1
|
Jung KH, Kim SE, Go HG, Lee YJ, Park MS, Ko S, Han BS, Yoon YC, Cho YJ, Lee P, Lee SH, Kim K, Hong SS. Synergistic Renoprotective Effect of Melatonin and Zileuton by Inhibition of Ferroptosis via the AKT/mTOR/NRF2 Signaling in Kidney Injury and Fibrosis. Biomol Ther (Seoul) 2023; 31:599-610. [PMID: 37183002 PMCID: PMC10616517 DOI: 10.4062/biomolther.2023.062] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/07/2023] [Accepted: 04/17/2023] [Indexed: 05/16/2023] Open
Abstract
According to recent evidence, ferroptosis is a major cell death mechanism in the pathogenesis of kidney injury and fibrosis. Despite the renoprotective effects of classical ferroptosis inhibitors, therapeutic approaches targeting kidney ferroptosis remain limited. In this study, we assessed the renoprotective effects of melatonin and zileuton as a novel therapeutic strategy against ferroptosis-mediated kidney injury and fibrosis. First, we identified RSL3-induced ferroptosis in renal tubular epithelial HK-2 and HKC-8 cells. Lipid peroxidation and cell death induced by RSL3 were synergistically mitigated by the combination of melatonin and zileuton. Combination treatment significantly downregulated the expression of ferroptosis-associated proteins, 4-HNE and HO-1, and upregulated the expression of GPX4. The expression levels of p-AKT and p-mTOR also increased, in addition to that of NRF2 in renal tubular epithelial cells. When melatonin (20 mg/kg) and zileuton (20 mg/kg) were administered to a unilateral ureteral obstruction (UUO) mouse model, the combination significantly reduced tubular injury and fibrosis by decreasing the expression of profibrotic markers, such as α-SMA and fibronectin. More importantly, the combination ameliorated the increase in 4-HNE levels and decreased GPX4 expression in UUO mice. Overall, the combination of melatonin and zileuton was found to effectively ameliorate ferroptosis-related kidney injury by upregulating the AKT/mTOR/ NRF2 signaling pathway, suggesting a promising therapeutic strategy for protection against ferroptosis-mediated kidney injury and fibrosis.
Collapse
Affiliation(s)
- Kyung Hee Jung
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Sang Eun Kim
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Han Gyeol Go
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Yun Ji Lee
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Min Seok Park
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Soyeon Ko
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Beom Seok Han
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Young-Chan Yoon
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Ye Jin Cho
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Pureunchowon Lee
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Sang-Ho Lee
- Division of Nephrology, Department of Internal Medicine, College of Medicine, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Kipyo Kim
- Divison of Nephrology and Hypertension, Department of Internal Medicine, Inha University Hospital, Inha University College of Medicine, Incheon 22332, Republic of Korea
| | - Soon-Sun Hong
- Department of Medicine, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, Incheon 22332, Republic of Korea
| |
Collapse
|
2
|
Rao A, Gupta A, Kain V, Halade GV. Extrinsic and intrinsic modulators of inflammation-resolution signaling in heart failure. Am J Physiol Heart Circ Physiol 2023; 325:H433-H448. [PMID: 37417877 PMCID: PMC10538986 DOI: 10.1152/ajpheart.00276.2023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Chronic and uncleared inflammation is the root cause of various cardiovascular diseases. Fundamentally, acute inflammation is supportive when overlapping with safe clearance of inflammation termed resolution; however, if the lifestyle-directed extrinsic factors such as diet, sleep, exercise, or physical activity are misaligned, that results in unresolved inflammation. Although genetics play a critical role in cardiovascular health, four extrinsic risk factors-unhealthy processed diet, sleep disruption or fragmentation, sedentary lifestyle, thereby, subsequent stress-have been identified as heterogeneous and polygenic triggers of heart failure (HF), which can result in several complications with indications of chronic inflammation. Extrinsic risk factors directly impact endogenous intrinsic factors, such as using fatty acids by immune-responsive enzymes [lipoxygenases (LOXs)/cyclooxygenases (COXs)/cytochromes-P450 (CYP450)] to form resolution mediators that activate specific resolution receptors. Thus, the balance of extrinsic factors such as diet, sleep, and physical activity feed-forward the coordination of intrinsic factors such as fatty acids-enzymes-bioactive lipid receptors that modulates the immune defense, metabolic health, inflammation-resolution signaling, and cardiac health. Future research on lifestyle- and aging-associated molecular patterns is warranted in the context of intrinsic and extrinsic factors, immune fitness, inflammation-resolution signaling, and cardiac health.
Collapse
Affiliation(s)
- Archana Rao
- Division of Cardiovascular Sciences, Department of Internal Medicine, Heart Institute, University of South Florida, Tampa, Florida, United States
| | - Akul Gupta
- Division of Cardiovascular Sciences, Department of Internal Medicine, Heart Institute, University of South Florida, Tampa, Florida, United States
| | - Vasundhara Kain
- Division of Cardiovascular Sciences, Department of Internal Medicine, Heart Institute, University of South Florida, Tampa, Florida, United States
| | - Ganesh V Halade
- Division of Cardiovascular Sciences, Department of Internal Medicine, Heart Institute, University of South Florida, Tampa, Florida, United States
| |
Collapse
|
3
|
Napagoda M, Gerstmeier J, Butschek H, De Soyza S, Pace S, Lorenz S, Qader M, Witharana S, Nagahawatte A, Wijayaratne G, Svatoš A, Jayasinghe L, Koeberle A, Werz O. The Anti-Inflammatory and Antimicrobial Potential of Selected Ethnomedicinal Plants from Sri Lanka. Molecules 2020; 25:molecules25081894. [PMID: 32326068 PMCID: PMC7221831 DOI: 10.3390/molecules25081894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 02/01/2023] Open
Abstract
Traditional folk medicine in Sri Lanka is mostly based on plants and plant-derived products, however, many of these medicinal plant species are scientifically unexplored. Here, we evaluated the anti-inflammatory and antimicrobial potency of 28 different extracts prepared from seven popular medicinal plant species employed in Sri Lanka. The extracts were subjected to cell-based and cell-free assays of 5-lipoxygenase (5-LO), microsomal prostaglandin E2 synthase (mPGES)-1, and nitric oxide (NO) scavenging activity. Moreover, antibacterial and disinfectant activities were assessed. Characterization of secondary metabolites was achieved by gas chromatography coupled to mass spectrometric (GC-MS) analysis. n-Hexane- and dichloromethane-based extracts of Garcinia cambogia efficiently suppressed 5-LO activity in human neutrophils (IC50 = 0.92 and 1.39 µg/mL), and potently inhibited isolated human 5-LO (IC50 = 0.15 and 0.16 µg/mL) and mPGES-1 (IC50 = 0.29 and 0.49 µg/mL). Lipophilic extracts of Pothos scandens displayed potent inhibition of mPGES-1 only. A methanolic extract of Ophiorrhiza mungos caused significant NO scavenging activity. The lipophilic extracts of G. cambogia exhibited prominent antibacterial and disinfectant activities, and GC-MS analysis revealed the presence of fatty acids, sesquiterpenes and other types of secondary metabolites. Together, our results suggest the prospective utilization of G.cambogia as disinfective agent with potent anti-inflammatory properties.
Collapse
Affiliation(s)
- Mayuri Napagoda
- Department of Biochemistry, Faculty of Medicine, University of Ruhuna, Galle 80000, Sri Lanka;
- Correspondence: (M.N.); (O.W.); Tel.: +94-(0)71 9216281 (M.N.); +49-(0)3641-949801 (O.W.)
| | - Jana Gerstmeier
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743 Jena, Germany; (J.G.); (H.B.); (S.P.); (A.K.)
| | - Hannah Butschek
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743 Jena, Germany; (J.G.); (H.B.); (S.P.); (A.K.)
| | - Sudhara De Soyza
- Department of Biochemistry, Faculty of Medicine, University of Ruhuna, Galle 80000, Sri Lanka;
| | - Simona Pace
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743 Jena, Germany; (J.G.); (H.B.); (S.P.); (A.K.)
| | - Sybille Lorenz
- Research Group Mass Spectrometry and Proteomics, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; (S.L.); (A.S.)
| | - Mallique Qader
- National Institute of Fundamental Studies, Kandy 20000, Sri Lanka; (M.Q.); (L.J.)
| | - Sanjeeva Witharana
- Faculty of Engineering, Higher Colleges of Technology, PO Box 4793 Abu Dhabi, UAE;
| | - Ajith Nagahawatte
- Department of Microbiology, Faculty of Medicine, University of Ruhuna, Galle 80000, Sri Lanka; (A.N.); (G.W.)
| | - Gaya Wijayaratne
- Department of Microbiology, Faculty of Medicine, University of Ruhuna, Galle 80000, Sri Lanka; (A.N.); (G.W.)
| | - Aleš Svatoš
- Research Group Mass Spectrometry and Proteomics, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; (S.L.); (A.S.)
| | - Lalith Jayasinghe
- National Institute of Fundamental Studies, Kandy 20000, Sri Lanka; (M.Q.); (L.J.)
| | - Andreas Koeberle
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743 Jena, Germany; (J.G.); (H.B.); (S.P.); (A.K.)
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743 Jena, Germany; (J.G.); (H.B.); (S.P.); (A.K.)
- Correspondence: (M.N.); (O.W.); Tel.: +94-(0)71 9216281 (M.N.); +49-(0)3641-949801 (O.W.)
| |
Collapse
|
4
|
Protein Precipitation Method for Determination of Zileuton in Human Plasma by LC-MS/MS. J Pharm Innov 2019. [DOI: 10.1007/s12247-019-09403-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Roth-Walter F, Adcock IM, Benito-Villalvilla C, Bianchini R, Bjermer L, Caramori G, Cari L, Chung K, Diamant Z, Eguiluz-Gracia I, Knol E, Kolios AGA, Levi-Schaffer F, Nocentini G, Palomares O, Puzzovio PG, Redegeld F, van Esch BCAM, Stellato C. Comparing biologicals and small molecule drug therapies for chronic respiratory diseases: An EAACI Taskforce on Immunopharmacology position paper. Allergy 2019; 74:432-448. [PMID: 30353939 DOI: 10.1111/all.13642] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 10/05/2018] [Indexed: 12/19/2022]
Abstract
Chronic airway diseases such as asthma and chronic obstructive pulmonary disease (COPD), together with their comorbidities, bear a significant burden on public health. Increased appreciation of molecular networks underlying inflammatory airway disease needs to be translated into new therapies for distinct phenotypes not controlled by current treatment regimens. On the other hand, development of new safe and effective therapies for such respiratory diseases is an arduous and expensive process. Antibody-based (biological) therapies are successful in treating certain respiratory conditions not controlled by standard therapies such as severe allergic and refractory eosinophilic severe asthma, while in other inflammatory respiratory diseases, such as COPD, biologicals are having a more limited impact. Small molecule drug (SMD)-based therapies represent an active field in pharmaceutical research and development. SMDs expand biologicals' therapeutic targets by reaching the intracellular compartment by delivery as either an oral or topically based formulation, offering both convenience and lower costs. Aim of this review was to compare and contrast the distinct pharmacological properties and clinical applications of SMDs- and antibody-based treatment strategies, their limitations and challenges, in order to highlight how they should be integrated for their optimal utilization and to fill the critical gaps in current treatment for these chronic inflammatory respiratory diseases.
Collapse
Affiliation(s)
- Franziska Roth-Walter
- Comparative Medicine; The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna; Medical University Vienna and University Vienna; Vienna Austria
| | - Ian M. Adcock
- Molecular Cell Biology Group; National Heart & Lung Institute; Imperial College London; London UK
| | - Cristina Benito-Villalvilla
- Department of Biochemistry and Molecular Biology; School of Chemistry; Complutense University of Madrid; Madrid Spain
| | - Rodolfo Bianchini
- Comparative Medicine; The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna; Medical University Vienna and University Vienna; Vienna Austria
| | - Leif Bjermer
- Department of Respiratory Medicine and Allergology, Lung and Allergy Research; Allergy, Asthma and COPD Competence center; Lund University; Lund Sweden
| | - Gaetano Caramori
- Pulmonary Unit; Department of Biomedical Sciences; Dentistry, Morphological and Functional Imaging (BIOMORF); University of Messina; Messina Italy
| | - Luigi Cari
- Department of Medicine; Section of Pharmacology; University of Perugia; Perugia Italy
| | - Kian Fan Chung
- Experimental Studies Medicine at National Heart & Lung Institute; Imperial College London; Royal Brompton & Harefield NHS Trust; London UK
| | - Zuzana Diamant
- Department of Clinical Pharmacy and Pharmacology; University Medical Center Groningen; University of Groningen; Groningen The Netherlands
- Department of Respiratory Medicine and Allergology; Institute for Clinical Science; Skane University Hospital; Lund Sweden
| | - Ibon Eguiluz-Gracia
- Allergy Unit and Research Laboratory; Regional University Hospital of Málaga and Biomedical Research Institute of Malaga (IBIMA); Málaga Spain
| | - Edward F. Knol
- Departments of Immunology and Dermatology/Allergology; University Medical Center Utrecht; Utrecht The Netherlands
| | | | - Francesca Levi-Schaffer
- Institute for Drug Research; School of Pharmacy; Faculty of Medicine; The Hebrew University of Jerusalem; Jerusalem Israel
| | - Giuseppe Nocentini
- Department of Medicine; Section of Pharmacology; University of Perugia; Perugia Italy
| | - Oscar Palomares
- Department of Biochemistry and Molecular Biology; School of Chemistry; Complutense University of Madrid; Madrid Spain
| | - Pier Giorgio Puzzovio
- Institute for Drug Research; School of Pharmacy; Faculty of Medicine; The Hebrew University of Jerusalem; Jerusalem Israel
| | - Frank A. Redegeld
- Faculty of Science; Division of Pharmacology; Department of Pharmaceutical Sciences; Utrecht University; Utrecht The Netherlands
| | - Betty C. A. M. van Esch
- Faculty of Science; Division of Pharmacology; Department of Pharmaceutical Sciences; Utrecht University; Utrecht The Netherlands
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”; University of Salerno; Salerno Italy
| |
Collapse
|
6
|
Kanaoka Y, Austen KF. Roles of cysteinyl leukotrienes and their receptors in immune cell-related functions. Adv Immunol 2019; 142:65-84. [PMID: 31296303 DOI: 10.1016/bs.ai.2019.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The cysteinyl leukotrienes (cys-LTs), leukotriene C4, (LTC4), LTD4, and LTE4, are lipid mediators of inflammation. LTC4 is the only intracellularly synthesized cys-LT through the 5-lipoxygenase and LTC4 synthase pathway and after transport is metabolized to LTD4 and LTE4 by specific extracellular peptidases. Each cys-LT has a preferred functional receptor in vivo; LTD4 to the type 1 cys-LT receptor (CysLT1R), LTC4 to CysLT2R, and LTE4 to CysLT3R (OXGR1 or GPR99). Recent studies in mouse models revealed that there are multiple regulatory mechanisms for these receptor functions and each receptor plays a distinct role as observed in different mouse models of inflammation and immune responses. This review focuses on the integrated host responses to the cys-LT/CysLTR pathway composed of sequential ligands with preferred receptors as seen from mouse models. It also discusses potential therapeutic targets for LTC4 synthase, CysLT2R, and CysLT3R.
Collapse
Affiliation(s)
- Yoshihide Kanaoka
- Department of Medicine, Harvard Medical School and Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, MA, United States.
| | - K Frank Austen
- Department of Medicine, Harvard Medical School and Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, MA, United States.
| |
Collapse
|
7
|
Dočekal V, Formánek B, Císařová I, Veselý J. A formal [4 + 2] cycloaddition of sulfur-containing alkylidene heterocycles with allenic compounds. Org Chem Front 2019. [DOI: 10.1039/c9qo00886a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A convenient enantioselective synthesis of sulfur heterocycles containing the dihydro-2H-pyran moiety by quinidine catalyzed formal [4 + 2] cycloaddition of 3-alkylidene benzo[b]thiophenes and allenoates is reported.
Collapse
Affiliation(s)
- Vojtěch Dočekal
- Department of Organic Chemistry
- Faculty of Science
- Charles University
- 128 43 Prague 2
- Czech Republic
| | - Bedřich Formánek
- Department of Organic Chemistry
- Faculty of Science
- Charles University
- 128 43 Prague 2
- Czech Republic
| | - Ivana Císařová
- Department of Inorganic Chemistry
- Faculty of Science
- Charles University
- 128 43 Prague 2
- Czech Republic
| | - Jan Veselý
- Department of Organic Chemistry
- Faculty of Science
- Charles University
- 128 43 Prague 2
- Czech Republic
| |
Collapse
|
8
|
Napagoda M, Gerstmeier J, Butschek H, Lorenz S, Kanatiwela D, Qader M, Nagahawatte A, De Soyza S, Wijayaratne GB, Svatoš A, Jayasinghe L, Koeberle A, Werz O. Lipophilic extracts of Leucas zeylanica, a multi-purpose medicinal plant in the tropics, inhibit key enzymes involved in inflammation and gout. JOURNAL OF ETHNOPHARMACOLOGY 2018; 224:474-481. [PMID: 29727733 DOI: 10.1016/j.jep.2018.04.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/24/2018] [Accepted: 04/27/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Leucas zeylanica (L.) W.T. Aiton is a popular, multi-purpose medicinal plant in Sri Lanka but the pharmacological potential and the chemical profile have not been systematically investigated to understand and rationalize the reported ethnobotanical significance. AIM OF THE STUDY The present study was undertaken to scientifically validate the traditional usage of this plant for the treatment of inflammatory conditions, gout and microbial infections. Inhibition of 5-lipoxygenase (5-LO), microsomal prostaglandin E2 synthase (mPGES)-1 and xanthine oxidase (XO) by different extracts of L. zeylanica was investigated to determine the anti-inflammatory and anti-gout activity, respectively. The antibacterial and antifungal activities were also studied and the relevant constituents in the bioactive extracts were tentatively identified. MATERIALS AND METHODS Cell-free and/or cell-based assays were employed in order to investigate the effects of the extracts against the activity of human 5-LO, mPGES-1 and XO as well as to assess antioxidant properties. The antibacterial activity of the extracts was determined by the broth micro-dilution method against Gram positive and Gram negative bacteria including methicillin-resistant Staphylococcus aureus while the agar dilution method was employed to determine the anti-Candida activity. Gas chromatography coupled to mass spectrometric (GC-MS) analysis enabled the characterization of secondary metabolites in the extracts. RESULTS The dichloromethane extract of L. zeylanica efficiently inhibited 5-LO activity in stimulated human neutrophils (IC50 = 5.5 µg/mL) and isolated human 5-LO and mPGES-1 (IC50 = 2.2 and 0.4 µg/mL). Potent inhibition of XO was observed by the same extract (IC50 = 47.5 μg/mL), which is the first report of XO-inhibitory activity of a Sri Lankan medicinal plant. Interestingly, significant radical scavenging activity was not observed by this extract. Only the n-hexane extract exhibited antibacterial activity against Staphylococcus aureus and Staphylococcus saprophyticus with a MIC of 250 µg/mL while the anti-Candida activity was moderate. GC-MS analysis revealed the presence of phytosterols, fatty acids, sesquiterpenes, diterpenes and several other types of secondary metabolites. CONCLUSIONS Potent inhibition of 5-LO, mPGES-1 and XO rationalizes the ethnopharmacological use of L. zeylanica as anti-inflammatory and anti-gout remedy. Interestingly, the antimicrobial activities were not prominent, despite its wide utility as an antimicrobial medication.
Collapse
Affiliation(s)
- Mayuri Napagoda
- Department of Biochemistry, Faculty of Medicine, University of Ruhuna, Galle 80000, Sri Lanka.
| | - Jana Gerstmeier
- Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, D-07743 Jena, Germany.
| | - Hannah Butschek
- Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, D-07743 Jena, Germany.
| | - Sybille Lorenz
- Research Group Mass Spectrometry and Proteomics, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745 Jena, Germany.
| | - Dinusha Kanatiwela
- National Institute of Fundamental Studies, Hantana Road, Kandy 20000, Sri Lanka.
| | - Mallique Qader
- National Institute of Fundamental Studies, Hantana Road, Kandy 20000, Sri Lanka.
| | - Ajith Nagahawatte
- Department of Microbiology, Faculty of Medicine, University of Ruhuna, Galle 80000, Sri Lanka.
| | - Sudhara De Soyza
- Department of Biochemistry, Faculty of Medicine, University of Ruhuna, Galle 80000, Sri Lanka.
| | | | - Aleš Svatoš
- Research Group Mass Spectrometry and Proteomics, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745 Jena, Germany.
| | - Lalith Jayasinghe
- National Institute of Fundamental Studies, Hantana Road, Kandy 20000, Sri Lanka.
| | - Andreas Koeberle
- Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, D-07743 Jena, Germany.
| | - Oliver Werz
- Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, D-07743 Jena, Germany.
| |
Collapse
|
9
|
Slutsky AS. Giants in Chest Medicine: Jeffrey M. Drazen, MD, FCCP. Chest 2018; 153:14-15. [PMID: 29307415 DOI: 10.1016/j.chest.2017.10.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 10/13/2017] [Indexed: 11/25/2022] Open
Affiliation(s)
- Arthur S Slutsky
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital and the Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
10
|
Chen X, Li D, Luo C, Wang J, Deng Z, Zhang H. Cocrystals of zileuton with enhanced physical stability. CrystEngComm 2018. [DOI: 10.1039/c7ce02150j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Zileuton can form two promising pharmaceutical cocrystals with nicotinamide and isonicotinamide, which demonstrate superior phase stability against moisture.
Collapse
Affiliation(s)
- Xin Chen
- Laboratory of Magnetic Resonance Spectroscopy and Imaging
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences
- Suzhou 215123
- P.R. China
- School of Pharmacy
| | - Duanxiu Li
- Laboratory of Magnetic Resonance Spectroscopy and Imaging
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences
- Suzhou 215123
- P.R. China
| | - Chun Luo
- Laboratory of Magnetic Resonance Spectroscopy and Imaging
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences
- Suzhou 215123
- P.R. China
| | | | - Zongwu Deng
- Laboratory of Magnetic Resonance Spectroscopy and Imaging
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences
- Suzhou 215123
- P.R. China
| | - Hailu Zhang
- Laboratory of Magnetic Resonance Spectroscopy and Imaging
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences
- Suzhou 215123
- P.R. China
| |
Collapse
|
11
|
Yugandhar P, Rao KM, Sengupta K. A novel herbal composition containing extracts of Boswellia serrata gum resin and Aegle marmelos fruit alleviates symptoms of asthma in a placebo controlled double-blind clinical study. Phytother Res 2017; 32:140-150. [PMID: 29210124 DOI: 10.1002/ptr.5963] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/01/2017] [Accepted: 10/03/2017] [Indexed: 12/18/2022]
Abstract
LI13109F is a novel herbal composition containing the extracts of Boswellia serrata gum resin and Aegle marmelos fruit. This composition dampens leukotriene dependent inflammatory reactions via inhibiting 5-lipoxygenase pathway. In a Sephadex LH-20 induced airway inflammation model of Sprague Dawley rats, LI13109F significantly reduced infiltrated granulocyte population in the bronco-alveolar lavage fluid and normalized Th1/Th2 cytokine balance. Further, a 56-day placebo-controlled and randomized double blind study (Clinical Trial Registration No. CTRI/2016/10/007393) on subjects with mild to moderate asthma has evaluated the clinical efficacy of LI13109F. The study subjects received either 200 mg/day of LI13109F (n = 18) or a similar dosage of placebo (n = 18). At the end of the trial period, LI13109F conferred significant improvements in the clinical parameters; the emotional function (p = .0305) and asthma symptoms scores (p = .0002) were improved even at 14 days, compared with the placebo. Further, 56 days supplementation of LI13109F resulted in significant increase in serum IFN-γ (p = .0014) and reduction in IL-4 (p = .0497), compared with placebo. LI13109F supplementation did not yield any serious adverse events or any abnormal observations in routine laboratory examinations during the study. Together, these observations suggest that LI13109F (AlvioLife®) is tolerable and an effective intervention for management of mild to moderate asthma such as airway inflammation.
Collapse
Affiliation(s)
- Pothina Yugandhar
- Department of Pulmonology, ASR Academy of Medical Sciences, Eluru, Andhra Pradesh, India
| | | | | |
Collapse
|
12
|
Let-7 microRNA-dependent control of leukotriene signaling regulates the transition of hematopoietic niche in mice. Nat Commun 2017; 8:128. [PMID: 28743859 PMCID: PMC5527007 DOI: 10.1038/s41467-017-00137-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 06/02/2017] [Indexed: 02/06/2023] Open
Abstract
Hematopoietic stem and progenitor cells arise from the vascular endothelium of the dorsal aorta and subsequently switch niche to the fetal liver through unknown mechanisms. Here we report that vascular endothelium-specific deletion of mouse Drosha (DroshacKO), an enzyme essential for microRNA biogenesis, leads to anemia and death. A similar number of hematopoietic stem and progenitor cells emerge from Drosha-deficient and control vascular endothelium, but DroshacKO-derived hematopoietic stem and progenitor cells accumulate in the dorsal aorta and fail to colonize the fetal liver. Depletion of the let-7 family of microRNAs is a primary cause of this defect, as it leads to activation of leukotriene B4 signaling and induction of the α4β1 integrin cell adhesion complex in hematopoietic stem and progenitor cells. Inhibition of leukotriene B4 or integrin rescues maturation and migration of DroshacKO hematopoietic stem and progenitor cells to the fetal liver, while it hampers hematopoiesis in wild-type animals. Our study uncovers a previously undefined role of innate leukotriene B4 signaling as a gatekeeper of the hematopoietic niche transition. Hematopoietic stem and progenitor cells are generated first from the vascular endothelium of the dorsal aorta and then the fetal liver but what regulates this switch is unknown. Here, the authors show that changing miRNA biogenesis and leukotriene B4 signaling in mice modulates this switch in the niche.
Collapse
|
13
|
Pace S, Pergola C, Dehm F, Rossi A, Gerstmeier J, Troisi F, Pein H, Schaible AM, Weinigel C, Rummler S, Northoff H, Laufer S, Maier TJ, Rådmark O, Samuelsson B, Koeberle A, Sautebin L, Werz O. Androgen-mediated sex bias impairs efficiency of leukotriene biosynthesis inhibitors in males. J Clin Invest 2017; 127:3167-3176. [PMID: 28737505 DOI: 10.1172/jci92885] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/28/2017] [Indexed: 12/13/2022] Open
Abstract
Proinflammatory leukotrienes (LTs) are produced by 5-lipoxygenase (5-LO) aided by 5-LO-activating protein (FLAP). LT biosynthesis inhibitors are currently under clinical investigation as treatments for respiratory and cardiovascular diseases. Here, we have revealed a sex bias in the efficiency of clinically relevant LT biosynthesis inhibitors, showing that their effects are superior in females. We found that androgens cause these sex differences by impeding the LT-biosynthetic 5-LO/FLAP complex assembly. Lower doses of the FLAP inhibitor MK886 were required to reduce LTB4 levels in exudates of female versus male mice and rats. Following platelet-activating factor-induced shock, MK886 increased survival exclusively in female mice, and this effect was abolished by testosterone administration. FLAP inhibitors and the novel-type 5-LO inhibitors licofelone and sulindac sulfide exhibited higher potencies in human blood from females, and bioactive 5-LO/FLAP complexes were formed in female, but not male, human and murine leukocytes. Supplementation of female blood or leukocytes with 5α-dihydrotestosterone abolished the observed sex differences. Our data suggest that females may benefit from anti-LT therapy to a greater extent than males, prompting consideration of sex issues in LT modifier development.
Collapse
Affiliation(s)
- Simona Pace
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, University Hospital Jena, Jena, Germany
| | - Carlo Pergola
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, University Hospital Jena, Jena, Germany
| | - Friederike Dehm
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, University Hospital Jena, Jena, Germany.,Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Antonietta Rossi
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Jana Gerstmeier
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, University Hospital Jena, Jena, Germany
| | - Fabiana Troisi
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, University Hospital Jena, Jena, Germany
| | - Helmut Pein
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, University Hospital Jena, Jena, Germany
| | - Anja M Schaible
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, University Hospital Jena, Jena, Germany
| | - Christina Weinigel
- Institute of Transfusion Medicine, University Hospital Jena, Jena, Germany
| | - Silke Rummler
- Institute of Transfusion Medicine, University Hospital Jena, Jena, Germany
| | - Hinnak Northoff
- Institute for Clinical and Experimental Transfusion Medicine, University Medical Center Tuebingen, and
| | - Stefan Laufer
- Department of Medicinal Chemistry, Pharmaceutical Institute, University Tuebingen, Tuebingen, Germany
| | - Thorsten J Maier
- Aarhus University, Department of Biomedicine and Center for Study and Prevention of Neurodegenerative Inflammation (NEURODIN), Aarhus, Denmark.,Department of Anesthesia, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Olof Rådmark
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry II, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Samuelsson
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry II, Karolinska Institutet, Stockholm, Sweden
| | - Andreas Koeberle
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, University Hospital Jena, Jena, Germany
| | - Lidia Sautebin
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, University Hospital Jena, Jena, Germany
| |
Collapse
|
14
|
Hoxha M, Rovati GE, Cavanillas AB. The leukotriene receptor antagonist montelukast and its possible role in the cardiovascular field. Eur J Clin Pharmacol 2017; 73:799-809. [PMID: 28374082 DOI: 10.1007/s00228-017-2242-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/22/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Cysteinyl leukotrienes (LTC4, LTD4, and LTE4) are pro-inflammatory mediators of the 5-lipooxygenase (5-LO) pathway, that play an important role in bronchoconstriction, but can also enhance endothelial cell permeability and myocardial contractility, and are involved in many other inflammatory conditions. In the late 1990s, leukotriene receptor antagonists (LTRAs) were introduced in therapy for asthma and later on, approved for the relief of the symptoms of allergic rhinitis, chronic obstructive pulmonary disease, and urticaria. In addition, it has been shown that LTRAs may have a potential role in preventing atherosclerosis progression. PURPOSE The aims of this short review are to delineate the potential cardiovascular protective role of a LTRA, montelukast, beyond its traditional use, and to foster the design of appropriate clinical trials to test this hypothesis. RESULTS AND CONCLUSIONS What it is known about leukotriene receptor antagonists? •Leukotriene receptor antagonist, such as montelukast and zafirlukast, is used in asthma, COPD, and allergic rhinitis. • Montelukast is the most prescribed CysLT1 antagonist used in asthmatic patients. • Different in vivo animal studies have shown that leukotriene receptor antagonists can prevent the atherosclerosis progression, and have a protective role after cerebral ischemia. What we still need to know? • Today, there is a need for conducting clinical trials to assess the role of montelukast in reducing cardiovascular risk and to further understand the mechanism of action behind this effect.
Collapse
Affiliation(s)
- Malvina Hoxha
- Department of Chemical, Toxicological and Pharmacological Evaluation of Drugs, Catholic University Our Lady of Good Counsel, Rruga. D. Hoxha, Tirana, Albania.
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti, 9-20133, Milan, Italy.
| | - G Enrico Rovati
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti, 9-20133, Milan, Italy
| | - Aurora Bueno Cavanillas
- IBS Granada, University of Granada, CIBER of Epidemiology and Public Health (CIBERESP), Granada, Spain
| |
Collapse
|
15
|
Pyasi K, Tufvesson E, Moitra S. Evaluating the role of leukotriene-modifying drugs in asthma management: Are their benefits 'losing in translation'? Pulm Pharmacol Ther 2016; 41:52-59. [PMID: 27651322 DOI: 10.1016/j.pupt.2016.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 09/13/2016] [Accepted: 09/16/2016] [Indexed: 02/06/2023]
Abstract
Leukotrienes (LTs) initiate a cascade of reactions that cause bronchoconstriction and inflammation in asthma. LT-modifying drugs have been proved very effective to reduce inflammation and associated exacerbation however despite some illustrious clinical trials the usage of these drugs remains overlooked because the evidence to support their utility in asthma management has been mixed and varied between studies. Although, there are plenty of evidences which suggest that the leukotriene-modifying drugs provide consistent improvement even after just the first oral dose and reduce asthma exacerbations, the beneficial effect of these drugs has remained sparse and widely debated. And these beneficial effects are often overlooked because most of the clinical studies include a mixed population of asthmatics who do not respond to LT-modifiers equally. Therefore, in the present era of personalized medicine, it is important to properly stratify the patients and non-invasive measurements of biomarkers may warrant the possibility to characterize biological/pathological pathway to direct treatment to those who will benefit from it. Endotyping based on individual's leukotriene levels should probably ascertain a subgroup of patients that would clearly benefit from the treatment even though the trial fails to show overall significance. In this article, we have methodically evaluated contemporary literature describing the efficacy of LT-modifying drugs in the management of asthma and highlighted the importance of phenotyping the asthmatics for better treatment outcomes.
Collapse
Affiliation(s)
- Kanchan Pyasi
- Molecular Respiratory Research Laboratory, Chest Research Foundation, Pune, India
| | - Ellen Tufvesson
- Department of Respiratory Medicine and Allergology, Lund University, Lund, Sweden
| | - Subhabrata Moitra
- Department of Respiratory Medicine and Allergology, Lund University, Lund, Sweden; Department of Pneumology, Allergy and Asthma Research Centre, Kolkata, India.
| |
Collapse
|
16
|
Kittana N, Hattab S, Ziyadeh-Isleem A, Jaradat N, Zaid AN. Montelukast, current indications and prospective future applications. Expert Rev Respir Med 2016; 10:943-56. [PMID: 27485393 DOI: 10.1080/17476348.2016.1207533] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Montelukast is recommended for the treatment of asthma, exercise -induced bronchospasm and allergic rhinitis. Several trials demonstrated potential therapeutic effects in other respiratory conditions, and different animal-model-based studies explored potential pharmacological actions in non-respiratory conditions. AREAS COVERED Clinical investigations on the pharmacotherapeutic effects of montelukast, in addition to in-vivo studies on animal models of non-respiratory diseases. The data discussed in this review were mainly obtained from clinical randomized trials, real-life studies, and studies based on animal models as approve of concept. As a condition, all of the discussed articles were published in journals cited by Pubmed. Expert commentary: The current clinical data are in favor of montelukast use in the management of chronic asthma as an add-on or alternative therapy to the inhaled corticosteroids. Further clinical trials are required to confirm the effectiveness and feasibility of montelukast for the treatment of conditions other than the current clinical indications.
Collapse
Affiliation(s)
- Naim Kittana
- a Division of Pharmacology and Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences , An-Najah National University , Nablus , Palestine
| | - Suhaib Hattab
- a Division of Pharmacology and Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences , An-Najah National University , Nablus , Palestine
| | - Azza Ziyadeh-Isleem
- a Division of Pharmacology and Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences , An-Najah National University , Nablus , Palestine
| | - Nidal Jaradat
- b Division of Pharmaceutical Chemistry and Technology, Department of Pharmacy, Faculty of Medicine and Health Sciences , An-Najah National University , Nablus , Palestine
| | - Abdel-Naser Zaid
- b Division of Pharmaceutical Chemistry and Technology, Department of Pharmacy, Faculty of Medicine and Health Sciences , An-Najah National University , Nablus , Palestine
| |
Collapse
|
17
|
Anderson SD. 'Indirect' challenges from science to clinical practice. Eur Clin Respir J 2016; 3:31096. [PMID: 26908255 PMCID: PMC4764958 DOI: 10.3402/ecrj.v3.31096] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 01/25/2016] [Indexed: 12/17/2022] Open
Abstract
Indirect challenges act to provoke bronchoconstriction by causing the release of endogenous mediators and are used to identify airway hyper-responsiveness. This paper reviews the historical development of challenges, with exercise, eucapnic voluntary hyperpnoea (EVH) of dry air, wet hypertonic saline, and with dry powder mannitol, that preceded their use in clinical practice. The first challenge developed for clinical use was exercise. Physicians were keen for a standardized test to identify exercise-induced asthma (EIA) and to assess the effect of drugs such as disodium cromoglycate. EVH with dry air became a surrogate for exercise to increase ventilation to very high levels. A simple test was developed with EVH and used to identify EIA in defence force recruits and later in elite athletes. The research findings with different conditions of inspired air led to the conclusion that loss of water by evaporation from the airway surface was the stimulus to EIA. The proposal that water loss caused a transient increase in osmolarity led to the development of the hypertonic saline challenge. The wet aerosol challenge with 4.5% saline, provided a known osmotic stimulus, to which most asthmatics were sensitive. To simplify the osmotic challenge, a dry powder of mannitol was specially prepared and encapsulated. The test pack with different doses and an inhaler provided a common operating procedure that could be used at the point of care. All these challenge tests have a high specificity to identify currently active asthma. All have been used to assess the benefit of treatment with inhaled corticosteroids. Over the 50 years, the methods for testing became safer, less complex, and less expensive and all used forced expiratory volume in 1 sec to measure the response. Thus, they became practical to use routinely and were recommended in guidelines for use in clinical practice.
Collapse
Affiliation(s)
- Sandra D Anderson
- Sydney Medical School, Central Clinical School, University of Sydney, Sydney, NSW, Australia;
| |
Collapse
|
18
|
Rundell KW, Anderson SD, Sue-Chu M, Bougault V, Boulet LP. Air quality and temperature effects on exercise-induced bronchoconstriction. Compr Physiol 2016; 5:579-610. [PMID: 25880506 DOI: 10.1002/cphy.c130013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Exercise-induced bronchoconstriction (EIB) is exaggerated constriction of the airways usually soon after cessation of exercise. This is most often a response to airway dehydration in the presence of airway inflammation in a person with a responsive bronchial smooth muscle. Severity is related to water content of inspired air and level of ventilation achieved and sustained. Repetitive hyperpnea of dry air during training is associated with airway inflammatory changes and remodeling. A response during exercise that is related to pollution or allergen is considered EIB. Ozone and particulate matter are the most widespread pollutants of concern for the exercising population; chronic exposure can lead to new-onset asthma and EIB. Freshly generated emissions particulate matter less than 100 nm is most harmful. Evidence for acute and long-term effects from exercise while inhaling high levels of ozone and/or particulate matter exists. Much evidence supports a relationship between development of airway disorders and exercise in the chlorinated pool. Swimmers typically do not respond in the pool; however, a large percentage responds to a dry air exercise challenge. Studies support oxidative stress mediated pathology for pollutants and a more severe acute response occurs in the asthmatic. Winter sport athletes and swimmers have a higher prevalence of EIB, asthma and airway remodeling than other athletes and the general population. Because of fossil fuel powered ice resurfacers in ice rinks, ice rink athletes have shown high rates of EIB and asthma. For the athlete training in the urban environment, training during low traffic hours and in low traffic areas is suggested.
Collapse
Affiliation(s)
- Kenneth W Rundell
- Department of The Basic Sciences, The Commonwealth Medical College, Scranton, PA, USA
| | - Sandra D Anderson
- Clinical Professor Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Malcolm Sue-Chu
- Department of Thoracic Medicine, St Olavs Hospital, Trondheim University Hospital, Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | | | | |
Collapse
|
19
|
Prakash K, Adiki SK, Kalakuntla RR. Development and validation of a liquid chromatography-mass spectrometry method for the determination of zileuton in human plasma. Sci Pharm 2014; 82:571-83. [PMID: 25853069 PMCID: PMC4339974 DOI: 10.3797/scipharm.1402-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 04/26/2014] [Indexed: 11/22/2022] Open
Abstract
A selective and sensitive liquid chromatography-tandem mass spectrometric method (LC-MS/MS) has been developed and validated for the quantification of zileuton in human plasma. Deuterated internal standard (zileuton D4) was used as the internal standard (ISTD). Zileuton was extracted by liquid-liquid extraction using methyl tert-butyl ether and separated by isocratic elution on a C18 column (100 × 4.6 mm, 5 μm, Discovery C18) with the mobile phase consisting of 1 mM ammonium acetate buffer and methanol in the ratio of 10:90. A flow rate of 1.0 ml/min was used with isocratic elution. Multiple reaction monitoring transitions in positive mode for zileuton and the internal standard were 237.3/161.2 and 241.2/161.1, respectively. The method was validated within the linearity range of 50.5-10,012.7 ng/ml for the bioanalytical method validation parameters like selectivity, accuracy, precision, recovery, stability, and matrix effect.
Collapse
Affiliation(s)
- Katakam Prakash
- Nirmala College of Pharmacy, Mangalagiri, Guntur 522503, AP, India
| | - Shanta K Adiki
- Nirmala College of Pharmacy, Mangalagiri, Guntur 522503, AP, India
| | - Rama Rao Kalakuntla
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, AP, India
| |
Collapse
|
20
|
Napagoda M, Gerstmeier J, Koeberle A, Wesely S, Popella S, Lorenz S, Scheubert K, Böcker S, Svatoš A, Werz O. Munronia pinnata (Wall.) Theob.: unveiling phytochemistry and dual inhibition of 5-lipoxygenase and microsomal prostaglandin E2 synthase (mPGES)-1. JOURNAL OF ETHNOPHARMACOLOGY 2014; 151:882-890. [PMID: 24315851 DOI: 10.1016/j.jep.2013.11.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/20/2013] [Accepted: 11/27/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Preparations from Munronia pinnata (Wall.) Theob. are extensively used in traditional medicine in Sri Lanka for the treatment of inflammatory conditions. However, neither the pharmacological features nor the phytochemistry of this plant are explored in order to understand and rationalize the reported ethnobotanical significance. As 5-lipoxygenase (5-LO) and microsomal prostaglandin E2 synthase (mPGES)-1 are crucial enzymes in inflammatory disorders, we evaluated their inhibition by M. pinnata extracts and studied the chemical profile of the plant for the identification of relevant constituents. MATERIALS AND METHODS Cell-free and cell-based assays were employed in order to investigate the suppression of 5-LO and mPGES-1 activity. Cell viability, radical scavenger activities, and inhibition of reactive oxygen species formation (ROS) in neutrophils were studied to assess cytotoxic and antioxidant effects. Gas and liquid chromatography coupled to mass spectrometric analysis enabled the characterization of secondary metabolites. RESULTS The n-hexane extract of M. pinnata efficiently suppressed 5-LO activity in stimulated human neutrophils (IC50 =8.7µg/ml) and potently inhibited isolated human recombinant 5-LO (IC50 =0.48µg/ml) and mPGES-1 (IC50 =1.0µg/ml). In contrast, no significant radical scavenging activity or suppression of ROS formation was observed, and neutrophil viability was unaffected. The phytochemistry of the plant was unveiled for the first time and phytosterols, fatty acids, sesquiterpenes and several other types of secondary metabolites were identified. CONCLUSIONS Together, potent inhibition of 5-LO and mPGES-1 activity, without concomitant antioxidant activity and cytotoxic effects, rationalizes the ethnopharmacological use of M. pinnata as anti-inflammatory remedy. Detailed chromatographic/mass spectrometric analysis reveals discrete chemical structures of relevant constituents.
Collapse
Affiliation(s)
- Mayuri Napagoda
- Research Group Mass Spectrometry and Proteomics, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745 Jena, Germany
| | - Jana Gerstmeier
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Andreas Koeberle
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Sandra Wesely
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Sven Popella
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Sybille Lorenz
- Research Group Mass Spectrometry and Proteomics, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745 Jena, Germany
| | - Kerstin Scheubert
- Chair for Bioinformatics, Friedrich-Schiller-University Jena, Ernst-Abbe-Platz 2, 07743 Jena, Germany
| | - Sebastian Böcker
- Chair for Bioinformatics, Friedrich-Schiller-University Jena, Ernst-Abbe-Platz 2, 07743 Jena, Germany
| | - Aleš Svatoš
- Research Group Mass Spectrometry and Proteomics, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745 Jena, Germany.
| | - Oliver Werz
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743 Jena, Germany.
| |
Collapse
|
21
|
Napagoda M, Gerstmeier J, Wesely S, Popella S, Lorenz S, Scheubert K, Svatoš A, Werz O. Inhibition of 5-lipoxygenase as anti-inflammatory mode of action of Plectranthus zeylanicus Benth and chemical characterization of ingredients by a mass spectrometric approach. JOURNAL OF ETHNOPHARMACOLOGY 2014; 151:800-9. [PMID: 24291172 DOI: 10.1016/j.jep.2013.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 11/01/2013] [Accepted: 11/02/2013] [Indexed: 05/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The perennial herb Plectranthus zeylanicus Benth is extensively used in traditional medicine in Sri Lanka and South India for treating inflammatory conditions, but pharmacological features of Plectranthus zeylanicus are hardly explored in order to understand and rationalize its use in ethnomedicine. As 5-lipoxygenase (5-LO) is a key enzyme in inflammatory disorders such as asthma or atherosclerosis, we investigated 5-LO inhibition by Plectranthus zeylanicus extracts and analyzed relevant constituents. MATERIALS AND METHODS We applied cell-free and cell-based assays to investigate suppression of 5-LO activity. Cell viability, radical scavenger activities, and inhibition of reactive oxygen species formation (ROS) in neutrophils were analysed to exclude unspecific cytotoxic or antioxidant effects. Constituents of the extracts were characterized by bioassay-guided fractionation and by analysis using gas or liquid chromatography coupled to mass spectrometric (Orbitrap) analysis. RESULTS Extracts of Plectranthus zeylanicus prepared with n-hexane or dichloromethane potently suppressed 5-LO activity in stimulated human neutrophils (IC50=6.6 and 12µg/ml, respectively) and inhibited isolated human recombinant 5-LO (IC50=0.7 and 1.2µg/ml, respectively). In contrast, no significant radical scavenging activity or suppression of ROS formation was observed, and neutrophil viability was unaffected. Besides ubiquitously occurring ingredients, coleone P, cinncassiol A and C, and callistric acid were identified as constituents in the most active fraction. CONCLUSIONS Together, potent inhibition of 5-LO activity, without concomitant anti-oxidant activity and cytotoxic effects, rationalizes the ethnopharmacological use of Plectranthus zeylanicus as anti-inflammatory remedy. Modern chromatographic/mass spectrometric analysis reveals discrete chemical structures of relevant constituents.
Collapse
Affiliation(s)
- Mayuri Napagoda
- Research Group Mass Spectrometry and Proteomics, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745 Jena, Germany
| | - Jana Gerstmeier
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, D-07743 Jena, Germany
| | - Sandra Wesely
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, D-07743 Jena, Germany
| | - Sven Popella
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, D-07743 Jena, Germany
| | - Sybille Lorenz
- Research Group Mass Spectrometry and Proteomics, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745 Jena, Germany
| | - Kerstin Scheubert
- Chair for Bioinformatics, Friedrich-Schiller-University Jena, Ernst-Abbe-Platz 2, D-07743 Jena, Germany
| | - Aleš Svatoš
- Research Group Mass Spectrometry and Proteomics, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, D-07745 Jena, Germany.
| | - Oliver Werz
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, D-07743 Jena, Germany.
| |
Collapse
|
22
|
Sharma MC. Molecular modeling studies of substituted 3,4-dihydroxychalcone derivatives as 5-lipoxygenase and cyclooxygenase inhibitors. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0745-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
23
|
Pian P, Labovitz E, Hoffman K, Clavijo CF, Rzasa Lynn R, Galinkin JL, Vinks AA, Malik P, Christians U. Quantification of the 5-lipoxygenase inhibitor zileuton in human plasma using high performance liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 937:79-83. [PMID: 24029553 DOI: 10.1016/j.jchromb.2013.08.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 08/07/2013] [Accepted: 08/12/2013] [Indexed: 10/26/2022]
Abstract
Zileuton is an orally active, selective inhibitor of 5-lipoxygenase, which catalyzes the first step in the conversion of arachadonic acid into leukotrienes. Given the important role of leukotrienes in inflammation and cell signaling, multiple studies have investigated the efficacy of zileuton in the treatment of human disease. Examples of disease targets include asthma, ulcerative colitis, rheumatoid arthritis, and more recently, acne, ischemic/reperfusion injury, inflammatory pain, and sickle cell anemia. Zileuton is currently approved for the prophylaxis and chronic treatment of asthma. We report the development and validation of a sensitive and specific liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay for the quantification of zileuton in human EDTA plasma. The range of reliable response was 3.05-20,000ng/mL in human plasma. The calibration curves had a correlation coefficient of r(2)>0.99. The intra-day precision was 3.4-5.3%. The inter-day precision ranged from 4.5% to 7.3% and inter-day accuracy from 100% to 107%. No matrix interferences, ion suppression/enhancement, or carry-over was observed. The assay met all predefined acceptance criteria and was subsequently employed to measure plasma zileuton concentrations in a clinical trial.
Collapse
Affiliation(s)
- Phillip Pian
- iC42 Clinical Research & Development, Department of Anesthesiology, University of Colorado Denver, Aurora, CO, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Molecular modeling and pharmacophore approach for structural requirements of some 2-substituted-1-naphthols derivatives as potent 5-lipoxygenase inhibitors. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0499-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Diamant Z, Lammers JWJ, Sterk PJ. Leukotriene Receptor Antagonists and Biosynthesis Inhibitors in Asthma. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/bf03259270] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Bianco S, Robuschi M, Gambaro G, Spagnotto S, Petrigni G. Bronchial Inflammation and NSAIDs. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/bf03258316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
27
|
Chauhan BF, Ducharme FM, Cochrane Airways Group. Anti-leukotriene agents compared to inhaled corticosteroids in the management of recurrent and/or chronic asthma in adults and children. Cochrane Database Syst Rev 2012; 2012:CD002314. [PMID: 22592685 PMCID: PMC4164381 DOI: 10.1002/14651858.cd002314.pub3] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Anti-leukotrienes (5-lipoxygenase inhibitors and leukotriene receptors antagonists) serve as alternative monotherapy to inhaled corticosteroids (ICS) in the management of recurrent and/or chronic asthma in adults and children. OBJECTIVES To determine the safety and efficacy of anti-leukotrienes compared to inhaled corticosteroids as monotherapy in adults and children with asthma and to provide better insight into the influence of patient and treatment characteristics on the magnitude of effects. SEARCH METHODS We searched MEDLINE (1966 to Dec 2010), EMBASE (1980 to Dec 2010), CINAHL (1982 to Dec 2010), the Cochrane Airways Group trials register, and the Cochrane Central Register of Controlled Trials (Dec 2010), abstract books, and reference lists of review articles and trials. We contacted colleagues and the international headquarters of anti-leukotrienes producers. SELECTION CRITERIA We included randomised trials that compared anti-leukotrienes with inhaled corticosteroids as monotherapy for a minimum period of four weeks in patients with asthma aged two years and older. DATA COLLECTION AND ANALYSIS Two review authors independently assessed the methodological quality of trials and extracted data. The primary outcome was the number of patients with at least one exacerbation requiring systemic corticosteroids. Secondary outcomes included patients with at least one exacerbation requiring hospital admission, lung function tests, indices of chronic asthma control, adverse effects, withdrawal rates and biological inflammatory markers. MAIN RESULTS Sixty-five trials met the inclusion criteria for this review. Fifty-six trials (19 paediatric trials) contributed data (representing total of 10,005 adults and 3,333 children); 21 trials were of high methodological quality; 44 were published in full-text. All trials pertained to patients with mild or moderate persistent asthma. Trial durations varied from four to 52 weeks. The median dose of inhaled corticosteroids was quite homogeneous at 200 µg/day of microfine hydrofluoroalkane-propelled beclomethasone or equivalent (HFA-BDP eq). Patients treated with anti-leukotrienes were more likely to suffer an exacerbation requiring systemic corticosteroids (N = 6077 participants; risk ratio (RR) 1.51, 95% confidence interval (CI) 1.17, 1.96). For every 28 (95% CI 15 to 82) patients treated with anti-leukotrienes instead of inhaled corticosteroids, there was one additional patient with an exacerbation requiring rescue systemic corticosteroids. The magnitude of effect was significantly greater in patients with moderate compared with those with mild airway obstruction (RR 2.03, 95% CI 1.41, 2.91 versus RR 1.25, 95% CI 0.97, 1.61), but was not significantly influenced by age group (children representing 23% of the weight versus adults), anti-leukotriene used, duration of intervention, methodological quality, and funding source. Significant group differences favouring inhaled corticosteroids were noted in most secondary outcomes including patients with at least one exacerbation requiring hospital admission (N = 2715 participants; RR 3.33; 95% CI 1.02 to 10.94), the change from baseline FEV(1) (N = 7128 participants; mean group difference (MD) 110 mL, 95% CI 140 to 80) as well as other lung function parameters, asthma symptoms, nocturnal awakenings, rescue medication use, symptom-free days, the quality of life, parents' and physicians' satisfaction. Anti-leukotriene therapy was associated with increased risk of withdrawals due to poor asthma control (N = 7669 participants; RR 2.56; 95% CI 2.01 to 3.27). For every thirty one (95% CI 22 to 47) patients treated with anti-leukotrienes instead of inhaled corticosteroids, there was one additional withdrawal due to poor control. Risk of side effects was not significantly different between both groups. AUTHORS' CONCLUSIONS As monotherapy, inhaled corticosteroids display superior efficacy to anti-leukotrienes in adults and children with persistent asthma; the superiority is particularly marked in patients with moderate airway obstruction. On the basis of efficacy, the results support the current guidelines' recommendation that inhaled corticosteroids remain the preferred monotherapy.
Collapse
Affiliation(s)
- Bhupendrasinh F Chauhan
- Research Centre, CHU Sainte‐JustineClinical Research Unit on Childhood Asthma3175, Cote Sainte‐CatherineMontrealQCCanada
| | - Francine M Ducharme
- University of MontrealDepartment of PaediatricsMontrealQCCanada
- CHU Sainte‐JustineResearch CentreMontrealCanada
| | | |
Collapse
|
28
|
Tepper RS, Wise RS, Covar R, Irvin CG, Kercsmar CM, Kraft M, Liu MC, O'Connor GT, Peters SP, Sorkness R, Togias A. Asthma outcomes: pulmonary physiology. J Allergy Clin Immunol 2012; 129:S65-87. [PMID: 22386510 DOI: 10.1016/j.jaci.2011.12.986] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 12/23/2011] [Indexed: 10/28/2022]
Abstract
BACKGROUND Outcomes of pulmonary physiology have a central place in asthma clinical research. OBJECTIVE At the request of National Institutes of Health (NIH) institutes and other federal agencies, an expert group was convened to provide recommendations on the use of pulmonary function measures as asthma outcomes that should be assessed in a standardized fashion in future asthma clinical trials and studies to allow for cross-study comparisons. METHODS Our subcommittee conducted a comprehensive search of PubMed to identify studies that focused on the validation of various airway response tests used in asthma clinical research. The subcommittee classified the instruments as core (to be required in future studies), supplemental (to be used according to study aims and in a standardized fashion), or emerging (requiring validation and standardization). This work was discussed at an NIH-organized workshop in March 2010 and finalized in September 2011. RESULTS A list of pulmonary physiology outcomes that applies to both adults and children older than 6 years was created. These outcomes were then categorized into core, supplemental, and emerging. Spirometric outcomes (FEV(1), forced vital capacity, and FEV(1)/forced vital capacity ratio) are proposed as core outcomes for study population characterization, for observational studies, and for prospective clinical trials. Bronchodilator reversibility and prebronchodilator and postbronchodilator FEV(1) also are core outcomes for study population characterization and observational studies. CONCLUSIONS The subcommittee considers pulmonary physiology outcomes of central importance in asthma and proposes spirometric outcomes as core outcomes for all future NIH-initiated asthma clinical research.
Collapse
|
29
|
Tamimi A, Serdarevic D, Hanania NA. The effects of cigarette smoke on airway inflammation in asthma and COPD: therapeutic implications. Respir Med 2011; 106:319-28. [PMID: 22196881 DOI: 10.1016/j.rmed.2011.11.003] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 11/01/2011] [Accepted: 11/02/2011] [Indexed: 12/29/2022]
Abstract
Asthma and COPD are two chronic inflammatory disorders of the airway characterized by airflow limitation. While many similarities exist between these two diseases, they are pathologically distinct due to the involvement of different inflammatory cells; predominantly neutrophils, CD8 lymphocytes in COPD and eosinophils and CD4 lymphocytes in asthma. Cigarette smoking is associated with accelerated decline of lung function, increased mortality, and worsening of symptoms in both asthma and COPD. Furthermore, exposure to cigarette smoke can alter the inflammatory mechanisms in asthma to become similar to that seen in COPD with increasing CD8 cells and neutrophils and may therefore alter the response to therapy. Cigarette smoke exposure has been associated with a poor response to inhaled corticosteroids which are recommended as first line anti-inflammatory medications in asthma and as an add-on therapy in patients with severe COPD with history of exacerbations. While the main proposed mechanism for this altered response is the reduction of the histone deacetylase 2 (HDAC2) enzyme system, other possible mechanisms include the overexpression of GR-β, activation of p38 MAPK pathway and increased production of inflammatory cytokines such as IL-2, 4, 8, TNF-α and NF-Kß. Few clinical trials suggest that leukotriene modifiers may be an alternative to corticosteroids in smokers with asthma but there are currently no drugs which effectively reduce the progression of inflammation in smokers with COPD. However, several HDAC2 enhancers including low dose theophylline and other potential anti-inflammatory therapies including PDE4 inhibitors and p38 MAPK inhibitors are being evaluated.
Collapse
Affiliation(s)
- Asad Tamimi
- Clinical Sciences, Primary Care Business Unit, Pfizer Inc, Ramsgate Road, Sandwich CT13 9NJ, UK
| | | | | |
Collapse
|
30
|
Haeggström JZ, Funk CD. Lipoxygenase and leukotriene pathways: biochemistry, biology, and roles in disease. Chem Rev 2011; 111:5866-98. [PMID: 21936577 DOI: 10.1021/cr200246d] [Citation(s) in RCA: 649] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jesper Z Haeggström
- Department of Medical Biochemistry and Biophysics, Division of Chemistry 2, Karolinska Institutet, S-171 77 Stockholm, Sweden.
| | | |
Collapse
|
31
|
Saino H, Ukita Y, Ago H, Irikura D, Nisawa A, Ueno G, Yamamoto M, Kanaoka Y, Lam BK, Austen KF, Miyano M. The catalytic architecture of leukotriene C4 synthase with two arginine residues. J Biol Chem 2011; 286:16392-401. [PMID: 21454538 PMCID: PMC3091245 DOI: 10.1074/jbc.m110.150177] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 01/17/2011] [Indexed: 11/20/2022] Open
Abstract
Leukotriene (LT) C(4) and its metabolites, LTD(4) and LTE(4), are involved in the pathobiology of bronchial asthma. LTC(4) synthase is the nuclear membrane-embedded enzyme responsible for LTC(4) biosynthesis, catalyzing the conjugation of two substrates that have considerably different water solubility; that amphipathic LTA(4) as a derivative of arachidonic acid and a water-soluble glutathione (GSH). A previous crystal structure revealed important details of GSH binding and implied a GSH activating function for Arg-104. In addition, Arg-31 was also proposed to participate in the catalysis based on the putative LTA(4) binding model. In this study enzymatic assay with mutant enzymes demonstrates that Arg-104 is required for the binding and activation of GSH and that Arg-31 is needed for catalysis probably by activating the epoxide group of LTA(4).
Collapse
Affiliation(s)
| | - Yoko Ukita
- From the Structural Biophysics Laboratory and
| | - Hideo Ago
- From the Structural Biophysics Laboratory and
| | | | - Atsushi Nisawa
- Research Infrastructure Group, RIKEN SPring-8
Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan and
| | - Go Ueno
- Research Infrastructure Group, RIKEN SPring-8
Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan and
| | - Masaki Yamamoto
- Research Infrastructure Group, RIKEN SPring-8
Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan and
| | - Yoshihide Kanaoka
- the Department of Medicine, Harvard Medical
School and Division of Rheumatology, Immunology, and Allergy, Brigham and
Women's Hospital, Boston, Massachusetts 02115
| | - Bing K. Lam
- the Department of Medicine, Harvard Medical
School and Division of Rheumatology, Immunology, and Allergy, Brigham and
Women's Hospital, Boston, Massachusetts 02115
| | - K. Frank Austen
- the Department of Medicine, Harvard Medical
School and Division of Rheumatology, Immunology, and Allergy, Brigham and
Women's Hospital, Boston, Massachusetts 02115
| | | |
Collapse
|
32
|
Maciolek CM, Ma B, Menzel K, Laliberte S, Bateman K, Krolikowski P, Gibson CR. Novel cytochrome P450-mediated ring opening of the 1,3,4-oxadiazole in setileuton, a 5-lipoxygenase inhibitor. Drug Metab Dispos 2011; 39:763-70. [PMID: 21325431 DOI: 10.1124/dmd.110.037366] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Setileuton [4-(4-fluorophenyl)-7-[({5-[(1S)-1-hydroxy-1-(trifluoromethyl)propyl]-1,3,4-oxadiazol-2-yl}amino)methyl]-2H-1-benzopyran-2-one] is a selective inhibitor of the 5-lipoxygenase enzyme, which is under investigation for the treatment of asthma and atherosclerosis. During the development of setileuton, a metabolite (M5) was identified in incubations with rat, dog, and human liver microsomes that represented the addition of 18 Da to the 1,3,4-oxadiazole portion of the molecule. Based on mass spectral data, a ring opened structure was proposed and confirmed through comparison with a synthetic standard. The metabolic ring opening was examined in vitro in rat liver microsomes and was determined to be mediated by cytochrome P450s (P450s). Upon examination of the specific P450s involved using cDNA-expressed rat P450s, it was shown that CYP1A2 likely was the major isoform contributing to the formation of M5. Studies using stable labeled molecular oxygen and water demonstrated that the oxygen was incorporated from molecular oxygen, rather than water, and confirmed that the metabolic formation was oxidative. An alternative, comparatively slow pathway of chemical hydrolysis also was identified and described. Three potential mechanisms for the two-step metabolic ring opening of the 1,3,4-oxadizole are proposed.
Collapse
Affiliation(s)
- Cheri M Maciolek
- Department of Drug Metabolism and Pharmacokinetics, Merck Research Laboratories, WP75A-203, P.O. Box 4, West Point, PA 19486, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Kazani S, Sadeh J, Bunga S, Wechsler ME, Israel E. Cysteinyl leukotriene antagonism inhibits bronchoconstriction in response to hypertonic saline inhalation in asthma. Respir Med 2011; 105:667-73. [PMID: 21169002 PMCID: PMC3080101 DOI: 10.1016/j.rmed.2010.11.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 11/21/2010] [Accepted: 11/23/2010] [Indexed: 11/26/2022]
Abstract
BACKGROUND In asthma, cysteinyl leukotrienes (CysLTs) play varying roles in the bronchomotor response to multiple provocative stimuli. The contribution of CysLTs on the airway's response to hypertonic saline (HS) inhalation in asthma is unknown. Whether polymorphisms in the leukotriene biosynthetic pathway affect the contribution of CysLTs to this response is also unknown. METHODS In a prospective, randomized, double-blind, placebo-controlled cross-over study, mild and moderate asymptomatic asthmatics underwent inhaled 3% HS challenge by doubling the duration of nebulization (0.5, 1, 2, 4, and 8 min) 2 h after one dose of montelukast (a CysLT receptor 1 [CysLTR1] antagonist) or placebo, and after three-week courses. We examined the effect of the leukotriene C(4) synthase (LTC(4)S) polymorphism (A-444C) on the efficacy of montelukast against HS inhalation in an exploratory manner. RESULTS In 37 subjects, 2 h after administration of montelukast, the mean provocative dose of HS required to cause a 20% drop in FEV(1) (HS-PD(20)) increased by 59% (9.17 ml after placebo vs. 14.55 ml after montelukast, p=0.0154). Three weeks of cysLTR1 antagonism increased the HS-PD(20) by 84% (10.97 vs. 20.21 ml, p=0.0002). Three weeks of CysLTR1 antagonism appeared to produce greater effects on blocking bronchial hyper-responsiveness (2 h vs. three-week HS-PD(20) values 14.55 vs. 20.21 ml respectively, p=0.0898). We did not observe an effect of the LTC(4)S polymorphism on the response to CysLTR1 antagonism in this cohort. CONCLUSIONS A significant proportion of HS-induced bronchoconstriction is mediated by release of leukotrienes as evidenced by substantial acute inhibition with a CysLTR1 antagonist. There was a trend toward greater inhibition of bronchial responsiveness with three weeks of therapy as opposed to acute CysLTR1 antagonism. Clinicaltrials.gov registration number NCT00116324.
Collapse
Affiliation(s)
- Shamsah Kazani
- Pulmonary and Critical Care Division, Department of Medicine, Brigham and Women's Hospital, PBB Clinics 3, 75 Francis Street, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
34
|
Stevens RW. Overview: Hydroxamate and Hydroxyurea Based Leukotriene Biosynthesis Inhibitors for the Treatment of Inflammatory Diseases. ACTA ACUST UNITED AC 2011. [DOI: 10.1517/13543776.2.8.1151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
35
|
Kippelen P, Larsson J, Anderson SD, Brannan JD, Dahlén B, Dahlén SE. Effect of sodium cromoglycate on mast cell mediators during hyperpnea in athletes. Med Sci Sports Exerc 2011; 42:1853-60. [PMID: 20216468 DOI: 10.1249/mss.0b013e3181da4f7d] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
INTRODUCTION The role of mast cells in the airway response to exercise and the benefit of sodium cromoglycate (SCG) in athletes are unclear. PURPOSE The purpose of this study was to clarify the role of mast cell mediators in the airway response to exercise in athletes and to investigate the effect of SCG. METHODS Eleven athletes with exercise-induced bronchoconstriction (EIB+) and 11 without (EIB-) performed a eucapnic voluntary hyperpnea (EVH) test (a surrogate for exercise) 10 min after inhalation of a placebo or 40 mg of the mast cell stabilizing agent sodium cromoglycate. The urinary concentrations of 9a,11β-PGF2 (a metabolite of PGD2 and a marker of mast cell activation) and leukotriene E4 (LTE4) were measured by enzyme immunoassay 60 min before and for 90 min after the challenge. RESULTS In the EIB+ group, the maximum fall in forced expiratory volume in 1 s (FEV1) of 20.3% ± 3% on placebo was reduced to 11.5% ± 1.9% after SCG (P = 0.003). There was an increase in the urinary excretion of 9α,11β-PGF2 on the placebo day after EVH in both groups (P < 0.05) that was abolished by SCG. In the EIB+ group, there was also an increase of urinary LTE4 on the placebo day that was abolished by SCG, whereas the urinary excretion of LTE4 was inconsistent in the EIB- group. CONCLUSIONS The results support mast cell activation with release of bronchoconstrictive mediators after hyperpnea in athletes with and without EIB and inhibition by SCG. The degree of airway responsiveness to the specific mediator released is likely to determine whether or not bronchoconstriction will occur after EVH.
Collapse
Affiliation(s)
- Pascale Kippelen
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia.
| | | | | | | | | | | |
Collapse
|
36
|
Giavi S, Papadopoulos NG. Asthma control in adolescents: role of leukotriene inhibitors. ADOLESCENT HEALTH MEDICINE AND THERAPEUTICS 2010; 1:129-36. [PMID: 24600268 PMCID: PMC3915976 DOI: 10.2147/ahmt.s7600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Asthma is a chronic inflammatory disease of the airways and is a big burden worldwide. It affects both children and adults, but it is insufficiently studied in adolescents, although this age group has important peculiarities and is challenging to treat, due to, but not exclusively because of, lack of adherence to treatment instructions. Evidence-based guidelines for the treatment of asthma targeting specifically adolescents are lacking, due to the fact that most studies are conducted either on children or in adults. Exercise-induced asthma occurs commonly in adolescents, leading to impaired physical activity. This review describes current treatment options for asthma in adolescents, focusing on leukotriene receptor antagonists, both as a monotherapy and as an add-on therapy for optimal asthma control.
Collapse
Affiliation(s)
- Stavroula Giavi
- Allergy Department, Second Pediatric Clinic, University of Athens, Athens, Greece
| | | |
Collapse
|
37
|
O'Byrne PM, Gauvreau GM, Murphy DM. Efficacy of leukotriene receptor antagonists and synthesis inhibitors in asthma. J Allergy Clin Immunol 2009; 124:397-403. [PMID: 19608262 DOI: 10.1016/j.jaci.2009.05.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Accepted: 05/14/2009] [Indexed: 11/16/2022]
Abstract
Cysteinyl leukotrienes are important mediators of asthmatic responses. They are the most potent bronchoconstrictors known; their release is triggered by exposure to inhaled allergens after exercise and after aspirin ingestion by subjects with aspirin-sensitive asthma. The cysteinyl leukotrienes promote inflammatory cell migration into the airways, as well as bone marrow eosinophilopoiesis after allergen inhalation. Leukotriene inhibitors are effective at attenuating asthmatic responses to all of these stimuli and are also effective at treating persistent asthma. These drugs are a viable alternative to low-dose inhaled corticosteroid (ICS) treatment but should be reserved for patients who cannot or will not use ICSs, often because of concerns about potential side effects of ICS treatment, which limits their use, particularly in children. Leukotriene receptor antagonists are also alternatives to long-acting inhaled beta(2)-agonists as add-on therapy to ICSs, but their efficacy together with ICSs is less than that of ICS/long-acting inhaled beta(2)-agonist combinations. Leukotriene receptor antagonists have an excellent safety profile.
Collapse
Affiliation(s)
- Paul M O'Byrne
- Department of Medicine, McMaster University, Firestone Institute for Respiratory Health, St Joseph's Healthcare, Hamilton, Ontario, Canada.
| | | | | |
Collapse
|
38
|
Maekawa A, Balestrieri B, Austen KF, Kanaoka Y. GPR17 is a negative regulator of the cysteinyl leukotriene 1 receptor response to leukotriene D4. Proc Natl Acad Sci U S A 2009; 106:11685-90. [PMID: 19561298 PMCID: PMC2710631 DOI: 10.1073/pnas.0905364106] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Indexed: 02/04/2023] Open
Abstract
The cysteinyl leukotrienes (cys-LTs) are proinflammatory lipid mediators acting on the type 1 cys-LT receptor (CysLT(1)R) to mediate smooth muscle constriction and vascular permeability. GPR17, a G protein-coupled orphan receptor with homology to the P2Y and cys-LT receptors, failed to mediate calcium flux in response to leukotriene (LT) D(4) with stable transfectants. However, in stable cotransfections of 6xHis-tagged GPR17 with Myc-tagged CysLT(1)R, the robust CysLT(1)R-mediated calcium response to LTD(4) was abolished. The membrane expression of the CysLT(1)R analyzed by FACS with anti-Myc Ab was not reduced by the cotransfection, yet both LTD(4)-elicited ERK phosphorylation and the specific binding of [(3)H]LTD(4) to microsomal membranes were fully inhibited. CysLT(1)R and GPR17 expressed in transfected cells were coimmunoprecipitated and identified by Western blots, and confocal immunofluorescence microscopy revealed that GPR17 and CysLT(1)R colocalize on the cell surface of human peripheral blood monocytes. Lentiviral knockdown of GPR17 in mouse bone marrow-derived macrophages (BMMPhis) increased both the membrane expression of CysLT(1)R protein by FACS analysis and the LTD(4)-elicited calcium flux in a dose-dependent manner as compared with control BMMPhis, indicating a negative regulatory function of GPR17 for CysLT(1)R in a primary cell. In IgE-dependent passive cutaneous anaphylaxis, GPR17-deficient mice showed a marked and significant increase in vascular permeability as compared with WT littermates, and this vascular leak was significantly blocked by pretreatment of the mice with the CysLT(1)R antagonist, MK-571. Taken together, our findings suggest that GPR17 is a ligand-independent, constitutive negative regulator for the CysLT(1)R that suppresses CysLT(1)R-mediated function at the cell membrane.
Collapse
Affiliation(s)
- Akiko Maekawa
- Department of Medicine, Harvard Medical School, Boston, MA 02115; and
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, One Jimmy Fund Way, Boston, MA 02115
| | - Barbara Balestrieri
- Department of Medicine, Harvard Medical School, Boston, MA 02115; and
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, One Jimmy Fund Way, Boston, MA 02115
| | - K. Frank Austen
- Department of Medicine, Harvard Medical School, Boston, MA 02115; and
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, One Jimmy Fund Way, Boston, MA 02115
| | - Yoshihide Kanaoka
- Department of Medicine, Harvard Medical School, Boston, MA 02115; and
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, One Jimmy Fund Way, Boston, MA 02115
| |
Collapse
|
39
|
|
40
|
Capra V, Thompson MD, Sala A, Cole DE, Folco G, Rovati GE. Cysteinyl-leukotrienes and their receptors in asthma and other inflammatory diseases: critical update and emerging trends. Med Res Rev 2007; 27:469-527. [PMID: 16894531 DOI: 10.1002/med.20071] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cysteinyl-leukotrienes (cysteinyl-LTs), that is, LTC4, LTD4, and LTE4, trigger contractile and inflammatory responses through the specific interaction with G protein-coupled receptors (GPCRs) belonging to the purine receptor cluster of the rhodopsin family, and identified as CysLT receptors (CysLTRs). Cysteinyl-LTs have a clear role in pathophysiological conditions such as asthma and allergic rhinitis (AR), and have been implicated in other inflammatory conditions including cardiovascular diseases, cancer, atopic dermatitis, and urticaria. Molecular cloning of human CysLT1R and CysLT2R subtypes has confirmed most of the previous pharmacological characterization and identified distinct expression patterns only partially overlapping. Interestingly, recent data provide evidence for the immunomodulation of CysLTR expression, the existence of additional receptor subtypes, and of an intracellular pool of CysLTRs that may have roles different from those of plasma membrane receptors. Furthermore, genetic variants have been identified for the CysLTRs that may interact to confer risk for atopy. Finally, a crosstalk between the cysteinyl-LT and the purine systems is being delineated. This review will summarize and attempt to integrate recent data derived from studies on the molecular pharmacology and pharmacogenetics of CysLTRs, and will consider the therapeutic opportunities arising from the new roles suggested for cysteinyl-LTs and their receptors.
Collapse
MESH Headings
- Adult
- Animals
- Asthma/drug therapy
- Asthma/physiopathology
- Cardiovascular Diseases/physiopathology
- Child
- Child, Preschool
- Dermatitis, Atopic/drug therapy
- Dermatitis, Atopic/etiology
- Female
- Humans
- Hydroxyurea/adverse effects
- Hydroxyurea/analogs & derivatives
- Leukotriene Antagonists/adverse effects
- Leukotriene Antagonists/therapeutic use
- Leukotriene C4/physiology
- Leukotriene D4/physiology
- Leukotriene E4/physiology
- Membrane Proteins/drug effects
- Membrane Proteins/genetics
- Membrane Proteins/physiology
- Pharmacogenetics
- Receptors, Leukotriene/drug effects
- Receptors, Leukotriene/genetics
- Receptors, Leukotriene/physiology
- Receptors, Purinergic/physiology
- Recombinant Proteins/pharmacology
- Rhinitis, Allergic, Seasonal/drug therapy
- Rhinitis, Allergic, Seasonal/physiopathology
- SRS-A/biosynthesis
- Tissue Distribution
Collapse
Affiliation(s)
- Valérie Capra
- Department of Pharmacological Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy.
| | | | | | | | | | | |
Collapse
|
41
|
Berger W, De Chandt MTM, Cairns CB. Zileuton: clinical implications of 5-Lipoxygenase inhibition in severe airway disease. Int J Clin Pract 2007; 61:663-76. [PMID: 17394438 DOI: 10.1111/j.1742-1241.2007.01320.x] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The 5-Lipoxygenase pathway results in the formation of leukotrienes, including leukotriene B(4) (LTB(4)), 5-oxo-6E,8Z,11Z,14Z-eicosatetranoic acid and the cysteinyl leukotrienes (LTC(4), LTD(4) and LTE(4)) and activates all four leukotriene receptors, BLT1, BLT2, cysLT(1) and cysLT(2). Zileuton is the only commercially available inhibitor of the 5-Lipoxygenase pathway. In a number of clinical trials, zileuton has been shown to improve airway function and inflammation, asthma symptom control and quality of life in asthmatics. Given the important role that leukotrienes play in airway inflammation, zileuton provides an additional therapeutic option in the management of chronic, persistent asthma, particularly those asthmatics with more severe disease. In addition, zileuton has shown promise in a number of other conditions, including upper airway inflammatory conditions, dermatological disease and chronic obstructive pulmonary disease. The development of new formulations, including a controlled release tablet formulation for b.i.d. dosing and an intravenous preparation for acute asthma exacerbations may enhance clinical utility and expand therapeutic indications.
Collapse
Affiliation(s)
- W Berger
- Department of Pediatrics, Division of Allergy and Immunology, University of California, Irvine, Mission Viejo, CA, USA
| | | | | |
Collapse
|
42
|
Kim DC, Hsu FI, Barrett NA, Friend DS, Grenningloh R, Ho IC, Al-Garawi A, Lora JM, Lam BK, Austen KF, Kanaoka Y. Cysteinyl leukotrienes regulate Th2 cell-dependent pulmonary inflammation. THE JOURNAL OF IMMUNOLOGY 2006; 176:4440-8. [PMID: 16547282 DOI: 10.4049/jimmunol.176.7.4440] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Th2 cell-dependent inflammatory response is a central component of asthma, and the ways in which it is regulated is a critical question. The cysteinyl leukotrienes (cys-LTs) are 5-lipoxygenase pathway products implicated in asthma, in particular, by their function as smooth muscle constrictors of airways and microvasculature. To elucidate additional roles for cys-LTs in the pathobiology of pulmonary inflammation, we used an OVA sensitization and challenge protocol with mice lacking leukotriene C(4) synthase (LTC(4)S), the terminal enzyme for cys-LT generation. Ag-induced pulmonary inflammation, characterized by eosinophil infiltration, goblet cell hyperplasia with mucus hypersecretion, and accumulation and activation of intraepithelial mast cells was markedly reduced in LTC(4)S(null) mice. Furthermore, Ag-specific IgE and IgG1 in serum, Th2 cell cytokine mRNA expression in the lung, and airway hyperresponsiveness to methacholine were significantly reduced in LTC(4)S(null) mice compared with wild-type controls. Finally, the number of parabronchial lymph node cells from sensitized LTC(4)S(null) mice and their capacity to generate Th2 cell cytokines ex vivo after restimulation with Ag were also significantly reduced. In contrast, delayed-type cutaneous hypersensitivity, a prototypic Th1 cell-dependent response, was intact in LTC(4)S(null) mice. These findings provide direct evidence of a role for cys-LTs in regulating the initiation and/or amplification of Th2 cell-dependent pulmonary inflammation.
Collapse
Affiliation(s)
- Daniel C Kim
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
|
44
|
Schmitt-Grohé S, Zielen S. Leukotriene receptor antagonists in children with cystic fibrosis lung disease : anti-inflammatory and clinical effects. Paediatr Drugs 2006; 7:353-63. [PMID: 16356023 DOI: 10.2165/00148581-200507060-00004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Cystic fibrosis (CF) lung disease is characterized by chronic endobronchial infection resulting in progressive pulmonary destruction; this is a major cause of mortality and morbidity. Neutrophils are the primary effector cells responsible for the progressive deterioration of lung function. Peptido-leukotriene B4 antagonists, new anti-inflammatory agents that block the neutrophil-dominated inflammation, could have had the potential for long-term use. A trial on the pharmacokinetics of amelubant administered orally as a single dose of up to 75 mg in pediatric patients with CF and 300 mg in adults, and as a repeated dose of 75 mg and 150 mg, respectively, once daily for 15 days provided evidence that amelubant metabolism in adult and pediatric patients with CF is similar to that in healthy adults. In another study using the same dosage regimen, amelubant appeared to be safe and well tolerated. Safety measures included physical examination, vital signs, spirometry, oximetry, ECG, and clinical laboratory testing. However, a randomized, double-blind, placebo-controlled, multinational, phase II trial (Boehringer Ingelheim 543.45) was conducted to investigate the clinical efficacy of 24 weeks of treatment with amelubant in patients with CF with mild-to-moderate lung disease. Two doses of amelubant (75 and 150 mg) were tested in adult patients (> or = 18 years) and one dose of amelubant (75mg) was tested in pediatric (6-17 years) patients. The trial was terminated early due to a statistically significant increase in the risk of pulmonary-related, serious adverse events in adults receiving amelubant. Cysteinyl leukotrienes, eosinophilic inflammation, and viral infections also contribute to progressive pulmonary destruction in CF. Cysteinyl leukotrienes are potential targets for cysteinyl leukotriene receptor antagonist use. A study on the pharmacokinetics of montelukast in children with CF provided evidence that the dose of montelukast and the administration interval does not need to be modified if the goal is to mimic the serum concentrations used to treat asthma. In a randomized, double-blind, crossover, placebo-controlled study, 16 children with mild CF (median age 9.5 years; vital capacity [VC] >70%) were treated with montelukast (5 to < or =14 years; 5 mg; >14 years; 10 mg) or placebo as a once-daily tablet for 21 days. There was a significant (p < or = 0.02) reduction in serum eosinophil cationic protein levels and eosinophils (p < or = 0.027) with montelukast. However, neither lung function tests (VC, forced expiratory volume in 1 second [FEV1], maximum expiratory flow at 25% of forced VC), nor clinical symptom scores changed significantly. In another study, 26 patients aged 6-18 years with moderate CF (VC between 40% and 69% predicted) received montelukast or placebo for 8 weeks in a 20-week, randomized, double-blind, crossover, placebo-controlled trial. After treatment with montelukast there was a significant improvement in FEV1, peak expiratory flow, and forced expiratory flow between 25% and 75%, and a significant decrease in cough and wheezing scale scores (p < 0.001 for all). Montelukast treatment decreased serum and sputum levels of eosinophil cationic protein and interleukin-8 (IL-8), decreased sputum levels of myeloperoxidase, and increased serum and sputum levels of IL-10 (p < 0.001 for all) compared with placebo. To date, clinical experience and research data on the anti-inflammatory effects of leukotriene receptor antagonists in CF are limited. Multicenter trials with longer observation periods and greater patient numbers are needed to prove the hypothesis that leukotriene receptor antagonists have the potential to ameliorate CF lung disease with long term use.
Collapse
|
45
|
Boot JD, Panzner P, Diamant Z. A critical appraisal of methods used in early clinical development of novel drugs for the treatment of asthma. Pulm Pharmacol Ther 2006; 20:201-19. [PMID: 16584905 DOI: 10.1016/j.pupt.2006.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Revised: 02/06/2006] [Accepted: 02/14/2006] [Indexed: 11/16/2022]
Abstract
Asthma is a heterogeneous disorder characterized by chronic airway inflammation, hyperresponsiveness and remodeling. Being the hallmark of asthma, airway inflammation has become the most important target for therapeutic agents. Consequently, during the past decade various semi-and non-invasive methods have been explored to sample the airway inflammation in asthma. In this review, we provide a practical overview of the current status of various sampling techniques including sputum induction, exhaled breath analysis, and bronchoprovocation tests (BPTs). We focus on their applicability for monitoring in clinical practice and in intervention trials in asthma.
Collapse
Affiliation(s)
- J D Boot
- Centre for Human Drug Research, Zernikedreef 10, 2333 CL Leiden, The Netherlands
| | | | | |
Collapse
|
46
|
Dahlén SE. Treatment of asthma with antileukotrienes: first line or last resort therapy? Eur J Pharmacol 2006; 533:40-56. [PMID: 16510137 DOI: 10.1016/j.ejphar.2005.12.070] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2005] [Indexed: 02/04/2023]
Abstract
Twenty five years after the structure elucidation of slow reacting substance of anaphylaxis, antileukotrienes are established as a new therapeutic modality in asthma. The chapter reviews the biochemistry and pharmacology of leukotrienes and antileukotrienes with particular focus on the different usage of antileukotrienes for treatment of asthma and rhinitis in Europe and the US. Further research needs and new areas for leukotriene involvement in respiratory diseases are also discussed.
Collapse
Affiliation(s)
- Sven-Erik Dahlén
- Experimental Asthma and Allergy Research, The National Institute of Environmental Medicine, Karolinska Institute, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
47
|
Grimm EL, Brideau C, Chauret N, Chan CC, Delorme D, Ducharme Y, Ethier D, Falgueyret JP, Friesen RW, Guay J, Hamel P, Riendeau D, Soucy-Breau C, Tagari P, Girard Y. Substituted coumarins as potent 5-lipoxygenase inhibitors. Bioorg Med Chem Lett 2006; 16:2528-31. [PMID: 16464579 DOI: 10.1016/j.bmcl.2006.01.085] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Revised: 01/19/2006] [Accepted: 01/19/2006] [Indexed: 11/19/2022]
Abstract
Leukotriene biosynthesis inhibitors have potential as therapeutic agents for asthma and inflammatory diseases. A novel series of substituted coumarin derivatives has been synthesized and the structure-activity relationship was evaluated with respect to their ability to inhibit the formation of leukotrienes via the human 5-lipoxygenase enzyme.
Collapse
Affiliation(s)
- Erich L Grimm
- Merck Frosst Centre for Therapeutic Research, 16711 Trans Canada Hwy, Kirkland, Que., Canada H9H 3L1.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Funk CD. Leukotriene modifiers as potential therapeutics for cardiovascular disease. Nat Rev Drug Discov 2005; 4:664-72. [PMID: 16041318 DOI: 10.1038/nrd1796] [Citation(s) in RCA: 257] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Owing to their anti-inflammatory properties, leukotriene modifiers have been the primary therapeutics in asthma management for several years. Although blocking the inflammatory component of human disease is a long-standing and established concept, the use of leukotriene modifiers in treating the inflammatory component of cardiovascular disease encompassing atherosclerosis, myocardial infarction, stroke and aortic aneurysm has, surprisingly, only been seriously contemplated in the past few years. As reviewed here, several exciting studies have recently contributed to this expanding area of interest, and so far one leukotriene modifier has entered Phase II clinical trials to assess its potential for reducing the risk of heart attacks.
Collapse
Affiliation(s)
- Colin D Funk
- Department of Biochemistry, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
49
|
Rundell KW, Spiering BA, Baumann JM, Evans TM. Effects of montelukast on airway narrowing from eucapnic voluntary hyperventilation and cold air exercise. Br J Sports Med 2005; 39:232-6. [PMID: 15793094 PMCID: PMC1725192 DOI: 10.1136/bjsm.2004.014282] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Exercise induced bronchoconstriction (EIB) is common in elite athletes. Eucapnic voluntary hyperventilation (EVH) is a laboratory test recommended for the identification of EIB in athletes, secondary to a field exercise challenge. Montelukast attenuates EIB, but its protective effect against airway narrowing from EVH has not been investigated. OBJECTIVE To examine the effectiveness of montelukast after exercise and after EVH. METHODS A randomised, placebo controlled, double blind, crossover study was performed with 11 physically active EIB positive subjects (eight men, three women; mean (SD) age 22.8 (6.8) years). Six hours before each of the following challenges 10 mg montelukast or placebo was ingested: (a) a six minute, cold air (-3 degrees C) maximal effort work accumulation cycle ergometer exercise; (b) EVH, breathing 5% CO(2) compressed air at 85% maximal voluntary ventilation for six minutes. Spirometry was performed before and 5, 10, and 15 minutes after the challenge. At least 48 hours was observed between challenges. RESULTS No differences in forced expiratory volume in one second (FEV(1)) were found after the two challenges. Exercise and EVH resulted in falls in FEV(1) of 22.4 (18.0) and 25.6 (16.8) respectively. Falls in FEV(1) after montelukast were less than after placebo (10.6 (10.6) and 14.3 (11.3) after exercise and EVH respectively; p<0.05). Montelukast provided protection against bronchoconstriction (59% and 53%; p<0.05) for eight exercising subjects and 10 EVH subjects; no protection was afforded for three exercising and one EVH challenged subject. CONCLUSIONS Both exercise and EVH were potent stimuli of airway narrowing. A single dose of montelukast provided reasonable protection in attenuating bronchoconstriction from either exercise or EVH. The similar protection by montelukast suggests that EVH is a suitable laboratory surrogate for EIB evaluation.
Collapse
Affiliation(s)
- K W Rundell
- Human Performance Laboratory, Marywood University, 2300 Adams Avenue, Scranton, PA 18509, USA.
| | | | | | | |
Collapse
|
50
|
Coreno A, Skowronski M, West E, El-Ekiaby A, McFadden ER. Bronchoprotective Effects of Single Doses of Salmeterol Combined With Montelukast in Thermally Induced Bronchospasm. Chest 2005; 127:1572-8. [PMID: 15888830 DOI: 10.1378/chest.127.5.1572] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
STUDY OBJECTIVES Salmeterol (S) and montelukast (M) individually inhibit the obstructive consequences of thermal stimuli such as exercise and hyperventilation (HV), but there is no information on whether these drugs can interact positively. DESIGN Randomized trial. SETTING University teaching hospital. PARTICIPANTS Atopic asthmatic patients with sensitivity to thermal provocations. INTERVENTIONS Eleven asthmatic patients generated stimulus-response curves to isocapnic HV while breathing frigid air without any interventions and then after pretreatment with 42 mug of S, 10 mg of M, and the combination. The order of testing was randomly determined. MEASUREMENTS AND RESULTS Minute ventilation (Ve) was increased in 20-L increments until FEV(1) fell >or= 15%. Measurements were obtained before and 1 h after drug administration, and then again 5 min after each bout of HV. In the nonintervention trial, the provocation commenced after the patients presented to the laboratory. In the control challenge, the mean (+/- SEM) FEV(1) decreased 24.6 +/- 1.7% from baseline. S and M both increased the mean prechallenge FEV(1) significantly (S, 10.4 +/- 1.7% [p < 0.01]; M, 4.1 +/- 1.3% [p = 0.02]; S + M, p = 0.01). The combination of S + M produced greater bronchodilatation (mean improvement, 12.4 +/- 2.3%) than M alone (p = 0.004), but not greater than S alone (p = 0.80). Both drugs blunted the obstructive response similarly (protection: M, 34.6 +/- 15.1%; S, 60 +/- 8.7%; p = 0.13). The benefits added arithmetically with the combined regimen (protection with S + M, 84.9 +/- 5.5%; p = 0.01 vs S alone; p = 0.003 vs M alone). CONCLUSION These data indicate that the concurrent administration of single standard doses of S and M appears to provide greater protection against thermal stimuli than does either drug alone. Further experimentation will be required to ascertain whether the combination will provide additional clinical benefits to patients over those of the single agents.
Collapse
Affiliation(s)
- Albert Coreno
- Center for Academic Clinical Research, Case Western Reserve University School of Medicine, Department of Medicine of MetroHealth Medical Center, Cleveland, OH 44109, USA
| | | | | | | | | |
Collapse
|