1
|
Ryu DS, Lee H, Eo SJ, Kim JW, Kim Y, Kang S, Noh JH, Lee S, Park JH, Na K, Kim DH. Photo-responsive self-expanding catheter with photosensitizer-integrated silicone-covered membrane for minimally invasive local therapy in malignant esophageal cancer. Biomaterials 2025; 320:123265. [PMID: 40121828 DOI: 10.1016/j.biomaterials.2025.123265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/12/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025]
Abstract
Photodynamic therapy (PDT) using photosensitizer (PS)-integrated covered self-expandable metallic stents (SEMS) is proposed a new therapeutic approach for the treatment of palliative malignancies; however, the currently hydrophobic PS reduces the photoreactive effect, which leads to aggregation with low water solubility. In here, an aluminum (III)-phthalocyanine chloride tetrasulfonic acid (Al-PcS4)-integrated silicone-covered self-expanding catheter was successfully fabricated to perform localized PDT. The ratio of MeOH and Al-PcS4 concentrations was optimized to achieve PS coating uniformity. The photodynamic activity of the Al-PcS4-integrated silicone membrane was evaluated through laser exposure on membrane-layered tumor cell lines, tumor xenograft-bearing mice. PDT with the Al-PcS4-integrated membrane successfully generated sufficient cytotoxic singlet oxygen, inducing cell death in the esophageal cancer cell lines. PDT-treated tumor xenograft-bearing mice undergo apoptotic cell death and showed significant tumor regression. Localized PDT using an Al-PcS4-integrated silicone-covered self-expanding catheter was technically successful in the rabbit esophagus without severe complications. Based on the endoscopy, esophagography, histology, and immunohistochemistry, our study verified that localized PDT using the Al-PcS4-integrated silicone-covered self-expanding catheter was effective and safe to evenly induce tissue damage. Al-PcS4-integrated silicone-covered self-expanding catheter has substantial potential for the minimally invasive local therapy in malignant esophageal cancer.
Collapse
Affiliation(s)
- Dae Sung Ryu
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea; Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Hyeonseung Lee
- Department of Biotechnology, Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Seung Jin Eo
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea; Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Ji Won Kim
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea; Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Yuri Kim
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Seokin Kang
- Department of Internal Medicine, Ilsan Paik Hospital, Inje University College of Medicine, 170, Juhwa-ro, Ilsanseo-gu, Goyang, Gyeonggi-do, 10380, Republic of Korea
| | - Jin Hee Noh
- Department of Internal Medicine, University of Hallym College of Medicine, Hallym University Sacred Heart Hospital, Anyang, Gyeonggi-do, 14068, Republic of Korea
| | - Sanghee Lee
- Department of Radiology Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jung-Hoon Park
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea; Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| | - Kun Na
- Department of Biotechnology, Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea.
| | - Do Hoon Kim
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
2
|
Wang Y, Jiang H, Chen Q, Guo F, Zhang B, Hu L, Huang X, Shen W, Gao J, Chen W, Xu W, Cai Z, Wei L, Li M. Myofibroblast-Targeting Extracellular Vesicles: A Promising Platform for Cardiac Fibrosis Drug Delivery. Biomater Res 2025; 29:0179. [PMID: 40225952 PMCID: PMC11986206 DOI: 10.34133/bmr.0179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 02/06/2025] [Accepted: 03/12/2025] [Indexed: 04/15/2025] Open
Abstract
Current pharmacological treatments for cardiac fibrosis are often limited by their efficacy and specificity, leading to marked side effects. Fibroblast activation protein (FAP) is specifically expressed on activated myofibroblasts (myoFbs) but not on resting cardiac fibroblasts, making it a promising target for cardiac fibrosis therapy. In this study, we engineered extracellular vesicles (EVs) conjugated with an anti-FAP single-chain variable fragment, termed αFAP-EVs, which specifically target myoFbs. Our results demonstrated that αFAP-EVs successfully targeted activated myoFbs in vitro and localized to fibrotic regions in isoproterenol-induced mouse hearts in vivo. To further enhance delivery efficiency, αFAP-EVs were combined with clodronate-loaded liposomes (αFAP-EL@CLD) to reduce liver accumulation and improve cardiac fibrotic site targeting. αFAP-EL@CLD loaded with cholesterol-methylated- and phosphorothioate-modified miR-29b (Agomir-29b) or the transforming growth factor beta 1 receptor inhibitor GW788388 significantly inhibited myoFb activation and reduced fibrosis in isoproterenol-induced mouse models. Importantly, these drug-loaded αFAP-EL@CLD vesicles exhibited high therapeutic efficacy with minimal systemic toxicity, attributed to their stability and targeted delivery capabilities. These findings suggest that αFAP-EL@CLD vesicles are promising candidates for cardiac fibrosis therapy, offering a foundation for future clinical applications.
Collapse
Affiliation(s)
- Yi Wang
- Institute of Biology and Medical Sciences,
Soochow University, Suzhou 215123, China
| | - Hao Jiang
- Institute of Biology and Medical Sciences,
Soochow University, Suzhou 215123, China
| | - Qing Chen
- Department of Nuclear Medicine,
The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, China
| | - Fei Guo
- Department of Urology, Changhai Hospital,
Naval Medical University, Shanghai 200433, China
| | - Bei Zhang
- Institute of Immunology and Department of Orthopedics of the Second Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Lin Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and School for Radiological and Interdisciplinary Sciences (RAD-X),
Soochow University, Suzhou 125123, Jiangsu, China
| | - Xuege Huang
- Institute of Biology and Medical Sciences,
Soochow University, Suzhou 215123, China
| | - Wenwen Shen
- Institute of Biology and Medical Sciences,
Soochow University, Suzhou 215123, China
| | - Jiapeng Gao
- Institute of Biology and Medical Sciences,
Soochow University, Suzhou 215123, China
| | - Wenwen Chen
- Institute of Biology and Medical Sciences,
Soochow University, Suzhou 215123, China
| | - Wei Xu
- Institute of Biology and Medical Sciences,
Soochow University, Suzhou 215123, China
| | - Zhijian Cai
- Institute of Immunology and Department of Orthopedics of the Second Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Lin Wei
- Department of Infectious Diseases,
The First Affiliated Hospital of Anhui Medical University, Hefei 230032, Anhui, China
| | - Min Li
- Institute of Biology and Medical Sciences,
Soochow University, Suzhou 215123, China
| |
Collapse
|
3
|
Luo PY, Zou JR, Chen T, Zou J, Li W, Chen Q, Cheng L, Zheng LY, Qian B. Autophagy in erectile dysfunction: focusing on apoptosis and fibrosis. Asian J Androl 2025; 27:166-176. [PMID: 39028624 PMCID: PMC11949458 DOI: 10.4103/aja202433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/22/2024] [Indexed: 07/21/2024] Open
Abstract
ABSTRACT In most types of erectile dysfunction, particularly in advanced stages, typical pathological features observed are reduced parenchymal cells coupled with increased tissue fibrosis. However, the current treatment methods have shown limited success in reversing these pathologic changes. Recent research has revealed that changes in autophagy levels, along with alterations in apoptosis and fibrosis-related proteins, are linked to the progression of erectile dysfunction, suggesting a significant association. Autophagy, known to significantly affect cell fate and tissue fibrosis, is currently being explored as a potential treatment modality for erectile dysfunction. However, these present studies are still in their nascent stage, and there are limited experimental data available. This review analyzes erectile dysfunction from a pathological perspective. It provides an in-depth overview of how autophagy is involved in the apoptotic processes of smooth muscle and endothelial cells and its role in the fibrotic processes occurring in the cavernosum. This study aimed to develop a theoretical framework for the potential effectiveness of autophagy in preventing and treating erectile dysfunction, thus encouraging further investigation among researchers in this area.
Collapse
Affiliation(s)
- Pei-Yue Luo
- The First Clinical College, Gannan Medical University, Ganzhou 341000, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou 341000, China
| | - Jun-Rong Zou
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou 341000, China
| | - Tao Chen
- The First Clinical College, Gannan Medical University, Ganzhou 341000, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou 341000, China
| | - Jun Zou
- The First Clinical College, Gannan Medical University, Ganzhou 341000, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou 341000, China
| | - Wei Li
- The First Clinical College, Gannan Medical University, Ganzhou 341000, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou 341000, China
| | - Qi Chen
- The First Clinical College, Gannan Medical University, Ganzhou 341000, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou 341000, China
| | - Le Cheng
- The First Clinical College, Gannan Medical University, Ganzhou 341000, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou 341000, China
| | - Li-Ying Zheng
- Department of Graduate, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Biao Qian
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou 341000, China
| |
Collapse
|
4
|
Chang SY, Chang WH, Yang DC, Hong QS, Hsu SW, Wu R, Chen CH. Autologous precision-cut lung slice co-culture models for studying macrophage-driven fibrosis. Front Physiol 2025; 16:1526787. [PMID: 39958688 PMCID: PMC11825446 DOI: 10.3389/fphys.2025.1526787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/15/2025] [Indexed: 02/18/2025] Open
Abstract
Precision-cut lung slices (PCLS) are commonly used as an ex vivo model to study lung fibrosis; however, traditional models lack immune cell infiltration, including the recruitment of monocytes and macrophages, which are critical for inflammation and fibrosis. To address this limitation, we developed novel autologous PCLS-immune co-culture models that better replicate the processes of inflammation, repair, and immune cell recruitment associated with fibrosis. Fibrotic responses to nicotine, cigarette smoke extract (CSE), and a fibrosis-inducing cocktail (FC) were first evaluated in PCLS containing only tissue-resident macrophages, with upregulation of α-SMA-expressing fibroblasts confirmed by immunofluorescence and Western blotting, and collagen deposition quantified using Sirius Red staining. To study macrophage recruitment, we employed an indirect co-culture model using transwells to approximate blood vessel function. Chemotactic studies revealed increased migration of autologous bone marrow-derived macrophages (BMDMs) toward and infiltration into CSE-injured PCLS. In a direct co-culture model simulating the repair phase of fibrosis, PCLS exposed to CSE and FC showed further increased collagen deposition in the presence of autologous BMDMs, but not heterologous ones. These findings suggest that our novel PCLS-immune co-culture models provide a platform for studying macrophage involvement in fibrosis and offer potential for developing macrophage-targeted therapeutic strategies in pulmonary fibrosis.
Collapse
Affiliation(s)
- So-Yi Chang
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California Davis, Davis, CA, United States
- Division of Nephrology, Department of Internal Medicine, University of California Davis, Davis, CA, United States
| | - Wen-Hsin Chang
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California Davis, Davis, CA, United States
- Division of Nephrology, Department of Internal Medicine, University of California Davis, Davis, CA, United States
| | - David C. Yang
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California Davis, Davis, CA, United States
| | - Qi-Sheng Hong
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California Davis, Davis, CA, United States
- Division of Nephrology, Department of Internal Medicine, University of California Davis, Davis, CA, United States
| | - Ssu-Wei Hsu
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California Davis, Davis, CA, United States
- Division of Nephrology, Department of Internal Medicine, University of California Davis, Davis, CA, United States
| | - Reen Wu
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California Davis, Davis, CA, United States
| | - Ching-Hsien Chen
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California Davis, Davis, CA, United States
- Division of Nephrology, Department of Internal Medicine, University of California Davis, Davis, CA, United States
| |
Collapse
|
5
|
Zhou X, Ma D, He YX, Jin J, Wang HL, Wang YF, Yang F, Liu JQ, Chen J, Li Z. Kangfuxin solution alleviates esophageal stenosis after endoscopic submucosal dissection: A natural ingredient strategy. World J Gastroenterol 2025; 31:98561. [PMID: 39777242 PMCID: PMC11684190 DOI: 10.3748/wjg.v31.i1.98561] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/08/2024] [Accepted: 10/25/2024] [Indexed: 12/09/2024] Open
Abstract
BACKGROUND Esophageal stricture ranks among the most significant complications following endoscopic submucosal dissection (ESD). Excessive fibrotic repair is a typical pathological feature leading to stenosis after ESD. AIM To examine the effectiveness and underlying mechanism of Kangfuxin solution (KFX) in mitigating excessive fibrotic repair of the esophagus post-ESD. METHODS Pigs received KFX at 0.74 mL/kg/d for 21 days after esophageal full circumferential ESD. Endoscopic examinations occurred on days 7 and 21 post-ESD. In vitro, recombinant transforming growth factor (TGF)-β1 (5 ng/mL) induced a fibrotic microenvironment in primary esophageal fibroblasts (pEsF). After 24 hours of KFX treatment (at 1.5%, 1%, and 0.5%), expression of α-smooth muscle actin-2 (ACTA2), fibronectin (FN), and type collagen I was assessed. Profibrotic signaling was analyzed, including TGF-β1, Smad2/3, and phosphor-smad2/3 (p-Smad2/3). RESULTS Compared to the Control group, the groups treated with KFX and prednisolone exhibited reduced esophageal stenosis, lower weight loss rates, and improved food tolerance 21 d after ESD. After treatment, Masson staining revealed thinner and less dense collagen fibers in the submucosal layer. Additionally, the expression of fibrotic effector molecules was notably inhibited. Mechanistically, KFX downregulated the transduction levels of fibrotic functional molecules such as TGF-β1, Smad2/3, and p-Smad2/3. In vitro, pEsF exposed to TGF-β1-induced fibrotic microenvironment displayed increased fibrotic activity, which was reversed by KFX treatment, leading to reduced activation of ACTA2, FN, and collagen I. The 1.5% KFX treatment group showed decreased expression of p-Smad 2/3 in TGF-β1-activated pEsF. CONCLUSION KFX showed promise as a therapeutic option for post-full circumferential esophageal ESD strictures, potentially by suppressing fibroblast fibrotic activity through modulation of the TGF-β1/Smads signaling pathway.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Spleen and Stomach Diseases, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, Sichuan Province, China
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, The Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Dan Ma
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 20082, China
| | - Yi-Xiang He
- Department of Spleen and Stomach Diseases, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, Sichuan Province, China
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, The Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Jing Jin
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 20082, China
| | - Hong-Lian Wang
- Research Center of Integrated Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Yun-Feng Wang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 20082, China
| | - Fan Yang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 20082, China
| | - Jian-Qin Liu
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, The Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou 646000, Sichuan Province, China
- Research Center of Integrated Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Jie Chen
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 20082, China
| | - Zhi Li
- Department of Spleen and Stomach Diseases, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, Sichuan Province, China
- School of Integrated Traditional Chinese and Western Clinical Medicine, North Sichuan Medical College, Nanchong, 637100, Sichuan Province, China
- The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, The Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou 646000, Sichuan Province, China
| |
Collapse
|
6
|
Zhuo J, Chu L, Liu D, Zhang J, Chen W, Huang H, Yu Q, Meng X, Zou F, Cai S, Dong H. Tetrandrine Alleviates Pulmonary Fibrosis by Modulating Lung Microbiota-Derived Metabolism and Ameliorating Alveolar Epithelial Cell Senescence. Phytother Res 2025; 39:298-314. [PMID: 39510818 DOI: 10.1002/ptr.8374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/30/2024] [Accepted: 10/20/2024] [Indexed: 11/15/2024]
Abstract
Tetrandrine (TET) is a minimally toxic drug extracted from the root of Stephania tetrandra. We previously demonstrated that TET could ameliorate pulmonary fibrosis (PF) by modulating autophagy. However, the mechanism behind TET's protective effects on PF remains unclear. In this study, we utilized 16S rRNA gene sequencing, nontargeted metabolomic analysis, and network pharmacology to identify changes in lung microbiota and metabolites that mediate alveolar epithelial cell senescence in bleomycin (BLM)-induced PF in mice. Additionally, we employed Western blot analysis, RT-PCR, and immunofluorescence staining to investigate the in vitro and in vivo effects of TET and its influential bacterial metabolites on PF. The TET intervention alleviated PF by regulating the compositions of lung microbial communities (Streptococcus, Micrococcus, Acinetobacter, Altererythrobacter, Atopostipes, Candidatus Cloacimonas, Clostridium sensu stricto 1, Sphingomonas, Listeria, Blautia, and Pseudomonas) and metabolites (3,4-dihydroxyphenylpropionic acid (3,4-DHPPA), 6-Aminonicotinamide, N-acetyl-5-methoxykynuramine, and resiniferatoxin). Through network pharmacological analysis, it was determined that 3,4-DHPPA played a crucial role in alleviating PF by further inhibiting the senescence of alveolar epithelial cells, a finding further validated in ex vivo experiments. TET mitigated BLM-induced PF in murine models through the modulation of lung microbiota composition and metabolism. Specifically, TET augmented the level of the microbiota-derived metabolite, 3,4-DHPPA, which in turn attenuated alveolar epithelial cell senescence.
Collapse
Affiliation(s)
- Jinzhong Zhuo
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lanhe Chu
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dongyu Liu
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinming Zhang
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weimou Chen
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haohua Huang
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qi Yu
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaojin Meng
- School of Public Health, Southern Medical University, Guangzhou, China
| | - Fei Zou
- School of Public Health, Southern Medical University, Guangzhou, China
| | - Shaixi Cai
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hangming Dong
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Ding JY, Meng TT, Du RL, Song XB, Li YX, Gao J, Ji R, He QY. Bibliometrics of trends in global research on the roles of stem cells in myocardial fibrosis therapy. World J Stem Cells 2024; 16:1086-1105. [PMID: 39734477 PMCID: PMC11669986 DOI: 10.4252/wjsc.v16.i12.1086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/05/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND Myocardial fibrosis, a condition linked to several cardiovascular diseases, is associated with a poor prognosis. Stem cell therapy has emerged as a potential treatment option and the application of stem cell therapy has been studied extensively. However, a comprehensive bibliometric analysis of these studies has yet to be conducted. AIM To map thematic trends, analyze research hotspots, and project future directions of stem cell-based myocardial fibrosis therapy. METHODS We conducted a bibliometric and visual analysis of studies in the Web of Science Core Collection using VOSviewer and Microsoft Excel. The dataset included 1510 articles published between 2001 and 2024. Countries, organizations, authors, references, keywords, and co-citation networks were examined to identify evolving research trends. RESULTS Our findings revealed a steady increase in the number of publications, with a projected increase to over 200 publications annually by 2030. Initial research focused on stem cell-based therapy, particularly for myocardial infarction and heart failure. More recently, there has been a shift toward cell-free therapy, involving extracellular vesicles, exosomes, and microRNAs. Key research topics include angiogenesis, inflammation, apoptosis, autophagy, and oxidative stress. CONCLUSION This analysis highlights the evolution of stem cell therapies for myocardial fibrosis, with emerging interest in cell-free approaches. These results are expected to guide future scientific exploration and decision-making.
Collapse
Affiliation(s)
- Jing-Yi Ding
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Tian-Tian Meng
- Department of Rehabilitation, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100071, China
| | - Ruo-Lin Du
- Department of Emergency Medicine, South Branch of Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xin-Bin Song
- Department of Intensive Care Unit, Zhumadian Hospital of Traditional Chinese Medicine, Zhumadian 463000, Henan Province, China
| | - Yi-Xiang Li
- Department of Chinese Medicine, The Third People's Hospital of Henan Province, Zhengzhou 450000 Henan Province, China
| | - Jing Gao
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Ran Ji
- Department of Intensive Care Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Qing-Yong He
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
8
|
Huang W, Zheng J, Wang M, Du LY, Bai L, Tang H. The potential therapeutic role of melatonin in organ fibrosis: a comprehensive review. Front Med (Lausanne) 2024; 11:1502368. [PMID: 39735699 PMCID: PMC11681627 DOI: 10.3389/fmed.2024.1502368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/30/2024] [Indexed: 12/31/2024] Open
Abstract
Organ fibrosis is a pathological process characterized by the inability of normal tissue cells to regenerate sufficiently to meet the dynamic repair demands of chronic injury, resulting in excessive extracellular matrix deposition and ultimately leading to organ dysfunction. Despite the increasing depth of research in the field of organ fibrosis and a more comprehensive understanding of its pathogenesis, effective treatments for fibrosis-related diseases are still lacking. Melatonin, a neuroendocrine hormone synthesized by the pineal gland, plays a crucial role in regulating biological rhythms, sleep, and antioxidant defenses. Recent studies have shown that melatonin may have potential in inhibiting organ fibrosis, possibly due to its functions in anti-oxidative stress, anti-inflammation, remodeling the extracellular matrix (ECM), inhibiting epithelial-mesenchymal transition (EMT), and regulating apoptosis, thereby alleviating fibrosis. This review aims to explore the therapeutic potential of melatonin in fibrosis-related human diseases using findings from various in vivo and in vitro studies. These discoveries should provide important insights for the further development of new drugs to treat fibrosis.
Collapse
Affiliation(s)
- Wei Huang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Juan Zheng
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Ming Wang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Ling-Yao Du
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Lang Bai
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institute of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Zeng Y, Li J, Zheng Y, Zhang D, Zhong N, Zuo X, Li Y, Yu W, Lu J. Development and validation of a predictive model for submucosal fibrosis in patients with early gastric cancer undergoing endoscopic submucosal dissection: experience from a large tertiary center. Ann Med 2024; 56:2391536. [PMID: 39149760 PMCID: PMC11328799 DOI: 10.1080/07853890.2024.2391536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/25/2024] [Accepted: 08/02/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Submucosal fibrosis is associated with adverse events of endoscopic submucosal dissection (ESD). The present study mainly aimed to establish a predictive model for submucosal fibrosis in patients with early gastric cancer (EGC) undergoing ESD. METHODS Eligible patients with EGC, identified at Qilu Hospital of Shandong University from April 2013 to December 2023, were retrospectively included and randomly split into a training set and a validation set in a 7:3 ratio. Logistic regression analyses were used to pinpoint the risk factors for submucosal fibrosis. A nomogram was developed and confirmed using receiver operating characteristic (ROC) curves, calibration plots, Hosmer-Lemeshow (H-L) tests, and decision curve analysis (DCA) curves. Besides, a predictive model for severe submucosal fibrosis was further conducted and tested. RESULTS A total of 516 cases in the training group and 220 cases in the validation group were recruited. The nomogram for submucosal fibrosis contained the following items: tumour location (long axis), tumour location (short axis), ulceration, and biopsy pathology. ROC curves showed high efficiency with an area under the ROC of 0.819 in the training group, and 0.812 in the validation group. Calibration curves and H-L tests indicated good consistency. DCA proved the nomogram to be clinically beneficial. Furthermore, the four items were also applicable for a nomogram predicting severe fibrosis, and the model performed well. CONCLUSION The predictive models, initially constructed in this study, were validated as convenient and feasible for endoscopists to predict submucosal fibrosis and severe fibrosis in patients with EGC undergoing ESD.
Collapse
Affiliation(s)
- Yunqing Zeng
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jinhou Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Department of Gastroenterology, Taian City Central Hospital, Taian, Shandong, China
| | - Yuan Zheng
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Di Zhang
- Department of Medical Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Ning Zhong
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiuli Zuo
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yanqing Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Wenbin Yu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jiaoyang Lu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
10
|
Liu Y, Ji J, Zheng S, Wei A, Li D, Shi B, Han X, Chen X. Senescent lung-resident mesenchymal stem cells drive pulmonary fibrogenesis through FGF-4/FOXM1 axis. Stem Cell Res Ther 2024; 15:309. [PMID: 39289765 PMCID: PMC11409797 DOI: 10.1186/s13287-024-03866-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/27/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is an age-related disease featured with abnormal fibrotic response and compromised lung function. Cellular senescence is now considered as an essential driving mechanism for IPF. Given the poor knowledge of the mechanisms underpinning IPF progression, understanding the cellular processes and molecular pathways is critical for developing effective therapies of IPF. METHODS Lung fibrosis was induced using bleomycin in C57BL/6 mice. Cellular senescence was measured by immunofluorescence. The effects of FGF-4 on fibroblast activation markers and signaling molecules were assessed with western blot and qPCR. RESULTS We demonstrated elevated abundance of senescent mesenchymal stem cells (MSCs) in IPF lung tissues, which was tightly correlated with the severity of pulmonary fibrosis in vivo. In addition, senescent MSCs could effectively induce the phenotype of pulmonary fibrosis both in vitro and in vivo. To further confirm how senescent MSCs regulate IPF progression, we demonstrate that FGF-4 is significantly elevated in senescent MSCs, which can induce the activation of pulmonary fibroblasts. In vitro, FGF-4 can activate Wnt signaling in a FOXM1-dependent manner. Inhibition of FOXM1 via thiostrepton effectively impairs FGF-4-induced activation of pulmonary fibroblast and dramatically suppresses the development of pulmonary fibrosis. CONCLUSION These findings reveal that FGF-4 plays a crucial role in senescent MSCs-mediated pulmonary fibrogenesis, and suggests that strategies aimed at deletion of senescent MSCs or blocking the FGF-4/FOXM1 axis could be effective in the therapy of IPF.
Collapse
Affiliation(s)
- Yuxin Liu
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Jie Ji
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Shudan Zheng
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Ai Wei
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Dongmei Li
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Bin Shi
- Pulmonary and Critical Care Medicine, Suqian People's Hospital of Nanjing Gulou Hospital Group, Suqian Scientific Research Institute of Nanjing University Medical School, Nanjing University, Suqian, Jiangsu, 223800, China.
| | - Xiaodong Han
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China.
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China.
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, China.
| | - Xiang Chen
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China.
- Department of Basic Medical Science, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu, 224008, China.
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China.
| |
Collapse
|
11
|
Ma J, Ding L, Zang X, Wei R, Yang Y, Zhang W, Su H, Li X, Li M, Sun J, Zhang Z, Wang Z, Zhao D, Li X, Zhao L, Tong X. Licoricesaponin G2 ameliorates bleomycin-induced pulmonary fibrosis via targeting TNF-α signaling pathway and inhibiting the epithelial-mesenchymal transition. Front Pharmacol 2024; 15:1437231. [PMID: 39301567 PMCID: PMC11412005 DOI: 10.3389/fphar.2024.1437231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/21/2024] [Indexed: 09/22/2024] Open
Abstract
Background Pulmonary fibrosis (PF) emerges as a significant pulmonary sequelae in the convalescent phase of coronavirus disease 2019 (COVID-19), with current strategies neither specifically preventive nor therapeutic. Licoricesaponin G2 (LG2) displays a spectrum of natural activities, including antibacterial, anti-inflammatory, and antioxidant properties, and has been effectively used in treating various respiratory conditions. However, the potential protective effects of LG2 against PF remain underexplored. Methods Network analysis and molecular docking were conducted in combination to identify the core targets and pathways through which LG2 acts against PF. In the model of bleomycin (BLM)-induced C57 mice and transforming growth factor-β1 (TGF-β1)-induced A549 and MRC5 cells, techniques such as western blot (WB), quantitative Real-Time PCR (qPCR), Immunohistochemistry (IHC), Immunofluorescence (IF), and Transwell migration assays were utilized to analyze the expression of Epithelial-mesenchymal transition (EMT) and inflammation proteins. Based on the analysis above, we identified targets and potential mechanisms underlying LG2's effects against PF. Results Network analysis has suggested that the mechanism by which LG2 combats PF may involve the TNF-α pathway. Molecular docking studies have demonstrated a high binding affinity of LG2 to TNF-α and MMP9. Observations from the study indicated that LG2 may mitigate PF by modulating EMT and extracellular matrix (ECM) remodeling. It is proposed that the therapeutic effect is likely arises from the inhibition of inflammatory expression through regulation of the TNF-α pathway. Conclusion LG2 mitigates PF by suppressing TNF-α signaling pathway activation, modulating EMT, and remodeling the ECM. These results provide compelling evidence supporting the use of LG2 as a potential natural therapeutic agent for PF in clinical trials.
Collapse
Affiliation(s)
- Jing Ma
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Lu Ding
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xiaoyu Zang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Ruonan Wei
- Shiyan Hospital of Traditional Chinese Medicine, Shiyan, China
| | - Yingying Yang
- China-Japan Friendship Hospital, National Center for Integrated Traditional Chinese and Western Medicine, Beijing, China
| | - Wei Zhang
- School of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Hang Su
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xueyan Li
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Min Li
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jun Sun
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zepeng Zhang
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zeyu Wang
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xiangyan Li
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Ministry of Education, Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang' Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaolin Tong
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Institute of Metabolic Diseases, Guang' Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
12
|
Huang Y, He W, Zhang Y, Zou Z, Han L, Luo J, Wang Y, Tang X, Li Y, Bao Y, Huang Y, Long XD, Fu Y, He M. Targeting SIRT2 in Aging-Associated Fibrosis Pathophysiology. Aging Dis 2024:AD.202.0513. [PMID: 39226168 DOI: 10.14336/ad.202.0513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/05/2024] [Indexed: 09/05/2024] Open
Abstract
Aging is a complex biological process that involves multi-level structural and physiological changes. Aging is a major risk factor for many chronic diseases. The accumulation of senescent cells changes the tissue microenvironment and is closely associated with the occurrence and development of tissue and organ fibrosis. Fibrosis is the result of dysregulated tissue repair response in the development of chronic inflammatory diseases. Recent studies have clearly indicated that SIRT2 is involved in regulating the progression of fibrosis, making it a potential target for anti-fibrotic drugs. SIRT2 is a NAD+ dependent histone deacetylase, shuttling between nucleus and cytoplasm, and is highly expressed in liver, kidney and heart, playing an important role in the occurrence and development of aging and fibrosis. Therefore, we summarized the role of SIRT2 in liver, kidney and cardiac fibrosis during aging.
Collapse
Affiliation(s)
- Yongjiao Huang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Basic Medicine, DeHong Vocational College, Dehong, Yunnan, China
- School of Basic Medicine, Kunming Medical University, Kunming, China
| | - Wei He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Basic Medicine, Kunming Medical University, Kunming, China
- Toxicology Department, Sichuan Center For Disease Control and Prevention, Chengdu, Sichuan, China
| | - Yingting Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhihui Zou
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Longchuan Han
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Luo
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Basic Medicine, Kunming Medical University, Kunming, China
| | - Yunqiu Wang
- Department of Biomedical Sciences and Synthetic Organic Chemistry, University College London, United Kingdom
| | - Xinxin Tang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Li
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhan Bao
- Department of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Ying Huang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi-Dai Long
- Clinicopathological Diagnosis &;amp Research Center, the Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
| | - Yinkun Fu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
13
|
Zeng C, Wu J, Li J. Pyruvate Kinase M2: A Potential Regulator of Cardiac Injury Through Glycolytic and Non-glycolytic Pathways. J Cardiovasc Pharmacol 2024; 84:1-9. [PMID: 38560918 PMCID: PMC11230662 DOI: 10.1097/fjc.0000000000001568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
ABSTRACT Adult animals are unable to regenerate heart cells due to postnatal cardiomyocyte cycle arrest, leading to higher mortality rates in cardiomyopathy. However, reprogramming of energy metabolism in cardiomyocytes provides a new perspective on the contribution of glycolysis to repair, regeneration, and fibrosis after cardiac injury. Pyruvate kinase (PK) is a key enzyme in the glycolysis process. This review focuses on the glycolysis function of PKM2, although PKM1 and PKM2 both play significant roles in the process after cardiac injury. PKM2 exists in both low-activity dimer and high-activity tetramer forms. PKM2 dimers promote aerobic glycolysis but have low catalytic activity, leading to the accumulation of glycolytic intermediates. These intermediates enter the pentose phosphate pathway to promote cardiomyocyte proliferation and heart regeneration. Additionally, they activate adenosine triphosphate (ATP)-sensitive K + (K ATP ) channels, protecting the heart against ischemic damage. PKM2 tetramers function similar to PKM1 in glycolysis, promoting pyruvate oxidation and subsequently ATP generation to protect the heart from ischemic damage. They also activate KDM5 through the accumulation of αKG, thereby promoting cardiomyocyte proliferation and cardiac regeneration. Apart from glycolysis, PKM2 interacts with transcription factors like Jmjd4, RAC1, β-catenin, and hypoxia-inducible factor (HIF)-1α, playing various roles in homeostasis maintenance, remodeling, survival regulation, and neovascularization promotion. However, PKM2 has also been implicated in promoting cardiac fibrosis through mechanisms like sirtuin (SIRT) 3 deletion, TG2 expression enhancement, and activation of transforming growth factor-β1 (TGF-β1)/Smad2/3 and Jak2/Stat3 signals. Overall, PKM2 shows promising potential as a therapeutic target for promoting cardiomyocyte proliferation and cardiac regeneration and addressing cardiac fibrosis after injury.
Collapse
Affiliation(s)
- Chenxin Zeng
- The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, China
- Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, China
| | - Jiangfeng Wu
- The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, China; and
| | - Junming Li
- The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, China
- Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, China
| |
Collapse
|
14
|
Maroto-García J, Moreno Álvarez A, Sanz de Pedro MP, Buño-Soto A, González Á. Serum biomarkers for liver fibrosis assessment. ADVANCES IN LABORATORY MEDICINE 2024; 5:115-130. [PMID: 38939201 PMCID: PMC11206202 DOI: 10.1515/almed-2023-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/12/2023] [Indexed: 06/29/2024]
Abstract
Liver fibrosis is the result of chronic liver injury of different etiologies produced by an imbalance between the synthesis and degeneration of the extracellular matrix and dysregulation of physiological mechanisms. Liver has a high regenerative capacity in the early stage of chronic diseases so a prompt liver fibrosis detection is important. Consequently, an easy and economic tool that could identify patients with liver fibrosis at the initial stages is needed. To achieve this, many non-invasive serum direct, such as hyaluronic acid or metalloproteases, and indirect biomarkers have been proposed to evaluate liver fibrosis. Also, there have been developed formulas that combine these biomarkers, some of them also introduce clinical and/or demographic parameters, like FIB-4, non-alcoholic fatty liver disease fibrosis score (NFS), enhance liver fibrosis (ELF) or Hepamet fibrosis score (HFS). In this manuscript we critically reviewed different serum biomarkers and formulas for their utility in the diagnosis and progression of liver fibrosis.
Collapse
Affiliation(s)
| | - Ana Moreno Álvarez
- Biochemistry Department, Clínica Universidad de Navarra, Pamplona, Spain
| | | | - Antonio Buño-Soto
- Laboratory Medicine Department, Hospital Universitario La Paz, Madrid, Spain
- Hospital La Paz Institute for Health Research (IdiPaz), Madrid, Spain
| | - Álvaro González
- Biochemistry Department, Clínica Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| |
Collapse
|
15
|
Xiu AY, Ding Q, Zhu CP, Zhang CQ. The α-1 Adrenergic Receptor Antagonist Doxazosin Attenuates Liver Fibrosis by Alleviating Sinusoidal Capillarization and Liver Angiogenesis. Adv Biol (Weinh) 2024; 8:e2300513. [PMID: 38494421 DOI: 10.1002/adbi.202300513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 02/02/2024] [Indexed: 03/19/2024]
Abstract
Liver fibrosis and cirrhosis, which are caused by chronic liver injury, represent common and intractable clinical challenges of global importance. However, effective therapeutics are lacking. Therefore, the study examines the effect of doxazosin on liver fibrosis. Carbon tetrachloride (CCl4) is injected into mice to establish a liver fibrosis model. Doxazosin (5 and 10 mg/kg) is administered daily by gavage. HE staining, Masson staining, Sirius Red staining, scanning electron microscopy, western blotting, real-time PCR, and immunofluorescence analysis are performed to estimate liver fibrosis and sinusoidal capillarization in mice. Cell Counting Kit-8 assays, western blotting, immunofluorescence analysis, tube formation, and transwell migration assays are performed on human umbilical vein endothelial cells (HUVECs) and human hepatic sinusoidal endothelial cells (HHSECs) to elucidate the potential mechanism of doxazosin. Doxazosin alleviates liver fibrosis and sinusoidal capillarization in CCl4-induced mice. Angiogenesis is attenuated by doxazosin in HUVECs and HHSECs. This study demonstrates that doxazosin attenuated liver fibrosis by alleviating sinusoidal capillarization and liver angiogenesis.
Collapse
Affiliation(s)
- Ai-Yuan Xiu
- Department of Gastroenterology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
| | - Qian Ding
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Chang-Peng Zhu
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Chun-Qing Zhang
- Department of Gastroenterology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| |
Collapse
|
16
|
Wang J, Zou J, Shi Y, Zeng N, Guo D, Wang H, Zhao C, Luan F, Zhang X, Sun J. Traditional Chinese medicine and mitophagy: A novel approach for cardiovascular disease management. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155472. [PMID: 38461630 DOI: 10.1016/j.phymed.2024.155472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/06/2024] [Accepted: 02/20/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality worldwide, imposing an enormous economic burden on individuals and human society. Laboratory studies have identified several drugs that target mitophagy for the prevention and treatment of CVD. Only a few of these drugs have been successful in clinical trials, and most studies have been limited to animal and cellular models. Furthermore, conventional drugs used to treat CVD, such as antiplatelet agents, statins, and diuretics, often result in adverse effects on patients' cardiovascular, metabolic, and respiratory systems. In contrast, traditional Chinese medicine (TCM) has gained significant attention for its unique theoretical basis and clinical efficacy in treating CVD. PURPOSE This paper systematically summarizes all the herbal compounds, extracts, and active monomers used to target mitophagy for the treatment of CVD in the last five years. It provides valuable information for researchers in the field of basic cardiovascular research, pharmacologists, and clinicians developing herbal medicines with fewer side effects, as well as a useful reference for future mitophagy research. METHODS The search terms "cardiovascular disease," "mitophagy," "herbal preparations," "active monomers," and "cardiac disease pathogenesis" in combination with "natural products" and "diseases" were used to search for studies published in the past five years until January 2024. RESULTS Studies have shown that mitophagy plays a significant role in the progression and development of CVD, such as atherosclerosis (AS), heart failure (HF), myocardial infarction (MI), myocardial ischemia/reperfusion injury (MI/RI), cardiac hypertrophy, cardiomyopathy, and arrhythmia. Herbal compound preparations, crude extracts, and active monomers have shown potential as effective treatments for these conditions. These substances protect cardiomyocytes by inducing mitophagy, scavenging damaged mitochondria, and maintaining mitochondrial homeostasis. They display notable efficacy in combating CVD. CONCLUSION TCM (including herbal compound preparations, extracts, and active monomers) can treat CVD through various pharmacological mechanisms and signaling pathways by inducing mitophagy. They represent a hotspot for future cardiovascular basic research and a promising candidate for the development of future cardiovascular drugs with fewer side effects and better therapeutic efficacy.
Collapse
Affiliation(s)
- Jinhui Wang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Junbo Zou
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Yajun Shi
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, PR China
| | - Dongyan Guo
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - He Wang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Chongbo Zhao
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Fei Luan
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China.
| | - Xiaofei Zhang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China.
| | - Jing Sun
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China.
| |
Collapse
|
17
|
Maroto-García J, Moreno-Álvarez A, Sanz de Pedro MP, Buño-Soto A, González Á. Biomarcadores séricos para la evaluación de la fibrosis hepática. ADVANCES IN LABORATORY MEDICINE 2024; 5:131-147. [PMID: 38939202 PMCID: PMC11206201 DOI: 10.1515/almed-2023-0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/12/2023] [Indexed: 06/29/2024]
Abstract
La fibrosis hepática se desarrolla como respuesta a la presencia de daño hepático crónico de diferentes etiologías, provocando un desequilibrio entre la síntesis y degeneración de la matriz extracelular y la desregulación de diversos mecanismos fisiológicos. En los estadios iniciales de las patologías crónicas, el hígado posee una elevada capacidad de regeneración, por lo que la detección temprana de la fibrosis hepática resulta esencial. En este contexto, es preciso contar con herramientas sencillas y económicas que permitan detectar la fibrosis hepática en sus fases iniciales. Para evaluar la fibrosis hepática, se han propuesto multitud de biomarcadores séricos no invasivos, tanto directos, como el ácido hialurónico o las metaloproteasas, como indirectos. Así mismo, se han desarrollado diversas fórmulas que combinan dichos biomarcadores junto con parámetros demográficos, como el índice FIB-4, el índice de fibrosis en la enfermedad de hígado graso no alcohólico (NFS, por sus siglas en inglés), la prueba ELF o el score de fibrosis Hepamet (HFS, por sus siglas en inglés). En el presente manuscrito, realizamos una revisión crítica del valor diagnóstico y pronóstico de los diferentes biomarcadores séricos y fórmulas actualmente existentes.
Collapse
Affiliation(s)
- Julia Maroto-García
- Departamento de Bioquímica, Clínica Universidad de Navarra, Pamplona, España
| | - Ana Moreno-Álvarez
- Departamento de Bioquímica, Clínica Universidad de Navarra, Pamplona, España
| | | | - Antonio Buño-Soto
- Departamento de Análisis Clínicos, Hospital Universitario La Paz, Madrid, España
- Instituto de investigación en salud del Hospital La (IdiPaz), Madrid, España
| | - Álvaro González
- Departamento de Bioquímica, Clínica Universidad de Navarra, Pamplona, España
- Instituto Navarro de investigación en salud (IdiSNA), Pamplona, España
| |
Collapse
|
18
|
She D, Jiang S, Yuan S. Association between serum cotinine and hepatic steatosis and liver fibrosis in adolescent: a population-based study in the United States. Sci Rep 2024; 14:11424. [PMID: 38763979 PMCID: PMC11102917 DOI: 10.1038/s41598-024-61771-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/09/2024] [Indexed: 05/21/2024] Open
Abstract
Tobacco exposure is known to be associated with a higher prevalence and incidence of liver diseases. Cotinine, a metabolite of nicotine, is a typical indicator of tobacco exposure. However, the relationship of serum cotinine levels with hepatic steatosis and liver fibrosis remains controversial and these relationships need more research to explored in American teenagers. Cross-sectional data included 1433 participants aged 12-19 from the National Health and Nutrition Examination Survey (NHANES) from 2017 to 2020 were thoroughly used for this study. The linear relationships between serum cotinine levels and the Liver Stiffness Measurement (LSM) and Controlled Attenuation Parameter (CAP) were examined using multiple linear regression models. Subgroup analysis, interaction tests, and nonlinear interactions were also carried out. Serum cotinine levels > 2.99 ng/ml [β = 0.41 (0.07, 0.76), p = 0.018] and 0.05-2.99 ng/ml [β = 0.24 (0.00, 0.49), p = 0.048] showed a significant positive connection with LSM in multivariate linear regression analysis when compared to serum cotinine levels ≤ 0.05 ng/ml (p for trend = 0.006). Moreover, we discovered an inverted U-shaped association of log2-transformed cotinine with LSM with an inflection point of 4.53 using a two-stage linear regression model. However, according to multiple regression analysis, serum cotinine and CAP did not significantly correlate (p = 0.512). In conclusion, this study demonstrated that smoking cessation and keep away from secondhand smoking may beneficial for liver health in American teenagers.
Collapse
Affiliation(s)
- Dan She
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Shangming Jiang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| | - Siqi Yuan
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| |
Collapse
|
19
|
Faust TF, Castañeda PG. Arthrofibrosis of the knee in pediatric orthopedic surgery. ACTA ORTOPEDICA MEXICANA 2024; 38:179-187. [PMID: 38862148 DOI: 10.35366/115813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Arthrofibrosis is a challenging complication associated with knee injuries in both children and adults. While much is known about managing arthrofibrosis in adults, it is necessary to understand its unique aspects and management strategies in the pediatric population. This paper provides an overview of arthrofibrosis in pediatric orthopedic surgery, focusing on its causes, implications, classifications, and management. This paper is a comprehensive review of the literature and existing research on arthrofibrosis in pediatric patients. Arthrofibrosis is characterized by excessive collagen production and adhesions, leading to restricted joint motion and pain. It is associated with an immune response and fibrosis within and around the joint. Arthrofibrosis can result from various knee injuries in pediatric patients, including tibial spine fractures, ACL and PCL injuries, and extra-articular procedures. Technical factors at the time of surgery play a role in the development of motion loss and should be addressed to minimize complications. Preventing arthrofibrosis through early physical therapy is recommended. Non-operative management, including dynamic splinting and serial casting, has shown some benefits. New pharmacologic approaches to lysis of adhesions have shown promise. Surgical interventions, consisting of arthroscopic lysis of adhesions (LOA) and manipulation under anesthesia (MUA), can significantly improve motion and functional outcomes. Arthrofibrosis poses unique challenges in pediatric patients, demanding a nuanced approach that includes prevention, early intervention with non-operative means, and improvements in surgical techniques. Modern pharmacological interventions offer promise for the future. Customized interventions and research focused on pediatric patients are critical for optimal outcomes.
Collapse
Affiliation(s)
- T F Faust
- Department of Research, Alabama College of Osteopathic Medicine. Alabama, USA
| | - P G Castañeda
- Baylor School of Medicine, Department of Pediatric Orthopedic Surgery, Texas Children's Hospital. USA
| |
Collapse
|
20
|
Papadakos KS, Gorji-Bahri G, Gialeli C, Hedner C, Hagerling C, Svensson MC, Jeremiasen M, Borg D, Fristedt R, Jirström K, Blom AM. The prognostic and potentially immunomodulatory role of cartilage oligomeric matrix protein in patients with gastric and esophageal adenocarcinoma. Cancer Immunol Immunother 2024; 73:93. [PMID: 38563861 PMCID: PMC10987352 DOI: 10.1007/s00262-024-03656-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/14/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Cartilage oligomeric matrix protein (COMP) is a novel regulator of the tumor microenvironment. Studies in colon cancer and pancreatobiliary adenocarcinoma have revealed COMP expression to be associated with decreased infiltration of immune cells in the tumor microenvironment. Herein, the expression of COMP was investigated in gastric and esophageal adenocarcinoma with particular reference to its the relationship with the immune microenvironment. METHODS COMP expression was evaluated in tissue microarrays representing primary tumors from 159 patients with chemo- and radiotherapy naïve esophageal and gastric adenocarcinoma and 67 matched samples of lymph node metastases using immunohistochemistry. Additionally, collagen fibers were stained with Sirius Red and evaluated with the FIJI macro TWOMBLI algorithm. RESULTS The expression of COMP in cancer cells in the entire cohort was associated with shorter overall survival (OS) (p = 0.013) and recurrence-free survival (RFS) (p = 0.029), while COMP expression in the stroma was correlated with shorter RFS (p = 0.042). Similar correlations were found for patients with gastric adenocarcinoma, whereas COMP expression was not prognostic in esophageal adenocarcinoma. Further, in the entire cohort, the expression of COMP in the stroma was correlated with exclusion of different populations of immune cells (CD8+, CD3+, FoxP3+, CD20+) from the tumor microenvironment. Finally, higher density and alignment of collagen fibers were correlated with the expression of COMP in the stroma. CONCLUSIONS Expression of COMP in gastric and esophageal adenocarcinoma was correlated with shorter OS and RFS. A reduced number of immune cells infiltrated the tumor microenvironment when COMP expression was detected. This phenomenon could be attributed to the denser collagen deposits, a hallmark of tumor fibrosis observed in COMP-expressing tumors.
Collapse
Affiliation(s)
- Konstantinos S Papadakos
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Inga Maria Nilsson's Street 53, 214 28, Malmö, Sweden
| | - Gilar Gorji-Bahri
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Inga Maria Nilsson's Street 53, 214 28, Malmö, Sweden
| | - Chrysostomi Gialeli
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Inga Maria Nilsson's Street 53, 214 28, Malmö, Sweden
- Cardiovascular Research - Translational Studies, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Charlotta Hedner
- Department of Clinical Sciences Lund, Oncology and Therapeutic Pathology, Lund University, Lund, Sweden
| | | | - Maria C Svensson
- Department of Clinical Sciences Lund, Oncology and Therapeutic Pathology, Lund University, Lund, Sweden
| | - Martin Jeremiasen
- Department of Clinical Sciences Lund, Surgery, Lund University, Lund, Sweden
| | - David Borg
- Department of Clinical Sciences Lund, Oncology and Therapeutic Pathology, Lund University, Lund, Sweden
| | - Richard Fristedt
- Department of Clinical Sciences Lund, Surgery, Lund University, Lund, Sweden
| | - Karin Jirström
- Department of Clinical Sciences Lund, Oncology and Therapeutic Pathology, Lund University, Lund, Sweden
| | - Anna M Blom
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Inga Maria Nilsson's Street 53, 214 28, Malmö, Sweden.
| |
Collapse
|
21
|
Hou M, Luo F, Ding Y, Bao X, Chen X, Liu L, Wu M. Let-7c-3p suppresses lens epithelial-mesenchymal transition by inhibiting cadherin-11 expression in fibrotic cataract. Mol Cell Biochem 2024; 479:743-759. [PMID: 37171723 DOI: 10.1007/s11010-023-04758-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023]
Abstract
Fibrotic cataract, including anterior subcapsular cataract (ASC) and posterior capsule opacification, always lead to visual impairment. Epithelial-mesenchymal transition (EMT) is a well-known event that causes phenotypic alterations in lens epithelial cells (LECs) during lens fibrosis. Accumulating studies have demonstrated that microRNAs are important regulators of EMT and fibrosis. However, the evidence explaining how microRNAs modulate the behavior and alter the cellular phenotypes of the lens epithelium in fibrotic cataract is insufficient. In this study, we found that hsa-let-7c-3p is downregulated in LECs in human ASC in vivo as well as in TGFβ2-induced EMT in vitro, indicating that hsa-let-7c-3p may participate in modulating the profibrotic processes in the lens. We then demonstrated that overexpression of hsa-let-7c-3p markedly suppressed human LEC proliferation and migration and attenuated TGFβ2-induced EMT and injury-induced ASC in a mouse model. In addition, hsa-let-7c-3p mediated lens fibrosis by directly targeting the CDH11 gene, which encodes cadherin-11 protein, an important mediator in the EMT signaling pathway. It decreased cadherin-11 protein expression at the posttranscriptional level but not at the transcriptional level by binding to a specific site in the 3-untranslated region (3'-UTR) of CDH11 mRNA. Moreover, blockade of cadherin-11 expression with a specific short hairpin RNA reversed TGFβ2-induced EMT in LECs in vitro. Collectively, these data demonstrated that hsa-let-7c-3p plays a clear role in attenuating ASC development and may be a novel candidate therapeutic for halting fibrosis and maintaining vision.
Collapse
Affiliation(s)
- Min Hou
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510623, China
| | - Furong Luo
- Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Haikou, 570311, China
| | - Yujie Ding
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510623, China
| | - Xuan Bao
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510623, China
| | - Xiaoyun Chen
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510623, China
| | - Liangping Liu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510623, China
| | - Mingxing Wu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510623, China.
| |
Collapse
|
22
|
Thandar M, Yang X, Zhu Y, Zhang X, Chen Z, Huang S, Chi P. Dysbiosis of gut microbiota and metabolites is associated with radiation-induced colorectal fibrosis and is restored by adipose-derived mesenchymal stem cell therapy. Life Sci 2024; 341:122502. [PMID: 38350495 DOI: 10.1016/j.lfs.2024.122502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/15/2024]
Abstract
AIMS This study aimed to investigate the effects of adipose-derived mesenchymal stem cells (ADSCs) on radiation-induced colorectal fibrosis (RICF) along with the associated dysbiosis of gut microbiota and metabolites. MAIN METHODS Fecal microbiota were assessed through 16S rRNA gene sequencing, and the fecal metabolome was characterized using liquid chromatography-mass spectrometry and gas chromatography-mass spectrometry. The correlation between microbiota and metabolome data was explored. KEY FINDINGS ADSC injection demonstrated a significant restoration of radiation-induced intestinal damage in vivo. At the phylum level, irradiated rats exhibited an increase in Bacteroidota and Campilobacterota, and a decrease in Firmicutes and Desulfobacterota, contrasting with the ADSC treatment group. Metabolomic analysis revealed 72 differently expressed metabolites (DEMs) from gas chromatography-mass spectrometry and 284 DEMs from liquid chromatography-mass spectrometry in the radiation group compared to the blank group. In the ADSC treatment group versus the radiation group, 36 DEMs from gas chromatography-mass spectrometry and 341 DEMs from liquid chromatography-mass spectrometry were identified. KEGG enrichment analysis implicated pathways such as steroid hormone biosynthesis, gap junction, primary bile acid biosynthesis, citrate cycle, cAMP signaling pathway, and alanine, aspartate, and glutamate metabolism during RICF progression and after treated with ADSCs. Correlation analysis highlighted the role of ADSCs in modulating the metabolic process of Camelledionol in fecal Bacteroides. SIGNIFICANCE These findings underscore the potential of ADSCs in reversing dysbiosis and restoring normal colonic flora in the context of RICF, offering valuable insights for therapeutic interventions targeting radiation-induced complications.
Collapse
Affiliation(s)
- Mya Thandar
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Department of Colorectal Surgery, Fuzhou, Fujian Province 350001, China
| | - Xiaojie Yang
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Department of Colorectal Surgery, Fuzhou, Fujian Province 350001, China; Department of Thoracic Surgery, Third Affiliated Hospital of Chongqing Medical University, Chongqing 401100, China
| | - Yuanchang Zhu
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Department of Colorectal Surgery, Fuzhou, Fujian Province 350001, China
| | - Xueying Zhang
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Department of Colorectal Surgery, Fuzhou, Fujian Province 350001, China
| | - Zhifen Chen
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China; Training Center of Minimally Invasive Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China.
| | - Shenghui Huang
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China; Training Center of Minimally Invasive Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China.
| | - Pan Chi
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Department of Colorectal Surgery, Fuzhou, Fujian Province 350001, China; Training Center of Minimally Invasive Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China.
| |
Collapse
|
23
|
Abdalla AME, Miao Y, Ahmed AIM, Meng N, Ouyang C. CAR-T cell therapeutic avenue for fighting cardiac fibrosis: Roadblocks and perspectives. Cell Biochem Funct 2024; 42:e3955. [PMID: 38379220 DOI: 10.1002/cbf.3955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/22/2024]
Abstract
Heart diseases remain the primary cause of human mortality in the world. Although conventional therapeutic opportunities fail to halt or recover cardiac fibrosis, the promising clinical results and therapeutic efficacy of engineered chimeric antigen receptor (CAR) T cell therapy show several advancements. However, the current models of CAR-T cells need further improvement since the T cells are associated with the triggering of excessive inflammatory cytokines that directly affect cardiac functions. Thus, the current study highlights the critical function of heart immune cells in tissue fibrosis and repair. The study also confirms CAR-T cell as an emerging therapeutic for treating cardiac fibrosis, explores the current roadblocks to CAR-T cell therapy, and considers future outlooks for research development.
Collapse
Affiliation(s)
- Ahmed M E Abdalla
- School of Biological Sciences and Technology, University of Jinan, Jinan, China
- Department of Biochemistry, College of Applied Science, University of Bahri, Khartoum, Sudan
| | - Yu Miao
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Ahmed I M Ahmed
- Department of Biochemistry, College of Applied Science, University of Bahri, Khartoum, Sudan
| | - Ning Meng
- School of Biological Sciences and Technology, University of Jinan, Jinan, China
| | - Chenxi Ouyang
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
24
|
Xiao Y, Vazquez-Padron RI, Martinez L, Singer HA, Woltmann D, Salman LH. Role of platelet factor 4 in arteriovenous fistula maturation failure: What do we know so far? J Vasc Access 2024; 25:390-406. [PMID: 35751379 PMCID: PMC9974241 DOI: 10.1177/11297298221085458] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The rate of arteriovenous fistula (AVF) maturation failure remains unacceptably high despite continuous efforts on technique improvement and careful pre-surgery planning. In fact, half of all newly created AVFs are unable to be used for hemodialysis (HD) without a salvage procedure. While vascular stenosis in the venous limb of the access is the culprit, the underlying factors leading to vascular narrowing and AVF maturation failure are yet to be determined. We have recently demonstrated that AVF non-maturation is associated with post-operative medial fibrosis and fibrotic stenosis, and post-operative intimal hyperplasia (IH) exacerbates the situation. Multiple pathological processes and signaling pathways are underlying the stenotic remodeling of the AVF. Our group has recently indicated that a pro-inflammatory cytokine platelet factor 4 (PF4/CXCL4) is upregulated in veins that fail to mature after AVF creation. Platelet factor 4 is a fibrosis marker and can be detected in vascular stenosis tissue, suggesting that it may contribute to AVF maturation failure through stimulation of fibrosis and development of fibrotic stenosis. Here, we present an overview of the how PF4-mediated fibrosis determines AVF maturation failure.
Collapse
Affiliation(s)
- Yuxuan Xiao
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Roberto I Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Laisel Martinez
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Harold A Singer
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Daniel Woltmann
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Loay H Salman
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
- Division of Nephrology and Hypertension, Albany Medical College, Albany, NY, USA
| |
Collapse
|
25
|
Ren K, Wang J, Li Y, Li Z, Zhou Z, Wu K, Li Y, Ge X, Ren J, Han X. Paclitaxel-coated balloon catheter for benign esophageal stenosis in a rabbit model. Sci Rep 2024; 14:2551. [PMID: 38291135 PMCID: PMC10827726 DOI: 10.1038/s41598-024-53078-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/27/2024] [Indexed: 02/01/2024] Open
Abstract
Most patients with benign esophageal stenosis require multiple or even continuous balloon dilation treatments to achieve symptom relief. In this study, eighteen rabbits were used to establish an esophageal benign stenosis model and were divided into a control group (n = 6), a balloon group (n = 6) and a PTX-coated balloon group (n = 6) to evaluate the feasibility and effectiveness of paclitaxel (PTX)-coated balloons for the rabbit esophageal benign stenosis model. The weight and esophageal diameter were recorded every 2 weeks until 8 weeks post-surgery. Hematoxylin-eosin staining, Masson's trichrome staining and immunohistochemical staining were performed for pathological analysis. Four weeks post-operation, there was a significant difference in weight between the control group and the balloon group (p = 0.01) and between the control group and the PTX balloon group (p = 0.01). There was a significant difference in the esophageal diameter between the balloon group and the PTX balloon group at 8 weeks post-operation (p = 0.02). Four weeks post-operation, the degree of inflammatory cell infiltration in the PTX balloon group was significantly lower than that in the control group (p = 0.002) and balloon group (p = 0.001). The degree of collagen deposition in the PTX balloon group was significantly lower than that in the control group (p = 0.002) and balloon group (p = 0.03). Eight weeks post-operation, the percentage of cells positive for TGF-β (p < 0.001), the degree of inflammatory cell infiltration (p = 0.02) and the degree of collagen deposition (p = 0.02) in the PTX balloon group were significantly lower than those in the balloon group. Therefore, PTX-coated balloons may alleviate the local inflammatory response and collagen deposition when used during dilation treatment of benign esophageal stenosis.
Collapse
Affiliation(s)
- Kewei Ren
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.
- Engineering Technology Research Center for Minimally Invasive, Interventional Tumors of Henan Province, Zhengzhou, Henan, 450052, People's Republic of China.
| | - Jianan Wang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Department of Interventional Radiotherapy, Zhoukou Center Hospital, Zhoukou, 46000, People's Republic of China
| | - Yahua Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Zongming Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Zihe Zhou
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Kunpeng Wu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Yifan Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Xiaoyong Ge
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Jianzhuang Ren
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052, People's Republic of China.
- Interventional Institute of Zhengzhou University, Zhengzhou, 450052, People's Republic of China.
| |
Collapse
|
26
|
Chai F, Peng H, Qin L, Liu C, Zeng Y, Wang R, Xu G, Wang R, Wei G, Huang H, Lan Y, Chen W, Wang C. MicroRNA miR-181d-5p regulates the MAPK signaling pathway by targeting mitogen-activated protein kinase 8 (MAPK8) to improve lupus nephritis. Gene 2024; 893:147961. [PMID: 37931853 DOI: 10.1016/j.gene.2023.147961] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/21/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND Lupus nephritis (LN) is a common immune disease. The microRNA (miR)-181d-5p is a potential target for treating kidney injury. However, the therapeutic role of miR-181d-5p in LN has not been investigated. This study aimed to investigate the role of miR-181d-5p in targeting mitogen-activated protein kinase 8 (MAPK8) and stimulating the MAPK signaling pathway in LN. METHODS RT-qPCR was performed to identify the variations in miR-181d-5p expression in peripheral blood mononuclear cells (PBMCs) obtained from 42 LN patients, 30 healthy individuals, 6 MRL/lpr mice and 6 C57BL/6 mice. Western blot was used to detect the effect of miR-181d-5p on the MAPK signaling pathway in THP-1 cells and MRL/lpr mice. Enzyme-linked immunosorbent assay (ELISA) was utilized to detect the effect of miR-181d-5p on antinuclear antibodies and inflammatory factors. A dual-luciferase reporter assay was used to verify whether miR-181d-5p directly targets MAPK8. Flow cytometry was performed to evaluate apoptosis rates in transfected THP-1 cells. RESULTS miR-181d-5p expression was downregulated in PBMCs of LN patients (P < 0.01) and MRL/lpr mice (P < 0.05). A dual luciferase reporter assay demonstrated that miR-181d-5p inhibits MAPK8 (P < 0.01). Overexpression of miR-181d-5p inhibited the phosphorylation of p38 (P < 0.001) and p44/42 (P < 0.01). Moreover, miR-181d-5p decreased the apoptosis rate of THP-1 cells (P < 0.001), and reduced the secretion of IL-6 (P < 0.01) and TNF-α (P < 0.01). Furthermore, overexpression of miR-181d-5p decreased anti-dsDNA antibody (P < 0.05), anti-Sm antibody (P < 0.01), and fibrosis levels in MRL/lpr mice. CONCLUSION Upregulation of miR-181d-5p showed anti-inflammatory and anti-apoptotic effects on THP-1 cells in vitro and kidney injury in vivo. These effects were achieved by miR-181d-5p targeting MAPK8 to inhibit phosphorylation of p38 and p44/42. These results may offer new insights for improving therapeutic strategies against lupus nephritis.
Collapse
Affiliation(s)
- Fu Chai
- Center for Medical Laboratory Science, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China; Graduate School of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Huixin Peng
- Center for Medical Laboratory Science, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China; Graduate School of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Linxiu Qin
- Center for Medical Laboratory Science, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China; Graduate School of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Chunhong Liu
- Center for Medical Laboratory Science, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Yonglong Zeng
- Center for Medical Laboratory Science, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Rong Wang
- Center for Medical Laboratory Science, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Guidan Xu
- Center for Medical Laboratory Science, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Rongqi Wang
- Center for Medical Laboratory Science, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Guijiang Wei
- Center for Medical Laboratory Science, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Huayi Huang
- Roswell Park Comprehensive Cancer Center, Surgical Oncology, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Yan Lan
- Department of Dermatology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Wencheng Chen
- Center for Medical Laboratory Science, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China.
| | - Chunfang Wang
- Center for Medical Laboratory Science, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China.
| |
Collapse
|
27
|
Yang S, Shi W, Liu Q, Song Y, Fang J. Nrf2 enhances the therapeutic efficiency of adipose-derived stem cells in the treatment of neurogenic erectile dysfunction in a rat model. Basic Clin Androl 2023; 33:39. [PMID: 38114903 PMCID: PMC10731878 DOI: 10.1186/s12610-023-00214-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/17/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Erectile dysfunction (ED) caused by intraoperative nerve injury is a major complication of pelvic surgery. Adipose-derived stem cells (ADSCs) have presented therapeutic potential in a rat model of bilateral cavernous nerve injury (BCNI), while inadequate in vivo viability has largely limited their application. Nuclear factor-E2-related Factor (Nrf2) is a key transcription factor that regulates cellular anti-oxidative stress. In this work, we investigated the effect of Nrf2 expression regulation on the viability of ADSCs, and explore its repair potential in a BCNI rat model. RESULTS The survival time of tert-Butylhydroquinone (tBHQ)-ADSCs in BCNI model increased obviously. In addition, the tBHQ-ADSCs group presented better restoration of major pelvic ganglion (MPG) nerve contents and fibers, better improvement of erectile function, and less penile fibrosis than the other groups. Moreover, the expression of Nrf2 and superoxide dismutase 1 (SOD1) were higher than those of other groups. CONCLUSION Nrf2 could enhance the anti-oxidative stress ability of ADSCs, so as to improve the therapeutic effect of ADSCs on BCNI rat model.
Collapse
Affiliation(s)
- Shangbin Yang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Tianhe Road 600, Guangzhou, 510630, China
| | - Wancheng Shi
- Department of Gastrointestinal Surgery, Shenshan Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, 516621, China
| | - Qianhui Liu
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Tianhe Road 600, Guangzhou, 510630, China
| | - Yingqiu Song
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Tianhe Road 600, Guangzhou, 510630, China
| | - Jiafeng Fang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Tianhe Road 600, Guangzhou, 510630, China.
| |
Collapse
|
28
|
Kim SW, Lee JY, Lee HC, Ahn JB, Kim JH, Park IS, Cheon JH, Kim DH. Downregulation of Heat Shock Protein 72 Contributes to Fibrostenosis in Crohn's Disease. Gut Liver 2023; 17:905-915. [PMID: 36814356 PMCID: PMC10651382 DOI: 10.5009/gnl220308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/21/2022] [Accepted: 11/29/2022] [Indexed: 02/24/2023] Open
Abstract
Background/Aims Crohn's disease (CD) with recurrent inflammation can cause intestinal fibrostenosis due to dysregulated deposition of extracellular matrix. However, little is known about the pathogenesis of fibrostenosis. Here, we performed a differential proteomic analysis between normal, inflamed, and fibrostenotic specimens of patients with CD and investigated the roles of the candidate proteins in myofibroblast activation and fibrosis. Methods We performed two-dimensional difference gel electrophoresis and identified candidate proteins using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and orbitrap liquid chromatography-mass spectrometry. We also verified the levels of candidate proteins in clinical specimens and examined their effects on 18Co myofibroblasts and Caco-2 intestinal epithelial cells. Results We identified five of 30 proteins (HSP72, HSPA5, KRT8, PEPCK-M, and FABP6) differentially expressed in fibrostenotic CD. Among these proteins, the knockdown of heat shock protein 72 (HSP72) promoted the activation and wound healing of myofibroblasts. Moreover, knockdown of HSP72 induced the epithelial-mesenchymal transition of intestinal epithelial cells by reducing E-cadherin and inducing fibronectin and α-smooth muscle actin, which contribute to fibrosis. Conclusions HSP72 is an important mediator that regulates myofibroblasts and epithelial-mesenchymal transition in fibrosis of CD, suggesting that HSP72 can serve as a target for antifibrotic therapy.
Collapse
Affiliation(s)
- Seung Won Kim
- Department of Internal Medicine and Institute of Gastroenterology, Graduate School of Medical Science, Brain Korea 21 Project, Seoul, Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jae-Young Lee
- Department of Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Han Cheol Lee
- Department of Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Bum Ahn
- Department of Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Ji Hyung Kim
- Department of Internal Medicine and Institute of Gastroenterology, Graduate School of Medical Science, Brain Korea 21 Project, Seoul, Korea
| | - I Seul Park
- Department of Internal Medicine and Institute of Gastroenterology, Graduate School of Medical Science, Brain Korea 21 Project, Seoul, Korea
| | - Jae Hee Cheon
- Department of Internal Medicine and Institute of Gastroenterology, Graduate School of Medical Science, Brain Korea 21 Project, Seoul, Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Duk Hwan Kim
- Digestive Disease Center, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| |
Collapse
|
29
|
Ming WH, Luan ZL, Yao Y, Liu HC, Hu SY, Du CX, Zhang C, Zhao YH, Huang YZ, Sun XW, Qiao RF, Xu H, Guan YF, Zhang XY. Pregnane X receptor activation alleviates renal fibrosis in mice via interacting with p53 and inhibiting the Wnt7a/β-catenin signaling. Acta Pharmacol Sin 2023; 44:2075-2090. [PMID: 37344564 PMCID: PMC10545797 DOI: 10.1038/s41401-023-01113-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/18/2023] [Indexed: 06/23/2023]
Abstract
Renal fibrosis is a common pathological feature of chronic kidney disease (CKD) with various etiologies, which seriously affects the structure and function of the kidney. Pregnane X receptor (PXR) is a member of the nuclear receptor superfamily and plays a critical role in regulating the genes related to xenobiotic and endobiotic metabolism in mammals. Previous studies show that PXR is expressed in the kidney and has protective effect against acute kidney injury (AKI). In this study, we investigated the role of PXR in CKD. Adenine diet-induced CKD (AD) model was established in wild-type and PXR humanized (hPXR) mice, respectively, which were treated with pregnenolone-16α-carbonitrile (PCN, 50 mg/kg, twice a week for 4 weeks) or rifampicin (RIF, 10 mg·kg-1·d-1, for 4 weeks). We showed that both PCN and RIF, which activated mouse and human PXR, respectively, improved renal function and attenuated renal fibrosis in the two types of AD mice. In addition, PCN treatment also alleviated renal fibrosis in unilateral ureter obstruction (UUO) mice. On the contrary, PXR gene deficiency exacerbated renal dysfunction and fibrosis in both adenine- and UUO-induced CKD mice. We found that PCN treatment suppressed the expression of the profibrotic Wnt7a and β-catenin in AD mice and in cultured mouse renal tubular epithelial cells treated with TGFβ1 in vitro. We demonstrated that PXR was colocalized and interacted with p53 in the nuclei of tubular epithelial cells. Overexpression of p53 increased the expression of Wnt7a, β-catenin and its downstream gene fibronectin. We further revealed that p53 bound to the promoter of Wnt7a gene to increase its transcription and β-catenin activation, leading to increased expression of the downstream profibrotic genes, which was inhibited by PXR. Taken together, PXR activation alleviates renal fibrosis in mice via interacting with p53 and inhibiting the Wnt7a/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Wen-Hua Ming
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
- Health Science Center, East China Normal University, Shanghai, 200241, China
| | - Zhi-Lin Luan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
- Dalian Key Laboratory for Nuclear Receptors in Major Metabolic Diseases, Dalian, 116044, China
| | - Yao Yao
- Department of nephrology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226006, China
| | - Hang-Chi Liu
- Health Science Center, East China Normal University, Shanghai, 200241, China
| | - Shu-Yuan Hu
- Department of nephrology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226006, China
| | - Chun-Xiu Du
- Division of Nephrology, Wuhu Hospital, East China Normal University, Wuhu, 241100, China
| | - Cong Zhang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Yi-Hang Zhao
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Ying-Zhi Huang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Xiao-Wan Sun
- Health Science Center, East China Normal University, Shanghai, 200241, China
| | - Rong-Fang Qiao
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Hu Xu
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
- Dalian Key Laboratory for Nuclear Receptors in Major Metabolic Diseases, Dalian, 116044, China
| | - You-Fei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China.
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China.
- Dalian Key Laboratory for Nuclear Receptors in Major Metabolic Diseases, Dalian, 116044, China.
| | - Xiao-Yan Zhang
- Health Science Center, East China Normal University, Shanghai, 200241, China.
- Division of Nephrology, Wuhu Hospital, East China Normal University, Wuhu, 241100, China.
| |
Collapse
|
30
|
Mitsui Y, Yamabe F, Hori S, Uetani M, Kobayashi H, Nagao K, Nakajima K. Molecular Mechanisms and Risk Factors Related to the Pathogenesis of Peyronie's Disease. Int J Mol Sci 2023; 24:10133. [PMID: 37373277 PMCID: PMC10299070 DOI: 10.3390/ijms241210133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/25/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Peyronie's disease (PD) is a benign condition caused by plaque formation on the tunica albuginea of the penis. It is associated with penile pain, curvature, and shortening, and contributes to erectile dysfunction, which worsens patient quality of life. In recent years, research into understanding of the detailed mechanisms and risk factors involved in the development of PD has been increasing. In this review, the pathological mechanisms and several closely related signaling pathways, including TGF-β, WNT/β-catenin, Hedgehog, YAP/TAZ, MAPK, ROCK, and PI3K/AKT, are described. Findings regarding cross-talk among these pathways are then discussed to elucidate the complicated cascade behind tunica albuginea fibrosis. Finally, various risk factors including the genes involved in the development of PD are presented and their association with the disease summarized. The purpose of this review is to provide a better understanding regarding the involvement of risk factors in the molecular mechanisms associated with PD pathogenesis, as well as to provide insight into disease prevention and novel therapeutic interventions.
Collapse
Affiliation(s)
- Yozo Mitsui
- Department of Urology, Toho University Faculty of Medicine, Tokyo 143-8540, Japan; (F.Y.); (S.H.); (M.U.); (H.K.); (K.N.); (K.N.)
| | | | | | | | | | | | | |
Collapse
|
31
|
Feng F, Wang LJ, Li JC, Chen TT, Liu L. Role of heparanase in ARDS through autophagy and exosome pathway (review). Front Pharmacol 2023; 14:1200782. [PMID: 37361227 PMCID: PMC10285077 DOI: 10.3389/fphar.2023.1200782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is the most common respiratory disease in ICU. Although there are many treatment and support methods, the mortality rate is still high. The main pathological feature of ARDS is the damage of pulmonary microvascular endothelium and alveolar epithelium caused by inflammatory reaction, which may lead to coagulation system disorder and pulmonary fibrosis. Heparanase (HPA) plays an significant role in inflammation, coagulation, fibrosis. It is reported that HPA degrades a large amount of HS in ARDS, leading to the damage of endothelial glycocalyx and inflammatory factors are released in large quantities. HPA can aggrandize the release of exosomes through syndecan-syntenin-Alix pathway, leading to a series of pathological reactions; at the same time, HPA can cause abnormal expression of autophagy. Therefore, we speculate that HPA promotes the occurrence and development of ARDS through exosomes and autophagy, which leads to a large amount of release of inflammatory factors, coagulation disorder and pulmonary fibrosis. This article mainly describes the mechanism of HPA on ARDS.
Collapse
Affiliation(s)
- Fei Feng
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
| | - Lin-Jun Wang
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
| | - Jian-Chun Li
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
| | - Ting-Ting Chen
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
| | - Liping Liu
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
- Departments of Emergency Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
32
|
Basta MD, Petruk S, Summer R, Rosenbloom J, Wermuth PJ, Macarak E, Levin AV, Mazo A, Walker JL. Changes in nascent chromatin structure regulate activation of the pro-fibrotic transcriptome and myofibroblast emergence in organ fibrosis. iScience 2023; 26:106570. [PMID: 37250334 PMCID: PMC10214303 DOI: 10.1016/j.isci.2023.106570] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/03/2023] [Accepted: 03/29/2023] [Indexed: 05/31/2023] Open
Abstract
Cell reprogramming to a myofibroblast responsible for the pathological accumulation of extracellular matrix is fundamental to the onset of fibrosis. Here, we explored how condensed chromatin structure marked by H3K72me3 becomes modified to allow for activation of repressed genes to drive emergence of myofibroblasts. In the early stages of myofibroblast precursor cell differentiation, we discovered that H3K27me3 demethylase enzymes UTX/KDM6B creates a delay in the accumulation of H3K27me3 on nascent DNA revealing a period of decondensed chromatin structure. This period of decondensed nascent chromatin structure allows for binding of pro-fibrotic transcription factor, Myocardin-related transcription factor A (MRTF-A) to nascent DNA. Inhibition of UTX/KDM6B enzymatic activity condenses chromatin structure, prevents MRTF-A binding, blocks activation of the pro-fibrotic transcriptome, and results in an inhibition of fibrosis in lens and lung fibrosis models. Our work reveals UTX/KDM6B as central coordinators of fibrosis, highlighting the potential to target its demethylase activity to prevent organ fibrosis.
Collapse
Affiliation(s)
- Morgan D. Basta
- Department of Pathology and Genomic Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Svetlana Petruk
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ross Summer
- Center for Translational Medicine, The Jane and Leonard Korman Respiratory Institute at the Sidney Kimmel Medial College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Joel Rosenbloom
- Department of Dermatology and Cutaneous Biology, The Joan and Joel Rosenbloom Research Center for Fibrotic Diseases, Sidney Kimmel Medical College Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Peter J. Wermuth
- Department of Dermatology and Cutaneous Biology, The Joan and Joel Rosenbloom Research Center for Fibrotic Diseases, Sidney Kimmel Medical College Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Edward Macarak
- Department of Dermatology and Cutaneous Biology, The Joan and Joel Rosenbloom Research Center for Fibrotic Diseases, Sidney Kimmel Medical College Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | - Alexander Mazo
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Janice L. Walker
- Department of Pathology and Genomic Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Ophthalmology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
33
|
Yin X, Yin X, Pan X, Zhang J, Fan X, Li J, Zhai X, Jiang L, Hao P, Wang J, Chen Y. Post-myocardial infarction fibrosis: Pathophysiology, examination, and intervention. Front Pharmacol 2023; 14:1070973. [PMID: 37056987 PMCID: PMC10086160 DOI: 10.3389/fphar.2023.1070973] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Cardiac fibrosis plays an indispensable role in cardiac tissue homeostasis and repair after myocardial infarction (MI). The cardiac fibroblast-to-myofibroblast differentiation and extracellular matrix collagen deposition are the hallmarks of cardiac fibrosis, which are modulated by multiple signaling pathways and various types of cells in time-dependent manners. Our understanding of the development of cardiac fibrosis after MI has evolved in basic and clinical researches, and the regulation of fibrotic remodeling may facilitate novel diagnostic and therapeutic strategies, and finally improve outcomes. Here, we aim to elaborate pathophysiology, examination and intervention of cardiac fibrosis after MI.
Collapse
Affiliation(s)
- Xiaoying Yin
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xinxin Yin
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xin Pan
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jingyu Zhang
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xinhui Fan
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jiaxin Li
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoxuan Zhai
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Lijun Jiang
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Panpan Hao
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jiali Wang
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Yuguo Chen
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
34
|
He X, Zhong Z, Wang Q, Jia Z, Lu J, Chen J, Liu P. Pharmacokinetics and tissue distribution of bleomycin-induced idiopathic pulmonary fibrosis rats treated with cryptotanshinone. Front Pharmacol 2023; 14:1127219. [PMID: 36969870 PMCID: PMC10034131 DOI: 10.3389/fphar.2023.1127219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
Introduction: Cryptotanshinone(CTS), a compound derived from the root of Salvia miltiorrhiza, has been linked to various of diseases, particularly pulmonary fibrosis. In the current study, we investigated the benefit of CTS on Sprague-Dawley (SD) rats induced by bleomycin (BLM) and established high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) methods to compare pharmacokinetics and tissue distribution in subsequent normal and modulated SD rats.Methods: The therapeutic effect of CTS on BLM-induced SD rats was evaluated using histopathology, lung function and hydroxyproline content measurement, revealing that CTS significantly improved SD rats induced by BLM. Additionally, a simple, rapid, sensitive and specific HPLC-MS/MS method was developed to determine the pharmacokinetics of various components in rat plasma.Results: Pharmacokinetic studies indicated that CTS was slowly absorbed by oral administration and had low bioavailability and a slow clearance rate. The elimination of pulmonary fibrosis in 28-day rats was slowed down, and the area under the curve was increased compared to the control group. Long-term oral administration of CTS did not accumulate in vivo, but the clearance was slowed down, and the steady-state blood concentration was increased. The tissue distribution study revealed that CTS exposure in the lungs and liver.Discussion: The lung CTS exposure was significantly higher in the model group than in the control group, suggesting that the pathological changes of pulmonary fibrosis were conducive to the lung exposure of CTS and served as the target organ of CTS.
Collapse
Affiliation(s)
- Xiangjun He
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zhi Zhong
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Quan Wang
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zhenmao Jia
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Jing Lu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Jing Lu, ; Jianwen Chen, ; Peiqing Liu,
| | - Jianwen Chen
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Jing Lu, ; Jianwen Chen, ; Peiqing Liu,
| | - Peiqing Liu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Jing Lu, ; Jianwen Chen, ; Peiqing Liu,
| |
Collapse
|
35
|
Wang L, Wang X, Li G, Zhou S, Wang R, Long Q, Wang M, Li L, Huang H, Ba Y. Emodin ameliorates renal injury and fibrosis via regulating the miR-490-3p/HMGA2 axis. Front Pharmacol 2023; 14:1042093. [PMID: 36937888 PMCID: PMC10020706 DOI: 10.3389/fphar.2023.1042093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Renal fibrosis is a major pathological feature of chronic kidney disease (CKD). While emodin is reported to elicit anti-fibrotic effects on renal injury, little is known about its effects on microRNA (miRNA)-modulated mechanisms in renal fibrosis. In this study, we established a unilateral ureteral obstruction (UUO) model and a transforming growth factor (TGF)-β1-induced normal rat renal tubular epithelial cell line (NRK-52E) model to investigate the protective effects of emodin on renal fibrosis and its miRNA/target gene mechanisms. Dual-luciferase assay was performed to confirm the direct binding of miRNA and target genes in HEK293 cells. Results showed that oral administration of emodin significantly ameliorated the loss of body weight and the increase in physicochemical parameters, including serum uric acid, creatinine, and urea nitrogen in UUO mice. Inflammatory cytokines, including tumor necrosis factor-α, monocyte chemoattractant protein-1, and interleukin (IL)-1β, but not IL-6, were down-regulated by emodin administration. Emodin decreased the expression levels of TGF-β1 and fibrotic-related proteins, including alpha-smooth muscle actin, Collagen IV, and Fibronectin, and increased the expression of E-cadherin. Furthermore, miR-490-3p was decreased in UUO mice and negatively correlated with increased expression of high migration protein A2 (HMGA2). We further confirmed HMGA2 was the target of miR-490-3p. Transfection of miR-490-3p mimics decreased, while transfection of miR-490-3p inhibitors increased fibrotic-related proteins and HMGA2 expression levels in TGF-β1-induced NRK-52E cells. Furthermore, transfection of miR-490-3p mimics enhanced the anti-fibrotic effects of emodin, while transfection of miR-490-3p inhibitors abolished the protective effects of emodin. Thus, as a novel target of emodin that prevents renal fibrosis in the HMGA2-dependent signaling pathway, miR-490-3p has potential implications in CKD pathology.
Collapse
Affiliation(s)
- Liulin Wang
- Hubei Provincial Hospital of Tranditional Chinese Medicine, Wuhan, China
- Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| | - Xuerui Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Basic Research With Traditional Chinese Medicine on Infectious Diseases, Beijing, China
- Beijing Institute of Chinese Medicine, Beijing, China
| | - Gang Li
- Hubei Provincial Hospital of Tranditional Chinese Medicine, Wuhan, China
- Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| | - Shanshan Zhou
- Hubei Provincial Hospital of Tranditional Chinese Medicine, Wuhan, China
- Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| | - Rui Wang
- Hubei Provincial Hospital of Tranditional Chinese Medicine, Wuhan, China
- Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| | - Qi Long
- Hubei Provincial Hospital of Tranditional Chinese Medicine, Wuhan, China
- Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| | - Min Wang
- Hubei Provincial Hospital of Tranditional Chinese Medicine, Wuhan, China
- Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| | - Liang Li
- Hubei Provincial Hospital of Tranditional Chinese Medicine, Wuhan, China
- Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| | - Hai Huang
- Hubei Provincial Hospital of Tranditional Chinese Medicine, Wuhan, China
- Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| | - Yuanming Ba
- Hubei Provincial Hospital of Tranditional Chinese Medicine, Wuhan, China
- Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| |
Collapse
|
36
|
Mehta B, Goodman S, DiCarlo E, Jannat-Khah D, Gibbons JAB, Otero M, Donlin L, Pannellini T, Robinson WH, Sculco P, Figgie M, Rodriguez J, Kirschmann JM, Thompson J, Slater D, Frezza D, Xu Z, Wang F, Orange DE. Machine learning identification of thresholds to discriminate osteoarthritis and rheumatoid arthritis synovial inflammation. Arthritis Res Ther 2023; 25:31. [PMID: 36864474 PMCID: PMC9979511 DOI: 10.1186/s13075-023-03008-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/06/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND We sought to identify features that distinguish osteoarthritis (OA) and rheumatoid arthritis (RA) hematoxylin and eosin (H&E)-stained synovial tissue samples. METHODS We compared fourteen pathologist-scored histology features and computer vision-quantified cell density (147 OA and 60 RA patients) in H&E-stained synovial tissue samples from total knee replacement (TKR) explants. A random forest model was trained using disease state (OA vs RA) as a classifier and histology features and/or computer vision-quantified cell density as inputs. RESULTS Synovium from OA patients had increased mast cells and fibrosis (p < 0.001), while synovium from RA patients exhibited increased lymphocytic inflammation, lining hyperplasia, neutrophils, detritus, plasma cells, binucleate plasma cells, sub-lining giant cells, fibrin (all p < 0.001), Russell bodies (p = 0.019), and synovial lining giant cells (p = 0.003). Fourteen pathologist-scored features allowed for discrimination between OA and RA, producing a micro-averaged area under the receiver operating curve (micro-AUC) of 0.85±0.06. This discriminatory ability was comparable to that of computer vision cell density alone (micro-AUC = 0.87±0.04). Combining the pathologist scores with the cell density metric improved the discriminatory power of the model (micro-AUC = 0.92±0.06). The optimal cell density threshold to distinguish OA from RA synovium was 3400 cells/mm2, which yielded a sensitivity of 0.82 and specificity of 0.82. CONCLUSIONS H&E-stained images of TKR explant synovium can be correctly classified as OA or RA in 82% of samples. Cell density greater than 3400 cells/mm2 and the presence of mast cells and fibrosis are the most important features for making this distinction.
Collapse
Affiliation(s)
- Bella Mehta
- Hospital for Special Surgery, 535 E 70th Street, New York, NY, 10009, USA.
- Weill Cornell Medicine, New York, NY, USA.
| | - Susan Goodman
- Hospital for Special Surgery, 535 E 70th Street, New York, NY, 10009, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Edward DiCarlo
- Hospital for Special Surgery, 535 E 70th Street, New York, NY, 10009, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Deanna Jannat-Khah
- Hospital for Special Surgery, 535 E 70th Street, New York, NY, 10009, USA
- Weill Cornell Medicine, New York, NY, USA
| | - J Alex B Gibbons
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Miguel Otero
- Hospital for Special Surgery, 535 E 70th Street, New York, NY, 10009, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Laura Donlin
- Hospital for Special Surgery, 535 E 70th Street, New York, NY, 10009, USA
- Weill Cornell Medicine, New York, NY, USA
| | | | | | - Peter Sculco
- Hospital for Special Surgery, 535 E 70th Street, New York, NY, 10009, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Mark Figgie
- Hospital for Special Surgery, 535 E 70th Street, New York, NY, 10009, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Jose Rodriguez
- Hospital for Special Surgery, 535 E 70th Street, New York, NY, 10009, USA
- Weill Cornell Medicine, New York, NY, USA
| | | | | | | | | | | | - Fei Wang
- Weill Cornell Medicine, New York, NY, USA
| | - Dana E Orange
- Hospital for Special Surgery, 535 E 70th Street, New York, NY, 10009, USA
- The Rockefeller University, New York, NY, USA
| |
Collapse
|
37
|
Matrix protein Tenascin-C promotes kidney fibrosis via STAT3 activation in response to tubular injury. Cell Death Dis 2022; 13:1044. [PMID: 36522320 PMCID: PMC9755308 DOI: 10.1038/s41419-022-05496-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
Accumulating evidence indicates that the extracellular matrix (ECM) is not only a consequence of fibrosis, but also contributes to the progression of fibrosis, by creating a profibrotic microenvironment. Tenascin-C (TNC) is an ECM glycoprotein that contains multiple functional domains. We showed that following kidney injury, TNC was markedly induced in fibrotic areas in the kidney from both mouse models and humans with kidney diseases. Genetically deletion of TNC in mice significantly attenuated unilateral ureteral obstruction-induced kidney fibrosis. Further studies showed that TNC promoted the proliferation of kidney interstitial cells via STAT3 activation. TNC-expressing cells in fibrotic kidney were activated fibroblast 2 (Act.Fib2) subpopulation, according to a previously generated single nucleus RNA-seq dataset profiling kidney of mouse UUO model at day 14. To identify and characterize TNC-expressing cells, we generated a TNC-promoter-driven CreER2-IRES-eGFP knock-in mouse line and found that the TNC reporter eGFP was markedly induced in cells around injured tubules that had lost epithelial markers, suggesting TNC was induced in response to epithelium injury. Most of the eGFP-positive cells were both NG2 and PDGFRβ positive. These cells did not carry markers of progenitor cells or macrophages. In conclusion, this study provides strong evidence that matrix protein TNC contributes to kidney fibrosis. TNC pathway may serve as a potential therapeutic target for interstitial fibrosis and the progression of chronic kidney disease.
Collapse
|
38
|
Micheletti R, Alexanian M. Transcriptional plasticity of fibroblasts in heart disease. Biochem Soc Trans 2022; 50:1247-1255. [PMID: 36281993 PMCID: PMC9704531 DOI: 10.1042/bst20210864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 08/27/2023]
Abstract
Cardiac fibroblasts play an essential role in maintaining the structural framework of the heart. Upon stress, fibroblasts undergo a cell state transition to activated fibroblasts (also referred to as myofibroblasts), a highly synthetic cell type that proliferates, migrates, and secrets both extracellular matrix as well as signaling factors that can modulate cellular crosstalk [J. Clin. Invest. 132, e148554]. Activated fibroblasts are critical regulators of cardiac wound healing after injury, but their excessive and persistent activation promote tissue fibrosis, a hallmark feature of the pathological remodeling of the heart. While much of the previous work in cardiac fibroblast biology has focused on the role of canonical signaling pathways or components of the extracellular matrix, recent efforts have been focused on deciphering the gene regulatory principles governing fibroblast activation. A better understanding of the molecular mechanisms that trigger and sustain the fibrotic process in heart disease has the potential to accelerate the development of therapies that specifically target the cardiac activated fibroblasts, which are at the moment unavailable. This concise review focuses on the mechanisms underlying the chromatin and transcriptional regulation of cardiac fibroblast activation. We discuss recent work from our group and others in this space, highlighting the application of single-cell genomics in the characterization of fibroblast function and diversity, and provide an overview on the prospects of targeting cardiac fibroblasts in heart disease and the associated challenges.
Collapse
Affiliation(s)
- Rudi Micheletti
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, CA, U.S.A
| | - Michael Alexanian
- Gladstone Institutes, San Francisco, CA, U.S.A
- Department of Pediatrics, University of California, San Francisco, CA, U.S.A
| |
Collapse
|
39
|
Wang P, Huang Z, Peng Y, Li H, Lin T, Zhao Y, Hu Z, Zhou Z, Zhou W, Liu Y, Hou FF. Circular RNA circBNC2 inhibits epithelial cell G2-M arrest to prevent fibrotic maladaptive repair. Nat Commun 2022; 13:6502. [PMID: 36316334 PMCID: PMC9622807 DOI: 10.1038/s41467-022-34287-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/20/2022] [Indexed: 11/17/2022] Open
Abstract
The mechanisms underlying fibrogenic responses after injury are not well understood. Epithelial cell cycle arrest in G2/M after injury is a key checkpoint for determining wound-healing leading to either normal cell proliferation or fibrosis. Here, we identify a kidney- and liver-enriched circular RNA, circBNC2, which is abundantly expressed in normal renal tubular cells and hepatocytes but significantly downregulated after acute ischemic or toxic insult. Loss of circBNC2 is at least partially mediated by upregulation of DHX9. Gain- and loss-of-function studies, both in vitro and in vivo, demonstrate that circBNC2 acts as a negative regulator of cell G2/M arrest by encoding a protein that promotes formation of CDK1/cyclin B1 complexes. Restoring circBNC2 in experimentally-induced male mouse models of fibrotic kidney and liver, decreases G2/M arrested cell numbers with secretion of fibrotic factors, thereby mitigating extracellular matrix deposition and fibrosis. Decreased expression of circBNC2 and increased G2/M arrest of epithelial cells are recapitulated in human ischemic reperfusion injury (IRI)-induced chronic kidney disease and inflammation-induced liver fibrosis, highlighting the clinical relevance. These findings suggest that restoring circBNC2 might represent a potential strategy for therapeutic intervention in epithelial organ fibrosis.
Collapse
Affiliation(s)
- Peng Wang
- grid.484195.5Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515 China
| | - Zhitao Huang
- grid.484195.5Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515 China
| | - Yili Peng
- grid.484195.5Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515 China
| | - Hongwei Li
- grid.484195.5Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515 China
| | - Tong Lin
- grid.484195.5Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515 China
| | - Yingyu Zhao
- grid.484195.5Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515 China
| | - Zheng Hu
- grid.484195.5Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515 China
| | - Zhanmei Zhou
- grid.484195.5Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515 China
| | - Weijie Zhou
- grid.484195.5Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515 China
| | - Youhua Liu
- grid.484195.5Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515 China
| | - Fan Fan Hou
- grid.484195.5Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, 510515 China ,grid.508040.90000 0004 9415 435XGuangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510515 China
| |
Collapse
|
40
|
Sun C, Tian X, Jia Y, Yang M, Li Y, Fernig DG. Functions of exogenous FGF signals in regulation of fibroblast to myofibroblast differentiation and extracellular matrix protein expression. Open Biol 2022; 12:210356. [PMID: 36102060 PMCID: PMC9471990 DOI: 10.1098/rsob.210356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Fibroblasts are widely distributed cells found in most tissues and upon tissue injury, they are able to differentiate into myofibroblasts, which express abundant extracellular matrix (ECM) proteins. Overexpression and unordered organization of ECM proteins cause tissue fibrosis in damaged tissue. Fibroblast growth factor (FGF) family proteins are well known to promote angiogenesis and tissue repair, but their activities in fibroblast differentiation and fibrosis have not been systematically reviewed. Here we summarize the effects of FGFs in fibroblast to myofibroblast differentiation and ECM protein expression and discuss the underlying potential regulatory mechanisms, to provide a basis for the clinical application of recombinant FGF protein drugs in treatment of tissue damage.
Collapse
Affiliation(s)
- Changye Sun
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China
| | - Xiangqin Tian
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China
| | - Yangyang Jia
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China
| | - Mingming Yang
- Department of Cardiology, Affiliated Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, People's Republic of China
| | - Yong Li
- Department of Biochemistry, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - David G Fernig
- Department of Biochemistry, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|
41
|
Yuan L, Cao J, Hu M, Xu D, Li Y, Zhao S, Yuan J, Zhang H, Huang Y, Jin H, Chen M, Liu D. Bone marrow mesenchymal stem cells combined with estrogen synergistically promote endometrial regeneration and reverse EMT via Wnt/β-catenin signaling pathway. Reprod Biol Endocrinol 2022; 20:121. [PMID: 35971112 PMCID: PMC9377128 DOI: 10.1186/s12958-022-00988-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Intrauterine adhesion (IUA) is a clinical disease characterized by the uterine cavity occlusion caused by the damage of the endometrial basal layer. Bone marrow mesenchymal stem cells (BMSCs) transplantation have the potential to promote endometrial regeneration mainly through paracrine ability. Estrogen is an indispensable and important factor in the repair of endometrial damage, which has been reported as a promising and adjunctive therapeutic application for stem cell transplantation therapy. This study aims to investigate the synergistic effect of BMSCs and estrogen on improving the endometrial regeneration and restoring the endometrium morphology in a dual damage model of IUA in rabbits and the underlying molecular mechanisms. METHODS BMSCs were isolated and identified by adipogenic and osteogenic differentiation and flow cytometry assays. The rabbit IUA animal model was established by a dual damage method of mechanical curettage and lipopolysaccharide infection. Additionally, we investigated the therapeutic impact of both BMSCs and estrogen either separately or in combination in a rabbit model. The retention of PKH26-labeled BMSCs was observed by vivo fluorescence imaging.The number of endometrial glands and the degree of fibrosis were observed by H&E and Masson staining respectively. Western blotting, Immunohistochemistry and immunofluorescence staining were performed to detect biomarkers related to endometrial epithelium, endometrial fibrosis and EMT. Finally, the protein expression of core molecules of Wnt/β-catenin pathway was detected by Western blotting. RESULTS PKH26-labeled fluorescence results revealed that BMSCs appeared and located in the endometrial glands and extracellular matrix area when orthotopic transplanted into the uterine cavity. Histological assays showed that remarkably increasing the number of endometrial glands and decreasing the area of endometrial fibrosis in the BMSCs combined with estrogen treatment group. Moreover, downregulated expression of fibrosis markers (fibronectin, CollagenI, a-SMA) and interstitial markers (ZEB1, Vimentin, N-cadherin), as well as upregulated E-cadherin expression were found in the combined group. Further study of in vivo staining revealed that fluorescence intensity of CK7 was stronger in the combined group than that of direct BMSCs intrauterine transplantation, while vimentin showed the opposite results. Moreover, the protein levels of β-catenin, Axin2, C-myc, CycinE of Wnt/β-catenin signaling pathway increased in the BMSCs combined with estrogen group than in the other treatment groups. CONCLUSION BMSCs combined with estrogen can promote the differentiation of stem cells into endometrial epithelial cells to facilitate the regeneration of damaged endometrium. The potential mechanism of the synergistic effect may inhibit the occurrence of EMT by activating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Liwei Yuan
- Department of Gynecology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jia Cao
- Department of Beijing National Biochip Research Center Sub-Center in Ningxia, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Mingyue Hu
- Department of Gynecology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Dabao Xu
- Department of Gynecology, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yan Li
- Department of Gynecology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Ministry of Education for Fertility Preservation and Maintenance, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Shiyun Zhao
- Department of Gynecology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Juanjuan Yuan
- Department of Gynecology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Huixing Zhang
- Department of Gynecology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yani Huang
- Department of Gynecology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - He Jin
- Department of Gynecology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Meixia Chen
- Department of Gynecology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Dan Liu
- Department of Gynecology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.
- Key Laboratory of Ministry of Education for Fertility Preservation and Maintenance, Ningxia Medical University, Yinchuan, Ningxia, China.
| |
Collapse
|
42
|
Yang J, Guo Q, Feng X, Liu Y, Zhou Y. Mitochondrial Dysfunction in Cardiovascular Diseases: Potential Targets for Treatment. Front Cell Dev Biol 2022; 10:841523. [PMID: 35646910 PMCID: PMC9140220 DOI: 10.3389/fcell.2022.841523] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/13/2022] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular diseases (CVDs) are serious public health issues and are responsible for nearly one-third of global deaths. Mitochondrial dysfunction is accountable for the development of most CVDs. Mitochondria produce adenosine triphosphate through oxidative phosphorylation and inevitably generate reactive oxygen species (ROS). Excessive ROS causes mitochondrial dysfunction and cell death. Mitochondria can protect against these damages via the regulation of mitochondrial homeostasis. In recent years, mitochondria-targeted therapy for CVDs has attracted increasing attention. Various studies have confirmed that clinical drugs (β-blockers, angiotensin-converting enzyme inhibitors/angiotensin receptor-II blockers) against CVDs have mitochondrial protective functions. An increasing number of cardiac mitochondrial targets have shown their cardioprotective effects in experimental and clinical studies. Here, we briefly introduce the mechanisms of mitochondrial dysfunction and summarize the progression of mitochondrial targets against CVDs, which may provide ideas for experimental studies and clinical trials.
Collapse
|
43
|
Li Y, Wang L, Zhang Q, Tian L, Gan C, Liu H, Yin W, Ye T. Blueberry Juice Attenuates Pulmonary Fibrosis via Blocking the TGF-β1/Smad Signaling Pathway. Front Pharmacol 2022; 13:825915. [PMID: 35418869 PMCID: PMC8996108 DOI: 10.3389/fphar.2022.825915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/14/2022] [Indexed: 02/05/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, fatal, and chronic lung disease, lacking a validated and effective therapy. Blueberry has demonstrated multiple pharmacological activities including anti-inflammatory, antioxidant, and anticancer. Therefore, the objective of this study was to investigate whether blueberry juice (BBJ) could ameliorate IPF. Experiments in vitro revealed that BBJ could significantly reduce the expressions of TGF-β1 modulated fibrotic protein, which were involved in the cascade of fibrosis in NIH/3T3 cells and human pulmonary fibroblasts. In addition, for rat primary lung fibroblasts (RPLFs), BBJ promoted the cell apoptosis along with reducing the expressions of α-SMA, vimentin, and collagen I, while increasing the E-cadherin level. Furthermore, BBJ could reverse epithelial–mesenchymal transition (EMT) phenotypic changes and inhibit cell migration, along with inducing the upregulation of E-cadherin in A549 cells. Compared with the vehicle group, BBJ treatment alleviated fibrotic pathological changes and collagen deposition in both bleomycin-induced prevention and treatment pulmonary fibrosis models. In fibrotic lung tissues, BBJ remarkably suppressed the expressions of collagen I, α-SMA, and vimentin and improved E-cadherin, which may be related to its inhibition of the TGF-β1/Smad pathway and anti-inflammation efficacy. Taken together, these findings comprehensively proved that BBJ could effectively prevent and attenuate idiopathic pulmonary fibrosis via suppressing EMT and the TGF-β1/Smad signaling pathway.
Collapse
Affiliation(s)
- Yali Li
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.,Prenatal Diagnosis Center, The Third Affiliated Hospital of Zhengzhou University-Maternal and Child Health Hospital of Henan Province, Zhengzhou, China
| | - Liqun Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Qianyu Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Li Tian
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Cailing Gan
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hongyao Liu
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wenya Yin
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Tinghong Ye
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
44
|
Zhou L, Li Y, Liang Q, Liu J, Liu Y. Combination therapy based on targeted nano drug co-delivery systems for liver fibrosis treatment: A review. J Drug Target 2022; 30:577-588. [PMID: 35179094 DOI: 10.1080/1061186x.2022.2044485] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Liver fibrosis is the hallmark of liver disease and occurs prior to the stages of cirrhosis and hepatocellular carcinoma. Any type of liver damage or inflammation can result in fibrosis. Fibrosis does not develop overnight, but rather as a result of the long-term action of injury factors. At present, however, there are no good treatment methods or specific drugs other than removing the pathogenic factors. Drug application is still limited, which means that drugs with good performance in vitro cannot achieve good therapeutic effects in vivo, owing to various factors such as poor drug targeting, large side effects, and strong hydrophobicity. Hepatic stellate cells (HSC) are the primary effector cells in liver fibrosis. The nano-drug delivery system is a new and safe drug delivery system that has many advantages which are widely used in the field of liver fibrosis. Drug resistance and side effects can be reduced when two or more drugs are used in combination drug delivery. Combination therapy of drugs with different targets has emerged as a novel approach to treating liver fibrosis, and the nano co-delivery system enhances the benefits of combination therapy. While nano co-delivery systems can maximize benefits while avoiding drug side effects, this is precisely the advantage of the nano co-delivery system. This review briefly described the pathogenesis and current treatment strategies, the different co-delivery systems of combination drugs in the nano delivery system, and targeting strategies for nano delivery systems on liver fibrosis therapy. Because of their superior performance, nano delivery systems and targeting drug delivery systems have received a lot of attention in the new drug delivery system. The new delivery systems offer a new pathway in the treatment of liver fibrosis, and it is believed that it can be a new treatment for fibrosis in the future. Nano co-delivery system of combination drugs and targeting strategies has proven the effectiveness of anti-fibrosis at the experimental level.
Collapse
Affiliation(s)
- Liyue Zhou
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yifan Li
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Qiangwei Liang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Jinxia Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yanhua Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China.,Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
45
|
Wang AY, Coelho NM, Arora PD, Wang Y, Eymael D, Ji C, Wang Q, Lee W, Xu J, Kapus A, Carneiro KMM, McCulloch CA. DDR1 associates with TRPV4 in cell-matrix adhesions to enable calcium-regulated myosin activity and collagen compaction. J Cell Physiol 2022; 237:2451-2468. [PMID: 35150133 DOI: 10.1002/jcp.30696] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 01/10/2022] [Accepted: 01/27/2022] [Indexed: 11/10/2022]
Abstract
Tissue fibrosis manifests as excessive deposition of compacted, highly aligned collagen fibrils, which interfere with organ structure and function. Cells in collagen-rich lesions often exhibit marked overexpression of discoidin domain receptor 1 (DDR1), which is linked to increased collagen compaction through the association of DDR1 with the Ca2+ -dependent nonmuscle myosin IIA (NMIIA). We examined the functional relationship between DDR1 and the transient receptor potential vanilloid type 4 (TRPV4) channel, a Ca2+ -permeable ion channel that is implicated in collagen compaction. Fibroblasts expressing high levels of DDR1 were used to model cells in lesions with collagen compaction. In these cells, the expression of the β1 integrin was deleted to simplify studies of DDR1 function. Compared with DDR1 wild-type cells, high DDR1 expression was associated with increased Ca2+ influx through TRPV4, enrichment of TRPV4 in collagen adhesions, and enhanced contractile activity mediated by NMIIA. At cell adhesion sites to collagen, DDR1 associated with TRPV4, which enhanced DDR1-mediated collagen alignment and compaction. We conclude that DDR1 regulates Ca2+ influx through the TRPV4 channel to promote critical, DDR1-mediated processes that are important in lesions with collagen compaction and alignment.
Collapse
Affiliation(s)
- Andrew Y Wang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Nuno M Coelho
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Pamma D Arora
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Yongqiang Wang
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Denise Eymael
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Chenfan Ji
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Qin Wang
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Wilson Lee
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Jessica Xu
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Andras Kapus
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital and Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Karina M M Carneiro
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Christopher A McCulloch
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
46
|
Bone morphogenetic protein 1.3 inhibition decreases scar formation and supports cardiomyocyte survival after myocardial infarction. Nat Commun 2022; 13:81. [PMID: 35013172 PMCID: PMC8748453 DOI: 10.1038/s41467-021-27622-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 11/19/2021] [Indexed: 12/11/2022] Open
Abstract
Despite the high prevalence of ischemic heart diseases worldwide, no antibody-based treatment currently exists. Starting from the evidence that a specific isoform of the Bone Morphogenetic Protein 1 (BMP1.3) is particularly elevated in both patients and animal models of myocardial infarction, here we assess whether its inhibition by a specific monoclonal antibody reduces cardiac fibrosis. We find that this treatment reduces collagen deposition and cross-linking, paralleled by enhanced cardiomyocyte survival, both in vivo and in primary cultures of cardiac cells. Mechanistically, we show that the anti-BMP1.3 monoclonal antibody inhibits Transforming Growth Factor β pathway, thus reducing myofibroblast activation and inducing cardioprotection through BMP5. Collectively, these data support the therapeutic use of anti-BMP1.3 antibodies to prevent cardiomyocyte apoptosis, reduce collagen deposition and preserve cardiac function after ischemia. Here the authors show that a monoclonal antibody against a soluble isoform of Bone Morphogenetic Protein 1 prevents cardiac cell death, reducing fibrosis and preserving cardiac function after myocardial ischemia.
Collapse
|
47
|
Stüdemann T, Weinberger F. The Guinea Pig Model in Cardiac Regeneration Research; Current Tissue Engineering Approaches and Future Directions. ADVANCED TECHNOLOGIES IN CARDIOVASCULAR BIOENGINEERING 2022:103-122. [DOI: 10.1007/978-3-030-86140-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
48
|
Gerckens M, Schorpp K, Pelizza F, Wögrath M, Reichau K, Ma H, Dworsky AM, Sengupta A, Stoleriu MG, Heinzelmann K, Merl-Pham J, Irmler M, Alsafadi HN, Trenkenschuh E, Sarnova L, Jirouskova M, Frieß W, Hauck SM, Beckers J, Kneidinger N, Behr J, Hilgendorff A, Hadian K, Lindner M, Königshoff M, Eickelberg O, Gregor M, Plettenburg O, Yildirim AÖ, Burgstaller G. Phenotypic drug screening in a human fibrosis model identified a novel class of antifibrotic therapeutics. SCIENCE ADVANCES 2021; 7:eabb3673. [PMID: 34936468 PMCID: PMC8694600 DOI: 10.1126/sciadv.abb3673] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Fibrogenic processes instigate fatal chronic diseases leading to organ failure and death. Underlying biological processes involve induced massive deposition of extracellular matrix (ECM) by aberrant fibroblasts. We subjected diseased primary human lung fibroblasts to an advanced three-dimensional phenotypic high-content assay and screened a repurposing drug library of small molecules for inhibiting ECM deposition. Fibrotic Pattern Detection by Artificial Intelligence identified tranilast as an effective inhibitor. Structure-activity relationship studies confirmed N-(2-butoxyphenyl)-3-(phenyl)acrylamides (N23Ps) as a novel and highly potent compound class. N23Ps suppressed myofibroblast transdifferentiation, ECM deposition, cellular contractility, and altered cell shapes, thus advocating a unique mode of action. Mechanistically, transcriptomics identified SMURF2 as a potential therapeutic target network. Antifibrotic activity of N23Ps was verified by proteomics in a human ex vivo tissue fibrosis disease model, suppressing profibrotic markers SERPINE1 and CXCL8. Conclusively, N23Ps are a novel class of highly potent compounds inhibiting organ fibrosis in patients.
Collapse
Affiliation(s)
- Michael Gerckens
- Institute of Lung Biology and Disease (ILBD) and Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Kenji Schorpp
- Assay Development and Screening Platform, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Francesco Pelizza
- Chemical and Process Engineering, Strathclyde University, Glasgow, Scotland, UK
| | - Melanie Wögrath
- Institute of Lung Biology and Disease (ILBD) and Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- CPC-M bioArchive, Helmholtz Zentrum München, Comprehensive Pneumology Center Munich DZL/CPC-M, Munich, Germany
| | - Kora Reichau
- Institute of Medicinal Chemistry, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Leibniz Universität Hannover, Institute of Organic Chemistry and Center for Biomolecular Drug Research (BMWZ), Hannover, Germany
| | - Huilong Ma
- Institute of Medicinal Chemistry, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Leibniz Universität Hannover, Institute of Organic Chemistry and Center for Biomolecular Drug Research (BMWZ), Hannover, Germany
| | - Armando-Marco Dworsky
- Institute of Lung Biology and Disease (ILBD) and Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- CPC-M bioArchive, Helmholtz Zentrum München, Comprehensive Pneumology Center Munich DZL/CPC-M, Munich, Germany
| | - Arunima Sengupta
- Institute of Lung Biology and Disease (ILBD) and Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Mircea Gabriel Stoleriu
- Institute of Lung Biology and Disease (ILBD) and Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- CPC-M bioArchive, Helmholtz Zentrum München, Comprehensive Pneumology Center Munich DZL/CPC-M, Munich, Germany
- Asklepios Fachkliniken Munich-Gauting, Munich, Germany
| | - Katharina Heinzelmann
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Comprehensive Pneumology Center (CPC), Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Juliane Merl-Pham
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Martin Irmler
- Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Hani N. Alsafadi
- CPC-M bioArchive, Helmholtz Zentrum München, Comprehensive Pneumology Center Munich DZL/CPC-M, Munich, Germany
- Comprehensive Pneumology Center (CPC), Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- Wallenberg Center for Molecular Medicine (WCMM), Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Eduard Trenkenschuh
- Department of Pharmacy–Center for Drug Research, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximillians University of Munich, Munich, Germany
| | - Lenka Sarnova
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Marketa Jirouskova
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Wolfgang Frieß
- Department of Pharmacy–Center for Drug Research, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximillians University of Munich, Munich, Germany
| | - Stefanie M. Hauck
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Johannes Beckers
- Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD e.V.), 85764 Neuherberg, Germany
- Chair of Experimental Genetics, Technische Universität München, 85354 Freising, Germany
| | - Nikolaus Kneidinger
- CPC-M bioArchive, Helmholtz Zentrum München, Comprehensive Pneumology Center Munich DZL/CPC-M, Munich, Germany
- Department of Internal Medicine V, Ludwig-Maximillians University of Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Jürgen Behr
- CPC-M bioArchive, Helmholtz Zentrum München, Comprehensive Pneumology Center Munich DZL/CPC-M, Munich, Germany
- Asklepios Fachkliniken Munich-Gauting, Munich, Germany
- Department of Internal Medicine V, Ludwig-Maximillians University of Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Anne Hilgendorff
- Institute of Lung Biology and Disease (ILBD) and Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- CPC-M bioArchive, Helmholtz Zentrum München, Comprehensive Pneumology Center Munich DZL/CPC-M, Munich, Germany
| | - Kamyar Hadian
- Assay Development and Screening Platform, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Michael Lindner
- CPC-M bioArchive, Helmholtz Zentrum München, Comprehensive Pneumology Center Munich DZL/CPC-M, Munich, Germany
- Asklepios Fachkliniken Munich-Gauting, Munich, Germany
- Paracelsus Medical Private University, Salzburg, Austria
| | - Melanie Königshoff
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Comprehensive Pneumology Center (CPC), Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Oliver Eickelberg
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Martin Gregor
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Oliver Plettenburg
- Institute of Medicinal Chemistry, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Leibniz Universität Hannover, Institute of Organic Chemistry and Center for Biomolecular Drug Research (BMWZ), Hannover, Germany
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
| | - Ali Önder Yildirim
- Institute of Lung Biology and Disease (ILBD) and Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Gerald Burgstaller
- Institute of Lung Biology and Disease (ILBD) and Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- CPC-M bioArchive, Helmholtz Zentrum München, Comprehensive Pneumology Center Munich DZL/CPC-M, Munich, Germany
- Corresponding author.
| |
Collapse
|
49
|
Cystic Fibrosis: Systems Biology Analysis from Homozygous p.Phe508del Variant Patients' Samples Reveals Perturbations in Tissue-Specific Pathways. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5262000. [PMID: 34901273 PMCID: PMC8660202 DOI: 10.1155/2021/5262000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/08/2021] [Indexed: 11/24/2022]
Abstract
Cystic fibrosis (CF) is an autosomal recessive disorder, caused by diverse genetic variants for the CF transmembrane conductance regulator (CFTR) protein. Among these, p.Phe508del is the most prevalent variant. The effects of this variant on the physiology of each tissue remains unknown. This study is aimed at predicting cell signaling pathways present in different tissues of fibrocystic patients, homozygous for p.Phe508del. The study involved analysis of two microarray datasets, E-GEOD-15568 and E-MTAB-360 corresponding to the rectal and bronchial epithelium, respectively, obtained from the ArrayExpress repository. Particularly, differentially expressed genes (DEGs) were predicted, protein-protein interaction (PPI) networks were designed, and centrality and functional interaction networks were analyzed. The study reported that p.Phe508del-mutated CFTR-allele in homozygous state influenced the whole gene expression in each tissue differently. Interestingly, gene ontology (GO) term enrichment analysis revealed that only “neutrophil activation” was shared between both tissues; however, nonshared DEGs were grouped into the same GO term. For further verification, functional interaction networks were generated, wherein no shared nodes were reported between these tissues. These results suggested that the p.Phe508del-mutated CFTR-allele in homozygous state promoted tissue-specific pathways in fibrocystic patients. The generated data might further assist in prediction diagnosis to define biomarkers or devising therapeutic strategies.
Collapse
|
50
|
Kan C, Lu X, Zhang R. Effects of hypoxia on bone metabolism and anemia in patients with chronic kidney disease. World J Clin Cases 2021; 9:10616-10625. [PMID: 35004993 PMCID: PMC8686129 DOI: 10.12998/wjcc.v9.i34.10616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/12/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Abnormal bone metabolism and renal anemia seriously affect the prognosis of patients with chronic kidney disease (CKD). Existing studies have mostly addressed the pathogenesis and treatment of bone metabolism abnormality and anemia in patients with CKD, but few have evaluated their mutual connection. Administration of exogenous erythropoietin to CKD patients with anemia used to be the mainstay of therapeutic approaches; however, with the availability of hypoxia-inducible factor (HIF) stabilizers such as roxadustat, more therapeutic choices for renal anemia are expected in the future. However, the effects posed by the hypoxic environment on both CKD complications remain incompletely understood. AIM To summarize the relationship between renal anemia and abnormal bone metabolism, and to discuss the influence of hypoxia on bone metabolism. METHODS CNKI and PubMed searches were performed using the key words "chronic kidney disease," "abnormal bone metabolism," "anemia," "hypoxia," and "HIF" to identify relevant articles published in multiple languages and fields. Reference lists from identified articles were reviewed to extract additional pertinent articles. Then we retrieved the Abstract and Introduction and searched the results from the literature, classified the extracted information, and summarized important information. Finally, we made our own conclusions. RESULTS There is a bidirectional relationship between renal anemia and abnormal bone metabolism. Abnormal vitamin D metabolism and hyperparathyroidism can affect bone metabolism, blood cell production, and survival rates through multiple pathways. Anemia will further attenuate the normal bone growth. The hypoxic environment regulates bone morphogenetic protein, vascular endothelial growth factor, and neuropilin-1, and affects osteoblast/osteoclast maturation and differentiation through bone metabolic changes. Hypoxia preconditioning of mesenchymal stem cells (MSCs) can enhance their paracrine effects and promote fracture healing. Concurrently, hypoxia reduces the inhibitory effect on osteocyte differentiation by inhibiting the expression of fibroblast growth factor 23. Hypoxia potentially improves bone metabolism, but it still carries potential risks. The optimal concentration and duration of hypoxia remain unclear. CONCLUSION There is a bidirectional relationship between renal anemia and abnormal bone metabolism. Hypoxia may improve bone metabolism but the concentration and duration of hypoxia remain unclear and need further study.
Collapse
Affiliation(s)
- Chao Kan
- Department of Clinical Medicine, Changchun University of Chinese Medicine, Changchun 130000, Jilin Province, China
| | - Xu Lu
- Department of Clinical Medicine, Changchun University of Chinese Medicine, Changchun 130000, Jilin Province, China
| | - Rui Zhang
- Department of Nephrology, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519070, Guangdong Province, China
| |
Collapse
|