1
|
Moja L, Abbas M, de Kraker ME, Zanichelli V, Ombajo LA, Sharland M, Huttner B. Reserve antibiotics: overcoming limitations of evidence generated from regulatory approval trials. Global Health 2025; 21:17. [PMID: 40181450 PMCID: PMC11969844 DOI: 10.1186/s12992-025-01109-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 03/20/2025] [Indexed: 04/05/2025] Open
Abstract
New antibiotics active against multidrug resistant bacteria (MDR-B) are licensed by regulatory agencies based on pivotal trials that serve the primary purpose of obtaining marketing-authorization. There is increasing concern that they do not offer guidance on how to best use new antibiotics, in which population, and to what extent they overcome existing resistance. We reviewed the literature for pre-approval studies (phase 2 and 3 randomized controlled trials) and post-approval studies (randomized and non-randomized controlled trials) evaluating efficacy and safety of new antibiotics, classified by WHO as Reserve, approved in the European Union and the US from January 2010 to May 2023. Substantial failures occur in generating evidence to guide routine clinical use: preapproval studies lack representativeness, select outcomes and comparators to chase statistical significance, and often avoid using prespecified analytical methods. Three recommendations are key to enhance the quality and relevance of clinical data underpinning use of last resort molecules on the WHO AWaRe Reserve list active against carbapenem-resistant MDR-B i). separation of pivotal trials from post-approval studies, which should be funded by public programs and de-linked from commercial purposes, ii). development and maintenance of a global infrastructure to conduct post-approval public health focused studies, and iii). development of trial platforms that use efficient, adaptive designs to inform clinical decision making and country level technology appraisal. These solutions will allow clinicians to determine whether recently approved Reserve antibiotics are not only "newer" but also "better" for vulnerable patient populations at particular risk for infections by MDR-B.
Collapse
Affiliation(s)
- Lorenzo Moja
- Health Products Policy and Standards, World Health Organization, Geneva, Switzerland.
| | - Mohamed Abbas
- Infection Control Programme, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
- WHO Collaborating Centre on Patient Safety, Geneva, Switzerland
| | - Marlieke Ea de Kraker
- Infection Control Programme, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
- WHO Collaborating Centre on Patient Safety, Geneva, Switzerland
| | - Veronica Zanichelli
- Health Products Policy and Standards, World Health Organization, Geneva, Switzerland
| | - Loice Achieng Ombajo
- Department of Clinical Medicine and Therapeutics, School of Medicine, University of Nairobi, Nairobi, Kenya
| | - Mike Sharland
- Centre for Neonatal and Paediatric Infections, Institute for Infection and Immunity, St George's University of London, London, UK
| | - Benedikt Huttner
- Division of Antimicrobial Resistance, World Health Organization, Geneva, Switzerland
| |
Collapse
|
2
|
Boutzoukas AE, Dai W, Cober E, Abbo LM, Komarow L, Chen L, Hill C, Satlin MJ, Grant M, Fries BC, Patel G, McCarty TP, Arias CA, Bonomo RA, van Duin D. Carbapenem-resistant Enterobacterales in solid organ transplant recipients. Am J Transplant 2025; 25:848-859. [PMID: 39522694 PMCID: PMC11997972 DOI: 10.1016/j.ajt.2024.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Carbapenem-resistant Enterobacterales (CRE) are an important threat to the health of solid organ transplant recipients (SOTr); data comparing outcomes of SOTr with CRE to non-SOTr with CRE are lacking. A matched cohort study was performed within 2 prospective, multicenter, cohort studies (Consortium on Resistance Against Carbapenems in Klebsiella and other Enterobacterales and Consortium on Resistance Against Carbapenems in Klebsiella and other Enterobacterales 2). The epidemiology, desirability of outcome rankings outcomes, and mortality of SOTr and non-SOTr hospitalized in the United States (December 2011-August 2017) with clinical isolates with Centers for Disease Control and Prevention-defined CRE were compared. In total, 121 SOTr and 242 matched non-SOTr were included. Fifty-one percent of isolates met infection criteria. SOTr were younger (P < .001), less acutely ill (P = .029), less often had a malignancy history (P = .006), and more often were admitted from home (P < .001) than non-SOTr. SOTr had more favorable adjusted desirability of outcome rankings outcomes; a randomly selected SOTr had a 58% (95% confidence interval, 53%-64%) probability of a better outcome as compared to a randomly selected non-SOTr. All-cause 30-day mortality was 14% (17/121) in SOTr vs 25% (60/242) in non-SOTr, P = .018. After stabilized inverse probability weighted adjustment, SOTr had a 7% lower 30-day mortality risk than non-SOTr (95% confidence interval, -15% to 1%). SOTr with CRE do not have worse outcomes than matched patients without transplant history.
Collapse
Affiliation(s)
- Angelique E Boutzoukas
- Department of Pediatrics, Duke University, Durham, North Carolina, USA; Duke Clinical Research Institute, Durham, North Carolina, USA
| | - Weixiao Dai
- The Biostatistics Center, The George Washington University, Rockville, Maryland, USA
| | - Eric Cober
- Department of Infectious Diseases, Cleveland Clinic, Cleveland, Ohio, USA
| | - Lilian M Abbo
- Division of Infectious Diseases, Department of Medicine, University of Miami Miller School of Medicine and Jackson Health System, Miami, Florida, USA
| | - Lauren Komarow
- The Biostatistics Center, The George Washington University, Rockville, Maryland, USA
| | - Liang Chen
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Carol Hill
- Duke Clinical Research Institute, Durham, North Carolina, USA
| | - Michael J Satlin
- Division of Infectious Diseases, Weill Cornell Medicine, NewYork-Presbyterian Hospital, New York, New York, USA
| | - Matthew Grant
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Bettina C Fries
- Division of Infectious Diseases, Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Gopi Patel
- Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Todd P McCarty
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Cesar A Arias
- Division of Infectious Diseases, Houston Methodist Hospital, Houston, Texas, USA; Center for Infectious Diseases Research at Houston Methodist Research Institute, Houston, Texas, USA; Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Robert A Bonomo
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA; Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA; Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA; Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA; Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA; Department of Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA; Case Western Reserve University-Cleveland Veterans Affairs Medical Center for Antimicrobial Resistance and Epidemiology (Case Veterans Affairs Center for Antimicrobial Resistance and Epidemiology), Cleveland, Ohio, USA
| | - David van Duin
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina, USA.
| |
Collapse
|
3
|
Tängdén T, Carrara E, Hellou MM, Yahav D, Paul M. Introducing new antibiotics for multidrug-resistant bacteria: obstacles and the way forward. Clin Microbiol Infect 2025; 31:354-359. [PMID: 39374649 DOI: 10.1016/j.cmi.2024.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/09/2024]
Abstract
BACKGROUND Following intense efforts to revive the dry antibiotic research and development pipeline, a few highly awaited antibiotics with activity against multidrug-resistant (MDR) bacteria were recently approved. OBJECTIVES We aim to highlight gaps in the evidence generated for new antibiotics by the time of their approval and to review the consequent limitations of treatment guidelines for priority MDR bacteria. We also report on the availability of the new antibiotics, reimbursement strategies allowing the use of these antibiotics in hospitals, and antibiotic stewardship efforts. SOURCES We searched PubMed for phase 3 randomized controlled trials, guidelines, and publications on access, usage, regulatory aspects and antimicrobial stewardship of antibiotics approved for use against MDR bacteria between 2013 and 2023. Other sources included governmental and professional documents regarding policies for reimbursement and use of the new antibiotics. CONTENT Several gaps in the evidence available regarding the new antibiotics are described related to the trials' target populations, comparators, management algorithm within the trial, non-inferiority hypotheses, and assessment of resistance development within the studies. We highlight the risk of current guidelines to increase the usage of new antibiotics and consequently accelerate resistance development. Updated mapping of antibiotic availability reveals critical inequality in access to the new antibiotics. Finally, strategies used nationally in Europe to provide access to the new antibiotics are not sufficiently balanced by antibiotic stewardship efforts to calibrate the judicious use of the new antibiotics. IMPLICATIONS Antibiotic resistance is an immediate threat. The present review highlights areas where more systematic and uniform strategies across countries and geographical regions are warranted to improve evidence, availability, and use of new broad-spectrum antibiotics.
Collapse
Affiliation(s)
- Thomas Tängdén
- Department of Medical Sciences, Section of Infectious Diseases, Uppsala University, Uppsala, Sweden.
| | - Elena Carrara
- Division of Infectious Diseases, Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Mona Mustafa Hellou
- Infectious Diseases Institute, Rambam Healthcare Campus, Haifa, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Dafna Yahav
- Infectious Diseases Unit, Sheba Medical Center, Ramat-Gan, Israel; Faculty of Medical & Health Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Mical Paul
- Infectious Diseases Institute, Rambam Healthcare Campus, Haifa, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
4
|
Khan MA, Bajwa A, Hussain ST. Pneumonia: Recent Updates on Diagnosis and Treatment. Microorganisms 2025; 13:522. [PMID: 40142415 PMCID: PMC11945699 DOI: 10.3390/microorganisms13030522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/15/2025] [Accepted: 02/18/2025] [Indexed: 03/28/2025] Open
Abstract
Pneumonia remains a leading cause of mortality internationally, making it an intense area of study for new tools for diagnosis and treatment. In this review, we evaluate the potential of recently emerging syndromic panels in promoting rapid diagnosis and improved antibiotic stewardship. We will also examine emerging treatments, including new antibiotics in a world of worsening antimicrobial resistance, in addition to new methods of delivery and non-antibiotic paths of treatment.
Collapse
Affiliation(s)
- Maaz Ahsan Khan
- Department of Internal Medicine, University of Oklahoma, Oklahoma City, OK 73104, USA
| | - Awais Bajwa
- Department of Pulmonary, Critical Care & Sleep Medicine, University of Oklahoma, Oklahoma City, OK 73104, USA
| | - Syed Talal Hussain
- Department of Pulmonary, Critical Care & Sleep Medicine, University of Oklahoma, Oklahoma City, OK 73104, USA
| |
Collapse
|
5
|
Yeary J, Hacker L, Liang SY. Managing Antimicrobial Resistance in the Emergency Department. Emerg Med Clin North Am 2024; 42:461-483. [PMID: 38641399 DOI: 10.1016/j.emc.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
(Basic awareness and understanding of antimicrobial resistance and prevailing mechanisms can aid emergency physicians in providing appropriate care to patients with infections due to a multidrug-resistant organism (MDRO). Empiric treatment of MDRO infections should be approached with caution and guided by the most likely pathogens based on differential diagnosis, severity of the illness, suspected source of infection, patient-specific factors, and local antibiotic susceptibility patterns. Newer broad-spectrum antibiotics should be reserved for critically ill patients where there is a high likelihood of infection with an MDRO.).
Collapse
Affiliation(s)
- Julianne Yeary
- Department of Pharmacy, Barnes Jewish Hospital, 1 Barnes Jewish Place, St Louis, MO 63110, USA.
| | - Larissa Hacker
- Department of Pharmacy, UW Health, 600 Highland Avenue, Madison, WI 53792, USA
| | - Stephen Y Liang
- Department of Emergency Medicine and Division of Infectious Diseases, John T. Milliken Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
6
|
Strich JR, Mishuk A, Diao G, Lawandi A, Li W, Demirkale CY, Babiker A, Mancera A, Swihart BJ, Walker M, Yek C, Neupane M, De Jonge N, Warner S, Kadri SS. Assessing Clinician Utilization of Next-Generation Antibiotics Against Resistant Gram-Negative Infections in U.S. Hospitals : A Retrospective Cohort Study. Ann Intern Med 2024; 177:559-572. [PMID: 38639548 DOI: 10.7326/m23-2309] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND The U.S. antibiotic market failure has threatened future innovation and supply. Understanding when and why clinicians underutilize recently approved gram-negative antibiotics might help prioritize the patient in future antibiotic development and potential market entry rewards. OBJECTIVE To determine use patterns of recently U.S. Food and Drug Administration (FDA)-approved gram-negative antibiotics (ceftazidime-avibactam, ceftolozane-tazobactam, meropenem-vaborbactam, plazomicin, eravacycline, imipenem-relebactam-cilastatin, and cefiderocol) and identify factors associated with their preferential use (over traditional generic agents) in patients with gram-negative infections due to pathogens displaying difficult-to-treat resistance (DTR; that is, resistance to all first-line antibiotics). DESIGN Retrospective cohort. SETTING 619 U.S. hospitals. PARTICIPANTS Adult inpatients. MEASUREMENTS Quarterly percentage change in antibiotic use was calculated using weighted linear regression. Machine learning selected candidate variables, and mixed models identified factors associated with new (vs. traditional) antibiotic use in DTR infections. RESULTS Between quarter 1 of 2016 and quarter 2 of 2021, ceftolozane-tazobactam (approved 2014) and ceftazidime-avibactam (2015) predominated new antibiotic usage whereas subsequently approved gram-negative antibiotics saw relatively sluggish uptake. Among gram-negative infection hospitalizations, 0.7% (2551 [2631 episodes] of 362 142) displayed DTR pathogens. Patients were treated exclusively using traditional agents in 1091 of 2631 DTR episodes (41.5%), including "reserve" antibiotics such as polymyxins, aminoglycosides, and tigecycline in 865 of 1091 episodes (79.3%). Patients with bacteremia and chronic diseases had greater adjusted probabilities and those with do-not-resuscitate status, acute liver failure, and Acinetobacter baumannii complex and other nonpseudomonal nonfermenter pathogens had lower adjusted probabilities of receiving newer (vs. traditional) antibiotics for DTR infections, respectively. Availability of susceptibility testing for new antibiotics increased probability of usage. LIMITATION Residual confounding. CONCLUSION Despite FDA approval of 7 next-generation gram-negative antibiotics between 2014 and 2019, clinicians still frequently treat resistant gram-negative infections with older, generic antibiotics with suboptimal safety-efficacy profiles. Future antibiotics with innovative mechanisms targeting untapped pathogen niches, widely available susceptibility testing, and evidence demonstrating improved outcomes in resistant infections might enhance utilization. PRIMARY FUNDING SOURCE U.S. Food and Drug Administration; NIH Intramural Research Program.
Collapse
Affiliation(s)
- Jeffrey R Strich
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda; and Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland (J.R.S., A.Mishuk, C.Y.D., A.Mansera, B.J.S., M.W., C.Y., M.N., S.W., S.S.K.)
| | - Ahmed Mishuk
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda; and Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland (J.R.S., A.Mishuk, C.Y.D., A.Mansera, B.J.S., M.W., C.Y., M.N., S.W., S.S.K.)
| | - Guoqing Diao
- Department of Biostatistics and Bioinformatics, George Washington University, Washington, DC (G.D.)
| | - Alexander Lawandi
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland (A.L., N.D.J.)
| | - Willy Li
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda; and Department of Pharmacy, Clinical Center, National Institutes of Health, Bethesda, Maryland (W.L.)
| | - Cumhur Y Demirkale
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda; and Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland (J.R.S., A.Mishuk, C.Y.D., A.Mansera, B.J.S., M.W., C.Y., M.N., S.W., S.S.K.)
| | - Ahmed Babiker
- Division of Infectious Diseases, Emory University, Atlanta, Georgia (A.B.)
| | - Alex Mancera
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda; and Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland (J.R.S., A.Mishuk, C.Y.D., A.Mansera, B.J.S., M.W., C.Y., M.N., S.W., S.S.K.)
| | - Bruce J Swihart
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda; and Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland (J.R.S., A.Mishuk, C.Y.D., A.Mansera, B.J.S., M.W., C.Y., M.N., S.W., S.S.K.)
| | - Morgan Walker
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda; and Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland (J.R.S., A.Mishuk, C.Y.D., A.Mansera, B.J.S., M.W., C.Y., M.N., S.W., S.S.K.)
| | - Christina Yek
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda; and Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland (J.R.S., A.Mishuk, C.Y.D., A.Mansera, B.J.S., M.W., C.Y., M.N., S.W., S.S.K.)
| | - Maniraj Neupane
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda; and Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland (J.R.S., A.Mishuk, C.Y.D., A.Mansera, B.J.S., M.W., C.Y., M.N., S.W., S.S.K.)
| | - Nathaniel De Jonge
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland (A.L., N.D.J.)
| | - Sarah Warner
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda; and Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland (J.R.S., A.Mishuk, C.Y.D., A.Mansera, B.J.S., M.W., C.Y., M.N., S.W., S.S.K.)
| | - Sameer S Kadri
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda; and Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland (J.R.S., A.Mishuk, C.Y.D., A.Mansera, B.J.S., M.W., C.Y., M.N., S.W., S.S.K.)
| |
Collapse
|
7
|
Howard-Anderson J, Boucher HW. New Antibiotics for Resistant Infections: What Happens After Approval? Ann Intern Med 2024; 177:674-675. [PMID: 38639541 DOI: 10.7326/m24-0192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Affiliation(s)
- Jessica Howard-Anderson
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Helen W Boucher
- Tufts University School of Medicine and Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, Massachusetts
| |
Collapse
|
8
|
Shields RK. Progress and New Challenges in Combatting the Threat of Antimicrobial Resistance: Perspective From an Infectious Diseases Pharmacist. J Infect Dis 2024; 229:303-306. [PMID: 37487530 DOI: 10.1093/infdis/jiad250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/26/2023] Open
Affiliation(s)
- Ryan K Shields
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
9
|
Bologna E, Licari LC, Manfredi C, Ditonno F, Cirillo L, Fusco GM, Abate M, Passaro F, Di Mauro E, Crocetto F, Pandolfo SD, Aveta A, Cilio S, Di Filippo I, Barone B, Franco A, Arcaniolo D, La Rocca R, Pinchera B, Napolitano L. Carbapenem-Resistant Enterobacteriaceae in Urinary Tract Infections: From Biological Insights to Emerging Therapeutic Alternatives. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:214. [PMID: 38399502 PMCID: PMC10889937 DOI: 10.3390/medicina60020214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024]
Abstract
Urinary tract infections (UTIs) are the second most frequent type of infection observed in clinical practice. Gram-negative Enterobacteriaceae are common pathogens in UTIs. Excessive antibiotic use in humans and animals, poor infection control, and increased global travel have accelerated the spread of multidrug-resistant strains (MDR). Carbapenem antibiotics are commonly considered the last line of defense against MDR Gram-negative bacteria; however, their efficacy is now threatened by the increasing prevalence of carbapenem-resistant Enterobacteriaceae (CRE). This comprehensive review aims to explore the biological mechanisms underlying carbapenem resistance and to present a focus on therapeutic alternatives currently available for complicated UTIs (cUTIs). A comprehensive bibliographic search was conducted on the PubMed/MEDLINE, Scopus, and Web of Science databases in December 2023. The best evidence on the topic was selected, described, and discussed. Analyzed with particular interest were the clinical trials pivotal to the introduction of new pharmacological treatments in the management of complicated cUTIs. Additional suitable articles were collected by manually cross-referencing the bibliography of previously selected papers. This overview provides a current and comprehensive examination of the treatment options available for CRE infections, offering a valuable resource for understanding this constantly evolving public health challenge.
Collapse
Affiliation(s)
- Eugenio Bologna
- Unit of Urology, Department of Maternal-Child and Urological Sciences, Policlinico Umberto I Hospital, “Sapienza” University, 00161 Rome, Italy; (E.B.); (L.C.L.)
| | - Leslie Claire Licari
- Unit of Urology, Department of Maternal-Child and Urological Sciences, Policlinico Umberto I Hospital, “Sapienza” University, 00161 Rome, Italy; (E.B.); (L.C.L.)
| | - Celeste Manfredi
- Unit of Urology, Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy;
| | - Francesco Ditonno
- Department of Urology, University of Verona, Azienda Ospedaliera Universitaria Integrata, 37100 Verona, Italy;
| | - Luigi Cirillo
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (G.M.F.); (M.A.); (F.P.); (E.D.M.); (F.C.); (S.D.P.); (A.A.); (S.C.); (R.L.R.); (L.N.)
| | - Giovanni Maria Fusco
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (G.M.F.); (M.A.); (F.P.); (E.D.M.); (F.C.); (S.D.P.); (A.A.); (S.C.); (R.L.R.); (L.N.)
| | - Marco Abate
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (G.M.F.); (M.A.); (F.P.); (E.D.M.); (F.C.); (S.D.P.); (A.A.); (S.C.); (R.L.R.); (L.N.)
| | - Francesco Passaro
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (G.M.F.); (M.A.); (F.P.); (E.D.M.); (F.C.); (S.D.P.); (A.A.); (S.C.); (R.L.R.); (L.N.)
| | - Ernesto Di Mauro
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (G.M.F.); (M.A.); (F.P.); (E.D.M.); (F.C.); (S.D.P.); (A.A.); (S.C.); (R.L.R.); (L.N.)
| | - Felice Crocetto
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (G.M.F.); (M.A.); (F.P.); (E.D.M.); (F.C.); (S.D.P.); (A.A.); (S.C.); (R.L.R.); (L.N.)
| | - Savio Domenico Pandolfo
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (G.M.F.); (M.A.); (F.P.); (E.D.M.); (F.C.); (S.D.P.); (A.A.); (S.C.); (R.L.R.); (L.N.)
- Department of Urology, University of L’Aquila, 67010 L’Aquila, Italy
| | - Achille Aveta
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (G.M.F.); (M.A.); (F.P.); (E.D.M.); (F.C.); (S.D.P.); (A.A.); (S.C.); (R.L.R.); (L.N.)
| | - Simone Cilio
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (G.M.F.); (M.A.); (F.P.); (E.D.M.); (F.C.); (S.D.P.); (A.A.); (S.C.); (R.L.R.); (L.N.)
| | - Isabella Di Filippo
- Department of Clinical Medicine and Surgery, Section of Infectious Diseases, University of Naples “Federico II”, 80131 Naples, Italy; (I.D.F.); (B.P.)
| | - Biagio Barone
- Division of Urology, Department of Surgical Sciences, AORN Sant’Anna e San Sebastiano, 81100 Caserta, Italy;
| | - Antonio Franco
- Department of Urology, Sant’Andrea Hospital, “Sapienza” University, 00189 Rome, Italy;
| | - Davide Arcaniolo
- Unit of Urology, Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy;
| | - Roberto La Rocca
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (G.M.F.); (M.A.); (F.P.); (E.D.M.); (F.C.); (S.D.P.); (A.A.); (S.C.); (R.L.R.); (L.N.)
| | - Biagio Pinchera
- Department of Clinical Medicine and Surgery, Section of Infectious Diseases, University of Naples “Federico II”, 80131 Naples, Italy; (I.D.F.); (B.P.)
| | - Luigi Napolitano
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy; (L.C.); (G.M.F.); (M.A.); (F.P.); (E.D.M.); (F.C.); (S.D.P.); (A.A.); (S.C.); (R.L.R.); (L.N.)
| |
Collapse
|
10
|
Lodise TP, Yucel E, Obi EN, Watanabe AH, Nathanson BH. Incidence of acute kidney injury (AKI) and its impact on patient outcomes among adult hospitalized patients with carbapenem-resistant Gram-negative infections who received targeted treatment with a newer β-lactam or β-lactam/β-lactamase inhibitor-, polymyxin- or aminoglycoside-containing regimen. J Antimicrob Chemother 2024; 79:82-95. [PMID: 37962080 PMCID: PMC10761276 DOI: 10.1093/jac/dkad351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Limited comparative data exist on acute kidney injury (AKI) risk and AKI-associated outcomes in hospitalized patients with carbapenem-resistant Gram-negative infections (CR-GNIs) treated with a newer β-lactam/β-lactam-β-lactamase inhibitor (BL/BL-BLI)-, polymyxin (PB)- or aminoglycoside (AG)-containing regimen. This study quantified the risk of AKI and AKI-related outcomes among patients with CR-GNIs treated with a newer BL/BL-BLI-, PB- or AG-containing regimen. METHODS A multicentre, retrospective, observational study was performed (2016-20). The study included adult hospitalized patients with (i) baseline estimated glomerular filtration rates ≥30 mL/min/1.73 m2; (ii) CR-GN pneumonia, complicated urinary tract infection or bloodstream infection; and (iii) receipt of newer BL/BL-BLI, PG or AG within 7 days of index CR-GN culture for ≥3 days. Outcomes included AKI, in-hospital mortality and hospital costs. RESULTS The study included 750 patients and most (48%) received a newer BL/BL-BLI. The median (IQR) treatment duration was 8 (5-11), 5 (4-8) and 7 (4-8) days in the newer BL/BL-BLI group, AG group and PB group, respectively. The PB group had the highest adjusted AKI incidence (95% CI) (PB: 25.1% (15.6%-34.6%) versus AG: 8.9% (5.7%-12.2%) versus newer BL/BL-BLI: 11.9% (8.1%-15.7%); P = 0.001). Patients with AKI had significantly higher in-hospital mortality (AKI: 18.5% versus 'No AKI': 5.6%; P = 0.001) and mean hospital costs (AKI: $49 192 versus 'No AKI': $38,763; P = 0.043). CONCLUSIONS The AKI incidence was highest among PB patients and patients with AKI had worse outcomes. Healthcare systems should consider minimizing the use of antibiotics that augment AKI risk as a measure to improve outcomes in patients with CR-GNIs.
Collapse
Affiliation(s)
- Thomas P Lodise
- Albany College of Pharmacy and Health Sciences, Department of Pharmacy Practice, 106 New Scotland Avenue, Albany, NY, USA
| | - Emre Yucel
- Merck & Co., Inc., 2025 E Scott Ave, Rahway, NJ, USA
| | - Engels N Obi
- Merck & Co., Inc., 2025 E Scott Ave, Rahway, NJ, USA
| | | | | |
Collapse
|
11
|
Mackow NA, van Duin D. Reviewing novel treatment options for carbapenem-resistant Enterobacterales. Expert Rev Anti Infect Ther 2024; 22:71-85. [PMID: 38183224 PMCID: PMC11500727 DOI: 10.1080/14787210.2024.2303028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/04/2024] [Indexed: 01/07/2024]
Abstract
INTRODUCTION Carbapenem resistant Enterobacterales (CRE) are a major threat to global health and hospital-onset CRE infections have risen during the COVID-19 pandemic. Novel antimicrobials are now available for the treatment of CRE infections. There remains an urgent need for new antimicrobials for CRE, especially for those producing metallo-β-lactamases. AREAS COVERED This article discusses previously published research supporting currently available novel antimicrobials for the treatment of CRE infections. Newer compounds currently being evaluated in clinical trials are covered. A literature search was conducted in PubMed over all available dates for relevant published papers and conference abstracts with the search terms, 'CRE,' 'carbapenem-resistant Enterobacterales,' 'β-lactam-β-lactamase inhibitor,' 'KPC,' 'NDM,' 'metallo-β-lactamase,' 'ceftazidime-avibactam,' 'meropenem-vaborbactam,' 'imipenem-cilastatin-relebactam,' 'cefiderocol,' 'eravacycline,' 'plazomicin,' 'taniborbactam,' 'zidebactam,' and 'nacubactam.' EXPERT OPINION Novel antimicrobials for CRE infections have been developed, most notably the β-lactam-β-lactamase inhibitor combinations, though treatment options for infections with metallo-β-lactamase producing Enterobacterales remain few and have limitations. Development of antibiotics with activity against metallo-β-lactamase producing Enterobacterales is eagerly awaited, and there are promising new compounds in clinical trials. Finally, more clinical research is needed to optimize and individualize treatment approaches, which will help guide antimicrobial stewardship initiatives aimed at reducing the spread of CRE and development of further resistance.
Collapse
Affiliation(s)
- Natalie A Mackow
- Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - David van Duin
- Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
12
|
Fiore M, Corrente A, Di Franco S, Alfieri A, Pace MC, Martora F, Petrou S, Mauriello C, Leone S. Antimicrobial approach of abdominal post-surgical infections. World J Gastrointest Surg 2023; 15:2674-2692. [PMID: 38222012 PMCID: PMC10784838 DOI: 10.4240/wjgs.v15.i12.2674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/24/2023] [Accepted: 11/21/2023] [Indexed: 12/27/2023] Open
Abstract
Abdominal surgical site infections (SSIs) are infections that occur after abdominal surgery. They can be superficial, involving the skin tissue only, or more profound, involving deeper skin tissues including organs and implanted materials. Currently, SSIs are large global health problem with an incidence that varies significantly depending on the United Nations' Human Development Index. The purpose of this review is to provide a practical update on the latest available literature on SSIs, focusing on causative pathogens and treatment with an overview of the ongoing studies of new therapeutic strategies.
Collapse
Affiliation(s)
- Marco Fiore
- Department of Women, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli,” Naples 80138, Italy
| | - Antonio Corrente
- Department of Women, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli,” Naples 80138, Italy
| | - Sveva Di Franco
- Department of Women, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli,” Naples 80138, Italy
| | - Aniello Alfieri
- Department of Women, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli,” Naples 80138, Italy
| | - Maria Caterina Pace
- Department of Women, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli,” Naples 80138, Italy
| | - Francesca Martora
- Unit of Virology and Microbiology, “Umberto I” Hospital, Nocera Inferiore 84018, Italy
| | - Stephen Petrou
- Department of Emergency Medicine, University of California San Francisco, San Francisco, CA 94143, United States
| | - Claudio Mauriello
- Department of General Surgery, “Santa Maria delle Grazie” Hospital, Pozzuoli 80078, Italy
| | - Sebastiano Leone
- Division of Infectious Diseases, “San Giuseppe Moscati” Hospital, Avellino 83100, Italy
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW This review focuses on the management of severe Pseudomonas aeruginosa infections in critically ill patients. RECENT FINDINGS Pseudomonas aeruginosa is the most common pathogen in intensive care; the main related infections are nosocomial pneumonias, then bloodstream infections. Antimicrobial resistance is common; despite new antibiotics, it is associated with increased mortality, and can lead to a therapeutic deadlock. SUMMARY Carbapenem resistance in difficult-to-treat P. aeruginosa (DTR-PA) strains is primarily mediated by loss or reduction of the OprD porin, overexpression of the cephalosporinase AmpC, and/or overexpression of efflux pumps. However, the role of carbapenemases, particularly metallo-β-lactamases, has become more important. Ceftolozane-tazobactam, ceftazidime-avibactam and imipenem-relebactam are useful against DTR phenotypes (noncarbapenemase producers). Other new agents, such as aztreonam-ceftazidime-avibactam or cefiderocol, or colistin, might be effective for carbapenemase producers. Regarding nonantibiotic agents, only phages might be considered, pending further clinical trials. Combination therapy does not reduce mortality, but may be necessary for empirical treatment. Short-term treatment of severe P. aeruginosa infections should be preferred when it is expected that the clinical situation resolves rapidly.
Collapse
Affiliation(s)
- Hermann Do Rego
- AP-HP, Bichat Hospital, Medical and infectious diseases intensive care unit
| | - Jean-François Timsit
- AP-HP, Bichat Hospital, Medical and infectious diseases intensive care unit
- IAME Université Paris Cité, UMR 1137, Paris
- Meta-network PROMISE, Inserm, Limoges Universit, Limoges University hospital (CHU), UMR1092, Limoges, France
| |
Collapse
|
14
|
Maraki S, Mavromanolaki VE, Stafylaki D, Scoulica E. In vitro activity of newer β-lactam/β-lactamase inhibitor combinations, cefiderocol, plazomicin and comparators against carbapenemase-producing Klebsiella pneumoniae isolates. J Chemother 2023; 35:596-600. [PMID: 36705145 DOI: 10.1080/1120009x.2023.2170906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/23/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023]
Abstract
Infections by carbapenem-resistant Klebsiella pneumoniae (CRKP) remain one of the greatest healthcare threats associated with significant morbidity and mortality. New antimicrobials were recently developed to address this threat. We assessed the epidemiology of carbapenemase-producing K. pneumoniae (CPKP) isolates recovered in a Greek university hospital during 2021, and their susceptibilities to old and newer antimicrobials. Minimum inhibitory concentrations (MICs) were determined by the MIC Test Strip method, except for cefiderocol (CFDC) and colistin that were evaluated by the broth microdilution method. A total of 110 CPKP strains were isolated, with KPC-producers being the most prevalent (64.6%). Among the agents tested, plazomicin (PL) displayed the highest activity against all the isolates (MIC50/MIC90, 0.5/1.5 μg/ml), followed by tigecycline (MIC50/MIC90, 1.5/4 μg/ml). All KPC-producing K. pneumoniae were susceptible to ceftazidime-avibactam (CAZ/AVI) and meropenem-vaborbactam (M/V) and 97.2% of them to imipenem-relebactam (I/R). Among the MBL-producing isolates, PL and CFDC exhibited the highest activity.
Collapse
Affiliation(s)
- Sofia Maraki
- Department of Clinical Microbiology and Microbial Pathogenesis, University Hospital of Heraklion, Heraklion, Crete, Greece
| | | | - Dimitra Stafylaki
- Department of Clinical Microbiology and Microbial Pathogenesis, University Hospital of Heraklion, Heraklion, Crete, Greece
| | - Effie Scoulica
- Laboratory of Clinical Microbiology and Molecular Microbiology, School of Medicine, University of Crete, Crete, Greece
| |
Collapse
|
15
|
Thy M, Timsit JF, de Montmollin E. Aminoglycosides for the Treatment of Severe Infection Due to Resistant Gram-Negative Pathogens. Antibiotics (Basel) 2023; 12:antibiotics12050860. [PMID: 37237763 DOI: 10.3390/antibiotics12050860] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Aminoglycosides are a family of rapidly bactericidal antibiotics that often remain active against resistant Gram-negative bacterial infections. Over the past decade, their use in critically ill patients has been refined; however, due to their renal and cochleovestibular toxicity, their indications in the treatment of sepsis and septic shock have been gradually reduced. This article reviews the spectrum of activity, mode of action, and methods for optimizing the efficacy of aminoglycosides. We discuss the current indications for aminoglycosides, with an emphasis on multidrug-resistant Gram-negative bacteria, such as extended-spectrum β-lactamase-producing Enterobacterales, carbapenemase-producing Enterobacterales, multidrug-resistant Pseudomonas aeruginosa, and carbapenem-resistant Acinetobacter baumannii. Additionally, we review the evidence for the use of nebulized aminoglycosides.
Collapse
Affiliation(s)
- Michaël Thy
- Assistance Publique Hôpitaux de Paris (AP-HP), Service de Médecine Intensive et Réanimation Infectieuse, Hôpital Bichat Claude-Bernard, Université Paris Cité, 46 Rue Henri Huchard, 75018 Paris, France
- Equipe d'accueil (EA) 7323, Department of Pharmacology and Therapeutic Evaluation in Children and Pregnant Women, Université Paris Cité, 75018 Paris, France
| | - Jean-François Timsit
- Assistance Publique Hôpitaux de Paris (AP-HP), Service de Médecine Intensive et Réanimation Infectieuse, Hôpital Bichat Claude-Bernard, Université Paris Cité, 46 Rue Henri Huchard, 75018 Paris, France
- Unité mixte de Recherche (UMR) 1137, Infection, Antimicrobials, Modelization, Epidemiology (IAME), Institut National de la Recherche Médicale (INSERM), Université Paris Cité, 75018 Paris, France
| | - Etienne de Montmollin
- Assistance Publique Hôpitaux de Paris (AP-HP), Service de Médecine Intensive et Réanimation Infectieuse, Hôpital Bichat Claude-Bernard, Université Paris Cité, 46 Rue Henri Huchard, 75018 Paris, France
- Unité mixte de Recherche (UMR) 1137, Infection, Antimicrobials, Modelization, Epidemiology (IAME), Institut National de la Recherche Médicale (INSERM), Université Paris Cité, 75018 Paris, France
| |
Collapse
|
16
|
Routray A, Mane A. Knowledge, Attitude, and Practice (KAP) Survey on the Management of Multidrug-Resistant Gram-Negative Infections With Innovative Antibiotics: Focus on Ceftazidime-Avibactam. Cureus 2023; 15:e39245. [PMID: 37378116 PMCID: PMC10292104 DOI: 10.7759/cureus.39245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) is a major public health dilemma and a chief health concern globally. The rising incidence of resistance against carbapenems, which are considered most effective against gram-negative bacteria, has added to the concern and has limited the number of available treatment options. Newer antibiotic options may be required to tackle the mounting concern of antibiotic resistance. However, only a few antimicrobials are in the pipeline for managing infections instigated by multidrug-resistant (MDR) gram-negative bacteria. This justifies the prudent application of already available antibiotics. Among newer antibiotics available to healthcare professionals (HCPs), ceftazidime-avibactam (CAZ-AVI) has shown good efficacy in the management of MDR gram-negative infections. METHOD A cross-sectional survey on the knowledge, attitude, and practices (KAP) among HCPs was carried out using a questionnaire comprising 21 parameters related to AMR patterns on the need for innovative antibiotics to manage MDR gram-negative infections and the usage of CAZ-AVI by HCPs while managing such infections. The KAP scores were calculated to rank respondents' KAP levels. RESULT Out of the 204 study respondents, the majority (~80%) (n=160) believed that renewed efforts should be made to seek antimicrobial agents that will add to the armamentarium of treatment options for MDR gram-negative infections. CAZ-AVI is an important treatment alternative for managing MDR gram-negative infections (n=90, 45%). Further, it can be the first choice of definitive therapy for oxacillinases (OXA)-48-producing carbapenem-resistant Enterobacterales (n=84, 42%). HCPs also believed that the use of CAZ-AVI in clinical practice will require high levels of antimicrobial stewardship (n=100, 49%). CONCLUSION Novel and innovative antibiotics are the need of the hour in the management of MDR gram-negative infections. CAZ-AVI has established its effectiveness in treating these infections; however, the molecule must be utilized prudently while keeping stewardship principles in mind.
Collapse
|
17
|
Watkins RR, Du B, Isaacs R, Altarac D. Pathogen-Targeted Clinical Development to Address Unmet Medical Need: Design, Safety, and Efficacy of the ATTACK Trial. Clin Infect Dis 2023; 76:S210-S214. [PMID: 37125468 PMCID: PMC10150271 DOI: 10.1093/cid/ciad097] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
There is a crucial need for novel antibiotics to stem the tide of antimicrobial resistance, particularly against difficult to treat gram-negative pathogens like Acinetobacter baumannii-calcoaceticus complex (ABC). An innovative approach to addressing antimicrobial resistance may be pathogen-targeted development programs. Sulbactam-durlobactam (SUL-DUR) is a β-lactam/β-lactamase inhibitor combination antibiotic that is being developed to specifically target drug-resistant ABC. The development of SUL-DUR culminated with the Acinetobacter Treatment Trial Against Colistin (ATTACK) trial, a global, randomized, active-controlled phase 3 clinical trial that compared SUL-DUR with colistin for treating serious infections due to carbapenem-resistant ABC. SUL-DUR met the primary noninferiority endpoint of 28-day all-cause mortality. Furthermore, SUL-DUR had a favorable safety profile with a statistically significant lower incidence of nephrotoxicity compared with colistin. If approved, SUL-DUR could be an important treatment option for infections caused by ABC, including carbapenem-resistant and multidrug-resistant strains. The development program and the ATTACK trial highlight the potential for pathogen-targeted development programs to address the challenge of antimicrobial resistance.
Collapse
Affiliation(s)
- Richard R Watkins
- Division of Infectious Diseases, Department of Medicine, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Bin Du
- State Key Laboratory of Rare, Complex and Critical Diseases, Medical Intensive Care Unit, Peking Union Medical College Hospital, Beijing, China
| | - Robin Isaacs
- Entasis Therapeutics, Waltham, Massachusetts, USA
| | | |
Collapse
|
18
|
Karvouniaris M, Almyroudi MP, Abdul-Aziz MH, Blot S, Paramythiotou E, Tsigou E, Koulenti D. Novel Antimicrobial Agents for Gram-Negative Pathogens. Antibiotics (Basel) 2023; 12:761. [PMID: 37107124 PMCID: PMC10135111 DOI: 10.3390/antibiotics12040761] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Gram-negative bacterial resistance to antimicrobials has had an exponential increase at a global level during the last decades and represent an everyday challenge, especially for the hospital practice of our era. Concerted efforts from the researchers and the industry have recently provided several novel promising antimicrobials, resilient to various bacterial resistance mechanisms. There are new antimicrobials that became commercially available during the last five years, namely, cefiderocol, imipenem-cilastatin-relebactam, eravacycline, omadacycline, and plazomicin. Furthermore, other agents are in advanced development, having reached phase 3 clinical trials, namely, aztreonam-avibactam, cefepime-enmetazobactam, cefepime-taniborbactam, cefepime-zidebactam, sulopenem, tebipenem, and benapenem. In this present review, we critically discuss the characteristics of the above-mentioned antimicrobials, their pharmacokinetic/pharmacodynamic properties and the current clinical data.
Collapse
Affiliation(s)
- Marios Karvouniaris
- Intensive Care Unit, AHEPA University Hospital, 546 36 Thessaloniki, Greece;
| | | | - Mohd Hafiz Abdul-Aziz
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QL 4029, Australia; (M.H.A.-A.); (S.B.)
| | - Stijn Blot
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QL 4029, Australia; (M.H.A.-A.); (S.B.)
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | | | - Evdoxia Tsigou
- Intensive Care Department, ‘Aghioi Anargyroi’ Hospital of Kifissia, 145 64 Athens, Greece;
| | - Despoina Koulenti
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QL 4029, Australia; (M.H.A.-A.); (S.B.)
- Second Critical Care Department, Attikon University Hospital, 124 62 Athens, Greece;
| |
Collapse
|
19
|
Kaye KS, Naas T, Pogue JM, Rossolini GM. Cefiderocol, a Siderophore Cephalosporin, as a Treatment Option for Infections Caused by Carbapenem-Resistant Enterobacterales. Infect Dis Ther 2023; 12:777-806. [PMID: 36847998 PMCID: PMC10017908 DOI: 10.1007/s40121-023-00773-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/07/2023] [Indexed: 03/01/2023] Open
Abstract
Carbapenem-resistant Enterobacterales (CRE) remain a significant public health threat, and, despite recent approvals, new antibiotics are needed. Severe infections caused by CRE, such as nosocomial pneumonia and bloodstream infections, are associated with a relatively high risk of morbidity and mortality. The recent approval of ceftazidime-avibactam, imipenem-relebactam, meropenem-vaborbactam, plazomicin, eravacycline and cefiderocol has broadened the armamentarium for the treatment of patients with CRE infections. Cefiderocol is a siderophore cephalosporin with overall potent in vitro activity against CRE. It is taken up via iron transport channels through active transport, with some entry into bacteria through traditional porin channels. Cefiderocol is relatively stable against hydrolysis by most serine- and metallo-beta-lactamases, including KPC, NDM, VIM, IMP and OXA carbapenemases-the most frequent carbapenemases detected in CRE. The efficacy and safety of cefiderocol has been demonstrated in three randomised, prospective, parallel group or controlled clinical studies in patients at risk of being infected by multidrug-resistant or carbapenem-resistant Gram-negative bacteria. This paper reviews the in vitro activity, emergence of resistance, preclinical effectiveness, and clinical experience for cefiderocol, and its role in the management of patients with CRE infections.
Collapse
Affiliation(s)
- Keith S Kaye
- Division of Allergy, Immunology and Infectious Diseases, Department of Medicine, Rutgers Robert Wood Johnson School of Medicine, New Brunswick, NJ, USA
| | - Thierry Naas
- Team ReSIST, UMR1184, INSERM, CEA, University Paris-Saclay, Translational Research Building, Faculty of Medicine, Hopital Bicêtre, AP-HP, Le Kremlin-Bicêtre, France
| | - Jason M Pogue
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI, USA
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, and Microbiology and Virology Unit, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy.
| |
Collapse
|
20
|
Paul M, Dishon-Benattar Y, Dickstein Y, Yahav D. Optimizing patient recruitment into clinical trials of antimicrobial-resistant pathogens. JAC Antimicrob Resist 2023; 5:dlad005. [PMID: 36726533 PMCID: PMC9883721 DOI: 10.1093/jacamr/dlad005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Recruitment of patients with critical priority antimicrobial-resistant (AMR) bacteria into drug approval randomized controlled trials (RCTs) has not been successful to date. Approaching from the viewpoint of clinician-investigators and learning from the experience of AMR-focused investigator-initiated trials, we present suggestions to improve feasibility and efficiency of RCTs evaluating patients with severe infections caused by carbapenem-resistant Gram-negative or other AMR bacteria. Considerations address the trials' eligibility criteria, whether the focus of the trial is pathogen- or syndrome-targeted, trials' case report forms and monitoring, informed consent strategies for the recruitment of extremely ill patients, team dedication and incentives to run the trial and alternative trial designs. Evidence on the effects of new drugs against the AMR that these drugs target is weak and needs to be improved through better industry-academic collaboration, taking advantage of the different strengths of industry-led and investigator-initiated research.
Collapse
Affiliation(s)
- Mical Paul
- Infectious Diseases Division, Rambam Health Care Campus, Haifa, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa, Israel
| | - Yael Dishon-Benattar
- Infectious Diseases Division, Rambam Health Care Campus, Haifa, Israel
- The Cheryl Spencer Department of Nursing, University of Haifa, Haifa, Israel
| | - Yaakov Dickstein
- Infectious Diseases Division, Rambam Health Care Campus, Haifa, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa, Israel
| | - Dafna Yahav
- Infectious Diseases Unit, Sheba Medical Centre, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, Israel
| |
Collapse
|
21
|
Kaye KS, Marchaim D, Thamlikitkul V, Carmeli Y, Chiu CH, Daikos G, Dhar S, Durante-Mangoni E, Gikas A, Kotanidou A, Paul M, Roilides E, Rybak M, Samarkos M, Sims M, Tancheva D, Tsiodras S, Kett D, Patel G, Calfee D, Leibovici L, Power L, Munoz-Price S, Stevenson K, Susick L, Latack K, Daniel J, Chiou C, Divine GW, Ghazyaran V, Pogue JM. Colistin Monotherapy versus Combination Therapy for Carbapenem-Resistant Organisms. NEJM EVIDENCE 2023; 2:10.1056/evidoa2200131. [PMID: 37538951 PMCID: PMC10398788 DOI: 10.1056/evidoa2200131] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
BACKGROUND Pneumonia and bloodstream infections (BSI) due to extensively drug-resistant (XDR) Acinetobacter baumannii, XDR Pseudomonas aeruginosa, and carbapenem-resistant Enterobacterales (CRE) are associated with high mortality rates, and therapeutic options remain limited. This trial assessed whether combination therapy with colistin and meropenem was superior to colistin monotherapy for the treatment of these infections. METHODS The OVERCOME (Colistin Monotherapy versus Combination Therapy) trial was an international, randomized, double-blind, placebo-controlled trial. We randomly assigned participants to receive colistin (5 mg/kg once followed by 1.67 mg/kg every 8 hours) in combination with either meropenem (1000 mg every 8 hours) or matching placebo for the treatment of pneumonia and/or BSI caused by XDR A. baumannii, XDR P. aeruginosa, or CRE. The primary outcome was 28-day mortality, and secondary outcomes included clinical failure and microbiologic cure. RESULTS Between 2012 and 2020, a total of 464 participants were randomly assigned to treatment, and 423 eligible patients comprised the modified intention-to-treat population. A. baumannii was the predominant trial pathogen (78%) and pneumonia the most common index infection (70%). Most patients were in the intensive care unit at the time of enrollment (69%). There was no difference in mortality (43 vs. 37%; P=0.17), clinical failure (65 vs. 58%; difference, 6.8 percentage points; 95% confidence interval [CI], -3.1 to 16.6), microbiologic cure (65 vs. 60%; difference, 4.8 percentage points; 95% CI, -5.6 to 15.2), or adverse events (acute kidney injury, 52 vs. 49% [P=0.55]; hypersensitivity reaction, 1 vs. 3% [P=0.22]; and neurotoxicity, 5 vs. 2% [P=0.29]) between patients receiving monotherapy and combination therapy, respectively. CONCLUSIONS Combination therapy with colistin and meropenem was not superior to colistin monotherapy for the treatment of pneumonia or BSI caused by these pathogens. (Funded by the National Institute of Allergy and Infectious Diseases, Division of Microbiology and Infectious Diseases protocol 10-0065; ClinicalTrials.gov number, NCT01597973.).
Collapse
Affiliation(s)
- Keith S Kaye
- Division of Allergy, Immunology, and Infectious Diseases, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Dror Marchaim
- Division of Infectious Diseases, Assaf Harofeh Medical Center, Be'er Ya'akov, Israel
| | - Visanu Thamlikitkul
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Yehuda Carmeli
- Laboratory for Microbiology and Infection Control, Tel Aviv University, Tel Aviv, Israel
| | - Cheng-Hsun Chiu
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - George Daikos
- School of Medicine, National and Kapodistrian University of Athens
| | - Sorabh Dhar
- Division of Infectious Diseases, Detroit Medical Center, Wayne State University, Detroit
| | - Emanuele Durante-Mangoni
- Internal Medicine, University of Campania "Luigi Vanvitelli" and AORN dei Colli-Monaldi Hospital, Napoli, Italy
| | - Achilles Gikas
- Department of Internal Medicine and Infectious Diseases, University Hospital of Heraklion, Irákleio, Greece
| | | | - Mical Paul
- Infectious Diseases Institute, Rambam Health Care Campus, Haifa, Israel
| | - Emmanuelle Roilides
- Infectious Diseases Unit, 3rd Department of Pediatrics, Aristotle University School of Health Sciences and Hippokration General Hospital, Thessaloniki, Greece
| | - Michael Rybak
- Anti-Infective Research Laboratory, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit
| | - Michael Samarkos
- First Department of Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens
| | | | - Dora Tancheva
- Centre for Burns and Plastic Surgery, Pirogov Emergency Medicine Hospital, Sofia, Bulgaria
| | - Sotirios Tsiodras
- 4th Department of Internal Medicine, Attikon University Hospital, University of Athens Medical School
| | - Daniel Kett
- University of Miami Hospital, Jackson Memorial Hospital
| | - Gopi Patel
- Division of Infectious Diseases, Mount Sinai Hospital, New York
| | - David Calfee
- Division of Infectious Disease, Weill Cornell Medicine, New York
| | | | | | | | | | - Laura Susick
- Department of Public Health Sciences, Henry Ford Health, Detroit
| | - Katie Latack
- Department of Public Health Sciences, Henry Ford Health, Detroit
| | - Jolene Daniel
- Division of Allergy, Immunology, and Infectious Diseases, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Christine Chiou
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - George W Divine
- Department of Public Health Sciences, Henry Ford Health, Detroit
| | - Varduhi Ghazyaran
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Jason M Pogue
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor
| |
Collapse
|
22
|
Russo A, Fusco P, Morrone HL, Trecarichi EM, Torti C. New advances in management and treatment of multidrug-resistant Klebsiella pneumoniae. Expert Rev Anti Infect Ther 2023; 21:41-55. [PMID: 36416713 DOI: 10.1080/14787210.2023.2151435] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
INTRODUCTION The management of multidrug-resistant (MDR) Klebsiella pneumoniae (KP) represents a major challenge in the field of infectious diseases. It is associated with a high rate of nosocomial infections with a mortality rate that reaches approximately 50%, even when using an effective antimicrobial therapy. Therefore, combined actions addressing infection control and antibiotic stewardship are required to delay the emergence of resistance. Since new antimicrobial agents targeting MDR-GNB bacteria have been produced during the last years and are now available for physicians to treat MDR, it is fundamental to choose appropriate antimicrobial therapy for K. pneumoniae infection. AREAS COVERED The PubMed database was searched to review the most significant recent literature on the topic, including data from articles coming from endemic areas and from the current European and American Guidelines. EXPERT OPINION We explore the most effective strategies for prevention of MDR-KP spread and the currently available treatment options, focusing on comparing old strategies and new compounds. We reviewed data concerning newly developed drugs that could play an important role in the future; we also propose a treatment algorithm that could be useful for physicians in daily clinical practice.
Collapse
Affiliation(s)
- Alessandro Russo
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Paolo Fusco
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Helen Linda Morrone
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Enrico Maria Trecarichi
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Carlo Torti
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
23
|
Lombardi G, Tanzarella E, Cutuli S, De Pascale G. Treatment of severe infections caused by ESBL or carbapenemases-producing Enterobacteriaceae. Med Intensiva 2023. [DOI: 10.1016/j.medin.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
24
|
Lombardi G, Tanzarella ES, Cutuli SL, De Pascale G. Treatment of severe infections caused by ESBL or carbapenemases-producing Enterobacteriaceae. Med Intensiva 2023; 47:34-44. [PMID: 36202744 DOI: 10.1016/j.medine.2022.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/06/2022] [Indexed: 01/02/2023]
Abstract
Enterobacteriaceae are the most frequent pathogens in the Intensive Care Unit. Due to their safety and activity, β-Lactams (BL) and carbapenems represented the most common strategy adopted against these germs. The increasing exposure to these molecules led to the development of several types of antimicrobial resistance as the expression of extended-spectrum β-lactamases (ESBLs) and carbapenemases. Great molecular variability exists among these enzymes, with significant clinical impact. To limit morbidity and mortality, old antibiotics were tested and represent viable alternatives for specific types of infections, or once the spectrum of susceptibility of each germ has been determined. Alongside, new molecules have been specifically designed but enzyme molecular variability prevents the existence of one single antibiotic which fits for all. Therefore, a quicker identification of the molecular identity of each germ, together with the knowledge of the activity spectrum of each antibiotic is crucial to tailor the therapy and make it effective.
Collapse
Affiliation(s)
- G Lombardi
- Dipartimento di Scienze dell'emergenza, anestesiologiche e della rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - E S Tanzarella
- Dipartimento di Scienze dell'emergenza, anestesiologiche e della rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - S L Cutuli
- Dipartimento di Scienze dell'emergenza, anestesiologiche e della rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - G De Pascale
- Dipartimento di Scienze dell'emergenza, anestesiologiche e della rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| |
Collapse
|
25
|
Bassetti M, Magnè F, Giacobbe DR, Bini L, Vena A. New antibiotics for Gram-negative pneumonia. Eur Respir Rev 2022; 31:31/166/220119. [PMID: 36543346 PMCID: PMC9879346 DOI: 10.1183/16000617.0119-2022] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/18/2022] [Indexed: 12/24/2022] Open
Abstract
Pneumonia is frequently encountered in clinical practice, and Gram-negative bacilli constitute a significant proportion of its aetiology, especially when it is acquired in a hospital setting. With the alarming global rise in multidrug resistance in Gram-negative bacilli, antibiotic therapy for treating patients with pneumonia is challenging and must be guided by in vitro susceptibility results. In this review, we provide an overview of antibiotics newly approved for the treatment of pneumonia caused by Gram-negative bacilli. Ceftazidime-avibactam, imipenem-relebactam and meropenem-vaborbactam have potent activity against some of the carbapenem-resistant Enterobacterales, especially Klebsiella pneumoniae carbapenemase producers. Several novel antibiotics have potent activity against multidrug-resistant Pseudomonas aeruginosa, such as ceftazidime-avibactam, ceftolozane-tazobactam, imipenem-relabactam and cefiderocol. Cefiderocol may also play an important role in the management of pneumonia caused by Acinetobacter baumannii, along with plazomicin and eravacycline.
Collapse
Affiliation(s)
- Matteo Bassetti
- Division of Infectious Diseases, Department of Health Sciences (DISSAL), University of Genova, Genova, Italy,IRCCS Ospedale Policlinico San Martino, Genova, Italy,Corresponding author: Matteo Bassetti ()
| | - Federica Magnè
- Division of Infectious Diseases, Department of Health Sciences (DISSAL), University of Genova, Genova, Italy
| | - Daniele Roberto Giacobbe
- Division of Infectious Diseases, Department of Health Sciences (DISSAL), University of Genova, Genova, Italy,IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Lorenzo Bini
- Division of Infectious Diseases, Department of Health Sciences (DISSAL), University of Genova, Genova, Italy
| | - Antonio Vena
- Division of Infectious Diseases, Department of Health Sciences (DISSAL), University of Genova, Genova, Italy,IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
26
|
Alaoui Mdarhri H, Benmessaoud R, Yacoubi H, Seffar L, Guennouni Assimi H, Hamam M, Boussettine R, Filali-Ansari N, Lahlou FA, Diawara I, Ennaji MM, Kettani-Halabi M. Alternatives Therapeutic Approaches to Conventional Antibiotics: Advantages, Limitations and Potential Application in Medicine. Antibiotics (Basel) 2022; 11:1826. [PMID: 36551487 PMCID: PMC9774722 DOI: 10.3390/antibiotics11121826] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 12/23/2022] Open
Abstract
Resistance to antimicrobials and particularly multidrug resistance is one of the greatest challenges in the health system nowadays. The continual increase in the rates of antimicrobial resistance worldwide boosted by the ongoing COVID-19 pandemic poses a major public health threat. Different approaches have been employed to minimize the effect of resistance and control this threat, but the question still lingers as to their safety and efficiency. In this context, new anti-infectious approaches against multidrug resistance are being examined. Use of new antibiotics and their combination with new β-lactamase inhibitors, phage therapy, antimicrobial peptides, nanoparticles, and antisense antimicrobial therapeutics are considered as one such promising approach for overcoming bacterial resistance. In this review, we provide insights into these emerging alternative therapies that are currently being evaluated and which may be developed in the future to break the progression of antimicrobial resistance. We focus on their advantages and limitations and potential application in medicine. We further highlight the importance of the combination therapy approach, wherein two or more therapies are used in combination in order to more effectively combat infectious disease and increasing access to quality healthcare. These advances could give an alternate solution to overcome antimicrobial drug resistance. We eventually hope to provide useful information for clinicians who are seeking solutions to the problems caused by antimicrobial resistance.
Collapse
Affiliation(s)
- Hiba Alaoui Mdarhri
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
- National Reference Laboratory, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
| | - Rachid Benmessaoud
- National Reference Laboratory, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
| | - Houda Yacoubi
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
- National Reference Laboratory, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
| | - Lina Seffar
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
- National Reference Laboratory, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
| | - Houda Guennouni Assimi
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
- National Reference Laboratory, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
| | - Mouhsine Hamam
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
- National Reference Laboratory, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
| | - Rihabe Boussettine
- Laboratory of Virology, Oncology, Biosciences, Environment and New Energies, Faculty of Sciences and Techniques Mohammedia, University Hassan II of Casablanca, Casablanca 28 806, Morocco
| | - Najoie Filali-Ansari
- Laboratory of Virology, Oncology, Biosciences, Environment and New Energies, Faculty of Sciences and Techniques Mohammedia, University Hassan II of Casablanca, Casablanca 28 806, Morocco
| | - Fatima Azzahra Lahlou
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
- National Reference Laboratory, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
| | - Idrissa Diawara
- Department of Biological Engineering, Higher Institute of Bioscience and Biotechnology, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
| | - Moulay Mustapha Ennaji
- Laboratory of Virology, Oncology, Biosciences, Environment and New Energies, Faculty of Sciences and Techniques Mohammedia, University Hassan II of Casablanca, Casablanca 28 806, Morocco
| | - Mohamed Kettani-Halabi
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
- National Reference Laboratory, Mohammed VI University of Health Sciences (UM6SS), Casablanca 82 403, Morocco
| |
Collapse
|
27
|
Howard-Anderson JR, Earley M, Komarow L, Abbo L, Anderson DJ, Gallagher JC, Grant M, Kim A, Bonomo RA, van Duin D, Muñoz-Price LS, Jacob JT. Poor outcomes in both infection and colonization with carbapenem-resistant Enterobacterales. Infect Control Hosp Epidemiol 2022; 43:1840-1846. [PMID: 35105408 PMCID: PMC9343470 DOI: 10.1017/ice.2022.4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVES To describe the epidemiology of patients with nonintestinal carbapenem-resistant Enterobacterales (CRE) colonization and to compare clinical outcomes of these patients to those with CRE infection. DESIGN A secondary analysis of Consortium on Resistance Against Carbapenems in Klebsiella and other Enterobacteriaceae 2 (CRACKLE-2), a prospective observational cohort. SETTING A total of 49 US short-term acute-care hospitals. PATIENTS Patients hospitalized with CRE isolated from clinical cultures, April, 30, 2016, through August 31, 2017. METHODS We described characteristics of patients in CRACKLE-2 with nonintestinal CRE colonization and assessed the impact of site of colonization on clinical outcomes. We then compared outcomes of patients defined as having nonintestinal CRE colonization to all those defined as having infection. The primary outcome was a desirability of outcome ranking (DOOR) at 30 days. Secondary outcomes were 30-day mortality and 90-day readmission. RESULTS Of 547 patients with nonintestinal CRE colonization, 275 (50%) were from the urinary tract, 201 (37%) were from the respiratory tract, and 71 (13%) were from a wound. Patients with urinary tract colonization were more likely to have a more desirable clinical outcome at 30 days than those with respiratory tract colonization, with a DOOR probability of better outcome of 61% (95% confidence interval [CI], 53%-71%). When compared to 255 patients with CRE infection, patients with CRE colonization had a similar overall clinical outcome, as well as 30-day mortality and 90-day readmission rates when analyzed in aggregate or by culture site. Sensitivity analyses demonstrated similar results using different definitions of infection. CONCLUSIONS Patients with nonintestinal CRE colonization had outcomes similar to those with CRE infection. Clinical outcomes may be influenced more by culture site than classification as "colonized" or "infected."
Collapse
Affiliation(s)
- Jessica R. Howard-Anderson
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
- Author for correspondence: Jessica R. Howard-Anderson, E-mail:
| | - Michelle Earley
- The Biostatistics Center, The George Washington University, Rockville, Maryland
| | - Lauren Komarow
- The Biostatistics Center, The George Washington University, Rockville, Maryland
| | - Lilian Abbo
- Division of Infectious Diseases, University of Miami Miller School of Medicine and Jackson Health System, Miami, Florida
| | - Deverick J. Anderson
- Duke Center for Antimicrobial Stewardship and Infection Prevention, Duke University, Durham, North Carolina
| | - Jason C. Gallagher
- Department of Pharmacy Practice, Temple University, Philadelphia, Pennsylvania
| | - Matthew Grant
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Angela Kim
- Division of Infectious Diseases, Northwell Health, Manhasset, New York
| | - Robert A. Bonomo
- Louis Stokes Cleveland Department of Veterans’ Affairs Medical, Center, Cleveland, Ohio
- Case Western Reserve University–Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio
- Departments of Pharmacology, Molecular Biology and Microbiology, Biochemistry, and Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - David van Duin
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina
| | - L. Silvia Muñoz-Price
- Division of Infectious Diseases, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jesse T. Jacob
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
28
|
Luterbach CL, Rao GG. Use of pharmacokinetic/pharmacodynamic approaches for dose optimization: a case study of plazomicin. Curr Opin Microbiol 2022; 70:102204. [PMID: 36122516 DOI: 10.1016/j.mib.2022.102204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 01/25/2023]
Abstract
With limited treatment options available for multidrug-resistant bacteria, dose optimization is critical for achieving effective drug concentrations at the site of infection. Yet, selecting an appropriate dose and appropriate time to administer the dose with dosing frequency requires extensive understanding of the interplay between drug pharmacokinetics/pharmacodynamics (PK/PD), the host immune system, and bacterial-resistant mechanisms. Model-informed dose optimization (MIDO) uses PK/PD models (e.g. population PK, mechanism-based models, etc.) that incorporate preclinical and clinical data to simulate/predict performance of treatment regimens in appropriate patient populations and/or infection types that may not be well-represented in clinical trials. Here, we highlight the stages of a MIDO approach for designing optimized regimens by reviewing current clinical, preclinical, and PK/PD modeling data available for plazomicin. Plazomicin is an aminoglycoside approved in 2018 for the treatment of complicated urinary tract infections in adults. Applying knowledge gained by PK/PD modeling can guide therapeutic drug monitoring to ensure that drug exposure is appropriate for clinical efficacy while limiting drug-related toxicity.
Collapse
Affiliation(s)
- Courtney L Luterbach
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina, Chapel Hill, NC, United States; Division of Infectious Diseases, University of North Carolina, Chapel Hill, NC, United States
| | - Gauri G Rao
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina, Chapel Hill, NC, United States.
| |
Collapse
|
29
|
How to use new antibiotics in the therapy of serious multidrug resistant Gram-negative infections? Curr Opin Infect Dis 2022; 35:561-567. [PMID: 36345853 DOI: 10.1097/qco.0000000000000858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
PURPOSE OF REVIEW Multidrug resistant Gram-negative infections are becoming more common and pose a serious threat to both individual patients and the population as a whole. Treatment of these infections can be difficult and result in significant morbidity and mortality. The purpose of this review is to discuss information and strategies for using new antibiotics to combat these infections. RECENT FINDINGS Eight new antibiotics represent possible means to treat multidrug resistant Gram-negative infections. Although no new mechanisms of action are present amongst these new antibiotics, novel additions to previously utilized mechanisms have been shown to be viable options for treatment of highly resistant organisms. SUMMARY The novel antibiotics considered in this review have varying data on their use as empiric treatment of patients at high risk for multidrug resistant organisms and as final therapy for identified multidrug resistant organisms. Cefiderocol, ceftazidime-avibactam, ceftolozane-tazobactam, meropenem-vaborbactam, and imipenem-relabactam have the best support evidence for use in this patient population.
Collapse
|
30
|
Alfieri A, Di Franco S, Donatiello V, Maffei V, Fittipaldi C, Fiore M, Coppolino F, Sansone P, Pace MC, Passavanti MB. Plazomicin against Multidrug-Resistant Bacteria: A Scoping Review. Life (Basel) 2022; 12:1949. [PMID: 36556314 PMCID: PMC9784334 DOI: 10.3390/life12121949] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/11/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Plazomicin is a next-generation semisynthetic aminoglycoside antibiotic that can be used to treat infections by multi-resistant bacteria. It is effective against many bacteria-producing carbapenemases or other specific hydrolases. This scoping review aims to define the role acquired by plazomicin from its approval by the FDA (US Food and Drug Administration) in 2018 to the present day. Furthermore, we aim to provide a base for a future meta-analysis. This project was conducted following the recommendations presented in the PRISMA extension for scoping reviews and the JBI Manual for Evidence Synthesis. Among 901 potentially engaging citations, 345 duplicates were removed, and only 81 articles were selected for the analysis. According to the data analysis, plazomicin has been used to treat urinary tract infections, bloodstream infections, and ventilation-associated pneumonia. The pathogens killed included multi-resistant E. coli, K. pneumoniae, A. baumannii, P. aeruginosa, and S. aureus. Plazomicin can be a manageable, valid non-beta-lactam alternative for treating multi-resistant bacteria infections.
Collapse
Affiliation(s)
- Aniello Alfieri
- Department of Elective Surgery, Postoperative Intensive Care Unit and Hyperbaric Oxygen Therapy, A.O.R.N. Antonio Cardarelli, Viale Antonio Cardarelli 9, 80131 Naples, Italy
| | - Sveva Di Franco
- Department of Women, Child and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Piazza Miraglia 2, 80138 Naples, Italy
| | - Valerio Donatiello
- Department of Elective Surgery, Postoperative Intensive Care Unit and Hyperbaric Oxygen Therapy, A.O.R.N. Antonio Cardarelli, Viale Antonio Cardarelli 9, 80131 Naples, Italy
| | - Vincenzo Maffei
- Department of Elective Surgery, Postoperative Intensive Care Unit and Hyperbaric Oxygen Therapy, A.O.R.N. Antonio Cardarelli, Viale Antonio Cardarelli 9, 80131 Naples, Italy
| | - Ciro Fittipaldi
- Unit of Critical Care, Hospital “Ospedale Pellegrini”, Via Portamedina alla Pignasecca 41, 80134 Naples, Italy
| | - Marco Fiore
- Department of Women, Child and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Piazza Miraglia 2, 80138 Naples, Italy
| | - Francesco Coppolino
- Department of Women, Child and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Piazza Miraglia 2, 80138 Naples, Italy
| | - Pasquale Sansone
- Department of Women, Child and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Piazza Miraglia 2, 80138 Naples, Italy
| | - Maria Caterina Pace
- Department of Women, Child and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Piazza Miraglia 2, 80138 Naples, Italy
| | - Maria Beatrice Passavanti
- Department of Women, Child and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Piazza Miraglia 2, 80138 Naples, Italy
| |
Collapse
|
31
|
Ma J, Song X, Li M, Yu Z, Cheng W, Yu Z, Zhang W, Zhang Y, Shen A, Sun H, Li L. Global Spread of Carbapenem-Resistant Enterobacteriaceae: Epidemiological Features, Resistance Mechanisms, Detection and Therapy. Microbiol Res 2022; 266:127249. [DOI: 10.1016/j.micres.2022.127249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
|
32
|
Isler B, Aslan AT, Akova M, Harris P, Paterson DL. Treatment strategies for OXA-48-like and NDM producing Klebsiella pneumoniae infections. Expert Rev Anti Infect Ther 2022; 20:1389-1400. [PMID: 36150216 DOI: 10.1080/14787210.2022.2128764] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION OXA-48 and NDM are amongst the most prevalent carbapenemase types associated with Klebsiella pneumoniae worldwide, with an increase in their prevalence in recent years. Knowledge on the treatment of carbapenem-resistant Klebsiella pneumoniae (CRKP) comes from KPC-producing CRKP with limited data available for OXA-48-like and NDM producers. Our aim is to review the literature on the treatment of OXA-48-like and NDM-producing CRKP with the goal of providing an update on the available antibiotic treatment strategies, particularly in light of changing carbapenemase epidemiology and increasing antimicrobial resistance. AREAS COVERED We reviewed studies looking at the antibiotic treatment and outcome of OXA-48-like and/or NDM-producing CRKP. EXPERT OPINION The best available treatment option for OXA-48 producers is ceftazidime-avibactam, where available and when the price permits its use. Colistin remains as the second-line option if in vitro susceptibility is demonstrated with an appropriate method. There is not enough evidence to support the use of meropenem-containing combination therapies for meropenem-resistant OXA-48 producers. Treatment of NDM producers is an unmet need. Ceftazidime-avibactam and aztreonam combination or cefiderocol can be used for NDM producers, where available. Higher cefiderocol MICs against NDM producers is concerning. Aztreonam-avibactam provides hope for the treatment of NDM producers.
Collapse
Affiliation(s)
- Burcu Isler
- University of Queensland, Faculty of Medicine, UQ Centre for Clinical Research, Brisbane, Australia.,Infection Management Services, Princess Alexandra Hospital, Brisbane, Australia
| | - Abdullah Tarık Aslan
- Department of Internal Medicine, Golhisar State Hospital, 15100 Golhisar, Turkey
| | - Murat Akova
- Infectious Diseases and Clinical Microbiology, Hacettepe University School of Medicine, Ankara
| | - Patrick Harris
- University of Queensland, Faculty of Medicine, UQ Centre for Clinical Research, Brisbane, Australia
| | - David L Paterson
- University of Queensland, Faculty of Medicine, UQ Centre for Clinical Research, Brisbane, Australia.,Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| |
Collapse
|
33
|
Di Franco S, Alfieri A, Fiore M, Fittipaldi C, Pota V, Coppolino F, Sansone P, Pace MC, Passavanti MB. A Literature Overview of Secondary Peritonitis Due to Carbapenem-Resistant Enterobacterales (CRE) in Intensive Care Unit (ICU) Patients. Antibiotics (Basel) 2022; 11:antibiotics11101347. [PMID: 36290005 PMCID: PMC9598607 DOI: 10.3390/antibiotics11101347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
This comprehensive review of the recently published literature offers an overview of a very topical and complex healthcare problem: secondary peritonitis from multidrug-resistant pathogens, especially carbapenem-resistant Enterobacterales (CRE). Spontaneous secondary peritonitis and postsurgical secondary peritonitis are among the major causes of community- and healthcare- acquired sepsis, respectively. A large number of patients enter ICUs with a diagnosis of secondary peritonitis, and a high number of them reveal infection by CRE, P. aeruginosa or A. baumannii. For this reason, we conceived the idea to create a synthetic report on this topic including updated epidemiology data, a description of CRE resistance patterns, current strategies of antimicrobial treatment, and future perspectives. From this update it is clear that antimicrobial stewardship and precision medicine are becoming essential to fight the emergence of antimicrobial resistance and that even if there are new drugs effective against CRE causing secondary peritonitis, these drugs have to be used carefully especially in empirical therapy.
Collapse
Affiliation(s)
- Sveva Di Franco
- Department of Women, Child and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Piazza Miraglia 2, 80138 Naples, Italy
| | - Aniello Alfieri
- Department of Postoperative Intensive Care Unit and Hyperbaric Oxygen Therapy, A.O.R.N. Antonio Cardarelli, Viale Antonio Cardarelli 9, 80131 Naples, Italy
| | - Marco Fiore
- Department of Women, Child and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Piazza Miraglia 2, 80138 Naples, Italy
| | - Ciro Fittipaldi
- Unit of Critical Care Hospital “Ospedale Pellegrini”, Via Portamedina alla Pignasecca 41, 80134 Naples, Italy
| | - Vincenzo Pota
- Department of Women, Child and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Piazza Miraglia 2, 80138 Naples, Italy
| | - Francesco Coppolino
- Department of Women, Child and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Piazza Miraglia 2, 80138 Naples, Italy
| | - Pasquale Sansone
- Department of Women, Child and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Piazza Miraglia 2, 80138 Naples, Italy
| | - Maria Caterina Pace
- Department of Women, Child and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Piazza Miraglia 2, 80138 Naples, Italy
| | - Maria Beatrice Passavanti
- Department of Women, Child and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Piazza Miraglia 2, 80138 Naples, Italy
- Correspondence: ; Tel.: +39-081-566-5180
| |
Collapse
|
34
|
Hetzler L, Kollef MH, Yuenger V, Micek ST, Betthauser KD. New antimicrobial treatment options for severe Gram-negative infections. Curr Opin Crit Care 2022; 28:522-533. [PMID: 35942725 DOI: 10.1097/mcc.0000000000000968] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW This review will provide rationale for the development of new antibiotics to treat severe or multidrug-resistant (MDR) Gram-negative infections. It will also provide an overview of recently approved and pipeline antibiotics for severe/MDR Gram-negative infections. RECENT FINDINGS MDR Gram-negative infections are recognized as critical threats by global and national organizations and carry a significant morbidity and mortality risk. Increasing antibiotic resistance amongst Gram-negative bacteria, including carbapenem-resistant Acinetobacter baumannii , extended-spectrum β-lactamase-producing Enterobacterales, carbapenem-resistant Enterobacterales and Pseudomonas aeruginosa , with difficult-to-treat-resistance has made both empiric and definitive treatment of these infections increasingly problematic. In recent years, several antibiotics have been approved for treatment of MDR Gram-negative infections and ongoing clinical trials are poised to provide additional options to clinicians' armamentarium. These agents include various β-lactam/β-lactamase inhibitor combinations, eravacycline, plazomicin and cefiderocol. SUMMARY Severe/MDR Gram-negative infections continue to be important infections due to their impact on patient outcomes, especially in critically ill and immunocompromised hosts. The availability of new antibiotics offers an opportunity to improve empiric and definitive treatment of these infections.
Collapse
Affiliation(s)
| | - Marin H Kollef
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine
| | | | - Scott T Micek
- Department of Pharmacy Practice, Barnes-Jewish Hospital
- Department of Pharmacy Practice
- Center for Health Outcomes Research and Education, University of Health Sciences and Pharmacy, St. Louis, Missouri, USA
| | | |
Collapse
|
35
|
Shrestha R, Luterbach CL, Dai W, Komarow L, Earley M, Weston G, Herc E, Jacob JT, Salata R, Wong D, Anderson D, Rydell KB, Arias CA, Chen L, van Duin D. Characteristics of community-acquired carbapenem-resistant Enterobacterales. J Antimicrob Chemother 2022; 77:2763-2771. [PMID: 36179278 PMCID: PMC9989732 DOI: 10.1093/jac/dkac239] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/24/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Community-acquired carbapenem-resistant Enterobacterales (CA-CRE) are an important threat. METHODS In CRACKLE-2, we defined patients with CA-CRE as admitted from home, without pre-existing conditions, and a positive culture within 48 h of admission. Healthcare-associated CRE (HA-CRE) were those with the lowest likelihood of community acquisition, not admitted from home and cultured >48 h after admission. Specific genetic markers in carbapenemase-producing Klebsiella pneumoniae were evaluated through random forest modelling. RESULTS CA-CRE and HA-CRE were detected in 83 (10%) and 208 (26%) of 807 patients. No significant differences were observed in bacterial species or strain type distribution. K. pneumoniae (204/291, 70%) was the most common CRE species, of these 184/204 (90%) were carbapenemase producers (CPKP). The top three genetic markers in random forest models were kpi_SA15, fimE, and kpfC. Of these, kpi_SA15 (which encodes a chaperone/usher system) was positively associated (OR 3.14, 95% CI 1.13-8.87, P = 0.026), and kpfC negatively associated (OR 0.21, 95% CI 0.05-0.72, P = 0.015) with CA-CPKP. CONCLUSIONS Ten percent of CDC-defined CRE were CA. The true proportion of CA-CRE in hospitalized patients is likely lower as patients may have had unrecorded prior healthcare exposure. The kpi_SA15 operon was associated with the CA phenotype.
Collapse
Affiliation(s)
- Rima Shrestha
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Courtney L Luterbach
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina, USA
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Weixiao Dai
- The Biostatistics Center, The George Washington University, Rockville, Maryland, USA
| | - Lauren Komarow
- The Biostatistics Center, The George Washington University, Rockville, Maryland, USA
| | - Michelle Earley
- The Biostatistics Center, The George Washington University, Rockville, Maryland, USA
| | - Gregory Weston
- Division of Infectious Diseases, Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Erica Herc
- Division of Infectious Diseases, Department of Medicine, Henry Ford Hospital, Detroit, Michigan, USA
| | - Jesse T Jacob
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Antibiotic Resistance Center, Atlanta, Georgia, USA
| | - Robert Salata
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Darren Wong
- Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Deverick Anderson
- Division of Infectious Diseases, Duke University, School of Medicine, Durham, North Carolina, USA
- Duke Center for Antimicrobial Stewardship and Infection Prevention, Durham, North Carolina, USA
| | - Kirsten B Rydell
- Division of Infectious Diseases, Houston Methodist Hospital, Houston, Texas, USA
| | - Cesar A Arias
- Division of Infectious Diseases, Houston Methodist Hospital, Houston, Texas, USA
- Center for Infectious Diseases Research at Houston Methodist Research Institute and Weill Cornell Medical College, Houston, Texas, USA
| | - Liang Chen
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - David van Duin
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
36
|
Coppola N, Maraolo AE, Onorato L, Scotto R, Calò F, Atripaldi L, Borrelli A, Corcione A, De Cristofaro MG, Durante-Mangoni E, Filippelli A, Franci G, Galdo M, Guglielmi G, Pagliano P, Perrella A, Piazza O, Picardi M, Punzi R, Trama U, Gentile I. Epidemiology, Mechanisms of Resistance and Treatment Algorithm for Infections Due to Carbapenem-Resistant Gram-Negative Bacteria: An Expert Panel Opinion. Antibiotics (Basel) 2022; 11:1263. [PMID: 36140042 PMCID: PMC9495208 DOI: 10.3390/antibiotics11091263] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Antimicrobial resistance represents a serious threat for global health, causing an unacceptable burden in terms of morbidity, mortality and healthcare costs. In particular, in 2017, carbapenem-resistant organisms were listed by the WHO among the group of pathogens for which novel treatment strategies are urgently needed. Fortunately, several drugs and combinations have been introduced in recent years to treat multi-drug-resistant (MDR) bacteria. However, a correct use of these molecules is needed to preserve their efficacy. In the present paper, we will provide an overview on the epidemiology and mechanisms of resistance of the most common MDR Gram-negative bacteria, proposing a treatment algorithm for the management of infections due to carbapenem-resistant bacteria based on the most recent clinical evidence.
Collapse
Affiliation(s)
- Nicola Coppola
- Infectious Diseases Unit, Department of Mental Health and Public Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Alberto Enrico Maraolo
- Emerging Infectious Disease with High Contagiousness Unit, Cotugno Hospital, AORN Dei Colli, 80131 Naples, Italy
| | - Lorenzo Onorato
- Infectious Diseases Unit, Department of Mental Health and Public Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Riccardo Scotto
- Infectious Diseases Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy
| | - Federica Calò
- Infectious Diseases Unit, Department of Mental Health and Public Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Luigi Atripaldi
- Clinical Pathology Unit, Cotugno Hospital, AORN Dei Colli, 80131 Naples, Italy
| | - Anna Borrelli
- Direzione Sanitaria, “San Giovanni di Dio e Ruggi d’Aragona” University Hospital, 84125 Salerno, Italy
| | - Antonio Corcione
- Intensive Care Unit, Monaldi Hospital, AORN Dei Colli, 80131 Naples, Italy
| | | | - Emanuele Durante-Mangoni
- Department of Precision Medicine, University of Campania ‘L. Vanvitelli’ and Unit of Infectious and Transplant Medicine, Monaldi Hospital, AORN Ospedali dei Colli, 80131 Naples, Italy
| | - Amelia Filippelli
- Department of Medicine Surgery and Dentistry, University of Salerno and Clinical Pharmacology and Pharmacogenetics Unit, “San Giovanni di Dio e Ruggi d’Aragona” University Hospital, 84125 Salerno, Italy
| | - Gianluigi Franci
- Department of Medicine Surgery and Dentistry, University of Salerno and Clinical Pathology and Microbiology Unit, “San Giovanni di Dio e Ruggi D’Aragona” University Hospital, 84125 Salerno, Italy
| | - Maria Galdo
- Pharmacy Unit, AORN Dei Colli, 80131 Naples, Italy
| | | | - Pasquale Pagliano
- Department of Medicine Surgery and Dentistry, University of Salerno, Infectious Diseases Unit, 84125 Salerno, Italy
| | - Alessandro Perrella
- Emerging Infectious Disease with High Contagiousness Unit, Cotugno Hospital, AORN Dei Colli, 80131 Naples, Italy
| | - Ornella Piazza
- Department of Medicine, Surgery and Dentistry, University of Salerno, Unit of Anesthesiology, 84125 Salerno, Italy
| | - Marco Picardi
- Department of Clinical Medicine and Surgery, Hematology Unit, Federico II University, 80131 Naples, Italy
| | - Rodolfo Punzi
- Hepatic Infectious Disease Unit, Cotugno Hospital, AORN Dei Colli, 80131 Naples, Italy
| | - Ugo Trama
- UOSD Politica del Farmaco e Dispositivi, Campania region, 80143 Naples, Italy
| | - Ivan Gentile
- Infectious Diseases Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy
| |
Collapse
|
37
|
Yan K, Liang B, Zhang G, Wang J, Zhu M, Cai Y. Efficacy and safety of plazomicin in the treatment of Enterobacterales infections: A meta-analysis of randomized controlled trials. Open Forum Infect Dis 2022; 9:ofac429. [PMID: 36092826 PMCID: PMC9454024 DOI: 10.1093/ofid/ofac429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Background In the present study, we aimed to compare the efficacy and safety of plazomicin with comparators for the treatment of Enterobacterales infections. Methods Randomized controlled trials (RCTs) assessing plazomicin for Enterobacterales infections were searched on the PubMed, Embase, and Cochrane Library databases. Meta-analyses were used to evaluate the efficacy and safety in RCTs. Results A total of 3 RCTs consisting of 761 patients were included in the present analysis. The study population included complex urinary tract infections (cUTIs), bloodstream infections (BSIs), and hospital-acquired pneumonia (HAP). Plazomicin had a clinical remission rate in the modified intention-to-treat (MITT) population that was similar to that of comparators (odds ratio [OR], 1.02; 95% CI, 0.60–1.73; I2 = 45%) in the pooled analysis of the 3 studies. The overall microbiologic eradication rate in the microbiological MITT (mMITT) population was similar to that of the comparators group (OR, 1.46; 95% CI, 0.72–2.95; I2 = 0%). However, the microbiologic recurrence rate of plazomicin for Enterobacterales was lower than that in the comparators group (OR, 0.38; 95% CI, 0.17–0.86; P = .02; I2 = 0%). No significant differences were found between plazomicin and comparators for the risk of any adverse events (OR, 0.78; 95% CI, 0.55–1.11; I2 = 0%). Conclusions Plazomicin is as good as comparators in terms of efficacy and tolerance in the treatment of Enterobacterales infections. Therefore, plazomicin is a suitable choice for antibiotic treatment in adult patients with cUTIs, BSIs, or HAP.
Collapse
Affiliation(s)
- Kaicheng Yan
- Medical School of Chinese PLA , Beijing 100853 , China
- Department of Pharmacy, Medical Supplies Center of Chinese PLA General Hospital , Beijing 100853 , China
| | - Beibei Liang
- Department of Pharmacy, Medical Supplies Center of Chinese PLA General Hospital , Beijing 100853 , China
| | - Guanxuanzi Zhang
- Department of Pharmacy, Medical Supplies Center of Chinese PLA General Hospital , Beijing 100853 , China
| | - Jin Wang
- Department of Pharmacy, Medical Supplies Center of Chinese PLA General Hospital , Beijing 100853 , China
| | - Man Zhu
- Department of Pharmacy, Medical Supplies Center of Chinese PLA General Hospital , Beijing 100853 , China
| | - Yun Cai
- Department of Pharmacy, Medical Supplies Center of Chinese PLA General Hospital , Beijing 100853 , China
| |
Collapse
|
38
|
Reply to Epling and Powers, "Cefiderocol and the Need for Higher-Quality Evidence: Methods Matter for Patients". Antimicrob Agents Chemother 2022; 66:e0079522. [PMID: 35867525 PMCID: PMC9380543 DOI: 10.1128/aac.00795-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
39
|
Xu M, Wang X, Wang B, Tang Y, Qin Z, Yin S, Liu Z, Sun H. Carbonized lotus leaf/ZnO/Au for enhanced synergistic mechanical and photocatalytic bactericidal activity under visible light irradiation. Colloids Surf B Biointerfaces 2022; 215:112468. [PMID: 35381501 DOI: 10.1016/j.colsurfb.2022.112468] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/05/2022] [Accepted: 03/16/2022] [Indexed: 11/25/2022]
Abstract
Nowadays, bacterial resistance has continued to be a troublesome issue caused by the abuse of antibiotics, and it is the paramount difficulty in resolving the bacterial proliferation and infection. In this study, fresh lotus leaf was treated with Zn2+ followed by sintered and modification with gold nanoparticles through the photoreduction process sequentially, and thus a composite of micro/nanostructured carbonized lotus leaf/ZnO/Au (C-LL/ZnO/Au) was obtained to explore its bactericidal properties. C-LL/ZnO/Au retained the papillary structure of fresh lotus leaf and showed great mechanical bactericidal performance and photocatalytic sterilization. The antibacterial rate of mechanical sterilization for C-LL/ZnO/Au amount to 79.5% in 30 min, 4.7 times of fresh lotus leaf's figure under the same conditions. Furthermore, in C-LL/ZnO/Au, the introduction of gold nanoparticles heightened light absorbance through localized surface plasmon resonance (LSPR) effect and separation efficiency of photogenerated electron-hole pairs, which showed improved photocatalytic sterilization than that of carbonized lotus leaf/ZnO (C-LL/ZnO). Carbonized lotus leaf/ZnO/Au exhibited prominent photocatalytic and mechanical synergistic antibacterial performance against E. coli: all the bacteria were inactivated within 30 min under visible light. The approach presented here could be applied to a variety of biomass materials, which holds a promising application potential in biomedical, public health and other fields.
Collapse
Affiliation(s)
- Mingwei Xu
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, China
| | - Xiuyan Wang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, China
| | - Bingdi Wang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, China
| | - Yanan Tang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, China
| | - Zhen Qin
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, China
| | - Shengyan Yin
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin 130012, China
| | - Zhenning Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, China.
| | - Hang Sun
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, China.
| |
Collapse
|
40
|
Yoshida I, Takata I, Fujita K, Takashima H, Sugiyama H. TP0586532, a Novel Non-Hydroxamate LpxC Inhibitor: Potentiating Effect on In Vitro Activity of Meropenem against Carbapenem-Resistant Enterobacteriaceae. Microbiol Spectr 2022; 10:e0082822. [PMID: 35647694 PMCID: PMC9241751 DOI: 10.1128/spectrum.00828-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/10/2022] [Indexed: 12/31/2022] Open
Abstract
Carbapenem-resistant Enterobacteriaceae (CRE) are an urgent threat to public health requiring the development of novel therapies. TP0586532 is a novel non-hydroxamate LpxC inhibitor that inhibits the synthesis of lipopolysaccharides, which are components of the outer membranes of Gram-negative bacteria. Based on the mechanism of action of TP0586532, we hypothesized that it might enhance the antibacterial activity of other antibiotics by increasing the permeability of the outer bacterial membrane. The combination of TP0586532 with meropenem, amikacin, cefepime, piperacillin, and tigecycline showed synergistic and additive effects against carbapenem-susceptible Klebsiella pneumoniae and Escherichia coli. Checkerboard experiments against 21 carbapenem-resistant K. pneumoniae and E. coli strains (13 blaKPC+, 5 blaNDM-1+, 2 blaVIM+, and 1 blaIMP+) showed that the combination of TP0586532 with meropenem yielded synergistic and additive effects against 9 and 12 strains, respectively. In a time-kill assay examining 12 CRE strains, synergistic effects were observed when TP0586532 was combined with meropenem against many of the strains. A membrane permeability assay using ethidium bromide (EtBr) was performed to investigate the mechanism of the potentiating effect. TP0586532 increased the influx of EtBr into a CRE strain, suggesting that TP0586532 increased membrane permeability and facilitated intracellular access for the antibiotics. Our study demonstrates that TP0586532 potentiates the in vitro antibacterial activity of meropenem against CRE. Combination therapy consisting of TP0586532 and meropenem has potential as a treatment for CRE infections. IMPORTANCE Carbapenem-resistant Enterobacteriaceae (CRE) are an urgent public health threat, as therapeutic options are limited. TP0586532 is a novel LpxC inhibitor that inhibits the synthesis of lipopolysaccharides in the outer membranes of Gram-negative bacteria. Here, we demonstrated the potentiating effects of TP0586532 on the antibacterial activity of meropenem against CRE harboring various types of carbapenemase genes (blaKPC+, blaNDM-1+ blaVIM+, and blaIMP+). TP0586532 also augmented the bactericidal effects of meropenem against CRE strains, even against those with a high level of resistance to meropenem. The potentiating effects were suggested to be mediated by an increase in bacterial membrane permeability. Our study revealed that a combination therapy consisting of TP0586532 and meropenem has the potential to be a novel therapeutic option for CRE infections.
Collapse
Affiliation(s)
- Ippei Yoshida
- Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd., Saitama, Japan
| | - Iichiro Takata
- Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd., Saitama, Japan
| | - Kiyoko Fujita
- Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd., Saitama, Japan
| | - Hajime Takashima
- Chemistry Laboratories, Taisho Pharmaceutical Co., Ltd., Saitama, Japan
| | - Hiroyuki Sugiyama
- Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd., Saitama, Japan
- Medical Information, Taisho Pharmaceutical Co., Ltd., Tokyo, Japan
| |
Collapse
|
41
|
Pérez-Nadales E, Fernández-Ruiz M, Gutiérrez-Gutiérrez B, Pascual Á, Rodríguez-Baño J, Martínez-Martínez L, Aguado JM, Torre-Cisneros J. Extended-spectrum β-lactamase-producing and carbapenem-resistant Enterobacterales bloodstream infection after solid organ transplantation: Recent trends in epidemiology and therapeutic approaches. Transpl Infect Dis 2022; 24:e13881. [PMID: 35691028 PMCID: PMC9540422 DOI: 10.1111/tid.13881] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/08/2022] [Accepted: 05/31/2022] [Indexed: 11/27/2022]
Abstract
Background Infections caused by multidrug‐resistant gram‐negative bacilli (MDR GNB), in particular extended‐spectrum β‐lactamase‐producing (ESBL‐E) and carbapenem‐resistant Enterobacterales (CRE), pose a major threat in solid organ transplantation (SOT). Outcome prediction and therapy are challenging due to the scarcity of randomized clinical trials (RCTs) or well‐designed observational studies focused on this population. Methods Narrative review with a focus on the contributions provided by the ongoing multinational INCREMENT‐SOT consortium (ClinicalTrials identifier NCT02852902) in the fields of epidemiology and clinical management. Results The Spanish Society of Transplantation (SET), the Group for Study of Infection in Transplantation of the Spanish Society of Infectious Diseases and Clinical Microbiology (GESITRA‐SEIMC), and the Spanish Network for Research in Infectious Diseases (REIPI) recently published their recommendations for the management of MDR GNB infections in SOT recipients. We revisit the SET/GESITRA‐SEIMC/REIPI document taking into consideration new evidence that emerged on the molecular epidemiology, prognostic stratification, and treatment of post‐transplant ESBL‐E and CRE infections. Results derived from the INCREMENT‐SOT consortium may support the therapeutic approach to post‐transplant bloodstream infection (BSI). The initiatives devoted to sparing the use of carbapenems in low‐risk ESBL‐E BSI or to repurposing existing non‐β‐lactam antibiotics for CRE in both non‐transplant and transplant patients are reviewed, as well as the eventual positioning in the specific SOT setting of recently approved antibiotics. Conclusion Due to the clinical complexity and relative rarity of ESBL‐E and CRE infections in SOT recipients, multinational cooperative efforts such as the INCREMENT‐SOT Project should be encouraged. In addition, RCTs focused on post‐transplant serious infection remain urgently needed.
Collapse
Affiliation(s)
- Elena Pérez-Nadales
- Spanish Network for Research in Infectious Diseases (REIPI), Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.,Infectious Diseases (GC-03) and Clinical and Molecular Microbiology (GC-24) Groups, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofía University Hospital, University of Cordoba, Cordoba, Spain.,Clinical Units of Infectious Diseases and Microbiology, Reina Sofía University Hospital, University of Cordoba, Cordoba, Spain.,Department of Agricultural Chemistry, Edaphology and Microbiology, and Department of Medicine, University of Cordoba, Cordoba, Spain
| | - Mario Fernández-Ruiz
- Spanish Network for Research in Infectious Diseases (REIPI), Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.,Department of Medicine, Unit of Infectious Diseases, "12 de Octubre" University Hospital, Instituto de Investigación Hospital "12 de Octubre" (imas12), Universidad Complutense, Madrid, Spain
| | - Belén Gutiérrez-Gutiérrez
- Spanish Network for Research in Infectious Diseases (REIPI), Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.,Departments of Microbiology and Medicine, Clinical Unit of Infectious Diseases and Microbiology, Virgen Macarena University Hospital, Institute of Biomedicine of Seville (IBIS), CSIC, University of Seville, Seville, Spain
| | - Álvaro Pascual
- Spanish Network for Research in Infectious Diseases (REIPI), Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.,Departments of Microbiology and Medicine, Clinical Unit of Infectious Diseases and Microbiology, Virgen Macarena University Hospital, Institute of Biomedicine of Seville (IBIS), CSIC, University of Seville, Seville, Spain
| | - Jesús Rodríguez-Baño
- Spanish Network for Research in Infectious Diseases (REIPI), Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.,Departments of Microbiology and Medicine, Clinical Unit of Infectious Diseases and Microbiology, Virgen Macarena University Hospital, Institute of Biomedicine of Seville (IBIS), CSIC, University of Seville, Seville, Spain
| | - Luis Martínez-Martínez
- Spanish Network for Research in Infectious Diseases (REIPI), Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.,Infectious Diseases (GC-03) and Clinical and Molecular Microbiology (GC-24) Groups, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofía University Hospital, University of Cordoba, Cordoba, Spain.,Clinical Units of Infectious Diseases and Microbiology, Reina Sofía University Hospital, University of Cordoba, Cordoba, Spain.,Department of Agricultural Chemistry, Edaphology and Microbiology, and Department of Medicine, University of Cordoba, Cordoba, Spain
| | - José María Aguado
- Spanish Network for Research in Infectious Diseases (REIPI), Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.,Department of Medicine, Unit of Infectious Diseases, "12 de Octubre" University Hospital, Instituto de Investigación Hospital "12 de Octubre" (imas12), Universidad Complutense, Madrid, Spain
| | - Julian Torre-Cisneros
- Spanish Network for Research in Infectious Diseases (REIPI), Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.,Infectious Diseases (GC-03) and Clinical and Molecular Microbiology (GC-24) Groups, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofía University Hospital, University of Cordoba, Cordoba, Spain.,Clinical Units of Infectious Diseases and Microbiology, Reina Sofía University Hospital, University of Cordoba, Cordoba, Spain.,Department of Agricultural Chemistry, Edaphology and Microbiology, and Department of Medicine, University of Cordoba, Cordoba, Spain
| |
Collapse
|
42
|
Cruz-López F, Martínez-Meléndez A, Morfin-Otero R, Rodriguez-Noriega E, Maldonado-Garza HJ, Garza-González E. Efficacy and In Vitro Activity of Novel Antibiotics for Infections With Carbapenem-Resistant Gram-Negative Pathogens. Front Cell Infect Microbiol 2022; 12:884365. [PMID: 35669117 PMCID: PMC9163340 DOI: 10.3389/fcimb.2022.884365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/19/2022] [Indexed: 12/15/2022] Open
Abstract
Infections by Gram-negative multi-drug resistant (MDR) bacterial species are difficult to treat using available antibiotics. Overuse of carbapenems has contributed to widespread resistance to these antibiotics; as a result, carbapenem-resistant Enterobacterales (CRE), A. baumannii (CRAB), and P. aeruginosa (CRPA) have become common causes of healthcare-associated infections. Carbapenems, tigecycline, and colistin are the last resource antibiotics currently used; however, multiple reports of resistance to these antimicrobial agents have been documented worldwide. Recently, new antibiotics have been evaluated against Gram-negatives, including plazomicin (a new aminoglycoside) to treat CRE infection, eravacycline (a novel tetracycline) with in vitro activity against CRAB, and cefiderocol (a synthetic conjugate) for the treatment of nosocomial pneumonia by carbapenem-non-susceptible Gram-negative isolates. Furthermore, combinations of known β-lactams with recently developed β-lactam inhibitors, such as ceftazidime-avibactam, ceftolozane-tazobactam, ceftazidime-tazobactam, and meropenem-vaborbactam, has been suggested for the treatment of infections by extended-spectrum β-lactamases, carbapenemases, and AmpC producer bacteria. Nonetheless, they are not active against all carbapenemases, and there are reports of resistance to these combinations in clinical isolates.This review summarizes and discusses the in vitro and clinical evidence of the recently approved antibiotics, β-lactam inhibitors, and those in advanced phases of development for treating MDR infections caused by Gram-negative multi-drug resistant (MDR) bacterial species.
Collapse
Affiliation(s)
- Flora Cruz-López
- Subdirección Académica de Químico Farmacéutico Biólogo, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Adrian Martínez-Meléndez
- Subdirección Académica de Químico Farmacéutico Biólogo, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Rayo Morfin-Otero
- Instituto de Patología Infecciosa y Experimental "Dr. Francisco Ruiz Sánchez", Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Eduardo Rodriguez-Noriega
- Instituto de Patología Infecciosa y Experimental "Dr. Francisco Ruiz Sánchez", Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Héctor J Maldonado-Garza
- Servicio de Gastroenterología, Hospital Universitario 'Dr. José Eleuterio González', Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Elvira Garza-González
- Laboratorio de Microbiología Molecular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| |
Collapse
|
43
|
Sy CL, Chen PY, Cheng CW, Huang LJ, Wang CH, Chang TH, Chang YC, Chang CJ, Hii IM, Hsu YL, Hu YL, Hung PL, Kuo CY, Lin PC, Liu PY, Lo CL, Lo SH, Ting PJ, Tseng CF, Wang HW, Yang CH, Lee SSJ, Chen YS, Liu YC, Wang FD. Recommendations and guidelines for the treatment of infections due to multidrug resistant organisms. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2022; 55:359-386. [PMID: 35370082 DOI: 10.1016/j.jmii.2022.02.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/03/2022] [Accepted: 02/13/2022] [Indexed: 01/12/2023]
Abstract
Antimicrobial drug resistance is one of the major threats to global health. It has made common infections increasingly difficult or impossible to treat, and leads to higher medical costs, prolonged hospital stays and increased mortality. Infection rates due to multidrug-resistant organisms (MDRO) are increasing globally. Active agents against MDRO are limited despite an increased in the availability of novel antibiotics in recent years. This guideline aims to assist clinicians in the management of infections due to MDRO. The 2019 Guidelines Recommendations for Evidence-based Antimicrobial agents use in Taiwan (GREAT) working group, comprising of infectious disease specialists from 14 medical centers in Taiwan, reviewed current evidences and drafted recommendations for the treatment of infections due to MDRO. A nationwide expert panel reviewed the recommendations during a consensus meeting in Aug 2020, and the guideline was endorsed by the Infectious Diseases Society of Taiwan (IDST). This guideline includes recommendations for selecting antimicrobial therapy for infections caused by carbapenem-resistant Acinetobacter baumannii, carbapenem-resistant Pseudomonas aeruginosa, carbapenem-resistant Enterobacterales, and vancomycin-resistant Enterococcus. The guideline takes into consideration the local epidemiology, and includes antimicrobial agents that may not yet be available in Taiwan. It is intended to serve as a clinical guide and not to supersede the clinical judgment of physicians in the management of individual patients.
Collapse
Affiliation(s)
- Cheng Len Sy
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Pao-Yu Chen
- Division of Infectious Diseases, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chun-Wen Cheng
- Division of Infectious Diseases, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ling-Ju Huang
- Division of General Medicine, Infectious Diseases, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taiwan
| | - Ching-Hsun Wang
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Tu-Hsuan Chang
- Department of Pediatrics, Chi-Mei Medical Center, Tainan, Taiwan
| | - Yi-Chin Chang
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chia-Jung Chang
- Department of Pediatrics, MacKay Children's Hospital and MacKay Memorial Hospital, Taipei, Taiwan
| | - Ing-Moi Hii
- Division of Infectious Diseases, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Yu-Lung Hsu
- Division of Pediatric Infectious Diseases, China Medical University Children's Hospital, China Medical University, Taichung, Taiwan
| | - Ya-Li Hu
- Department of Pediatrics, Cathay General Hospital, Taipei, Taiwan
| | - Pi-Lien Hung
- Department of Pharmacy, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Chen-Yen Kuo
- Department of Pediatrics, Chang Gung Children's Hospital, College of Medicine, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Pei-Chin Lin
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Department of Pharmacy, School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Po-Yen Liu
- Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Ching-Lung Lo
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Hao Lo
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan
| | - Pei-Ju Ting
- Division of Infectious Diseases, Department of Pediatrics, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chien-Fang Tseng
- Department of Pediatrics, MacKay Children's Hospital and MacKay Memorial Hospital, Taipei, Taiwan
| | - Hsiao-Wei Wang
- Division of Infectious Diseases, Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Ching-Hsiang Yang
- Department of Pharmacy, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Susan Shin-Jung Lee
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Yao-Shen Chen
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yung-Ching Liu
- Division of Infectious Diseases, Taipei Medical University Shuang Ho Hospital, Taipei, Taiwan
| | - Fu-Der Wang
- Division of Infectious Diseases, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
44
|
Dane A, Rex JH, Newell P, Stallard N. The Value of the Information That Can Be Generated: Optimizing Study Design to Enable the Study of Treatments Addressing an Unmet Need for Rare Pathogens. Open Forum Infect Dis 2022; 9:ofac266. [PMID: 35854983 PMCID: PMC9290570 DOI: 10.1093/ofid/ofac266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
In traditional phase 3 trials confirming safety and efficacy of new treatments relative to a comparator, a one-sided type I error rate of 2.5% is traditionally used, and typically leads to minimum sizes of 300-600 subjects per study. However, for rare pathogens, it may be necessary to work with data from as few as 50–100 subjects. For areas with a high unmet need, there is a balance between traditional type I error and power and enabling feasible studies. In such cases, an alternative one-sided alpha level of 5% or 10% should be considered and we review herein the implications of such approaches. Resolving this question requires engagement of patients, the medical community, regulatory agencies, and trial sponsors.
Collapse
|
45
|
Dosing Colistimethate Every 8 h Results in Higher Plasma Concentrations of Active Colistin Than Every 12-Hourly Dosing without Increase in Nephrotoxicity: A Phase 1 Pharmacokinetics Trial in Healthy Adult Volunteers. Antibiotics (Basel) 2022; 11:antibiotics11040490. [PMID: 35453240 PMCID: PMC9029538 DOI: 10.3390/antibiotics11040490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 12/04/2022] Open
Abstract
Despite its use for decades, pharmacokinetic (PK) and safety studies on colistin are limited. We conducted a phase l, open-label trial to evaluate the safety and PK of multiple doses of intravenous (IV) and aerosolized colistimethate sodium (CMS) administered separately and in combination. In total, 31 healthy adults were enrolled into three cohorts of 9, 10, and 12 participants, respectively. Each cohort received increasing doses of CMS over three dosing periods as follows: Period 1 (IV only), 2.5 mg/kg every 12 h (q12h) to 3.3 mg/kg every 8 h (q8h); Period 2 (aerosolized only), 75 mg 2–4 doses, and Period 3 (combined IV aerosolized), in which was Periods 1 and 2 combined. Safety assessments, serum and lung concentrations of colistin analytes (colistin A, colistin B, CMS A, and CMS B), and kidney biomarkers were measured at specified time points. Increasing the CMS dose from 2.5 mg/kg q12h to q8h resulted in a 33% increase in serum colistin A concentrations from 3.9 μg/mL to 5.3 μg/mL—well above the accepted target of 2 μg/mL for 6 h after dosing, without evidence of nephrotoxicity. However, there was an increase in neurotoxicity, primarily perioral and lingual paresthesias, and self-limited ataxia. IV administration did not increase the lung concentrations of colistin.
Collapse
|
46
|
Antimicrobial Treatment Options for Difficult-to-Treat Resistant Gram-Negative Bacteria Causing Cystitis, Pyelonephritis, and Prostatitis: A Narrative Review. Drugs 2022; 82:407-438. [PMID: 35286622 PMCID: PMC9057390 DOI: 10.1007/s40265-022-01676-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2022] [Indexed: 02/06/2023]
Abstract
Urinary tract infections, including cystitis, acute pyelonephritis, and prostatitis, are among the most common diagnoses prompting antibiotic prescribing. The rise in antimicrobial resistance over the past decades has led to the increasing challenge of urinary tract infections because of multidrug-resistant and "difficult-to-treat resistance" among Gram-negative bacteria. Recent advances in pharmacotherapy and medical microbiology are modernizing how these urinary tract infections are treated. Advances in pharmacotherapy have included not only the development and approval of novel antibiotics, such as ceftazidime/avibactam, meropenem/vaborbactam, imipenem/relebactam, ceftolozane/tazobactam, cefiderocol, plazomicin, and glycylcyclines, but also the re-examination of the potential role of legacy antibiotics, including older aminoglycosides and tetracyclines. Recent advances in medical microbiology allow phenotypic and molecular mechanism of resistance testing, and thus antibiotic prescribing can be tailored to the mechanism of resistance in the infecting pathogen. Here, we provide a narrative review on the clinical and pre-clinical studies of drugs that can be used for difficult-to-treat resistant Gram-negative bacteria, with a particular focus on data relevant to the urinary tract. We also offer a pragmatic framework for antibiotic selection when encountering urinary tract infections due to difficult-to-treat resistant Gram-negative bacteria based on the organism and its mechanism of resistance.
Collapse
|
47
|
Lawandi A, Yek C, Kadri SS. IDSA guidance and ESCMID guidelines: complementary approaches toward a care standard for MDR Gram-negative infections. Clin Microbiol Infect 2022; 28:465-469. [PMID: 35150882 DOI: 10.1016/j.cmi.2022.01.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 12/29/2022]
Affiliation(s)
- Alexander Lawandi
- Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Christina Yek
- Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, MD, USA; Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD, USA
| | - Sameer S Kadri
- Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, MD, USA.
| |
Collapse
|
48
|
Bassetti M, Mularoni A, Giacobbe DR, Castaldo N, Vena A. New Antibiotics for Hospital-Acquired Pneumonia and Ventilator-Associated Pneumonia. Semin Respir Crit Care Med 2022; 43:280-294. [PMID: 35088403 DOI: 10.1055/s-0041-1740605] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hospital-acquired pneumonia (HAP) and ventilator-associated pneumonia (VAP) represent one of the most common hospital-acquired infections, carrying a significant morbidity and risk of mortality. Increasing antibiotic resistance among the common bacterial pathogens associated with HAP and VAP, especially Enterobacterales and nonfermenting gram-negative bacteria, has made the choice of empiric treatment of these infections increasingly challenging. Moreover, failure of initial empiric therapy to cover the causative agents associated with HAP and VAP has been associated with worse clinical outcomes. This review provides an overview of antibiotics newly approved or in development for the treatment of HAP and VAP. The approved antibiotics include ceftobiprole, ceftolozane-tazobactam, ceftazidime-avibactam, meropenem-vaborbactam, imipenem-relebactam, and cefiderocol. Their major advantages include their high activity against multidrug-resistant gram-negative pathogens.
Collapse
Affiliation(s)
- Matteo Bassetti
- Infectious Diseases Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, Genoa, Italy.,Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Alessandra Mularoni
- Department of Infectious Diseases, Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione (IRCCS), Palermo, Italy
| | - Daniele Roberto Giacobbe
- Infectious Diseases Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, Genoa, Italy.,Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Nadia Castaldo
- Division of Infectious Diseases, Department of Medicine, Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy.,Department of Pulmonology, Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy
| | - Antonio Vena
- Infectious Diseases Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, Genoa, Italy.,Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| |
Collapse
|
49
|
Treatment of Severe Infections Due to Metallo-Betalactamases Enterobacterales in Critically Ill Patients. Antibiotics (Basel) 2022; 11:antibiotics11020144. [PMID: 35203747 PMCID: PMC8868391 DOI: 10.3390/antibiotics11020144] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
Metallo-beta-lactamases-producing (MBL) Enterobacterales is a growing problem worldwide. The optimization of antibiotic therapy is challenging. The pivotal available therapeutic options are either the combination of ceftazidime/avibactam and aztreonam or cefiderocol. Colistin, fosfomycin, tetracyclines and aminoglycosides are also frequently effective in vitro, but are associated with less bactericidal activity or more toxicity. Prior to the availability of antibiotic susceptibility testing, severe infections should be treated with a combination therapy. A careful optimization of the pharmacokinetic/pharmacodynamic properties of antimicrobials is instrumental in severe infections. The rules of antibiotic therapy are also reported and discussed. To conclude, treatment of severe MBL infections in critically ill patients is difficult. It should be individualized with a close collaboration of intensivists with microbiologists, pharmacists and infection control practitioners.
Collapse
|
50
|
Cusack R, Garduno A, Elkholy K, Martín-Loeches I. Novel investigational treatments for ventilator-associated pneumonia and critically ill patients in the intensive care unit. Expert Opin Investig Drugs 2022; 31:173-192. [PMID: 35040388 DOI: 10.1080/13543784.2022.2030312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Ventilator-associated pneumonia (VAP) is common; its prevalence has been highlighted by the Covid-19 pandemic. Even young patients can suffer severe nosocomial infection and prolonged mechanical ventilation. Multidrug-resistant bacteria can spread alarmingly fast around the globe and new antimicrobials are struggling to keep pace; hence physicians must stay abreast of new developments in the treatment of nosocomial pneumonia and VAP. AREAS COVERED This narrative review examines novel antimicrobial investigational drugs and their implementation in the ICU setting for VAP. The paper highlights novel approaches such as monoclonal antibody treatments for P. aeruginosa and S. aureus, and phage antibiotic synthesis. The paper also examines mechanisms of resistance in gram-negative bacteria, virulence factors and inhaled antibiotics and questions what may be on the horizon in terms of emerging treatment strategies. EXPERT OPINION The post-antibiotic era is rapidly approaching and the need for personalised medicine, point-of-care microbial sensitivity testing and development of biomarkers for severe infections is clear. Results from emerging and new antibiotics are encouraging, but infection control measures and de-escalation protocols must be employed to prolong their usefulness in critical illness.
Collapse
Affiliation(s)
- Rachael Cusack
- Department of Clinical Medicine, Trinity College Dublin.,Department of Intensive Care Medicine, St. James's Hospital, Dublin, (Ireland)
| | - Alexis Garduno
- Department of Clinical Medicine, Trinity College Dublin.,Intensive Care Translational Research, Trinity College Dublin
| | - Khalid Elkholy
- Department of Intensive Care Medicine, St. James's Hospital, Dublin, (Ireland)
| | - Ignacio Martín-Loeches
- Department of Clinical Medicine, Trinity College Dublin.,Department of Intensive Care Medicine, St. James's Hospital, Dublin, (Ireland).,Multidisciplinary Intensive Care Research Organization (MICRO), St. James's Hospital, Dublin, (Ireland)
| |
Collapse
|