1
|
Eggers B, Schork K, Turewicz M, Barkovits K, Eisenacher M, Schröder R, Clemen CS, Marcus K. Fiber Type-Specific Proteomic Alterations in R349P Desminopathy Mice. Muscle Nerve 2025; 71:1113-1121. [PMID: 40033788 PMCID: PMC12060636 DOI: 10.1002/mus.28379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 02/07/2025] [Accepted: 02/16/2025] [Indexed: 03/05/2025]
Abstract
INTRODUCTION/AIMS Desminopathies are a group of rare human myopathies and cardiomyopathies caused by pathogenic variants of the desmin gene. Here, we analyzed the effects of the R349P mutant desmin on the proteomic profiles of individual fiber types of murine skeletal muscle. METHODS Soleus and tibialis anterior muscles from hetero- and homozygous R349P desmin knock-in mice and wild-type siblings were used to collect fiber type-specific material by laser microdissection to determine their proteomic profiles. RESULTS Aberrant proteomic profiles were observed in all four fiber types of homozygous mice. Type I and IIa fibers from homozygous muscle showed an increased abundance of 15 fibrotic proteins, for example, collagens I, IV, and VI, and associated proteins. Filamin-C, xin actin-binding repeat-containing proteins 1 and 2, and Kelch-like protein 41 were more abundant in homozygous fibers. A high number of proteins associated with the mitochondrial complexes had markedly lower amounts in all types of homozygous and type IIb heterozygous fibers, whereby 20 proteins of complex I, 6 proteins of complex III, 7 proteins of complex IV, and 4 proteins of complex V were found to be decreased in homozygous mice in at least one fiber type. This reduction included all mtDNA-encoded proteins of complexes I and V, as well as ADP/ATP translocase 1 and 2. DISCUSSION Our proteomic findings highlight a more severe myodegenerative process in fibers derived from homozygous R349P desmin knock-in mice. R349P desmin altered the abundance of proteins of the sarcomeric and extrasarcomeric cytoskeleton, extracellular matrix, and mitochondrial energy metabolism.
Collapse
Affiliation(s)
- Britta Eggers
- Medizinisches Proteom‐Center, Medical FacultyRuhr‐University BochumBochumGermany
- Medical Proteome Analysis, Center for Protein Diagnostics (PRODI)Ruhr‐University BochumBochumGermany
| | - Karin Schork
- Medizinisches Proteom‐Center, Medical FacultyRuhr‐University BochumBochumGermany
- Medical Proteome Analysis, Center for Protein Diagnostics (PRODI)Ruhr‐University BochumBochumGermany
- Core Unit for Bioinformatics (CUBiMed.RUB), Medical FacultyRuhr‐University BochumBochumGermany
| | - Michael Turewicz
- Medizinisches Proteom‐Center, Medical FacultyRuhr‐University BochumBochumGermany
- Medical Proteome Analysis, Center for Protein Diagnostics (PRODI)Ruhr‐University BochumBochumGermany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at the Heinrich Heine University Düsseldorf, DüsseldorfGermany and German Center for Diabetes Research (DZD)München‐NeuherbergGermany
| | - Katalin Barkovits
- Medizinisches Proteom‐Center, Medical FacultyRuhr‐University BochumBochumGermany
- Medical Proteome Analysis, Center for Protein Diagnostics (PRODI)Ruhr‐University BochumBochumGermany
| | - Martin Eisenacher
- Medizinisches Proteom‐Center, Medical FacultyRuhr‐University BochumBochumGermany
- Medical Proteome Analysis, Center for Protein Diagnostics (PRODI)Ruhr‐University BochumBochumGermany
- Core Unit for Bioinformatics (CUBiMed.RUB), Medical FacultyRuhr‐University BochumBochumGermany
| | - Rolf Schröder
- Institute of Neuropathology, University Hospital ErlangenFriedrich‐Alexander University Erlangen‐NürnbergErlangenGermany
| | - Christoph Stephan Clemen
- German Aerospace CenterInstitute of Aerospace MedicineCologneGermany
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Medical FacultyUniversity of CologneCologneGermany
| | - Katrin Marcus
- Medizinisches Proteom‐Center, Medical FacultyRuhr‐University BochumBochumGermany
- Medical Proteome Analysis, Center for Protein Diagnostics (PRODI)Ruhr‐University BochumBochumGermany
| |
Collapse
|
2
|
Lee TM, Ware SM, Kamsheh AM, Bhatnagar S, Absi M, Miller E, Purevjav E, Ryan KA, Towbin JA, Lipshultz SE. Genomics of pediatric cardiomyopathy. Pediatr Res 2025; 97:1381-1392. [PMID: 39922924 PMCID: PMC12106076 DOI: 10.1038/s41390-025-03819-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 02/10/2025]
Abstract
Cardiomyopathy in children is a leading cause of heart failure and cardiac transplantation. Disease-associated genetic variants play a significant role in the development of the different subtypes of disease. Genetic testing is increasingly being recognized as the standard of care for diagnosing this heterogeneous group of disorders, guiding management, providing prognostic information, and facilitating family-based risk stratification. The increase in clinical and research genetic testing within the field has led to new insights into this group of disorders. Mutations in genes encoding sarcomere, cytoskeletal, Z-disk, and sarcolemma proteins appear to play a major role in causing the overlapping clinical phenotypes called cardioskeletal myopathies through "final common pathway" links. For myocarditis, the high frequency of infectious exposures and wide spectrum of presentation suggest that genetic factors mediate the development and course of the disease, including genetic risk alleles, an association with cardiomyopathy, and undiagnosed arrhythmogenic cardiomyopathy. Finally, while we have made strides in elucidating the genetic architecture of pediatric cardiomyopathy, understanding the clinical implications of variants of uncertain significance remains a major issue. The need for continued genetic innovation in this field remains great, particularly as a basis to drive forward targeted precision medicine and gene therapy efforts. IMPACT: Cardiomyopathy and skeletal myopathy can occur in the same patient secondary to gene mutations that encode for sarcomeric or cytoskeletal proteins, which are expressed in both muscle groups, highlighting that there are common final pathways of disease. The heterogeneous presentation of myocarditis is likely secondary to a complex interaction of multiple environmental and genetic factors, suggesting a utility to genetic testing in pediatric patients with myocarditis, particularly those in higher risk groups. Given the high prevalence of variants of uncertain significance in genetic testing, better bioinformatic tools and pipelines are needed to resolve their clinical meaning.
Collapse
Affiliation(s)
- Teresa M Lee
- Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
| | - Stephanie M Ware
- Departments of Pediatrics and Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alicia M Kamsheh
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Surbhi Bhatnagar
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Mohammed Absi
- Heart Institute, Division of Pediatric Cardiology, Le Bonheur Children's Hospital, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Elyse Miller
- Heart Institute, Division of Pediatric Cardiology, Le Bonheur Children's Hospital, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Enkhsaikhan Purevjav
- Heart Institute, Division of Pediatric Cardiology, Le Bonheur Children's Hospital, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Kaitlin A Ryan
- Heart Institute, Division of Pediatric Cardiology, Le Bonheur Children's Hospital, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jeffrey A Towbin
- Heart Institute, Division of Pediatric Cardiology, Le Bonheur Children's Hospital, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Steven E Lipshultz
- Department of Pediatrics, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Clinical and Translational Research Center, Buffalo, NY, USA.
| |
Collapse
|
3
|
Islam M, Rawnsley DR, Ma X, Navid W, Zhao C, Guan X, Foroughi L, Murphy JT, Navid H, Weinheimer CJ, Kovacs A, Nigro J, Diwan A, Chang RP, Kumari M, Young ME, Razani B, Margulies KB, Abdellatif M, Sedej S, Javaheri A, Covey DF, Mani K, Diwan A. Phosphorylation of CRYAB induces a condensatopathy to worsen post-myocardial infarction left ventricular remodeling. J Clin Invest 2025; 135:e163730. [PMID: 39932799 PMCID: PMC11957698 DOI: 10.1172/jci163730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/04/2025] [Indexed: 02/13/2025] Open
Abstract
Protein aggregates are emerging therapeutic targets in rare monogenic causes of cardiomyopathy and amyloid heart disease, but their role in more prevalent heart-failure syndromes remains mechanistically unexamined. We observed mislocalization of desmin and sarcomeric proteins to aggregates in human myocardium with ischemic cardiomyopathy and in mouse hearts with post-myocardial infarction ventricular remodeling, mimicking findings of autosomal-dominant cardiomyopathy induced by the R120G mutation in the cognate chaperone protein CRYAB. In both syndromes, we demonstrate increased partitioning of CRYAB phosphorylated on serine 59 to NP40-insoluble aggregate-rich biochemical fraction. While CRYAB undergoes phase separation to form condensates, the phosphomimetic mutation of serine 59 to aspartate (S59D) in CRYAB mimics R120G-CRYAB mutants with reduced condensate fluidity, formation of protein aggregates, and increased cell death. Conversely, changing serine to alanine (phosphorylation-deficient mutation) at position 59 (S59A) restored condensate fluidity and reduced both R120G-CRYAB aggregates and cell death. In mice, S59D CRYAB knockin was sufficient to induce desmin mislocalization and myocardial protein aggregates, while S59A CRYAB knockin rescued left ventricular systolic dysfunction after myocardial infarction and preserved desmin localization with reduced myocardial protein aggregates. 25-Hydroxycholesterol attenuated CRYAB serine 59 phosphorylation and rescued post-myocardial infarction adverse remodeling. Thus, targeting CRYAB phosphorylation-induced condensatopathy is an attractive strategy to counter ischemic cardiomyopathy.
Collapse
Affiliation(s)
- Moydul Islam
- Division of Cardiology and
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - David R. Rawnsley
- Division of Cardiology and
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Xiucui Ma
- Division of Cardiology and
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Walter Navid
- Division of Cardiology and
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Chen Zhao
- Division of Cardiology and
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Xumin Guan
- Division of Cardiology and
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Layla Foroughi
- Division of Cardiology and
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - John T. Murphy
- Division of Cardiology and
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Honora Navid
- Division of Cardiology and
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Carla J. Weinheimer
- Division of Cardiology and
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Attila Kovacs
- Division of Cardiology and
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jessica Nigro
- Division of Cardiology and
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Aaradhya Diwan
- Division of Cardiology and
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ryan P. Chang
- Division of Cardiology and
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Minu Kumari
- Division of Cardiology and
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Martin E. Young
- Division of Cardiology and Department of Medicine, University of Alabama, Birmingham, Alabama, USA
| | - Babak Razani
- Division of Cardiology and
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- John Cochran Veterans Affairs Medical Center, St. Louis, Missouri, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kenneth B. Margulies
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mahmoud Abdellatif
- Division of Cardiology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Simon Sedej
- Division of Cardiology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Institute of Physiology, University of Maribor, Maribor, Slovenia
| | - Ali Javaheri
- Division of Cardiology and
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- John Cochran Veterans Affairs Medical Center, St. Louis, Missouri, USA
| | - Douglas F. Covey
- Department of Developmental Biology and
- Department of Anesthesiology, Psychiatry, and Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Kartik Mani
- Division of Cardiology and
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- John Cochran Veterans Affairs Medical Center, St. Louis, Missouri, USA
- Cardiovascular Service Line, HCA Midwest Health, Overland Park, Kansas, USA
| | - Abhinav Diwan
- Division of Cardiology and
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- John Cochran Veterans Affairs Medical Center, St. Louis, Missouri, USA
- Departments of Cell Biology and Physiology, Obstetrics and Gynecology, and Neurology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
4
|
Shukla S, Jana S, Sanford N, Lee CY, Liu L, Cheng P, Quertermous T, Dichek DA. Single-Cell Transcriptomics Identifies Selective Lineage-Specific Regulation of Genes in Aortic Smooth Muscle Cells in Mice. Arterioscler Thromb Vasc Biol 2025; 45:e15-e29. [PMID: 39744838 PMCID: PMC11875902 DOI: 10.1161/atvbaha.124.321482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/18/2024] [Indexed: 02/11/2025]
Abstract
BACKGROUND Smooth muscle cells (SMCs) of the proximal thoracic aorta are derived from second heart field (SHF) and cardiac neural crest (CNC) lineages. Recent studies, both in vitro and in vivo, have implied relevance of lineage-specific SMC functions in the pathophysiology of thoracic aortic diseases; however, whether 2 lineage-derived SMCs have any predisposed transcriptional differences in the control aorta remains unexplored. METHODS Single-cell RNA sequencing and single-nucleus assay for transposase-accessible chromatin sequencing were performed on isolated cells from the aortic root and ascending aortas of 14-week-old SHF-traced (Mef2c-Cre+/0-Yfp+/0) and CNC-traced (Wnt1-Cre+/0-Yfp+/0) male mice. RNA in situ hybridization was performed for spatial expression of selected differentially expressed genes (DEGs) of both lineages. RESULTS Lineage stratification of SMCs in the proximal thoracic aorta was identified using antibody-based immunofluorescence staining. Single-cell RNA sequencing recognized 12 consistently upregulated DEGs (Des, Tnnt2, Hand2os1, Psd, Gpc3, Meis2, Dcn, Gm34030, Palld, Nrtn, Lum, and Cfh) in SHF-derived SMCs and 9 consistently upregulated DEGs (Ccn5, Ccdc42, Tes, Eln, Aebp1, Galnt6, Ccn2, Aopep, and Wtip) in CNC-derived SMCs. RNA in situ hybridization validated upregulated expressions of selective SHF-specific DEGs at the aortic root. We found SHF-derived SMCs contain a distinct, large subpopulation of SMCs that is enriched with Des and Tnnt2 expressions. Single-nucleus assay for transposase-accessible chromatin analysis further confirmed higher chromosomal accessibility for upregulated DEGs of SHF-derived SMCs. CONCLUSIONS The present study recognizes the presence of limited but distinct transcriptomic differences between CNC-derived and SHF-derived SMCs in the control proximal thoracic aorta.
Collapse
Affiliation(s)
- Shalabh Shukla
- Division of Cardiology, Department of Medicine, University of Washington, WA, USA
| | - Sayantan Jana
- Division of Cardiology, Department of Medicine, University of Washington, WA, USA
| | - Nicole Sanford
- Division of Cardiology, Department of Medicine, University of Washington, WA, USA
| | - Chloe Y Lee
- Division of Cardiology, Department of Medicine, University of Washington, WA, USA
| | - Li Liu
- Division of Cardiology, Department of Medicine, University of Washington, WA, USA
| | - Paul Cheng
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, CA, USA
| | - Thomas Quertermous
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, CA, USA
| | - David A Dichek
- Division of Cardiology, Department of Medicine, University of Washington, WA, USA
| |
Collapse
|
5
|
Voß S, Walhorn V, Holler S, Gärtner A, Pohl G, Tiesmeier J, Gummert J, Anselmetti D, Milting H, Brodehl A. Functional impact of the head domain variants of DES (Desmin) on filament assembly. Genes Dis 2025; 12:101238. [PMID: 39650696 PMCID: PMC11620975 DOI: 10.1016/j.gendis.2024.101238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/04/2024] [Accepted: 01/23/2024] [Indexed: 12/11/2024] Open
Affiliation(s)
- Sabrina Voß
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, Bad Oeynhausen D-32545, Germany
| | - Volker Walhorn
- Experimental Biophysics & Applied Nanoscience, Faculty of Physics, Bielefeld University, Universitätsstrasse 25, Bielefeld 33615, Germany
| | - Stephanie Holler
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, Bad Oeynhausen D-32545, Germany
| | - Anna Gärtner
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, Bad Oeynhausen D-32545, Germany
| | - Greta Pohl
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, Bad Oeynhausen D-32545, Germany
| | - Jens Tiesmeier
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, Bad Oeynhausen D-32545, Germany
- Institute for Anesthesiology, Intensive Care- and Emergency Medicine, MKK-Hospital Luebbecke, Campus OWL, Ruhr-University Bochum, Virchowstrasse 65, Lübbecke 32312, Germany
| | - Jan Gummert
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, Bad Oeynhausen D-32545, Germany
| | - Dario Anselmetti
- Experimental Biophysics & Applied Nanoscience, Faculty of Physics, Bielefeld University, Universitätsstrasse 25, Bielefeld 33615, Germany
| | - Hendrik Milting
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, Bad Oeynhausen D-32545, Germany
| | - Andreas Brodehl
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstrasse 11, Bad Oeynhausen D-32545, Germany
| |
Collapse
|
6
|
Wang Q, Sun P, Yu M, Xie Z, Yu J, Liu X, Hong D, Lv H, Deng J, Yuan Y, Wang Z, Zhang W. Mutational and clinical spectrum of myofibrillar myopathy in one center from China. J Neuromuscul Dis 2024; 11:1247-1259. [PMID: 39973468 DOI: 10.1177/22143602241289220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
BACKGROUND Myofibrillar myopathy (MFM) is a heterogeneous group of neuromuscular disorders characterized by degeneration of Z-disk and disintegration of myofibrils. OBJECTIVE: We aimed to analyze the mutational spectrum and phenotypic features of MFM in China. METHODS We used targeted next generation sequencing (NGS) to identify causative mutations in 39 MFM patients with confirmed myopathological diagnosis. RESULTS The results showed that variants were found in six MFM-associated genes, including DES, FLNC, BAG3, MYOT, TTN and DNAJB6, in 28 (71.7%), 3 (7.7%), 3 (7.7%), 1 (2.6%), 3 (7.7%), and 1 (2.6%), respectively. Of the total 26 variants identified, 19 were reported previously and 7 were novel variants. Missense variant (80.0%) was the most common mutant type of DES. P209L was the hotspot mutation of BAG3 while no obvious hotspot mutation was found of DES. Clinically, distal and proximal weakness were observed in 64.1% and 35.9% patients. Arrythmia and peripheral neuropathy were the most common combined symptoms of desminopathy and BAG3opathy, respectively. Pathologically, rimmed vacuoles (RVs) were present in different genetic type of MFM. Giant axonal nerve fiber was found in BAG3-releated MFM patient. CONLUSION We concluded that MFM showed a highly variable genetic spectrum, with DES as the most frequent causative gene followed by FLNC, BAG3 and TTN. This study expanded the genotypic and phenotypic spectrum of MFM among Chinese cohort.
Collapse
Affiliation(s)
- Qi Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Peng Sun
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Meng Yu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Zhiying Xie
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Jiaxi Yu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Xiujuan Liu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Daojun Hong
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - He Lv
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Jianwen Deng
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Wei Zhang
- Department of Neurology, Peking University First Hospital, Beijing, China
| |
Collapse
|
7
|
Geng L, Wang M, Wang K, Xu L, Li J, Liu F, Lu J. Desmin-related myopathy manifested by various types of arrhythmias: a case report and literature review. J Int Med Res 2024; 52:3000605241291741. [PMID: 39501717 PMCID: PMC11539263 DOI: 10.1177/03000605241291741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/30/2024] [Indexed: 11/08/2024] Open
Abstract
Desmin is a type III intermediate filament protein specifically expressed in muscle cells, which is encoded by the DES gene. Defects in the desmin protein and cytoskeletal instability may interfere with cardiac muscle conduction signals, a fundamental mechanism for arrhythmias in patients with desmin-related myopathy. This current case report presents a female patient in her early 20s who presented with early-onset complete atrioventricular block and complete left bundle branch block over the previous decade. More recently, she had developed ventricular tachycardia, ventricular fibrillation, atrial fibrillation and other arrhythmias. Echocardiography revealed non-compaction of the ventricular myocardium and pulmonary hypertension. Whole-exome sequencing analysis identified a heterozygous missense mutation in the DES gene: c.1216C>T (p.Arg406Trp). She was eventually diagnosed with arrhythmias due to desmin-related myopathy. A literature review of international databases was undertaken to summarise the clinical characteristics of the cardiac involvement associated with this DES gene mutation.
Collapse
Affiliation(s)
- Lu Geng
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Mengxiao Wang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Keke Wang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Liang Xu
- Department of Cardiology, The 7 People’s Hospital of Zhengzhou, Zhengzhou, Henan Province, China
| | - Jiaqi Li
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Fan Liu
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Jingchao Lu
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| |
Collapse
|
8
|
Newman NA, Burke MA. Dilated Cardiomyopathy: A Genetic Journey from Past to Future. Int J Mol Sci 2024; 25:11460. [PMID: 39519012 PMCID: PMC11546582 DOI: 10.3390/ijms252111460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Dilated cardiomyopathy (DCM) is characterized by reduced systolic function and cardiac dilation. Cases without an identified secondary cause are classified as idiopathic dilated cardiomyopathy (IDC). Over the last 35 years, many cases of IDC have increasingly been recognized to be genetic in etiology with a core set of definitively causal genes in up to 40% of cases. While over 200 genes have been associated with DCM, the evidence supporting pathogenicity for most remains limited. Further, rapid advances in sequencing and bioinformatics have recently revealed a complex genetic spectrum ranging from monogenic to polygenic in DCM. These advances have also led to the discovery of causal and modifier genetic variants in secondary forms of DCM (e.g., alcohol-induced cardiomyopathy). Current guidelines recommend genetic counseling and screening, as well as endorsing a handful of genotype-specific therapies (e.g., device placement in LMNA cardiomyopathy). The future of genetics in DCM will likely involve polygenic risk scores, direct-to-consumer testing, and pharmacogenetics, requiring providers to have a thorough understanding of this rapidly developing field. Herein we outline three decades of genetics in DCM, summarize recent advances, and project possible future avenues for the field.
Collapse
Affiliation(s)
- Noah A. Newman
- Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Michael A. Burke
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
9
|
Findlay AR. Dominantly inherited muscle disorders: understanding their complexity and exploring therapeutic approaches. Dis Model Mech 2024; 17:dmm050720. [PMID: 39501809 PMCID: PMC11574355 DOI: 10.1242/dmm.050720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024] Open
Abstract
Treatments for disabling and life-threatening hereditary muscle disorders are finally close to becoming a reality. Research has thus far focused primarily on recessive forms of muscle disease. The gene replacement strategies that are commonly employed for recessive, loss-of-function disorders are not readily translatable to most dominant myopathies owing to the presence of a normal chromosome in each nucleus, hindering the development of novel treatments for these dominant disorders. This is largely due to their complex, heterogeneous disease mechanisms that require unique therapeutic approaches. However, as viral and RNA interference-based therapies enter clinical use, key tools are now in place to develop treatments for dominantly inherited disorders of muscle. This article will review what is known about dominantly inherited disorders of muscle, specifically their genetic basis, how mutations lead to disease, and the pathomechanistic implications for therapeutic approaches.
Collapse
Affiliation(s)
- Andrew R Findlay
- Washington University Saint Louis, Neuromuscular Disease Center, 660 S. Euclid Ave., St Louis, MO 63110, USA
| |
Collapse
|
10
|
Islam M, Rawnsley DR, Ma X, Navid W, Zhao C, Foroughi L, Murphy JT, Navid H, Weinheimer CJ, Kovacs A, Nigro J, Diwan A, Chang R, Kumari M, Young ME, Razani B, Margulies KB, Abdellatif M, Sedej S, Javaheri A, Covey DF, Mani K, Diwan A. Phosphorylation of CRYAB Induces a Condensatopathy to Worsen Post-Myocardial Infarction Left Ventricular Remodeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610556. [PMID: 39282298 PMCID: PMC11398338 DOI: 10.1101/2024.08.30.610556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2025]
Abstract
Protein aggregates are emerging therapeutic targets in rare monogenic causes of cardiomyopathy and amyloid heart disease, but their role in more prevalent heart failure syndromes remains mechanistically unexamined. We observed mis-localization of desmin and sarcomeric proteins to aggregates in human myocardium with ischemic cardiomyopathy and in mouse hearts with post-myocardial infarction ventricular remodeling, mimicking findings of autosomal-dominant cardiomyopathy induced by R120G mutation in the cognate chaperone protein, CRYAB. In both syndromes, we demonstrate increased partitioning of CRYAB phosphorylated on serine-59 to NP40-insoluble aggregate-rich biochemical fraction. While CRYAB undergoes phase separation to form condensates, the phospho-mimetic mutation of serine-59 to aspartate (S59D) in CRYAB mimics R120G-CRYAB mutants with reduced condensate fluidity, formation of protein aggregates and increased cell death. Conversely, changing serine to alanine (phosphorylation-deficient mutation) at position 59 (S59A) restored condensate fluidity, and reduced both R120G-CRYAB aggregates and cell death. In mice, S59D CRYAB knock-in was sufficient to induce desmin mis-localization and myocardial protein aggregates, while S59A CRYAB knock-in rescued left ventricular systolic dysfunction post-myocardial infarction and preserved desmin localization with reduced myocardial protein aggregates. 25-Hydroxycholesterol attenuated CRYAB serine-59 phosphorylation and rescued post-myocardial infarction adverse remodeling. Thus, targeting CRYAB phosphorylation-induced condensatopathy is an attractive strategy to counter ischemic cardiomyopathy.
Collapse
|
11
|
Politano L. Is Cardiac Transplantation Still a Contraindication in Patients with Muscular Dystrophy-Related End-Stage Dilated Cardiomyopathy? A Systematic Review. Int J Mol Sci 2024; 25:5289. [PMID: 38791328 PMCID: PMC11121328 DOI: 10.3390/ijms25105289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Inherited muscular diseases (MDs) are genetic degenerative disorders typically caused by mutations in a single gene that affect striated muscle and result in progressive weakness and wasting in affected individuals. Cardiac muscle can also be involved with some variability that depends on the genetic basis of the MD (Muscular Dystrophy) phenotype. Heart involvement can manifest with two main clinical pictures: left ventricular systolic dysfunction with evolution towards dilated cardiomyopathy and refractory heart failure, or the presence of conduction system defects and serious life-threatening ventricular arrhythmias. The two pictures can coexist. In these cases, heart transplantation (HTx) is considered the most appropriate option in patients who are not responders to the optimized standard therapeutic protocols. However, cardiac transplant is still considered a relative contraindication in patients with inherited muscle disorders and end-stage cardiomyopathies. High operative risk related to muscle impairment and potential graft involvement secondary to the underlying myopathy have been the two main reasons implicated in the generalized reluctance to consider cardiac transplant as a viable option. We report an overview of cardiac involvement in MDs and its possible association with the underlying molecular defect, as well as a systematic review of HTx outcomes in patients with MD-related end-stage dilated cardiomyopathy, published so far in the literature.
Collapse
Affiliation(s)
- Luisa Politano
- Cardiomyology and Medical Genetics, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| |
Collapse
|
12
|
Geryk M, Charpentier F. Pathophysiological mechanisms of cardiomyopathies induced by desmin gene variants located in the C-Terminus of segment 2B. J Cell Physiol 2024; 239:e31254. [PMID: 38501553 DOI: 10.1002/jcp.31254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 03/20/2024]
Abstract
Desmin, the most abundant intermediate filament in cardiomyocytes, plays a key role in maintaining cardiomyocyte structure by interconnecting intracellular organelles, and facilitating cardiomyocyte interactions with the extracellular matrix and neighboring cardiomyocytes. As a consequence, mutations in the desmin gene (DES) can lead to desminopathies, a group of diseases characterized by variable and often severe cardiomyopathies along with skeletal muscle disorders. The basic desmin intermediate filament structure is composed of four segments separated by linkers that further assemble into dimers, tetramers and eventually unit-length filaments that compact radially to give the final form of the filament. Each step in this process is critical for proper filament formation and allow specific interactions within the cell. Mutations within the desmin gene can disrupt filament formation, as seen by aggregate formation, and thus have severe cardiac and skeletal outcomes, depending on the locus of the mutation. The focus of this review is to outline the cardiac molecular consequences of mutations located in the C-terminal part of segment 2B. This region is crucial for ensuring proper desmin filament formation and is a known hotspot for mutations that significantly impact cardiac function.
Collapse
Affiliation(s)
- Michelle Geryk
- Nantes Université, CNRS, INSERM, L'institut du thorax, Nantes, F-44000, France
| | - Flavien Charpentier
- Nantes Université, CNRS, INSERM, L'institut du thorax, Nantes, F-44000, France
| |
Collapse
|
13
|
Gui LK, Liu HJ, Jin LJ, Peng XC. Krüpple-like factors in cardiomyopathy: emerging player and therapeutic opportunities. Front Cardiovasc Med 2024; 11:1342173. [PMID: 38516000 PMCID: PMC10955087 DOI: 10.3389/fcvm.2024.1342173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/23/2024] [Indexed: 03/23/2024] Open
Abstract
Cardiomyopathy, a heterogeneous pathological condition characterized by changes in cardiac structure or function, represents a significant risk factor for the prevalence and mortality of cardiovascular disease (CVD). Research conducted over the years has led to the modification of definition and classification of cardiomyopathy. Herein, we reviewed seven of the most common types of cardiomyopathies, including Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC), diabetic cardiomyopathy, Dilated Cardiomyopathy (DCM), desmin-associated cardiomyopathy, Hypertrophic Cardiomyopathy (HCM), Ischemic Cardiomyopathy (ICM), and obesity cardiomyopathy, focusing on their definitions, epidemiology, and influencing factors. Cardiomyopathies manifest in various ways ranging from microscopic alterations in cardiomyocytes, to tissue hypoperfusion, cardiac failure, and arrhythmias caused by electrical conduction abnormalities. As pleiotropic Transcription Factors (TFs), the Krüppel-Like Factors (KLFs), a family of zinc finger proteins, are involved in regulating the setting and development of cardiomyopathies, and play critical roles in associated biological processes, including Oxidative Stress (OS), inflammatory reactions, myocardial hypertrophy and fibrosis, and cellular autophagy and apoptosis, particularly in diabetic cardiomyopathy. However, research into KLFs in cardiomyopathy is still in its early stages, and the pathophysiologic mechanisms of some KLF members in various types of cardiomyopathies remain unclear. This article reviews the roles and recent research advances in KLFs, specifically those targeting and regulating several cardiomyopathy-associated processes.
Collapse
Affiliation(s)
- Le-Kun Gui
- Department of Cardiology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
- School of Medicine, Yangtze University, Jingzhou, Hubei, China
| | - Huang-Jun Liu
- Department of Cardiology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Li-Jun Jin
- Department of Cardiology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Xiao-Chun Peng
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
- Laboratory of Oncology, School of Basic Medicine, Center for Molecular Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
14
|
Xiao H, Song L, Tao L. A case report of adolescent myofibrillar myopathy due to a de novo R406W pathogenic variant in desmin with symptoms of "hypertrophic cardiomyopathy". Heliyon 2024; 10:e25009. [PMID: 38314304 PMCID: PMC10837553 DOI: 10.1016/j.heliyon.2024.e25009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/22/2023] [Accepted: 01/18/2024] [Indexed: 02/06/2024] Open
Abstract
Objective Myofibrillar myopathies (MFM) are a group of sporadic and inherited progressive skeletal muscle disorders that can lead to physical disability and premature death. To date, pathogenic variants in different genes are associated with MFM. MFM induced by variants in the Desmin (DES) gene is the most common subtype of MFM. Case presentation A 15-year-old boy with MFM was described, whose symptoms first presented as cardiac symptoms. Enlarged right and left atria, thickened ventricular septal (IVS) and mild mitral (MR) and tricuspid regurgitation (TR) in the echocardiography were found. Atrial fibrillation, intermittent atrioventricular (AV) block, ST-T changes in the dynamic electrocardiogram (ECG) were shown. Mild myopathic changes in the electromyographic exam were detected. Ultrastructural analysis found slight Z-line changes and a few small myolysis lesions, but no abnormal inclusion bodies. Genetic testing detected a heterozygous missense variant (c.1216C > T) of DES, and 2 rare variants: TNNI3K (c.1102C > G) and PRDM16 (c.3074G > A). The patient's parents didn't show skeletal and cardiac muscle disorders. DNA sequencing analysis showed no variant of DES was carried by them. Thus, we detected a case of MFM caused by de novo DES variant c.1216C > T/p.Arg406Trp with predominantly myocardial alterations.
Collapse
Affiliation(s)
- Hongyan Xiao
- Department of Cardiac Surgery, Wuhan Asia Heart Hospital, Wuhan, China
- Wuhan Clinical Research Center for Cardiomyopathy, Wuhan, China
| | - Laichun Song
- Department of Cardiac Surgery, Wuhan Asia Heart Hospital, Wuhan, China
- Wuhan Clinical Research Center for Cardiomyopathy, Wuhan, China
| | - Liang Tao
- Department of Cardiac Surgery, Wuhan Asia Heart Hospital, Wuhan, China
- Wuhan Clinical Research Center for Cardiomyopathy, Wuhan, China
| |
Collapse
|
15
|
Claeyssen C, Bulangalire N, Bastide B, Agbulut O, Cieniewski-Bernard C. Desmin and its molecular chaperone, the αB-crystallin: How post-translational modifications modulate their functions in heart and skeletal muscles? Biochimie 2024; 216:137-159. [PMID: 37827485 DOI: 10.1016/j.biochi.2023.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/04/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023]
Abstract
Maintenance of the highly organized striated muscle tissue requires a cell-wide dynamic network through protein-protein interactions providing an effective mechanochemical integrator of morphology and function. Through a continuous and complex trans-cytoplasmic network, desmin intermediate filaments ensure this essential role in heart and in skeletal muscle. Besides their role in the maintenance of cell shape and architecture (permitting contractile activity efficiency and conferring resistance towards mechanical stress), desmin intermediate filaments are also key actors of cell and tissue homeostasis. Desmin participates to several cellular processes such as differentiation, apoptosis, intracellular signalisation, mechanotransduction, vesicle trafficking, organelle biogenesis and/or positioning, calcium homeostasis, protein homeostasis, cell adhesion, metabolism and gene expression. Desmin intermediate filaments assembly requires αB-crystallin, a small heat shock protein. Over its chaperone activity, αB-crystallin is involved in several cellular functions such as cell integrity, cytoskeleton stabilization, apoptosis, autophagy, differentiation, mitochondria function or aggresome formation. Importantly, both proteins are known to be strongly associated to the aetiology of several cardiac and skeletal muscles pathologies related to desmin filaments disorganization and a strong disturbance of desmin interactome. Note that these key proteins of cytoskeleton architecture are extensively modified by post-translational modifications that could affect their functional properties. Therefore, we reviewed in the herein paper the impact of post-translational modifications on the modulation of cellular functions of desmin and its molecular chaperone, the αB-crystallin.
Collapse
Affiliation(s)
- Charlotte Claeyssen
- University of Lille, University of Artois, University of Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France
| | - Nathan Bulangalire
- University of Lille, University of Artois, University of Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France; Université de Lille, CHU Lille, F-59000 Lille, France
| | - Bruno Bastide
- University of Lille, University of Artois, University of Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France
| | - Onnik Agbulut
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, 75005, Paris, France
| | - Caroline Cieniewski-Bernard
- University of Lille, University of Artois, University of Littoral Côte d'Opale, ULR 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000 Lille, France.
| |
Collapse
|
16
|
Zeppenfeld K, Kimura Y, Ebert M. Mapping and Ablation of Ventricular Tachycardia in Inherited Left Ventricular Cardiomyopathies. JACC Clin Electrophysiol 2023:S2405-500X(23)00816-2. [PMID: 38127011 DOI: 10.1016/j.jacep.2023.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/12/2023] [Accepted: 10/23/2023] [Indexed: 12/23/2023]
Abstract
Advances in the field of human genetics have led to an accumulating understanding of the genetic basis of distinct nonischemic cardiomyopathies associated with ventricular tachycardias (VTs) and sudden cardiac death. To date, there is an increasing proportion of patients with inherited cardiomyopathies requiring catheter ablation for VTs. This review provides an overview of disease-causing gene mutations frequently encountered and relevant for clinical electrophysiologists. Available data on VT ablation in patients with an inherited etiology and a phenotype of a nondilated left ventricular cardiomyopathy, dilated cardiomyopathy, or hypertrophic cardiomyopathy are summarized. VTs amenable to catheter ablation are related to nonischemic fibrosis. Recent insights into genotype-phenotype relations of subtype and location of fibrosis have important implications for treatment planning. Current strategies to delineate nonischemic fibrosis and related arrhythmogenic substrates using multimodal imaging, image integration, and electroanatomical mapping are provided. The ablation approach depends on substrate location and extension. Related procedural aspects including patient-tailored (enhanced) ablation strategies and outcomes are outlined. Challenging substrates for VT and the underlying inherited etiologies with a high risk for rapid progressive heart failure contribute to poor outcomes after catheter ablation. Electroanatomical data obtained during ablation may allow the identification of patients at particular risk who need to be considered for early work-up for left ventricular assist device implantation or heart transplantation.
Collapse
Affiliation(s)
- Katja Zeppenfeld
- Department of Cardiology, Heart-Lung-Center, Leiden University Medical Center, Leiden, the Netherlands; Willem Einthoven Center of Arrhythmia Research and Management, Leiden, the Netherlands, and Aarhus, Denmark.
| | - Yoshitaka Kimura
- Department of Cardiology, Heart-Lung-Center, Leiden University Medical Center, Leiden, the Netherlands; Willem Einthoven Center of Arrhythmia Research and Management, Leiden, the Netherlands, and Aarhus, Denmark
| | - Micaela Ebert
- Department of Cardiology, Heart-Lung-Center, Leiden University Medical Center, Leiden, the Netherlands; Division of Electrophysiology, Department of Internal Medicine and Cardiology, Heart Center Dresden, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
17
|
Takegami N, Mitsutake A, Mano T, Shintani-Domoto Y, Unuma A, Yamaguchi-Takegami N, Ishiura H, Sakuishi K, Ando M, Yamauchi H, Ono M, Morishita S, Mitsui J, Shimizu J, Tsuji S, Toda T. The Myocardial Accumulation of Aggregated Desmin Protein in a Case of Desminopathy with a de novo DES p.R406W Mutation. Intern Med 2023; 62:2883-2887. [PMID: 36792195 PMCID: PMC10602824 DOI: 10.2169/internalmedicine.0992-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/04/2023] [Indexed: 02/16/2023] Open
Abstract
Desminopathy is a cardiac and skeletal myopathy caused by disease-causing variants in the desmin (DES) gene and represents a subgroup of myofibrillar myopathies, where cytoplasmic desmin-postive immunoreactivity is the pathological hallmark. We herein report a 28-year-old Japanese man who was initially diagnosed with sporadic hypertrophic cardiomyopathy with atrioventricular block at 9 years old and developed weakness in the soft palate and extremities. The myocardial tissue dissected during implantation of the ventricular-assisted device showed a dilated phase of hypertrophic cardiomyopathy and intracellular accumulation of proteinase K-resistant desmin aggregates. Genetic testing confirmed a de novo mutation of DES, which has already been linked to desminopathy. As the molecular diagnosis of desminopathy is challenging, particularly if patients show predominantly cardiac signs and a routine skeletal muscle biopsy is unavailable, these characteristic pathological findings of endomyocardial proteinase K-resistant desmin aggregates might aid in clinical practice.
Collapse
Affiliation(s)
- Naoki Takegami
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Akihiko Mitsutake
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Tatsuo Mano
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Japan
| | | | - Atsushi Unuma
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
| | | | - Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Kaori Sakuishi
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Masahiko Ando
- Department of Cardiovascular Surgery, Graduate School of Medicine, The University of Tokyo Hospital, Japan
| | - Haruo Yamauchi
- Department of Cardiovascular Surgery, Graduate School of Medicine, The University of Tokyo Hospital, Japan
| | - Minoru Ono
- Department of Cardiovascular Surgery, Graduate School of Medicine, The University of Tokyo Hospital, Japan
| | - Shinichi Morishita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Japan
| | - Jun Mitsui
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Jun Shimizu
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Shoji Tsuji
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Japan
- Institute of Medical Genomics, International University of Health and Welfare, Japan
| | - Tatsushi Toda
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
| |
Collapse
|
18
|
Porta-Sánchez A, Priori SG. Genetic Abnormalities of the Sinoatrial Node and Atrioventricular Conduction. Cardiol Clin 2023; 41:333-347. [PMID: 37321685 DOI: 10.1016/j.ccl.2023.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The peculiar electrophysiological properties of the sinoatrial node and the cardiac conduction system are key components of the normal physiology of cardiac impulse generation and propagation. Multiple genes and transcription factors and metabolic proteins are involved in their development and regulation. In this review, we have summarized the genetic underlying causes, key clinical findings, and the latest available clinical evidence. We will discuss clinical diagnosis and management of the genetic conditions associated with conduction disorders that are more prevalent in clinical practice, for this reason, very rare genetic diseases presenting sinus node or cardiac conduction system abnormalities are not discussed.
Collapse
Affiliation(s)
- Andreu Porta-Sánchez
- Cardiología Molecular, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) Madrid, Spain; Departamento de Cardiología, Unidad de Arritmias, Hospital Universitario Quironsalud Madrid, Spain; Departamento de Medicina, Universidad Europea de Madrid, Spain
| | - Silvia Giuliana Priori
- Cardiología Molecular, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) Madrid, Spain; Molecular Medicine Department, University of Pavia, Italy; Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy.
| |
Collapse
|
19
|
Papadopoulos C, Malfatti E, Métay C, Keren B, Lejeune E, Buratti J, Xirou S, Chrysanthou-Piterou M, Papadimas GK. Deep Characterization of a Greek Patient with Desmin-Related Myofibrillar Myopathy and Cardiomyopathy. Int J Mol Sci 2023; 24:11181. [PMID: 37446359 DOI: 10.3390/ijms241311181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/09/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Desmin is a class III intermediate filament protein highly expressed in cardiac, smooth and striated muscle. Autosomal dominant or recessive mutations in the desmin gene (DES) result in a variety of diseases, including cardiomyopathies and myofibrillar myopathy, collectively called desminopathies. Here we describe the clinical, histological and radiological features of a Greek patient with a myofibrillar myopathy and cardiomyopathy linked to the c.734A>G,p.(Glu245Gly) heterozygous variant in the DES gene. Moreover, through ribonucleic acid sequencing analysis in skeletal muscle we show that this variant provokes a defect in exon 3 splicing and thus should be considered clearly pathogenic.
Collapse
Affiliation(s)
- Constantinos Papadopoulos
- First Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, ERN, EURO NMD, 11528 Athens, Greece
| | - Edoardo Malfatti
- Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, Université Paris Est, U955 INSERM, EnvA, EFS, IMRB, F-94010 and APHP, Henri Mondor Hospital, 94010 Créteil, France
| | - Corinne Métay
- APHP, Unité Fonctionnelle de Cardiogénétique et Myogénétique Moléculaire et Cellulaire, Centre de Génétique Moléculaire et Chromosomique, INSERM, Institut de Myologie, Groupe Hospitalier La Pitié-Salpêtrière-Charles Foix, Sorbonne Université, 75013 Paris, France
| | - Boris Keren
- APHP, Centre de Génétique Moléculaire et Chromosomique, UF Génétique du Développement, GH Pitié-Salpêtrière, 75013 Paris, France
| | - Elodie Lejeune
- APHP, Centre de Génétique Moléculaire et Chromosomique, UF Génétique du Développement, GH Pitié-Salpêtrière, 75013 Paris, France
| | - Julien Buratti
- APHP, Centre de Génétique Moléculaire et Chromosomique, UF Génétique du Développement, GH Pitié-Salpêtrière, 75013 Paris, France
| | - Sophia Xirou
- First Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, ERN, EURO NMD, 11528 Athens, Greece
| | - Margarita Chrysanthou-Piterou
- First Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, ERN, EURO NMD, 11528 Athens, Greece
| | - George K Papadimas
- First Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, ERN, EURO NMD, 11528 Athens, Greece
| |
Collapse
|
20
|
Desmin Knock-Out Cardiomyopathy: A Heart on the Verge of Metabolic Crisis. Int J Mol Sci 2022; 23:ijms231912020. [PMID: 36233322 PMCID: PMC9570457 DOI: 10.3390/ijms231912020] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 12/05/2022] Open
Abstract
Desmin mutations cause familial and sporadic cardiomyopathies. In addition to perturbing the contractile apparatus, both desmin deficiency and mutated desmin negatively impact mitochondria. Impaired myocardial metabolism secondary to mitochondrial defects could conceivably exacerbate cardiac contractile dysfunction. We performed metabolic myocardial phenotyping in left ventricular cardiac muscle tissue in desmin knock-out mice. Our analyses revealed decreased mitochondrial number, ultrastructural mitochondrial defects, and impaired mitochondria-related metabolic pathways including fatty acid transport, activation, and catabolism. Glucose transporter 1 and hexokinase-1 expression and hexokinase activity were increased. While mitochondrial creatine kinase expression was reduced, fetal creatine kinase expression was increased. Proteomic analysis revealed reduced expression of proteins involved in electron transport mainly of complexes I and II, oxidative phosphorylation, citrate cycle, beta-oxidation including auxiliary pathways, amino acid catabolism, and redox reactions and oxidative stress. Thus, desmin deficiency elicits a secondary cardiac mitochondriopathy with severely impaired oxidative phosphorylation and fatty and amino acid metabolism. Increased glucose utilization and fetal creatine kinase upregulation likely portray attempts to maintain myocardial energy supply. It may be prudent to avoid medications worsening mitochondrial function and other metabolic stressors. Therapeutic interventions for mitochondriopathies might also improve the metabolic condition in desmin deficient hearts.
Collapse
|
21
|
Silva AMS, Rodrigo P, Moreno CAM, Mendonça RDH, Estephan EDP, Camelo CG, Campos ED, Dias AT, Nascimento AM, Kulikowski LD, Oliveira ASB, Reed UC, Goldfarb LG, Olivé M, Zanoteli E. The Location of Disease-Causing DES Variants Determines the Severity of Phenotype and the Morphology of Sarcoplasmic Aggregates. J Neuropathol Exp Neurol 2022; 81:746-757. [PMID: 35898174 DOI: 10.1093/jnen/nlac063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Desmin (DES) is the main intermediate muscle filament that connects myofibrils individually and with the nucleus, sarcolemma, and organelles. Pathogenic variants of DES cause desminopathy, a disorder affecting the heart and skeletal muscles. We aimed to analyze the clinical features, morphology, and distribution of desmin aggregates in skeletal muscle biopsies of patients with desminopathy and to correlate these findings with the type and location of disease-causing DES variants. This retrospective study included 30 patients from 20 families with molecularly confirmed desminopathy from 2 neuromuscular referral centers. We identified 2 distinct patterns of desmin aggregates: well-demarcated subsarcolemmal aggregates and diffuse aggregates with poorly delimited borders. Pathogenic variants located in the 1B segment and the tail domain of the desmin molecule are more likely to present with early-onset cardiomyopathy compared to patients with variants in other segments. All patients with mutations in the 1B segment had well-demarcated subsarcolemmal aggregates, but none of the patients with variants in other desmin segments showed such histological features. We suggest that variants located in the 1B segment lead to well-shaped subsarcolemmal desmin aggregation and cause disease with more frequent cardiac manifestations. These findings will facilitate early identification of patients with potentially severe cardiac syndromes.
Collapse
Affiliation(s)
| | - Patricia Rodrigo
- Neuropathology Unit, Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital Universitari de Bellvitge, Barcelona, Spain
| | | | | | - Eduardo de Paula Estephan
- Department of Neurology, Faculdade de Medicina, Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Clara Gontijo Camelo
- Department of Neurology, Faculdade de Medicina, Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Eliene Dutra Campos
- Department of Neurology, Faculdade de Medicina, Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Alexandre Torchio Dias
- Department of Pathology, Faculdade de Medicina, Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Amom Mendes Nascimento
- Department of Pathology, Faculdade de Medicina, Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | | | - Acary Souza Bulle Oliveira
- Division of Neuromuscular Diseases, Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Umbertina Conti Reed
- Department of Neurology, Faculdade de Medicina, Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Lev G Goldfarb
- Department of Pathology and Molecular Medicine, Queen's University, Kingston General Hospital, Kingston, Ontario, Canada
| | - Montse Olivé
- Neuropathology Unit, Department of Pathology and Neuromuscular Unit, Department of Neurology, IDIBELL-Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Edmar Zanoteli
- Department of Neurology, Faculdade de Medicina, Universidade de São Paulo (FMUSP), São Paulo, Brazil
| |
Collapse
|
22
|
Global O-GlcNAcylation changes impact desmin phosphorylation and its partition toward cytoskeleton in C2C12 skeletal muscle cells differentiated into myotubes. Sci Rep 2022; 12:9831. [PMID: 35701470 PMCID: PMC9198038 DOI: 10.1038/s41598-022-14033-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/31/2022] [Indexed: 11/09/2022] Open
Abstract
Desmin is the guardian of striated muscle integrity, permitting the maintenance of muscle shape and the efficiency of contractile activity. It is also a key mediator of cell homeostasis and survival. To ensure the fine regulation of skeletal muscle processes, desmin is regulated by post-translational modifications (PTMs). It is more precisely phosphorylated by several kinases connecting desmin to intracellular processes. Desmin is also modified by O-GlcNAcylation, an atypical glycosylation. However, the functional consequence of O-GlcNAcylation on desmin is still unknown, nor its impact on desmin phosphorylation. In a model of C2C12 myotubes, we modulated the global O-GlcNAcylation level, and we determined whether the expression, the PTMs and the partition of desmin toward insoluble material or cytoskeleton were impacted or not. We have demonstrated in the herein paper that O-GlcNAcylation variations led to changes in desmin behaviour. In particular, our data clearly showed that O-GlcNAcylation increase led to a decrease of phosphorylation level on desmin that seems to involve CamKII correlated to a decrease of its partition toward cytoskeleton. Our data showed that phosphorylation/O-GlcNAcylation interplay is highly complex on desmin, supporting that a PTMs signature could occur on desmin to finely regulate its partition (i.e. distribution) with a spatio-temporal regulation.
Collapse
|
23
|
Clinical Exome Sequencing Revealed a De Novo FLNC Mutation in a Child with Restrictive Cardiomyopathy. CARDIOGENETICS 2022. [DOI: 10.3390/cardiogenetics12020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Restrictive cardiomyopathy (RCM) is a rare disease of the myocardium caused by mutations in several genes including TNNT2, DES, TNNI3, MYPN and FLNC. Individuals affected by RCM often develop heart failure at a young age, requiring early heart transplantation. A 7-year-old patient was referred for genetic testing following a diagnosis of restrictive cardiomyopathy. Clinical exome sequencing analysis identified a likely pathogenic mutation in the FLNC gene [(NM_001458.5 c.6527_6547dup p.(Arg2176_2182dup)]. Its clinical relevance was augmented by the fact that this variant was absent in the parents and was thus interpreted as de novo. Genetic testing is a powerful tool to clarify the diagnosis, guide intervention strategies and enable cascade testing in patients with pediatric-onset RCM.
Collapse
|
24
|
Ajayi PT, Katti P, Zhang Y, Willingham TB, Sun Y, Bleck CKE, Glancy B. Regulation of the evolutionarily conserved muscle myofibrillar matrix by cell type dependent and independent mechanisms. Nat Commun 2022; 13:2661. [PMID: 35562354 PMCID: PMC9106682 DOI: 10.1038/s41467-022-30401-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 04/29/2022] [Indexed: 12/29/2022] Open
Abstract
Skeletal muscles play a central role in human movement through forces transmitted by contraction of the sarcomere. We recently showed that mammalian sarcomeres are connected through frequent branches forming a singular, mesh-like myofibrillar matrix. However, the extent to which myofibrillar connectivity is evolutionarily conserved as well as mechanisms which regulate the specific architecture of sarcomere branching remain unclear. Here, we demonstrate the presence of a myofibrillar matrix in the tubular, but not indirect flight (IF) muscles within Drosophila melanogaster. Moreover, we find that loss of transcription factor H15 increases sarcomere branching frequency in the tubular jump muscles, and we show that sarcomere branching can be turned on in IF muscles by salm-mediated conversion to tubular muscles. Finally, we demonstrate that neurochondrin misexpression results in myofibrillar connectivity in IF muscles without conversion to tubular muscles. These data indicate an evolutionarily conserved myofibrillar matrix regulated by both cell-type dependent and independent mechanisms.
Collapse
Affiliation(s)
- Peter T Ajayi
- Muscle Energetics Laboratory, NHLBI, NIH, Bethesda, MD, 20892, USA
| | - Prasanna Katti
- Muscle Energetics Laboratory, NHLBI, NIH, Bethesda, MD, 20892, USA
| | - Yingfan Zhang
- Muscle Energetics Laboratory, NHLBI, NIH, Bethesda, MD, 20892, USA
| | | | - Ye Sun
- Electron Microscopy Core, NHLBI, NIH, Bethesda, MD, 20892, USA
| | | | - Brian Glancy
- Muscle Energetics Laboratory, NHLBI, NIH, Bethesda, MD, 20892, USA.
- NIAMS, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
25
|
Multiomics Approach Reveals an Important Role of BNIP3 in Myocardial Remodeling and the Pathogenesis of Heart Failure with Reduced Ejection Fraction. Cells 2022; 11:cells11091572. [PMID: 35563877 PMCID: PMC9105187 DOI: 10.3390/cells11091572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/03/2022] [Accepted: 05/03/2022] [Indexed: 11/16/2022] Open
Abstract
Previous work showed a role of BNIP3 in myocardial remodeling and progression to HFrEF. We utilized a multiomics approach to unravel BNIP3-related molecular mechanisms in the pathogenesis of HFrEF. BNIP3 knockdown in HFrEF improved glycolysis, pyruvate metabolism, branched-chain amino acid catabolism, and oxidative phosphorylation, and restored endoplasmic reticulum (ER)–mitochondrial (mt) calcium and ion homeostasis. These effects of BNIP3 on cardiac metabolism were related to its interaction and downregulation, and/or phosphorylation, of specific mt-proteins involved in the aforementioned metabolic pathways, including the MICOS and SLC25A families of carrier proteins. BNIP3 affected ER–mt-calcium and ion homeostasis via its interaction-induced VDAC1 dimerization and modulation of VDAC1 phosphorylation at Ser104 and Ser241, and the downregulation of LETM1. At the ER level, BNIP3 interacted with the enzyme SERCA2a and the PKA signaling complex, leading to the downregulation of SERCA2a and PKA-mediated Ser16 phospholamban phosphorylation. Additionally, BNIP3 attenuated AMPK and PRKCE activity by modulating AMPK phosphorylation at Ser485/491 and Ser377 residues, and PRKCE phosphorylation at Thr521 and Thr710 residues. BNIP3 also interacted with sarcomeric, cytoskeletal, and cellular transcription and translation proteins, and affected their expression and/or phosphorylation. In conclusion, BNIP3 modulates multiple pathobiological processes and constitutes an attractive therapeutic target in HFrEF.
Collapse
|
26
|
Kumar V, Kumar P, Chauhan L, Dwivedi A, Ramamurthy HR. Novel combination of FLNC (c.5707G>A; p. Glu1903Lys) and BAG3 (c.610G>A; p.Gly204Arg) genetic variant expressing restrictive cardiomyopathy phenotype in an adolescent girl. J Genet 2022; 101:54. [PMID: 36560844 DOI: 10.1007/s12041-022-01402-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022]
Abstract
Pediatric restrictive cardiomyopathy (RCM) is the rarest in its group and accounts for only 2.5-5% of all the diagnosed cardiomyopathies in children. It is a relentless disease with poor prognosis, and heart transplantation is the only long-term treatment option. The aetiology of pediatric RCM varies and includes conditions such as endomyocardial fibrosis, storage disorder (Fabry's disease, MPS), drugs, radiation, post-cardiac transplantation and genetic. Genetic causes encompasses mutations in sarcomeric (troponin I and T, actin, myosin and titin) and nonsarcomeric protein-coding genes (Desmin, RSK2, lamin A/C and bcl-2-associated athanogene 3 (BAG3)). Inheritance of RCM could be autosomal dominant, autosomal recessive and X-linked. Here, we report a case of RCM in an adolescent girl, who was symptomatic with palpitations and breathlessness on exertion. The patient showed presence of rare variants in FLNC (c.5707G>A; p.Glu1903Lys) and BAG3 genes (c.610G>A; p.Gly204Arg). These two variants were detected individually in asymptomatic father and mother, respectively. FLNC gene codes for gamma filamin. These filamin proteins play important role in maintaining the structural integrity of the sarcomere. BAG3 is the main component of the chaperone-assisted selective autophagy (CASA) pathway. Mutant FLNC leads to the formation of protein aggregates which are cleared by an active protein quality control system including CASA pathway. For further verification, in silico protein-protein interaction was performed using online software and tools. The results showed evident interaction between FLNC and BAG3 with significant binding score (-826.6) between them.
Collapse
Affiliation(s)
- Vivek Kumar
- Department of Pediatrics, Command Hospital, Air Force, Bengaluru 560 007, India.
| | | | | | | | | |
Collapse
|
27
|
Przybylski R, Abrams DJ. Clinical and genetic features of arrhythmogenic cardiomyopathy: the electrophysiology perspective. PROGRESS IN PEDIATRIC CARDIOLOGY 2021. [DOI: 10.1016/j.ppedcard.2021.101463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
28
|
Diagnostic biomarkers of dilated cardiomyopathy. Immunobiology 2021; 226:152153. [PMID: 34784575 DOI: 10.1016/j.imbio.2021.152153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Dilated cardiomyopathy (DCM) is a condition involving dilation of cardiac chambers, which results in contraction impairment. Besides invasive and non-invasive diagnostic procedures, cardiac biomarkers are of great importance in both diagnosis and prognosis of the disease. These biomarkers are categorized into three groups based on their site; cardiomyocyte biomarkers, microenvironmental biomarkers and macroenvironmental biomarkers. AIMS In this review, an overview of characteristics, epidemiology, etiology and clinical manifestations of DCM is provided. In addition, the most important biomarkers, of all three categories, and their diagnostic and prognostic values are discussed. CONCLUSION Considering the association of DCM with conditions such as infections and autoimmunity, which are prevalent among the population, introducing efficient diagnostic tools is of high value for the early detection of DCM to prevent its severe complications. The three discussed classes of biomarkers are potential candidates for the detection of DCM. However, further studies are necessary in this regard.
Collapse
|
29
|
Porta-Sánchez A, Priori SG. Genetic Abnormalities of the Sinoatrial Node and Atrioventricular Conduction. Card Electrophysiol Clin 2021; 13:625-639. [PMID: 34689891 DOI: 10.1016/j.ccep.2021.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The peculiar electrophysiological properties of the sinoatrial node and the cardiac conduction system are key components of the normal physiology of cardiac impulse generation and propagation. Multiple genes and transcription factors and metabolic proteins are involved in their development and regulation. In this review, we have summarized the genetic underlying causes, key clinical findings, and the latest available clinical evidence. We will discuss clinical diagnosis and management of the genetic conditions associated with conduction disorders that are more prevalent in clinical practice, for this reason, very rare genetic diseases presenting sinus node or cardiac conduction system abnormalities are not discussed.
Collapse
Affiliation(s)
- Andreu Porta-Sánchez
- Cardiología Molecular, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) Madrid, Spain; Departamento de Cardiología, Unidad de Arritmias, Hospital Universitario Quironsalud Madrid, Spain; Departamento de Medicina, Universidad Europea de Madrid, Spain
| | - Silvia Giuliana Priori
- Cardiología Molecular, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) Madrid, Spain; Molecular Medicine Department, University of Pavia, Italy; Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy.
| |
Collapse
|
30
|
Chen Z, Li R, Wang Y, Cao L, Lin C, Liu F, Hu R, Nan J, Zhuang X, Lu X, Nan G, Hu G, Xue J, Zhang Y, Xiao J, Yao Y, Guo S, Lei J. Features of myocardial injury detected by cardiac magnetic resonance in a patient with desmin-related restrictive cardiomyopathy. ESC Heart Fail 2021; 8:5560-5564. [PMID: 34612024 PMCID: PMC8712804 DOI: 10.1002/ehf2.13624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 08/31/2021] [Accepted: 09/08/2021] [Indexed: 11/22/2022] Open
Abstract
Myocardial fibrosis detected by cardiac magnetic resonance (CMR) has been reported in patients with desmin‐related myopathy, although its characteristics remain unclear. Here, we describe a case of desmin‐related restrictive cardiomyopathy wherein CMR imaging revealed myocardial oedema, ischaemia, and fibrosis in the left ventricle; the different types and processes of myocardial injury were detected by CMR. Middle wall left ventricular enhancement may be a feature of late gadolinium enhancement, and the lateral wall is often involved in cases of myocardial injury. CMR is useful for the early detection of cardiac involvement and the prediction of prognosis in patients diagnosed with desmin‐related myopathy.
Collapse
Affiliation(s)
- Zixian Chen
- Department of Radiology, The First Hospital of Lanzhou University, Intelligent Imaging Medical Engineering Research Center of Gansu Province, Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Radiological Clinical Medicine Research Center of Gansu Province, Lanzhou, 73000, China
| | - Rui Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yongxiang Wang
- Department of Cardiology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Liang Cao
- Department of Radiology, The First Hospital of Lanzhou University, Intelligent Imaging Medical Engineering Research Center of Gansu Province, Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Radiological Clinical Medicine Research Center of Gansu Province, Lanzhou, 73000, China
| | - Chen Lin
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Feng Liu
- Department of Radiology, The First Hospital of Lanzhou University, Intelligent Imaging Medical Engineering Research Center of Gansu Province, Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Radiological Clinical Medicine Research Center of Gansu Province, Lanzhou, 73000, China
| | - Rui Hu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Jiang Nan
- Department of Radiology, The First Hospital of Lanzhou University, Intelligent Imaging Medical Engineering Research Center of Gansu Province, Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Radiological Clinical Medicine Research Center of Gansu Province, Lanzhou, 73000, China
| | - Xin Zhuang
- Department of Radiology, The First Hospital of Lanzhou University, Intelligent Imaging Medical Engineering Research Center of Gansu Province, Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Radiological Clinical Medicine Research Center of Gansu Province, Lanzhou, 73000, China
| | - Xiande Lu
- Department of Radiology, The First Hospital of Lanzhou University, Intelligent Imaging Medical Engineering Research Center of Gansu Province, Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Radiological Clinical Medicine Research Center of Gansu Province, Lanzhou, 73000, China
| | - Guangxian Nan
- Department of Radiology, The First Hospital of Lanzhou University, Intelligent Imaging Medical Engineering Research Center of Gansu Province, Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Radiological Clinical Medicine Research Center of Gansu Province, Lanzhou, 73000, China
| | - Guocui Hu
- Department of Radiology, The First Hospital of Lanzhou University, Intelligent Imaging Medical Engineering Research Center of Gansu Province, Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Radiological Clinical Medicine Research Center of Gansu Province, Lanzhou, 73000, China
| | - Jingmei Xue
- Department of Radiology, The First Hospital of Lanzhou University, Intelligent Imaging Medical Engineering Research Center of Gansu Province, Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Radiological Clinical Medicine Research Center of Gansu Province, Lanzhou, 73000, China
| | - Yaping Zhang
- Department of Radiology, The First Hospital of Lanzhou University, Intelligent Imaging Medical Engineering Research Center of Gansu Province, Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Radiological Clinical Medicine Research Center of Gansu Province, Lanzhou, 73000, China
| | - Jing Xiao
- Department of Radiology, The First Hospital of Lanzhou University, Intelligent Imaging Medical Engineering Research Center of Gansu Province, Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Radiological Clinical Medicine Research Center of Gansu Province, Lanzhou, 73000, China
| | - Yali Yao
- Department of Cardiology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Shunlin Guo
- Department of Radiology, The First Hospital of Lanzhou University, Intelligent Imaging Medical Engineering Research Center of Gansu Province, Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Radiological Clinical Medicine Research Center of Gansu Province, Lanzhou, 73000, China
| | - Junqiang Lei
- Department of Radiology, The First Hospital of Lanzhou University, Intelligent Imaging Medical Engineering Research Center of Gansu Province, Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Radiological Clinical Medicine Research Center of Gansu Province, Lanzhou, 73000, China
| |
Collapse
|
31
|
Lieber RL, Binder-Markey B. Biochemical and structural basis of the passive mechanical properties of whole skeletal muscle. J Physiol 2021; 599:3809-3823. [PMID: 34101193 PMCID: PMC8364503 DOI: 10.1113/jp280867] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/06/2021] [Indexed: 01/18/2023] Open
Abstract
Passive mechanical properties of whole skeletal muscle are not as well understood as active mechanical properties. Both the structural basis for passive mechanical properties and the properties themselves are challenging to determine because it is not clear which structures within skeletal muscle actually bear passive loads and there are not established standards by which to make mechanical measurements. Evidence suggests that titin bears the majority of the passive load within the single muscle cell. However, at larger scales, such as fascicles and muscles, there is emerging evidence that the extracellular matrix bears the major part of the load. Complicating the ability to quantify and compare across size scales, muscles and species, definitions of muscle passive properties such as stress, strain, modulus and stiffness can be made relative to many reference parameters. These uncertainties make a full understanding of whole muscle passive mechanical properties and modelling these properties very difficult. Future studies defining the specific load bearing structures and their composition and organization are required to fully understand passive mechanics of the whole muscle and develop therapies to treat disorders in which passive muscle properties are altered such as muscular dystrophy, traumatic laceration, and contracture due to upper motor neuron lesion as seen in spinal cord injury, stroke and cerebral palsy.
Collapse
Affiliation(s)
- Richard L. Lieber
- Shirley Ryan AbilityLab
- Departments of Physical Medicine and Rehabilitation and
Biomedical Engineering, Northwestern University, Chicago, IL, USA
- Edward Hines V.A. Medical Center, Hines, IL USA
| | - Ben Binder-Markey
- Department of Physical Therapy and Rehabilitation Sciences
and School of Biomedical Engineering, Sciences and Health Systems, Drexel
University, Philadelphia, PA USA
| |
Collapse
|
32
|
Shelly S, Talha N, Pereira NL, Engel AG, Johnson JN, Selcen D. Expanding Spectrum of Desmin-Related Myopathy, Long-term Follow-up, and Cardiac Transplantation. Neurology 2021; 97:e1150-e1158. [PMID: 34315782 DOI: 10.1212/wnl.0000000000012542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/22/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE We aimed to determine the genetic and clinical phenotypes of desmin-related myopathy patients and long-term outcomes after cardiac transplant. METHODS Retrospective review of cardiac and neurological manifestations of genetically confirmed desmin-related myopathy patients (Jan 1st, 1999-Jan 1st, 2020). RESULTS Twenty-five patients in 20 different families were recognized. Median age at onset of symptoms was 20 years (range: 4-50), median follow-up time of 36 months (range: 1-156). Twelve patients initially presented with skeletal muscle involvement and 13 with cardiac disease. Sixteen patients had both cardiac and skeletal muscle involvement. Clinically muscle weakness distribution was distal (n=11), proximal (n=4) or both (n=7) of 22 patients. Skeletal muscle biopsy from patients with missense and splice site variants (n=12) showed abnormal fibers containing amorphous material in Gomori trichrome stained sections. Patients with cardiac involvement had atrioventricular conduction abnormalities or cardiomyopathy. The most common ECG abnormality was complete AV block in 11 patients all of whom required a permanent pacemaker at a median age of 25 years (range: 16-48). Sudden cardiac death resulting in implantable cardioverter defibrillator (ICD) shocks or resuscitation were reported in 3 patients, a total of 5 patients had ICDs. Orthotopic cardiac transplantation was performed in 3 patients at 20, 35 and 39 years of age. CONCLUSIONS Pathogenic variants in desmin can lead to varied neurological and cardiac phenotypes beginning at a young age. Two-thirds of the patients have both neurologic and cardiac symptoms usually starting in the third decade. Heart transplant was tolerated with improved cardiac function and quality of life.
Collapse
Affiliation(s)
| | - Niaz Talha
- Department of Pediatric and Adolescent Medicine, Rochester, MN
| | | | | | | | - Duygu Selcen
- Department of Neurology, Mayo Clinic, Rochester, MN
| |
Collapse
|
33
|
Skeletal and Cardiac Muscle Disorders Caused by Mutations in Genes Encoding Intermediate Filament Proteins. Int J Mol Sci 2021; 22:ijms22084256. [PMID: 33923914 PMCID: PMC8073371 DOI: 10.3390/ijms22084256] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 02/08/2023] Open
Abstract
Intermediate filaments are major components of the cytoskeleton. Desmin and synemin, cytoplasmic intermediate filament proteins and A-type lamins, nuclear intermediate filament proteins, play key roles in skeletal and cardiac muscle. Desmin, encoded by the DES gene (OMIM *125660) and A-type lamins by the LMNA gene (OMIM *150330), have been involved in striated muscle disorders. Diseases include desmin-related myopathy and cardiomyopathy (desminopathy), which can be manifested with dilated, restrictive, hypertrophic, arrhythmogenic, or even left ventricular non-compaction cardiomyopathy, Emery–Dreifuss Muscular Dystrophy (EDMD2 and EDMD3, due to LMNA mutations), LMNA-related congenital Muscular Dystrophy (L-CMD) and LMNA-linked dilated cardiomyopathy with conduction system defects (CMD1A). Recently, mutations in synemin (SYNM gene, OMIM *606087) have been linked to cardiomyopathy. This review will summarize clinical and molecular aspects of desmin-, lamin- and synemin-related striated muscle disorders with focus on LMNA and DES-associated clinical entities and will suggest pathogenetic hypotheses based on the interplay of desmin and lamin A/C. In healthy muscle, such interplay is responsible for the involvement of this network in mechanosignaling, nuclear positioning and mitochondrial homeostasis, while in disease it is disturbed, leading to myocyte death and activation of inflammation and the associated secretome alterations.
Collapse
|
34
|
Fischer B, Dittmann S, Brodehl A, Unger A, Stallmeyer B, Paul M, Seebohm G, Kayser A, Peischard S, Linke WA, Milting H, Schulze-Bahr E. Functional characterization of novel alpha-helical rod domain desmin (DES) pathogenic variants associated with dilated cardiomyopathy, atrioventricular block and a risk for sudden cardiac death. Int J Cardiol 2020; 329:167-174. [PMID: 33373648 DOI: 10.1016/j.ijcard.2020.12.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 11/24/2022]
Abstract
BACKGROUND Desmin is the major intermediate filament (IF) protein in human heart and skeletal muscle. So-called 'desminopathies' are disorders due to pathogenic variants in the DES gene and are associated with skeletal myopathies and/or various types of cardiomyopathies. So far, only a limited number of DES pathogenic variants have been identified and functionally characterized. METHODS AND RESULTS Using a Sanger- and next generation sequencing (NGS) approach in patients with various types of cardiomyopathies, we identified two novel, non-synonymous missense DES variants: p.(Ile402Thr) and p.(Glu410Lys). Mutation carriers developed dilated (DCM) or arrhythmogenic cardiomyopathy (ACM), and cardiac conduction disease, leading to spare out the exercise-induced polymorphic ventricular tachycardia; we moved this variant to data in brief. To investigate the functional impact of these four DES variants, transfection experiments using SW-13 and H9c2 cells with native and mutant desmin were performed and filament assembly was analyzed by confocal microscopy. The DES_p.(Ile402Thr) and DES_p.(Glu410Lys) cells showed filament assembly defects forming cytoplasmic desmin aggregates. Furthermore, immunohistochemical and ultrastructural analysis of myocardial tissue from mutation carriers with the DES_p.(Glu410Lys) pathogenic variant supported the in vitro results. CONCLUSIONS Our in vitro results supported the classification of DES_p.(Ile402Thr) and DES_p.(Glu410Lys) as novel pathogenic variants and demonstrated that the cardiac phenotypes associated with DES variants are diverse and cell culture experiments improve in silico analysis and genetic counseling because the pathogenicity of a variant can be clarified.
Collapse
Affiliation(s)
- Björn Fischer
- Institute for Genetics of Heart Disease (IfGH), Department of Cardiovascular Medicine, University Hospital Muenster, Muenster, Germany
| | - Sven Dittmann
- Institute for Genetics of Heart Disease (IfGH), Department of Cardiovascular Medicine, University Hospital Muenster, Muenster, Germany.
| | - Andreas Brodehl
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Bad Oeynhausen, Germany
| | - Andreas Unger
- Institute of Physiology II, University of Muenster, Germany
| | - Birgit Stallmeyer
- Institute for Genetics of Heart Disease (IfGH), Department of Cardiovascular Medicine, University Hospital Muenster, Muenster, Germany
| | - Matthias Paul
- Department of Cardiology I, University Hospital Muenster, Muenster, Germany
| | - Guiscard Seebohm
- Institute for Genetics of Heart Disease (IfGH), Department of Cardiovascular Medicine, University Hospital Muenster, Muenster, Germany
| | - Anne Kayser
- Institute for Genetics of Heart Disease (IfGH), Department of Cardiovascular Medicine, University Hospital Muenster, Muenster, Germany
| | - Stefan Peischard
- Institute for Genetics of Heart Disease (IfGH), Department of Cardiovascular Medicine, University Hospital Muenster, Muenster, Germany
| | | | - Hendrik Milting
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Bad Oeynhausen, Germany
| | - Eric Schulze-Bahr
- Institute for Genetics of Heart Disease (IfGH), Department of Cardiovascular Medicine, University Hospital Muenster, Muenster, Germany
| |
Collapse
|
35
|
Alam S, Abdullah CS, Aishwarya R, Morshed M, Nitu SS, Miriyala S, Panchatcharam M, Kevil CG, Orr AW, Bhuiyan MS. Dysfunctional Mitochondrial Dynamic and Oxidative Phosphorylation Precedes Cardiac Dysfunction in R120G-αB-Crystallin-Induced Desmin-Related Cardiomyopathy. J Am Heart Assoc 2020; 9:e017195. [PMID: 33208022 PMCID: PMC7763772 DOI: 10.1161/jaha.120.017195] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023]
Abstract
Background The mutated α-B-Crystallin (CryABR120G) mouse model of desmin-related myopathy (DRM) shows an age-dependent onset of pathologic cardiac remodeling and progression of heart failure. CryABR120G expression in cardiomyocytes affects the mitochondrial spatial organization within the myofibrils, but the molecular perturbation within the mitochondria in the relation of the overall course of the proteotoxic disease remains unclear. Methods and Results CryABR120G mice show an accumulation of electron-dense aggregates and myofibrillar degeneration associated with the development of cardiac dysfunction. Though extensive studies demonstrated that these altered ultrastructural changes cause cardiac contractility impairment, the molecular mechanism of cardiomyocyte death remains elusive. Here, we explore early pathological processes within the mitochondria contributing to the contractile dysfunction and determine the pathogenic basis for the heart failure observed in the CryABR120G mice. In the present study, we report that the CryABR120G mice transgenic hearts undergo altered mitochondrial dynamics associated with increased level of dynamin-related protein 1 and decreased level of optic atrophy type 1 as well as mitofusin 1 over the disease process. In association with these changes, an altered level of the components of mitochondrial oxidative phosphorylation and pyruvate dehydrogenase complex regulatory proteins occurs before the manifestation of pathologic adverse remodeling in the CryABR120G hearts. Mitochondria isolated from CryABR120G transgenic hearts without visible pathology show decreased electron transport chain complex activities and mitochondrial respiration. Taken together, we demonstrated the involvement of mitochondria in the pathologic remodeling and progression of DRM-associated cellular dysfunction. Conclusions Mitochondrial dysfunction in the form of altered mitochondrial dynamics, oxidative phosphorylation and pyruvate dehydrogenase complex proteins level, abnormal electron transport chain complex activities, and mitochondrial respiration are evident on the CryABR120G hearts before the onset of detectable pathologies and development of cardiac contractile dysfunction.
Collapse
Affiliation(s)
- Shafiul Alam
- Department of Pathology and Translational PathobiologyLouisiana State University Health Sciences CenterShreveportLA
| | - Chowdhury S. Abdullah
- Department of Pathology and Translational PathobiologyLouisiana State University Health Sciences CenterShreveportLA
| | - Richa Aishwarya
- Department of Molecular and Cellular PhysiologyLouisiana State University Health Sciences CenterShreveportLA
| | - Mahboob Morshed
- Department of Pathology and Translational PathobiologyLouisiana State University Health Sciences CenterShreveportLA
| | - Sadia S. Nitu
- Department of Pathology and Translational PathobiologyLouisiana State University Health Sciences CenterShreveportLA
| | - Sumitra Miriyala
- Department of Cellular Biology and AnatomyLouisiana State University Health Sciences CenterShreveportLA
| | - Manikandan Panchatcharam
- Department of Cellular Biology and AnatomyLouisiana State University Health Sciences CenterShreveportLA
| | - Christopher G. Kevil
- Department of Pathology and Translational PathobiologyLouisiana State University Health Sciences CenterShreveportLA
- Department of Molecular and Cellular PhysiologyLouisiana State University Health Sciences CenterShreveportLA
- Department of Cellular Biology and AnatomyLouisiana State University Health Sciences CenterShreveportLA
| | - A. Wayne Orr
- Department of Pathology and Translational PathobiologyLouisiana State University Health Sciences CenterShreveportLA
- Department of Molecular and Cellular PhysiologyLouisiana State University Health Sciences CenterShreveportLA
- Department of Cellular Biology and AnatomyLouisiana State University Health Sciences CenterShreveportLA
| | - Md. Shenuarin Bhuiyan
- Department of Pathology and Translational PathobiologyLouisiana State University Health Sciences CenterShreveportLA
- Department of Molecular and Cellular PhysiologyLouisiana State University Health Sciences CenterShreveportLA
| |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW Cardiomyopathies are rare in the pediatric population, but significantly impact on morbidity and mortality. The present review aims to provide an overview of cardiomyopathies in children and some practical guidelines for their prognostic stratification and management. RECENT FINDINGS Pediatric cardiomyopathies may present as isolated cardiac muscle disease or in the context of complex clinical syndromes. The etiologic characterization represents an important step in the diagnosis and treatment of cardiomyopathies because of its impact on prognosis and on therapeutic measures. Indeed, replacement therapy is nowadays widely available and changes the natural history of the disease. More complex is the management of isolated cardiomyopathies, which lack specific therapies, mainly aimed at symptomatic relief. In this context, heart transplantation shows excellent outcomes in children, but wait-list mortality is still very high. Device therapy for sudden cardiac death prevention and the use of mechanical assist devices are becoming more common in the clinical practice and may help to reduce mortality. SUMMARY Providing insight into pediatric cardiomyopathies classification helps in the prognostication and management of such diseases. Recent years witnessed a significant improvement in mortality, but future research is still needed to improve quality of life and life expectations in the pediatric population.
Collapse
|
37
|
Chen R, Qiu Z, Wang J, Yao Y, Huang K, Zhu F. DES mutation associated with cardiac hypertrophy and alternating bundle branch block. HeartRhythm Case Rep 2020; 7:16-20. [PMID: 33505848 PMCID: PMC7813788 DOI: 10.1016/j.hrcr.2020.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Ru Chen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhihua Qiu
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanyi Yao
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Kai Huang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Zhu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
38
|
Herrmann H, Cabet E, Chevalier NR, Moosmann J, Schultheis D, Haas J, Schowalter M, Berwanger C, Weyerer V, Agaimy A, Meder B, Müller OJ, Katus HA, Schlötzer-Schrehardt U, Vicart P, Ferreiro A, Dittrich S, Clemen CS, Lilienbaum A, Schröder R. Dual Functional States of R406W-Desmin Assembly Complexes Cause Cardiomyopathy With Severe Intercalated Disc Derangement in Humans and in Knock-In Mice. Circulation 2020; 142:2155-2171. [PMID: 33023321 DOI: 10.1161/circulationaha.120.050218] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Mutations in the human desmin gene cause myopathies and cardiomyopathies. This study aimed to elucidate molecular mechanisms initiated by the heterozygous R406W-desmin mutation in the development of a severe and early-onset cardiac phenotype. METHODS We report an adolescent patient who underwent cardiac transplantation as a result of restrictive cardiomyopathy caused by a heterozygous R406W-desmin mutation. Sections of the explanted heart were analyzed with antibodies specific to 406W-desmin and to intercalated disc proteins. Effects of the R406W mutation on the molecular properties of desmin were addressed by cell transfection and in vitro assembly experiments. To prove the genuine deleterious effect of the mutation on heart tissue, we further generated and analyzed R405W-desmin knock-in mice harboring the orthologous form of the human R406W-desmin. RESULTS Microscopic analysis of the explanted heart revealed desmin aggregates and the absence of desmin filaments at intercalated discs. Structural changes within intercalated discs were revealed by the abnormal organization of desmoplakin, plectin, N-cadherin, and connexin-43. Next-generation sequencing confirmed the DES variant c.1216C>T (p.R406W) as the sole disease-causing mutation. Cell transfection studies disclosed a dual behavior of R406W-desmin with both its integration into the endogenous intermediate filament system and segregation into protein aggregates. In vitro, R406W-desmin formed unusually thick filaments that organized into complex filament aggregates and fibrillar sheets. In contrast, assembly of equimolar mixtures of mutant and wild-type desmin generated chimeric filaments of seemingly normal morphology but with occasional prominent irregularities. Heterozygous and homozygous R405W-desmin knock-in mice develop both a myopathy and a cardiomyopathy. In particular, the main histopathologic results from the patient are recapitulated in the hearts from R405W-desmin knock-in mice of both genotypes. Moreover, whereas heterozygous knock-in mice have a normal life span, homozygous animals die at 3 months of age because of a smooth muscle-related gastrointestinal phenotype. CONCLUSIONS We demonstrate that R406W-desmin provokes its severe cardiotoxic potential by a novel pathomechanism, where the concurrent dual functional states of mutant desmin assembly complexes underlie the uncoupling of desmin filaments from intercalated discs and their structural disorganization.
Collapse
Affiliation(s)
- Harald Herrmann
- Institute of Neuropathology (H.H., D.S., M.S., R.S.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany.,Molecular Genetics, German Cancer Research Center, Heidelberg, Germany (H.H.)
| | - Eva Cabet
- Basic and Translational Myology, Unit of Functional and Adaptive Biology (E.C., P.V., A.F., A.L.), University of Paris, France
| | - Nicolas R Chevalier
- Laboratoire Matière et Systèmes Complexes (N.R.C.), University of Paris, France
| | - Julia Moosmann
- Department of Pediatric Cardiology (J.M., S.D.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - Dorothea Schultheis
- Institute of Neuropathology (H.H., D.S., M.S., R.S.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - Jan Haas
- Institute for Cardiomyopathies Heidelberg, Heart Center Heidelberg, University of Heidelberg, Germany (J.H., B.M.)
| | - Mirjam Schowalter
- Institute of Neuropathology (H.H., D.S., M.S., R.S.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - Carolin Berwanger
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany (C.B., C.S.C.)
| | - Veronika Weyerer
- Institute of Pathology (V.W., A.A.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - Abbas Agaimy
- Institute of Pathology (V.W., A.A.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - Benjamin Meder
- Institute for Cardiomyopathies Heidelberg, Heart Center Heidelberg, University of Heidelberg, Germany (J.H., B.M.).,Department of Genetics, Stanford University School of Medicine, CA (B.M.)
| | - Oliver J Müller
- Internal Medicine III, University Hospital Schleswig-Holstein and University of Kiel, and German Center for Cardiovascular Research, partner site Hamburg/Kiel/Lübeck, Kiel, Germany (O.J.M.)
| | - Hugo A Katus
- Department of Cardiology, Medical University Hospital Heidelberg, and German Center for Cardiovascular Research, partner site Heidelberg/Mannheim, Heidelberg, Germany (H.A.K.)
| | - Ursula Schlötzer-Schrehardt
- Department of Ophthalmology (U.S.-S.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - Patrick Vicart
- Basic and Translational Myology, Unit of Functional and Adaptive Biology (E.C., P.V., A.F., A.L.), University of Paris, France
| | - Ana Ferreiro
- Basic and Translational Myology, Unit of Functional and Adaptive Biology (E.C., P.V., A.F., A.L.), University of Paris, France.,Reference Center for Neuromuscular Disorders, Pitié-Salpêtrière Hospital, Assistance publique-Hôpitaux de Paris, France (A.F.)
| | - Sven Dittrich
- Department of Pediatric Cardiology (J.M., S.D.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - Christoph S Clemen
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany (C.B., C.S.C.).,Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Medical Faculty, and Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, Germany(C.S.C.)
| | - Alain Lilienbaum
- Basic and Translational Myology, Unit of Functional and Adaptive Biology (E.C., P.V., A.F., A.L.), University of Paris, France
| | - Rolf Schröder
- Institute of Neuropathology (H.H., D.S., M.S., R.S.), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| |
Collapse
|
39
|
Alam S, Abdullah CS, Aishwarya R, Morshed M, Bhuiyan MS. Molecular Perspectives of Mitochondrial Adaptations and Their Role in Cardiac Proteostasis. Front Physiol 2020; 11:1054. [PMID: 32982788 PMCID: PMC7481364 DOI: 10.3389/fphys.2020.01054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 07/31/2020] [Indexed: 12/17/2022] Open
Abstract
Mitochondria are the key to properly functioning energy generation in the metabolically demanding cardiomyocytes and thus essential to healthy heart contractility on a beat-to-beat basis. Mitochondria being the central organelle for cellular metabolism and signaling in the heart, its dysfunction leads to cardiovascular disease. The healthy mitochondrial functioning critical to maintaining cardiomyocyte viability and contractility is accomplished by adaptive changes in the dynamics, biogenesis, and degradation of the mitochondria to ensure cellular proteostasis. Recent compelling evidence suggests that the classical protein quality control system in cardiomyocytes is also under constant mitochondrial control, either directly or indirectly. Impairment of cytosolic protein quality control may affect the position of the mitochondria in relation to other organelles, as well as mitochondrial morphology and function, and could also activate mitochondrial proteostasis. Despite a growing interest in the mitochondrial quality control system, very little information is available about the molecular function of mitochondria in cardiac proteostasis. In this review, we bring together current understanding of the adaptations and role of the mitochondria in cardiac proteostasis and describe the adaptive/maladaptive changes observed in the mitochondrial network required to maintain proteomic integrity. We also highlight the key mitochondrial signaling pathways activated in response to proteotoxic stress as a cellular mechanism to protect the heart from proteotoxicity. A deeper understanding of the molecular mechanisms of mitochondrial adaptations and their role in cardiac proteostasis will help to develop future therapeutics to protect the heart from cardiovascular diseases.
Collapse
Affiliation(s)
- Shafiul Alam
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Chowdhury S Abdullah
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Richa Aishwarya
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Mahboob Morshed
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Md Shenuarin Bhuiyan
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, United States.,Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| |
Collapse
|
40
|
Willingham TB, Kim Y, Lindberg E, Bleck CKE, Glancy B. The unified myofibrillar matrix for force generation in muscle. Nat Commun 2020; 11:3722. [PMID: 32709902 PMCID: PMC7381600 DOI: 10.1038/s41467-020-17579-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 07/07/2020] [Indexed: 12/15/2022] Open
Abstract
Human movement occurs through contraction of the basic unit of the muscle cell, the sarcomere. Sarcomeres have long been considered to be arranged end-to-end in series along the length of the muscle into tube-like myofibrils with many individual, parallel myofibrils comprising the bulk of the muscle cell volume. Here, we demonstrate that striated muscle cells form a continuous myofibrillar matrix linked together by frequently branching sarcomeres. We find that all muscle cells contain highly connected myofibrillar networks though the frequency of sarcomere branching goes down from early to late postnatal development and is higher in slow-twitch than fast-twitch mature muscles. Moreover, we show that the myofibrillar matrix is united across the entire width of the muscle cell both at birth and in mature muscle. We propose that striated muscle force is generated by a singular, mesh-like myofibrillar network rather than many individual, parallel myofibrils. Skeletal muscle cells have long been considered to be made primarily of many individual, parallel myofibrils. Here, the authors show that the striated muscle contractile machinery forms a highly branched, mesh-like myofibrillar matrix connected across the entire length and width of the muscle cell.
Collapse
Affiliation(s)
- T Bradley Willingham
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yuho Kim
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Eric Lindberg
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Christopher K E Bleck
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Brian Glancy
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA. .,National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
41
|
Islam M, Diwan A, Mani K. Come Together: Protein Assemblies, Aggregates and the Sarcostat at the Heart of Cardiac Myocyte Homeostasis. Front Physiol 2020; 11:586. [PMID: 32581848 PMCID: PMC7287178 DOI: 10.3389/fphys.2020.00586] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/11/2020] [Indexed: 12/13/2022] Open
Abstract
Homeostasis in vertebrate systems is contingent on normal cardiac function. This, in turn, depends on intricate protein-based cellular machinery, both for contractile function, as well as, durability of cardiac myocytes. The cardiac small heat shock protein (csHsp) chaperone system, highlighted by αB-crystallin (CRYAB), a small heat shock protein (sHsp) that forms ∼3–5% of total cardiac mass, plays critical roles in maintaining proteostatic function via formation of self-assembled multimeric chaperones. In this work, we review these ancient proteins, from the evolutionarily preserved role of homologs in protists, fungi and invertebrate systems, as well as, the role of sHsps and chaperones in maintaining cardiac myocyte structure and function. We propose the concept of the “sarcostat” as a protein quality control mechanism in the sarcomere. The roles of the proteasomal and lysosomal proteostatic network, as well as, the roles of the aggresome, self-assembling protein complexes and protein aggregation are discussed in the context of cardiac myocyte homeostasis. Finally, we will review the potential for targeting the csHsp system as a novel therapeutic approach to prevent and treat cardiomyopathy and heart failure.
Collapse
Affiliation(s)
- Moydul Islam
- Division of Cardiology, Washington University School of Medicine, St. Louis, MO, United States.,Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO, United States.,Department of Chemistry, Washington University in St. Louis, St. Louis, MO, United States
| | - Abhinav Diwan
- Division of Cardiology, Washington University School of Medicine, St. Louis, MO, United States.,Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO, United States.,John Cochran Veterans Affairs Medical Center, St. Louis, MO, United States
| | - Kartik Mani
- Division of Cardiology, Washington University School of Medicine, St. Louis, MO, United States.,Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO, United States.,John Cochran Veterans Affairs Medical Center, St. Louis, MO, United States
| |
Collapse
|
42
|
Desminopathy: Novel Desmin Variants, a New Cardiac Phenotype, and Further Evidence for Secondary Mitochondrial Dysfunction. J Clin Med 2020; 9:jcm9040937. [PMID: 32235386 PMCID: PMC7231262 DOI: 10.3390/jcm9040937] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 12/13/2022] Open
Abstract
Background: The pleomorphic clinical presentation makes the diagnosis of desminopathy difficult. We aimed to describe the prevalence, phenotypic expression, and mitochondrial function of individuals with putative disease-causing desmin (DES) variants identified in patients with an unexplained etiology of cardiomyopathy. Methods: A total of 327 Czech patients underwent whole exome sequencing and detailed phenotyping in probands harboring DES variants. Results: Rare, conserved, and possibly pathogenic DES variants were identified in six (1.8%) probands. Two DES variants previously classified as variants of uncertain significance (p.(K43E), p.(S57L)), one novel DES variant (p.(A210D)), and two known pathogenic DES variants (p.(R406W), p.(R454W)) were associated with characteristic desmin-immunoreactive aggregates in myocardial and/or skeletal biopsy samples. The individual with the novel DES variant p.(Q364H) had a decreased myocardial expression of desmin with absent desmin aggregates in myocardial/skeletal muscle biopsy and presented with familial left ventricular non-compaction cardiomyopathy (LVNC), a relatively novel phenotype associated with desminopathy. An assessment of the mitochondrial function in four probands heterozygous for a disease-causing DES variant confirmed a decreased metabolic capacity of mitochondrial respiratory chain complexes in myocardial/skeletal muscle specimens, which was in case of myocardial succinate respiration more profound than in other cardiomyopathies. Conclusions: The presence of desminopathy should also be considered in individuals with LVNC, and in the differential diagnosis of mitochondrial diseases.
Collapse
|
43
|
Hedberg-Oldfors C, Abramsson A, Osborn DPS, Danielsson O, Fazlinezhad A, Nilipour Y, Hübbert L, Nennesmo I, Visuttijai K, Bharj J, Petropoulou E, Shoreim A, Vona B, Ahangari N, López MD, Doosti M, Banote RK, Maroofian R, Edling M, Taherpour M, Zetterberg H, Karimiani EG, Oldfors A, Jamshidi Y. Cardiomyopathy with lethal arrhythmias associated with inactivation of KLHL24. Hum Mol Genet 2020; 28:1919-1929. [PMID: 30715372 PMCID: PMC6812045 DOI: 10.1093/hmg/ddz032] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 01/26/2019] [Accepted: 01/28/2019] [Indexed: 12/18/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiovascular disorder, yet the genetic cause of up to 50% of cases remains unknown. Here, we show that mutations in KLHL24 cause HCM in humans. Using genome-wide linkage analysis and exome sequencing, we identified homozygous mutations in KLHL24 in two consanguineous families with HCM. Of the 11 young affected adults identified, 3 died suddenly and 1 had a cardiac transplant due to heart failure. KLHL24 is a member of the Kelch-like protein family, which acts as substrate-specific adaptors to Cullin E3 ubiquitin ligases. Endomyocardial and skeletal muscle biopsies from affected individuals of both families demonstrated characteristic alterations, including accumulation of desmin intermediate filaments. Knock-down of the zebrafish homologue klhl24a results in heart defects similar to that described for other HCM-linked genes providing additional support for KLHL24 as a HCM-associated gene. Our findings reveal a crucial role for KLHL24 in cardiac development and function.
Collapse
Affiliation(s)
- Carola Hedberg-Oldfors
- Department of Pathology and Genetics, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Alexandra Abramsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Daniel P S Osborn
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St George's University of London, Cranmer Terrace, London, UK
| | - Olof Danielsson
- Department of Neurology, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Afsoon Fazlinezhad
- Razavi Cancer Research Center, Razavi Hospital, Imam Reza International University, Mashhad, Iran
| | - Yalda Nilipour
- Pediatric Pathology Research Center, Research Institute for Children Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Laila Hübbert
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Inger Nennesmo
- Department of Pathology, Karolinska University Hospital, Stockholm, Sweden
| | - Kittichate Visuttijai
- Department of Pathology and Genetics, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Jaipreet Bharj
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St George's University of London, Cranmer Terrace, London, UK
| | - Evmorfia Petropoulou
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St George's University of London, Cranmer Terrace, London, UK
| | - Azza Shoreim
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St George's University of London, Cranmer Terrace, London, UK
| | - Barbara Vona
- Institute of Human Genetics, Julius Maximilians University of Würzburg, Würzburg, Germany
| | - Najmeh Ahangari
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marcela Dávila López
- Bioinformatics Core Facilities, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Rakesh Kumar Banote
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Reza Maroofian
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St George's University of London, Cranmer Terrace, London, UK
| | - Malin Edling
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Mehdi Taherpour
- Razavi Cancer Research Center, Razavi Hospital, Imam Reza International University, Mashhad, Iran
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 1PJ, UK
| | - Ehsan Ghayoor Karimiani
- Razavi Cancer Research Center, Razavi Hospital, Imam Reza International University, Mashhad, Iran.,Innovative Medical Research Center, Faculty of Medicine, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Anders Oldfors
- Department of Pathology and Genetics, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Yalda Jamshidi
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St George's University of London, Cranmer Terrace, London, UK
| |
Collapse
|
44
|
Stępień-Wojno M, Franaszczyk M, Bodalski R, Śpiewak M, Baranowski RS, Grzybowski J, Płoski R, Bilińska ZT. A different background of arrhythmia in siblings with a positive family history of sudden death at young age. Ann Noninvasive Electrocardiol 2019; 25:e12707. [PMID: 31609036 PMCID: PMC7358827 DOI: 10.1111/anec.12707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 09/14/2019] [Indexed: 12/03/2022] Open
Abstract
We present two symptomatic sisters who had a positive family history of sudden death. None of them had structural heart disease. In the 25‐year‐old proband, complex ventricular arrhythmia, cardiac conduction system disease, and skeletal muscle weakness were found. Genetic examination showed a pathogenic intronic variant in the desmin gene in the proband only. In the elder sister with palpitations, complex ventricular arrhythmia (>46 000 ectopic beats) was removed by radiofrequency ablation. This family case shows that complex ventricular arrhythmia may have different background within one family, genetic examinations should be performed in a person with broadest spectrum of symptoms.
Collapse
Affiliation(s)
- Małgorzata Stępień-Wojno
- Unit for Screening Studies in Inherited Cardiovascular Diseases, The Cardinal Stefan Wyszynski Institute of Cardiology, Warsaw, Poland
| | - Maria Franaszczyk
- Department of Medical Biology, The Cardinal Stefan Wyszynski Institute of Cardiology, Warsaw, Poland
| | - Robert Bodalski
- Department of Arrhythmia, The Cardinal Stefan Wyszynski Institute of Cardiology, Warsaw, Poland
| | - Mateusz Śpiewak
- Department of Radiology, The Cardinal Stefan Wyszynski Institute of Cardiology, Warsaw, Poland
| | - Rafał S Baranowski
- Department of Arrhythmia, The Cardinal Stefan Wyszynski Institute of Cardiology, Warsaw, Poland
| | - Jacek Grzybowski
- Department of Cardiomyopathy, The Cardinal Stefan Wyszynski Institute of Cardiology, Warsaw, Poland
| | - Rafał Płoski
- Department of Medical Genetics, Warsaw Medical University, Warsaw, Poland
| | - Zofia T Bilińska
- Unit for Screening Studies in Inherited Cardiovascular Diseases, The Cardinal Stefan Wyszynski Institute of Cardiology, Warsaw, Poland
| |
Collapse
|
45
|
Rosenbaum AN, Agre KE, Pereira NL. Genetics of dilated cardiomyopathy: practical implications for heart failure management. Nat Rev Cardiol 2019; 17:286-297. [PMID: 31605094 DOI: 10.1038/s41569-019-0284-0] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/12/2019] [Indexed: 12/19/2022]
Abstract
Given the global burden of heart failure, strategies to understand the underlying cause or to provide prognostic information are critical to reducing the morbidity and mortality associated with this highly prevalent disease. Cardiomyopathies often have a genetic cause, and the field of heart failure genetics is progressing rapidly. Through a deliberate investigation, evaluation for a familial component of cardiomyopathy can lead to increased identification of pathogenic genetic variants. Much research has also been focused on identifying markers of risk in patients with cardiomyopathy with the use of genetic testing. Advances in our understanding of genetic variants have been slightly offset by an increased recognition of the heterogeneity of disease expression. Greater breadth of genetic testing can increase the likelihood of identifying a variant of uncertain significance, which is resolved only rarely by cellular functional validation and segregation analysis. To increase the use of genetics in heart failure clinics, increased availability of genetic counsellors and other providers with experience in genetics is necessary. Ultimately, through ongoing research and increased clinical experience in cardiomyopathy genetics, an improved understanding of the disease processes will facilitate better clinical decision-making about the therapies offered, exemplifying the implementation of precision medicine.
Collapse
Affiliation(s)
| | - Katherine E Agre
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Naveen L Pereira
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA. .,William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, USA. .,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
46
|
Towbin JA, McKenna WJ, Abrams DJ, Ackerman MJ, Calkins H, Darrieux FCC, Daubert JP, de Chillou C, DePasquale EC, Desai MY, Estes NAM, Hua W, Indik JH, Ingles J, James CA, John RM, Judge DP, Keegan R, Krahn AD, Link MS, Marcus FI, McLeod CJ, Mestroni L, Priori SG, Saffitz JE, Sanatani S, Shimizu W, van Tintelen JP, Wilde AAM, Zareba W. 2019 HRS expert consensus statement on evaluation, risk stratification, and management of arrhythmogenic cardiomyopathy. Heart Rhythm 2019; 16:e301-e372. [PMID: 31078652 DOI: 10.1016/j.hrthm.2019.05.007] [Citation(s) in RCA: 505] [Impact Index Per Article: 84.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Indexed: 02/08/2023]
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an arrhythmogenic disorder of the myocardium not secondary to ischemic, hypertensive, or valvular heart disease. ACM incorporates a broad spectrum of genetic, systemic, infectious, and inflammatory disorders. This designation includes, but is not limited to, arrhythmogenic right/left ventricular cardiomyopathy, cardiac amyloidosis, sarcoidosis, Chagas disease, and left ventricular noncompaction. The ACM phenotype overlaps with other cardiomyopathies, particularly dilated cardiomyopathy with arrhythmia presentation that may be associated with ventricular dilatation and/or impaired systolic function. This expert consensus statement provides the clinician with guidance on evaluation and management of ACM and includes clinically relevant information on genetics and disease mechanisms. PICO questions were utilized to evaluate contemporary evidence and provide clinical guidance related to exercise in arrhythmogenic right ventricular cardiomyopathy. Recommendations were developed and approved by an expert writing group, after a systematic literature search with evidence tables, and discussion of their own clinical experience, to present the current knowledge in the field. Each recommendation is presented using the Class of Recommendation and Level of Evidence system formulated by the American College of Cardiology and the American Heart Association and is accompanied by references and explanatory text to provide essential context. The ongoing recognition of the genetic basis of ACM provides the opportunity to examine the diverse triggers and potential common pathway for the development of disease and arrhythmia.
Collapse
Affiliation(s)
- Jeffrey A Towbin
- Le Bonheur Children's Hospital, Memphis, Tennessee; University of Tennessee Health Science Center, Memphis, Tennessee
| | - William J McKenna
- University College London, Institute of Cardiovascular Science, London, United Kingdom
| | | | | | | | | | | | | | | | | | - N A Mark Estes
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Wei Hua
- Fu Wai Hospital, Beijing, China
| | - Julia H Indik
- University of Arizona, Sarver Heart Center, Tucson, Arizona
| | - Jodie Ingles
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, Sydney, Australia
| | | | - Roy M John
- Vanderbilt University Medical Center, Nashville, Tennessee
| | - Daniel P Judge
- Medical University of South Carolina, Charleston, South Carolina
| | - Roberto Keegan
- Hospital Privado Del Sur, Buenos Aires, Argentina; Hospital Español, Bahia Blanca, Argentina
| | | | - Mark S Link
- UT Southwestern Medical Center, Dallas, Texas
| | - Frank I Marcus
- University of Arizona, Sarver Heart Center, Tucson, Arizona
| | | | - Luisa Mestroni
- University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Silvia G Priori
- University of Pavia, Pavia, Italy; European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-Heart); ICS Maugeri, IRCCS, Pavia, Italy
| | | | | | - Wataru Shimizu
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan
| | - J Peter van Tintelen
- University of Amsterdam, Academic Medical Center, Amsterdam, the Netherlands; Utrecht University Medical Center Utrecht, University of Utrecht, Department of Genetics, Utrecht, the Netherlands
| | - Arthur A M Wilde
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-Heart); University of Amsterdam, Academic Medical Center, Amsterdam, the Netherlands; Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | | |
Collapse
|
47
|
A novel phenotype with splicing mutation identified in a Chinese family with desminopathy. Chin Med J (Engl) 2019; 132:127-134. [PMID: 30614851 PMCID: PMC6365268 DOI: 10.1097/cm9.0000000000000001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Desminopathy, a hereditary myofibrillar myopathy, mainly results from the desmin gene (DES) mutations. Desminopathy involves various phenotypes, mainly including different cardiomyopathies, skeletal myopathy, and arrhythmia. Combined with genotype, it helps us precisely diagnose and treat for desminopathy. METHODS Sanger sequencing was used to characterize DES variation, and then a minigene assay was used to verify the effect of splice-site mutation on pre-mRNA splicing. Phenotypes were analyzed based on clinical characteristics associated with desminopathy. RESULTS A splicing mutation (c.735+1G>T) in DES was detected in the proband. A minigene assay revealed skipping of the whole exon 3 and transcription of abnormal pre-mRNA lacking 32 codons. Another affected family member who carried the identical mutation, was identified with a novel phenotype of desminopathy, non-compaction of ventricular myocardium. There were 2 different phenotypes varied in cardiomyopathy and skeletal myopathy among the 2 patients, but no significant correlation between genotype and phenotype was identified. CONCLUSIONS We reported a novel phenotype with a splicing mutation in DES, enlarging the spectrum of phenotype in desminopathy. Molecular studies of desminopathy should promote our understanding of its pathogenesis and provide a precise molecular diagnosis of this disorder, facilitating clinical prevention and treatment at an early stage.
Collapse
|
48
|
Ebert M, Richter S, Dinov B, Zeppenfeld K, Hindricks G. Evaluation and management of ventricular tachycardia in patients with dilated cardiomyopathy. Heart Rhythm 2019; 16:624-631. [DOI: 10.1016/j.hrthm.2018.10.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Indexed: 12/24/2022]
|
49
|
Kazmierczak K, Liang J, Yuan CC, Yadav S, Sitbon YH, Walz K, Ma W, Irving TC, Cheah JX, Gomes AV, Szczesna-Cordary D. Slow-twitch skeletal muscle defects accompany cardiac dysfunction in transgenic mice with a mutation in the myosin regulatory light chain. FASEB J 2019; 33:3152-3166. [PMID: 30365366 PMCID: PMC6404564 DOI: 10.1096/fj.201801402r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 10/01/2018] [Indexed: 01/06/2023]
Abstract
Myosin light chain 2 ( MYL2) gene encodes the myosin regulatory light chain (RLC) simultaneously in heart ventricles and in slow-twitch skeletal muscle. Using transgenic mice with cardiac-specific expression of the human R58Q-RLC mutant, we sought to determine whether the hypertrophic cardiomyopathy phenotype observed in papillary muscles (PMs) of R58Q mice is also manifested in slow-twitch soleus (SOL) muscles. Skinned SOL muscles and ventricular PMs of R58Q animals exhibited lower contractile force that was not observed in the fast-twitch extensor digitorum longus muscles of R58Q vs. wild-type-RLC mice, but mutant animals did not display gross muscle weakness in vivo. Consistent with SOL muscle abnormalities in R58Q vs. wild-type mice, myosin ATPase staining revealed a decreased proportion of fiber type I/type II only in SOL muscles but not in the extensor digitorum longus muscles. The similarities between SOL muscles and PMs of R58Q mice were further supported by quantitative proteomics. Differential regulation of proteins involved in energy metabolism, cell-cell interactions, and protein-protein signaling was concurrently observed in the hearts and SOL muscles of R58Q mice. In summary, even though R58Q expression was restricted to the heart of mice, functional similarities were clearly observed between the hearts and slow-twitch skeletal muscle, suggesting that MYL2 mutated models of hypertrophic cardiomyopathy may be useful research tools to study the molecular, structural, and energetic mechanisms of cardioskeletal myopathy associated with myosin RLC.-Kazmierczak, K., Liang, J., Yuan, C.-C., Yadav, S., Sitbon, Y. H., Walz, K., Ma, W., Irving, T. C., Cheah, J. X., Gomes, A. V., Szczesna-Cordary, D. Slow-twitch skeletal muscle defects accompany cardiac dysfunction in transgenic mice with a mutation in the myosin regulatory light chain.
Collapse
Affiliation(s)
- Katarzyna Kazmierczak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jingsheng Liang
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Chen-Ching Yuan
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Sunil Yadav
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Yoel H. Sitbon
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Katherina Walz
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Weikang Ma
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois, USA
| | - Thomas C. Irving
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois, USA
| | - Jenice X. Cheah
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, California, USA
| | - Aldrin V. Gomes
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, California, USA
| | - Danuta Szczesna-Cordary
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
50
|
Protonotarios A, Elliott PM. Arrhythmogenic cardiomyopathies (ACs): diagnosis, risk stratification and management. Heart 2019; 105:1117-1128. [PMID: 30792239 DOI: 10.1136/heartjnl-2017-311160] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Alexandros Protonotarios
- UCL Institute of Cardiovascular Science, University College London, London, UK.,Inherited Cardiovascular Disease Unit, Barts Heart Centre, London, UK
| | - Perry M Elliott
- UCL Institute of Cardiovascular Science, University College London, London, UK.,Inherited Cardiovascular Disease Unit, Barts Heart Centre, London, UK
| |
Collapse
|