active compound. DATA COLLECTION AND ANALYSIS Two review authors independently assessed trials for inclusion and risk of bias and extracted data. We only synthesised data when we were able to identify at least two studies investigating similar treatments and reporting data amenable to pooling. We also recorded data about adverse effects from the corresponding search. MAIN RESULTS We included 89 studies (of which 40 were new to this update) in 10,583 people with OWCL. The studies included were conducted mainly in the Far or Middle East at regional hospitals, local healthcare clinics, and skin disease research centres. Women accounted for 41.5% of the participants (range: 23% to 80%). The overall mean age of participants was 25 years (range 12 to 56). Most studies lasted between two to six months, with the longest lasting two years; average duration was four months. Most studies were at unclear or high risk for most bias domains. A lack of blinding and reporting bias were present in almost 40% of studies. Two trials were at low risk of bias for all domains. Trials reported the causative species poorly.Here we provide results for the two main comparisons identified: itraconazole (200 mg for six to eight weeks) versus placebo; and paromomycin ointment (15% plus 10% urea, twice daily for 14 days) versus vehicle.In the comparison of oral itraconazole versus placebo, at 2.5 months' follow up, 85/125 participants in the itraconazole group achieved complete cure compared to 54/119 in the placebo group (RR 3.70, 95% CI 0.35 to 38.99; 3 studies; 244 participants). In one study, microbiological or histopathological cure of skin lesions only occurred in the itraconazole group after a mean follow-up of 2.5 months (RR 17.00, 95% CI 0.47 to 612.21; 20 participants). However, although the analyses favour oral itraconazole for these outcomes, we cannot be confident in the results due to the very low certainty evidence. More side effects of mild abdominal pain and nausea (RR 2.36, 95% CI 0.74 to 7.47; 3 studies; 204 participants) and mild abnormal liver function (RR 3.08, 95% CI 0.53 to 17.98; 3 studies; 84 participants) occurred in the itraconazole group (as well as reports of headaches and dizziness), compared with the placebo group, but again we rated the certainty of evidence as very low so are unsure of the results.When comparing paromomycin with vehicle, there was no difference in the number of participants who achieved complete cure (RR of 1.00, 95% CI 0.86, 1.17; 383 participants, 2 studies) and microbiological or histopathological cure of skin lesions after a mean follow-up of 2.5 months (RR 1.03, CI 0.88 to 1.20; 383 participants, 2 studies), but the paromomycin group had more skin/local reactions (such as inflammation, vesiculation, pain, redness, or itch) (RR 1.42, 95% CI 0.67 to 3.01; 4 studies; 713 participants). For all of these outcomes, the certainty of evidence was very low, meaning we are unsure about these results.Trial authors did not report the percentage of lesions cured after the end of treatment or speed of healing for either of these key comparisons. AUTHORS' CONCLUSIONS There was very low-certainty evidence to support the effectiveness of itraconazole and paromomycin ointment for OWCL in terms of cure (i.e. microbiological or histopathological cure and percentage of participants completely cured). Both of these interventions incited more adverse effects, which were mild in nature, than their comparisons, but we could draw no conclusions regarding safety due to the very low certainty of the evidence for this outcome.We downgraded the key outcomes in these two comparisons due to high risk of bias, inconsistency between the results, and imprecision. There is a need for large, well-designed international studies that evaluate long-term effects of current therapies and enable a reliable conclusion about treatments. Future trials should specify the species of leishmaniasis; trials on types caused by Leishmania infantum, L aethiopica, andL donovani are lacking. Research into the effects of treating women of childbearing age, children, people with comorbid conditions, and those who are immunocompromised would also be helpful.It was difficult to evaluate the overall efficacy of any of the numerous treatments due to the variable treatment regimens examined and because RCTs evaluated different Leishmania species and took place in different geographical areas. Some outcomes we looked for but did not find were degree of functional and aesthetic impairment, change in ability to detect Leishmania, quality of life, and emergence of resistance. There were only limited data on prevention of scarring.
Collapse
Affiliation(s)
| | - Begoña Monge‐Maillo
- Ramón y Cajal University HospitalTropical Medicine & Clinical Parasitology, Infectious Diseases DepartmentCarretera de Colmenar Viejo km. 9,100MadridSpain28034
| | - Mariona Pinart
- c/o Cochrane Skin Group, The University of Nottingham, Nottingham, UKNottinghamUK
| | - Patricia Lopez Pereira
- Ramón y Cajal University HospitalDepartment of Preventive Medicine and Public HealthMadridSpain
| | - Emely Garcia‐Carrasco
- National Referral Centre for Tropical DiseasesInfectious Diseases DepartmentCtra Colmenar, Km 9,100.MadridSpain28034
| | - Pedro Campuzano Cuadrado
- Rey Juan Carlos UniversityDepartment of Preventive Medicine and Public Health & Immunology and MicrobiologyAvda. Atenas s/nAlcorcónMadridSpain28922
| | - Ana Royuela
- Biomedical Sciences Research Institute,Hospital Universitario Puerta de Hierro‐MajadahondaDepartment of BiostatisticsMajadahondaSpain28222
| | - Irene Mendez Roman
- The University of Nottinghamc/o Cochrane Skin GroupA103, King's Meadow CampusLenton LaneNottinghamSpainNG7 2NR
| | - Rogelio López‐Vélez
- Ramón y Cajal University HospitalTropical Medicine & Clinical Parasitology, Infectious Diseases DepartmentCarretera de Colmenar Viejo km. 9,100MadridSpain28034
| |
Collapse
|
28
|
Kumar R, Chauhan SB, Ng SS, Sundar S, Engwerda CR. Immune Checkpoint Targets for Host-Directed Therapy to Prevent and Treat Leishmaniasis. Front Immunol 2017; 8:1492. [PMID: 29167671 PMCID: PMC5682306 DOI: 10.3389/fimmu.2017.01492] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 10/23/2017] [Indexed: 12/15/2022] Open
Abstract
Leishmaniasis encompasses a group of diseases caused by protozoan parasites belonging to the genus Leishmania. These diseases range from life threatening visceral forms to self-healing cutaneous lesions, and each disease manifestations can progress to complications involving dissemination of parasites to skin or mucosal tissue. A feature of leishmaniasis is the key role host immune responses play in disease outcome. T cells are critical for controlling parasite growth. However, they can also contribute to disease onset and progression. For example, potent regulatory T cell responses can develop that suppress antiparasitic immunity. Alternatively, hyperactivated CD4+ or CD8+ T cells can be generated that cause damage to host tissues. There is no licensed human vaccine and drug treatment options are often limited and problematic. Hence, there is an urgent need for new strategies to improve the efficacy of current vaccine candidates and/or enhance both antiparasitic drug effectiveness and subsequent immunity in treated individuals. Here, we describe our current understanding about host immune responses contributing to disease protection and progression in the various forms of leishmaniasis. We also discuss how this knowledge may be used to develop new strategies for host-directed immune therapy to prevent or treat leishmaniasis. Given the major advances made in immune therapy in the cancer and autoimmune fields in recent years, there are significant opportunities to ride on the back of these successes in the infectious disease domain. Conversely, the rapid progress in our understanding about host immune responses during leishmaniasis is also providing opportunities to develop novel immunotherapy strategies that could have broad applications in diseases characterized by inflammation or immune dysfunction.
Collapse
Affiliation(s)
- Rajiv Kumar
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Shashi Bhushan Chauhan
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Susanna S. Ng
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | | |
Collapse
|
29
|
Roatt BM, Aguiar-Soares RDDO, Reis LES, Cardoso JMDO, Mathias FAS, de Brito RCF, da Silva SM, Gontijo NDF, Ferreira SDA, Valenzuela JG, Corrêa-Oliveira R, Giunchetti RC, Reis AB. A Vaccine Therapy for Canine Visceral Leishmaniasis Promoted Significant Improvement of Clinical and Immune Status with Reduction in Parasite Burden. Front Immunol 2017; 8:217. [PMID: 28321217 PMCID: PMC5338076 DOI: 10.3389/fimmu.2017.00217] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 02/15/2017] [Indexed: 12/18/2022] Open
Abstract
Herein, we evaluated the treatment strategy employing a therapeutic heterologous vaccine composed of antigens of Leishmania braziliensis associated with MPL adjuvant (LBMPL vaccine) for visceral leishmaniasis (VL) in symptomatic dogs naturally infected by Leishmania infantum. Sixteen dogs received immunotherapy with MPL adjuvant (n = 6) or with a vaccine composed of antigens of L. braziliensis associated with MPL (LBMPL vaccine therapy, n = 10). Dogs were submitted to an immunotherapeutic scheme consisting of 3 series composed of 10 subcutaneous doses with 10-day interval between each series. The animals were evaluated before (T0) and 90 days after treatment (T90) for their biochemical/hematological, immunological, clinical, and parasitological variables. Our major results showed that the vaccine therapy with LBMPL was able to restore and normalize main biochemical (urea, AST, ALP, and bilirubin) and hematological (erythrocytes, hemoglobin, hematocrit, and platelets) parameters. In addition, in an ex vivo analysis using flow cytometry, dogs treated with LBMPL vaccine showed increased CD3+ T lymphocytes and their subpopulations (TCD4+ and TCD8+), reduction of CD21+ B lymphocytes, increased NK cells (CD5-CD16+) and CD14+ monocytes. Under in vitro conditions, the animals developed a strong antigen-specific lymphoproliferation mainly by TCD4+ and TCD8+ cells; increasing in both TCD4+IFN-γ+ and TCD8+IFN-γ+ as well as reduction of TCD4+IL-4+ and TCD8+IL-4+ lymphocytes with an increased production of TNF-α and reduced levels of IL-10. Concerning the clinical signs of canine visceral leishmaniasis, the animals showed an important reduction in the number and intensity of the disease signs; increase body weight as well as reduction of splenomegaly. In addition, the LBMPL immunotherapy also promoted a reduction in parasite burden assessed by real-time PCR. In the bone marrow, we observed seven times less parasites in LBMPL animals compared with MPL group. The skin tissue showed a reduction in parasite burden in LBMPL dogs 127.5 times higher than MPL. As expected, with skin parasite reduction promoted by immunotherapy, we observed a blocking transmission to sand flies in LBMPL dogs with only three positive dogs after xenodiagnosis. The results obtained in this study highlighted the strong potential for the use of this heterologous vaccine therapy as an important strategy for VL treatment.
Collapse
Affiliation(s)
- Bruno Mendes Roatt
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil; Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), Salvador, Brazil
| | | | - Levi Eduardo Soares Reis
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto , Ouro Preto, Minas Gerais , Brazil
| | - Jamille Mirelle de Oliveira Cardoso
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto , Ouro Preto, Minas Gerais , Brazil
| | - Fernando Augusto Siqueira Mathias
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto , Ouro Preto, Minas Gerais , Brazil
| | - Rory Cristiane Fortes de Brito
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto , Ouro Preto, Minas Gerais , Brazil
| | - Sydnei Magno da Silva
- Laboratório de Bioensaios em Leishmania, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia , Uberlândia, Minas Gerais , Brazil
| | - Nelder De Figueiredo Gontijo
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia, Universidade Federal de Minas Gerais , Belo Horizonte, Minas Gerais , Brazil
| | - Sidney de Almeida Ferreira
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto , Ouro Preto, Minas Gerais , Brazil
| | - Jesus G Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Rockville, MD , USA
| | - Rodrigo Corrêa-Oliveira
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil; Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), Salvador, Brazil
| | - Rodolfo Cordeiro Giunchetti
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Universidade Federal de Minas Gerais , Belo Horizonte, Minas Gerais , Brazil
| | - Alexandre Barbosa Reis
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil; Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), Salvador, Brazil
| |
Collapse
|
30
|
Kong F, Saldarriaga OA, Spratt H, Osorio EY, Travi BL, Luxon BA, Melby PC. Transcriptional Profiling in Experimental Visceral Leishmaniasis Reveals a Broad Splenic Inflammatory Environment that Conditions Macrophages toward a Disease-Promoting Phenotype. PLoS Pathog 2017; 13:e1006165. [PMID: 28141856 PMCID: PMC5283737 DOI: 10.1371/journal.ppat.1006165] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 01/03/2017] [Indexed: 11/23/2022] Open
Abstract
Visceral Leishmaniasis (VL), caused by the intracellular protozoan Leishmania donovani, is characterized by relentlessly increasing visceral parasite replication, cachexia, massive splenomegaly, pancytopenia and ultimately death. Progressive disease is considered to be due to impaired effector T cell function and/or failure of macrophages to be activated to kill the intracellular parasite. In previous studies, we used the Syrian hamster (Mesocricetus auratus) as a model because it mimics the progressive nature of active human VL. We demonstrated previously that mixed expression of macrophage-activating (IFN-γ) and regulatory (IL-4, IL-10, IL-21) cytokines, parasite-induced expression of macrophage arginase 1 (Arg1), and decreased production of nitric oxide are key immunopathologic factors. Here we examined global changes in gene expression to define the splenic environment and phenotype of splenic macrophages during progressive VL. We used RNA sequencing coupled with de novo transcriptome assembly, because the Syrian hamster does not have a fully sequenced and annotated reference genome. Differentially expressed transcripts identified a highly inflammatory spleen environment with abundant expression of type I and type II interferon response genes. However, high IFN-γ expression was ineffective in directing exclusive M1 macrophage polarization, suppressing M2-associated gene expression, and restraining parasite replication and disease. While many IFN-inducible transcripts were upregulated in the infected spleen, fewer were induced in splenic macrophages in VL. Paradoxically, IFN-γ enhanced parasite growth and induced the counter-regulatory molecules Arg1, Ido1 and Irg1 in splenic macrophages. This was mediated, at least in part, through IFN-γ-induced activation of STAT3 and expression of IL-10, which suggests that splenic macrophages in VL are conditioned to respond to macrophage activation signals with a counter-regulatory response that is ineffective and even disease-promoting. Accordingly, inhibition of STAT3 activation led to a reduced parasite load in infected macrophages. Thus, the STAT3 pathway offers a rational target for adjunctive host-directed therapy to interrupt the pathogenesis of VL. Visceral leishmaniasis (VL) is a neglected parasitic disease that is caused by the intracellular protozoan Leishmania donovani. Patients with this disease suffer from muscle wasting, enlargement of the spleen, reduced blood counts and ultimately will die without treatment. Progressive disease is considered to be due to impaired cellular immunity, with T cell or macrophage dysfunction, or both. We studied the Syrian hamster as an infection model because it mimics the progressive nature of human disease. We examined global changes in gene expression in the spleen and splenic macrophages during experimental VL and identified a highly inflammatory spleen environment with abundant expression of interferon and interferon-response genes that would be expected to control the infection. However, the high level of IFN-γ expression was ineffective in mediating a protective macrophage response, restraining parasite replication and halting progression of disease. We found that IFN-γ itself stimulated parasite growth in splenic macrophages and induced expression of counter-regulatory molecules, which may paradoxically make the host more susceptible. These data give insights into the nature of the immune response that promotes the infection, and identifies potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Fanping Kong
- Bioinformatics Program, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Omar A. Saldarriaga
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Heidi Spratt
- Bioinformatics Program, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Preventive Medicine and Community Health, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail: (PCM); (HS)
| | - E. Yaneth Osorio
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Bruno L. Travi
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Tropical Diseases and Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Bruce A. Luxon
- Bioinformatics Program, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Peter C. Melby
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Tropical Diseases and Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail: (PCM); (HS)
| |
Collapse
|
31
|
Thakur CP, Sinha GP, Pandey AK, Kumar N, Kumar P, Hassan SM, Narain S, Roy RK. Do the diminishing efficacy and increasing toxicity of sodium stibogluconate in the treatment of visceral leishmaniasis in Bihar, India, justify its continued use as a first-line drug? An observational study of 80 cases. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2016. [DOI: 10.1080/00034983.1998.11813313] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
32
|
Sundar S, Goyal AK, More DK, Singh MK, Murray HW. Treatment of antimony-unresponsive Indian visceral leishmaniasis with ultra-short courses of amphotericin-B-lipid complex. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2016. [DOI: 10.1080/00034983.1998.11813337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
33
|
A minimally invasive approach to spleen histopathology in dogs: A new method for follow-up studies of spleen changes in the course of Leishmania infantum infection. Comp Immunol Microbiol Infect Dis 2016; 48:87-92. [DOI: 10.1016/j.cimid.2016.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 08/11/2016] [Accepted: 08/17/2016] [Indexed: 11/20/2022]
|
34
|
de Moura TR, Santos MLB, Braz JM, Santos LFVC, Aragão MT, de Oliveira FA, Santos PL, da Silva ÂM, de Jesus AR, de Almeida RP. Cross-resistance of Leishmania infantum isolates to nitric oxide from patients refractory to antimony treatment, and greater tolerance to antileishmanial responses by macrophages. Parasitol Res 2016; 115:713-21. [PMID: 26481489 DOI: 10.1007/s00436-015-4793-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/12/2015] [Indexed: 11/24/2022]
Abstract
Visceral leishmaniasis is a life-threatening disease characterized by intense parasitism of the spleen, liver, and bone marrow. Antimonials have served as front-line antileishmanial therapeutics for decades, but the increasing failure rates under antimonial treatment have challenged the continued use of these drugs. Pentavalent antimonials are known to reinforce the killing mechanisms of macrophages, although the associated mechanism remains unclear. Here, for the first time, we determined whether Leishmania infantum strains isolated from patients refractory to antimony treatment (relapse cases) were cross-resistant to antimonials, liposomal amphotericin B, and/or nitric oxide, and also whether these strains modulate macrophage infection. We selected four clinical isolates from relapse cases and two clinical isolates from antimony-responsive patients (control group) for the present study. The L. infantum promastigotes from all four relapse cases were resistant to trivalent antimonial treatment and nitric oxide, while only one isolate was resistant to liposomal amphotericin B. We evaluated whether the resistant strains from relapse cases showed enhanced infectivity and amastigote survival in macrophages, or macrophage-killing mechanisms in macrophages activated by lipopolysaccharide plus interferon gamma. Infection indexes calculated using macrophages infected with isolates from relapse were higher than those observed with control strains that were stimulated independently. Macrophage infection was higher with L. infantum isolates from relapse cases and correlated with enhanced interleukin 1-β production but showed similar nitrite production. Our results demonstrate that L. infantum field isolates from relapse cases were resistant to antimonials and nitric oxide and that these parasites stimulated inflammatory cytokines and were resistant to macrophage-killing mechanisms, factors that may contribute to disease severity.
Collapse
|
35
|
Abstract
In the last decade, recombinant DNA technologies have allowed the production of highly purified interferons in virtually unlimited amounts. Therefore it has become possible to evaluate the usefulness of interferon therapy in several different diseases. Nowadays interferons have a well defined role in the therapy of infectious and malignant diseases. As these natural modifiers of biological responses are widely available to the specialist and to the general practitioner as well, in the present paper we review the main biochemical properties and the molecular mechanisms underlying the heterogeneous activities of the interferons. Furthermore, on the basis of already published therapeutical trials, we indicate the infectious and neoplastic diseases in which therapy with interferon has been effective and outline the most frequent toxic or side effects of this therapy.
Collapse
Affiliation(s)
- G. Lucivero
- Chair of Clinical Methodology, First School of Medicine, University “Federico II”, Naples, Italy
| |
Collapse
|
36
|
Singh OP, Singh B, Chakravarty J, Sundar S. Current challenges in treatment options for visceral leishmaniasis in India: a public health perspective. Infect Dis Poverty 2016; 5:19. [PMID: 26951132 PMCID: PMC4782357 DOI: 10.1186/s40249-016-0112-2] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/02/2016] [Indexed: 12/31/2022] Open
Abstract
Visceral leishmaniasis (VL) is a serious parasitic disease causing considerable mortality and major disability in the Indian subcontinent. It is most neglected tropical disease, particularly in terms of new drug development for the lack of financial returns. An elimination campaign has been running in India since 2005 that aim to reduce the incidence of VL to below 1 per 10,000 people at sub-district level. One of the major components in this endeavor is reducing transmission through early case detection followed by complete treatment. Substantial progress has been made during the recent years in the area of VL treatment, and the VL elimination initiatives have already saved many lives by deploying them effectively in the endemic areas. However, many challenges remain to be overcome including availability of drugs, cost of treatment (drugs and hospitalization), efficacy, adverse effects, and growing parasite resistance. Therefore, better emphasis on implementation research is urgently needed to determine how best to deliver existing interventions with available anti-leishmanial drugs. It is essential that the new treatment options become truly accessible, not simply available in endemic areas so that they may promote healing and save lives. In this review, we highlight the recent advancement and challenges in current treatment options for VL in disease endemic area, and discuss the possible strategies to improve the therapeutic outcome.
Collapse
Affiliation(s)
- Om Prakash Singh
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India.
| | - Bhawana Singh
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India.
| | - Jaya Chakravarty
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India.
| | - Shyam Sundar
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India.
| |
Collapse
|
37
|
No JH. Visceral leishmaniasis: Revisiting current treatments and approaches for future discoveries. Acta Trop 2016; 155:113-23. [PMID: 26748356 DOI: 10.1016/j.actatropica.2015.12.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/24/2015] [Accepted: 12/25/2015] [Indexed: 12/12/2022]
Abstract
The current treatments for visceral leishmaniasis are old and toxic with limited routes of administration. The emergence of drug-resistant Leishmania threatens the efficacy of the existing reservoir of antileishmanials, leading to an urgent need to develop new treatments. It is particularly important to review and understand how the current treatments act against Leishmania in order to identify valid drug targets or essential pathways for next-generation antileishmanials. It is equally important to adapt newly emerging biotechnologies to facilitate the current research on the development of novel antileishmanials in an efficient fashion. This review covers the basic background of the current visceral leishmaniasis treatments with an emphasis on the modes of action. It briefly discusses the role of the immune system in aiding the chemotherapy of leishmaniasis, describes potential new antileishmanial drug targets and pathways, and introduces recent progress on the utilization of high-throughput phenotypic screening assays to identify novel antileishmanial compounds.
Collapse
Affiliation(s)
- Joo Hwan No
- Institut Pasteur Korea, Leishmania Research Laboratory, 696 Sampyeong-dong, Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
38
|
Potential Use of Interleukin-10 Blockade as a Therapeutic Strategy in Human Cutaneous Leishmaniasis. J Immunol Res 2015; 2015:152741. [PMID: 26495321 PMCID: PMC4606169 DOI: 10.1155/2015/152741] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/29/2014] [Accepted: 12/31/2014] [Indexed: 11/21/2022] Open
Abstract
Interleukin-10 overproduction has been associated with worse prognosis in human cutaneous leishmaniasis, while IFN-γ-dependent responses are associated with parasite killing and host protection. Innovative strategies are needed to overcome therapeutic failure observed in endemic areas. The use of monoclonal antibody-based immunotherapy targeting IL-10 cytokine was evaluated here. Partial IL-10 blockade in Leishmania braziliensis whole soluble antigen-stimulated cells from endemic area CL patients with active or healed lesions and asymptomatic controls was evaluated. Overall decrease in IL-10, IL-4, and TNF-α production was observed in all groups of subjects. Only patients with active lesions still produced some levels of TNF-α after anti-IL-10 stimulation in association with Leishmania antigens. Moreover, this strategy showed limited modulatory effects on IFN-γ-dependent chemokine CXCL10 production. Results suggest the potential immunotherapeutic use of partial IL-10 blockade in localized cutaneous leishmaniasis.
Collapse
|
39
|
Singh OP, Sundar S. Immunotherapy and targeted therapies in treatment of visceral leishmaniasis: current status and future prospects. Front Immunol 2014; 5:296. [PMID: 25183962 PMCID: PMC4135235 DOI: 10.3389/fimmu.2014.00296] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 06/07/2014] [Indexed: 11/13/2022] Open
Abstract
Visceral leishmaniasis (VL) is a vector-borne chronic infectious disease caused by the protozoan parasite Leishmania donovani or Leishmania infantum. VL is a serious public health problem, causing high morbidity and mortality in the developing world with an estimated 0.2-0.4 million new cases each year. In the absence of a vaccine, chemotherapy remains the favored option for disease control, but is limited by a narrow therapeutic index, significant toxicities, and frequently acquired resistance. Improved understanding of VL pathogenesis offers the development and deployment of immune based treatment options either alone or in combination with chemotherapy. Modulations of host immune response include the inhibition of molecular pathways that are crucial for parasite growth and maintenance; and stimulation of host effectors immune responses that restore the impaired effector functions. In this review, we highlight the challenges in treatment of VL with a particular emphasis on immunotherapy and targeted therapies to improve clinical outcomes.
Collapse
Affiliation(s)
- Om Prakash Singh
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University , Varanasi , Uttar Pradesh, India
| | - Shyam Sundar
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University , Varanasi , Uttar Pradesh, India
| |
Collapse
|
40
|
Roatt BM, Aguiar-Soares RDDO, Coura-Vital W, Ker HG, Moreira NDD, Vitoriano-Souza J, Giunchetti RC, Carneiro CM, Reis AB. Immunotherapy and Immunochemotherapy in Visceral Leishmaniasis: Promising Treatments for this Neglected Disease. Front Immunol 2014; 5:272. [PMID: 24982655 PMCID: PMC4055865 DOI: 10.3389/fimmu.2014.00272] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 05/27/2014] [Indexed: 11/25/2022] Open
Abstract
Leishmaniasis has several clinical forms: self-healing or chronic cutaneous leishmaniasis or post-kala-azar dermal leishmaniasis; mucosal leishmaniasis; visceral leishmaniasis (VL), which is fatal if left untreated. The epidemiology and clinical features of VL vary greatly due to the interaction of multiple factors including parasite strains, vectors, host genetics, and the environment. Human immunodeficiency virus infection augments the severity of VL increasing the risk of developing active disease by 100–2320 times. An effective vaccine for humans is not yet available. Resistance to chemotherapy is a growing problem in many regions, and the costs associated with drug identification and development, make commercial production for leishmaniasis, unattractive. The toxicity of currently drugs, their long treatment course, and limited efficacy are significant concerns. For cutaneous disease, many studies have shown promising results with immunotherapy/immunochemotherapy, aimed to modulate and activate the immune response to obtain a therapeutic cure. Nowadays, the focus of many groups centers on treating canine VL by using vaccines and immunomodulators with or without chemotherapy. In human disease, the use of cytokines like interferon-γ associated with pentavalent antimonials demonstrated promising results in patients that did not respond to conventional treatment. In mice, immunomodulation based on monoclonal antibodies to remove endogenous immunosuppressive cytokines (interleukin-10) or block their receptors, antigen-pulsed syngeneic dendritic cells, or biological products like Pam3Cys (TLR ligand) has already been shown as a prospective treatment of the disease. This review addresses VL treatment, particularly immunotherapy and/or immunochemotherapy as an alternative to conventional drug treatment in experimental models, canine VL, and human disease.
Collapse
Affiliation(s)
- Bruno Mendes Roatt
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto , Ouro Preto , Brazil ; Laboratório de Pesquisas Clínicas, Ciências Farmacêuticas, Escola de Farmácia, Universidade Federal de Ouro Preto , Ouro Preto , Brazil ; Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais , Belo Horizonte , Brazil
| | | | - Wendel Coura-Vital
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto , Ouro Preto , Brazil ; Laboratório de Pesquisas Clínicas, Ciências Farmacêuticas, Escola de Farmácia, Universidade Federal de Ouro Preto , Ouro Preto , Brazil
| | - Henrique Gama Ker
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto , Ouro Preto , Brazil ; Laboratório de Pesquisas Clínicas, Ciências Farmacêuticas, Escola de Farmácia, Universidade Federal de Ouro Preto , Ouro Preto , Brazil
| | - Nádia das Dores Moreira
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto , Ouro Preto , Brazil
| | - Juliana Vitoriano-Souza
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto , Ouro Preto , Brazil
| | - Rodolfo Cordeiro Giunchetti
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto , Ouro Preto , Brazil ; Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| | - Cláudia Martins Carneiro
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto , Ouro Preto , Brazil ; Laboratório de Pesquisas Clínicas, Ciências Farmacêuticas, Escola de Farmácia, Universidade Federal de Ouro Preto , Ouro Preto , Brazil
| | - Alexandre Barbosa Reis
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto , Ouro Preto , Brazil ; Laboratório de Pesquisas Clínicas, Ciências Farmacêuticas, Escola de Farmácia, Universidade Federal de Ouro Preto , Ouro Preto , Brazil ; Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais , Belo Horizonte , Brazil
| |
Collapse
|
41
|
Strategies to overcome antileishmanial drugs unresponsiveness. J Trop Med 2014; 2014:646932. [PMID: 24876851 PMCID: PMC4021741 DOI: 10.1155/2014/646932] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 03/30/2014] [Accepted: 04/13/2014] [Indexed: 10/25/2022] Open
Abstract
In the absence of effective vector control measures and vaccines against leishmaniasis, effective chemotherapy remains the mainstay of treatment. As the armoury of antileishmanial drugs is limited, strategies should be made to target the emergence of drug resistance. The loss of efficacy of antimonials such as sodium stibogluconate in the Indian subcontinent which has been the mainstay of treatment for more than six decades has raised concern to save the other drugs. In the current review, we highlight various steps which could be implemented to halt the increasing unresponsiveness of drugs such as monitoring of therapy in the form of rational dosing and duration of treatment, understanding the mechanism of action of the drugs and drug resistance, identification of markers of resistance, distribution of drugs free of cost, evolution of effective combination therapy and immunotherapy, and proper management of HIV/VL coinfection and post-kala-azar dermal leishmaniasis (PKDL). Strong support from governmental agencies and local communities in the form of education and orientation programmes for feasibility of implementing these strategies and affordability within the context of their health systems is needed in controlling and preventing leishmaniasis.
Collapse
|
42
|
Dalton JE, Kaye PM. Immunomodulators: use in combined therapy against leishmaniasis. Expert Rev Anti Infect Ther 2014; 8:739-42. [DOI: 10.1586/eri.10.64] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
43
|
Asthana S, Gupta PK, Chaurasia M, Dube A, Chourasia MK. Polymeric colloidal particulate systems: intelligent tools for intracellular targeting of antileishmanial cargos. Expert Opin Drug Deliv 2013; 10:1633-51. [PMID: 24147603 DOI: 10.1517/17425247.2013.838216] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Targeted cargo delivery systems can overcome drawbacks associated with antileishmanials delivery, by defeating challenges of physiological barriers. Various colloidal particulate systems have been developed in the past; few of them even achieved success in the market, but still are limited in some ways. AREAS COVERED This review is focused on the pathobiology of leishmaniasis, interactions of particulate systems with biological environment, targeting strategies along with current conventional and vaccine therapies with special emphasis on polymeric nanotechnology for effective antileishmanial cargo delivery. EXPERT OPINION The problems concerned with limited accessibility of chemotherapeutic cargos in conventional modes to Leishmania-harboring macrophages, their toxicity, and resistant parasitic strain development can be sorted out through target-specific delivery of cargos. Vaccination is another therapeutic approach employing antigen alone or adjuvant combinations delivered by means of a carrier, and can provide preventive measures against human leishmaniasis (HL). Therefore, there is an urgent need of designing site-specific antileishmanial cargo carriers for safe and effective management of HL. Among various colloidal carriers, polymeric particulate systems hold tremendous potential as an effective delivery tool by providing control over spatial and temporal distribution of cargos after systemic or localized administration along with enhancing their stability profile at a comparatively cost-effective price leading to improved chances of commercial applicability.
Collapse
Affiliation(s)
- Shalini Asthana
- CSIR-Central Drug Research Institute, CDRI communication No. 8523, Pharmaceutics Division , Lucknow-226031, UP , India +91 522 2612411 18 ; +91 522 2623405 ;
| | | | | | | | | |
Collapse
|
44
|
Abstract
Real innovations in medicine and science are historic and singular; the stories behind each occurrence are precious. At Molecular Medicine we have established the Anthony Cerami Award in Translational Medicine to document and preserve these histories. The monographs recount the seminal events as told in the voice of the original investigators who provided the crucial early insight. These essays capture the essence of discovery, chronicling the birth of ideas that created new fields of research; and launched trajectories that persisted and ultimately influenced how disease is prevented, diagnosed, and treated. In this volume, the first Cerami Award Monograph, by Carl Nathan, MD, chairman of the Department of Microbiology and Immunology at Weill Cornell Medical College, reflects towering genius and soaring inspiration.
Collapse
Affiliation(s)
- Carl Nathan
- Weill Cornell Medical College, New York, New York, United States of America
| |
Collapse
|
45
|
Ghosh M, Roy K, Roy S. Immunomodulatory effects of antileishmanial drugs. J Antimicrob Chemother 2013; 68:2834-8. [PMID: 23833177 DOI: 10.1093/jac/dkt262] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES The commonly used antileishmanial drugs are sodium antimony gluconate (SAG), amphotericin B, miltefosine and paromomycin. There are a number of reports that antileishmanial drugs show immunomodulatory properties. Here, we attempt to understand how the innate arm of the immune system is modulated in response to these antileishmanial drugs. METHODS BALB/c peritoneal macrophages were treated with miltefosine, SAG, amphotericin B or paromomycin. The membrane fluidity of macrophages following drug treatment was studied in terms of fluorescence anisotropy. The T cell-stimulating ability, production of cytokines and nitrogen and oxygen metabolite production in drug-treated macrophages were also studied. The study was also carried out using peritoneal macrophages from drug-treated BALB/c mice. RESULTS The antileishmanial drugs altered macrophage membrane fluidity, except amphotericin B. The drug-treated macrophages showed enhanced T cell-stimulating ability and generation of reactive oxygen species, nitrite, interleukin-12 and tumour necrosis factor-α. CONCLUSIONS Antileishmanial drugs can stimulate the innate arm of the immune system, which may have a significant bearing on the cellular arm of the immune system.
Collapse
Affiliation(s)
- Moumita Ghosh
- Department of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | | | | |
Collapse
|
46
|
|
47
|
Carvalho LP, Passos S, Schriefer A, Carvalho EM. Protective and pathologic immune responses in human tegumentary leishmaniasis. Front Immunol 2012; 3:301. [PMID: 23060880 PMCID: PMC3463898 DOI: 10.3389/fimmu.2012.00301] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 09/10/2012] [Indexed: 01/08/2023] Open
Abstract
Studies in the recent years have advanced the knowledge of how host and parasite factors contribute to the pathogenesis of human tegumentary leishmaniasis. Polymorphism within populations of Leishmania from the same species has been documented; indicating that infection with different strains may lead to distinct clinical pictures and can also interfere in the response to treatment. Moreover, detection of parasite genetic tags for the precise identification of strains will improve diagnostics and therapy against leishmaniasis. On the host side, while a predominant Th1 type immune response is important to control parasite growth, it does not eradicate Leishmania and, in some cases, does not prevent parasite dissemination. Evidence has accumulated showing the participation of CD4+ and CD8+ T cells, as well as macrophages, in the pathology associated with L. braziliensis, L. guayanensis, and L. major infection. The discovery that a large percentage of individuals that are infected with Leishmania do not develop disease will help to understand how the host controls Leishmania infection. As these individuals have a weaker type 1 immune response than patients with cutaneous leishmaniasis, it is possible that control of parasite replication in these individuals is dependent, predominantly, on innate immunity, and studies addressing the ability of neutrophils, macrophages, and NK cells to kill Leishmania should be emphasized.
Collapse
Affiliation(s)
- Lucas P Carvalho
- Serviço de Imunologia, Complexo Hospitalar Universitário Professor Edgard Santos, Universidade Federal da Bahia Salvador, Bahia, Brazil ; Instituto de Ciências da Saúde, Universidade Federal da Bahia Salvador, Bahia, Brazil ; Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (Conselho Nacional de Desenvolvimento Científico e Tecnológico/Ministério da Ciência e Tecnologia) Salvador, Bahia, Brazil
| | | | | | | |
Collapse
|
48
|
Das A, Ali N. Vaccine Development Against Leishmania donovani. Front Immunol 2012; 3:99. [PMID: 22615707 PMCID: PMC3351671 DOI: 10.3389/fimmu.2012.00099] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 04/14/2012] [Indexed: 11/13/2022] Open
Abstract
Visceral leishmaniasis (VL) caused by Leishmania donovani and Leishmania infantum/chagasi represents the second most challenging infectious disease worldwide, leading to nearly 500,000 new cases and 60,000 deaths annually. Zoonotic VL caused by L. infantum is a re-emergent canid zoonoses which represents a complex epidemiological cycle in the New world where domestic dogs serve as a reservoir host responsible for potentially fatal human infection and where dog culling is the only measure for reservoir control. Life-long immunity to VL has motivated development of prophylactic vaccines against the disease but very few have progressed beyond the experimental stage. No licensed vaccine is available till date against any form of leishmaniasis. High toxicity and increasing resistance to the current chemotherapeutic regimens have further complicated the situation in VL endemic regions of the world. Advances in vaccinology, including recombinant proteins, novel antigen-delivery systems/adjuvants, heterologous prime-boost regimens and strategies for intracellular antigen presentation, have contributed to recent advances in vaccine development against VL. Attempts to develop an effective vaccine for use in domestic dogs in areas of canine VL should be pursued for preventing human infection. Studies in animal models and human patients have revealed the pathogenic mechanisms of disease progression and features of protective immunity. This review will summarize the accumulated knowledge of pathogenesis, immune response, and prerequisites for protective immunity against human VL. Authors will discuss promising vaccine candidates, their developmental status and future prospects in a quest for rational vaccine development against the disease. In addition, several challenges such as safety issues, renewed and coordinated commitment to basic research, preclinical studies and trial design will be addressed to overcome the problems faced in developing prophylactic strategies for protection against this lethal infection.
Collapse
Affiliation(s)
- Amrita Das
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology Kolkata, India
| | | |
Collapse
|
49
|
Santos PL, Costa RV, Braz JM, Santos LFVC, Batista AC, Vasconcelos CRO, Rangel MR, Ribeiro de Jesus A, de Moura TR, Leopoldo PTG, Almeida RP. Leishmania chagasi naturally resistant to nitric oxide isolated from humans and dogs with visceral leishmaniasis in Brazil. Nitric Oxide 2012; 27:67-71. [PMID: 22580230 DOI: 10.1016/j.niox.2012.04.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 04/02/2012] [Accepted: 04/17/2012] [Indexed: 10/28/2022]
Abstract
Nitric oxide (NO) plays an important role as a leishmanicidal agent in murine macrophages. NO resistant Escherichia coli and Mycobacterium tuberculosis have been associated with poor outcomes of their resulting diseases. NO resistant Leishmania braziliensis has also been identified and exacerbates the clinical course of human leishmaniasis. We report, for the first time, natural resistance of Leishmania chagasi promastigotes to NO. These parasites were isolated from humans and dogs with visceral leishmaniasis. We also demonstrate that this resistance profile was associated with a greater survival capacity and a greater parasite burden in murine macrophages, independent of activation and after activation by IFN-γ and LPS.
Collapse
Affiliation(s)
- P L Santos
- Universidade Federal de Sergipe - Aracaju, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
|