1
|
Bhattarai P, Lu W, Hardikar A, Gaikwad AV, Dey S, Shahzad AM, Myers S, Williams A, Sutherland D, Singhera GK, Hackett TL, Eapen MS, Sohal SS. TGFβ1, SMAD and β-catenin in pulmonary arteries of smokers, patients with small airway disease and COPD: potential drivers of EndMT. Clin Sci (Lond) 2024; 138:1055-1070. [PMID: 39136529 DOI: 10.1042/cs20240721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/31/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024]
Abstract
We previously reported pulmonary arterial remodelling and active endothelial-to-mesenchymal transition (EndMT) in smokers and patients with early chronic obstructive pulmonary disease (COPD). In the present study, we aimed to evaluate the role of different drivers of EndMT. Immunohistochemical staining for EndMT drivers, TGF-β1, pSMAD-2/3, SMAD-7, and β-catenin, was performed on lung resections from 46 subjects. Twelve were non-smoker-controls (NC), six normal lung function smokers (NLFS), nine patients with small-airway diseases (SAD), nine mild-moderate COPD-current smokers (COPD-CS) and ten COPD-ex-smokers (COPD-ES). Histopathological measurements were done using Image ProPlus softwarev7.0. We observed lower levels of total TGF-β1 (P<0.05) in all smoking groups than in the non-smoking control (NC). Across arterial sizes, smoking groups exhibited significantly higher (P<0.05) total and individual layer pSMAD-2/3 and SMAD-7 than in the NC group. The ratio of SAMD-7 to pSMAD-2/3 was higher in COPD patients compared with NC. Total β-catenin expression was significantly higher in smoking groups across arterial sizes (P<0.05), except for COPD-ES and NLFS groups in small and medium arteries, respectively. Increased total β-catenin was positively correlated with total S100A4 in small and medium arteries (r = 0.35, 0.50; P=0.02, 0.01, respectively), with Vimentin in medium arteries (r = 0.42, P=0.07), and with arterial thickness of medium and large arteries (r = 0.34, 0.41, P=0.02, 0.01, respectively). This is the first study uncovering active endothelial SMAD pathway independent of TGF-β1 in smokers, SAD, and COPD patients. Increased expression of β-catenin indicates its potential interaction with SMAD pathway, warranting further research to identify the deviation of this classical pathway.
Collapse
Affiliation(s)
- Prem Bhattarai
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7248, Australia
| | - Wenying Lu
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7248, Australia
| | - Ashutosh Hardikar
- Department of Cardiothoracic Surgery, Royal Hobart Hospital, Hobart, Tasmania 7000, Australia
- Department of Cardiothoracic Surgery, The Royal Adelaide Hospital, Adelaide South Australia, 5000 Australia
| | - Archana Vijay Gaikwad
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7248, Australia
| | - Surajit Dey
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7248, Australia
| | - Affan Mahmood Shahzad
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7248, Australia
| | - Stephen Myers
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7248, Australia
| | - Andrew Williams
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7248, Australia
| | - Darren Sutherland
- Department of Anaesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada
| | - Gurpreet Kaur Singhera
- Department of Anaesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada
| | - Tillie-Louise Hackett
- Department of Anaesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada
| | - Mathew S Eapen
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7248, Australia
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7248, Australia
| |
Collapse
|
2
|
Lu W, Eapen MS, Hardikar A, Chia C, Robertson I, Singhera GK, Hackett TL, Sohal SS. Epithelial-mesenchymal transition changes in nonsmall cell lung cancer patients with early COPD. ERJ Open Res 2023; 9:00581-2023. [PMID: 38152085 PMCID: PMC10752287 DOI: 10.1183/23120541.00581-2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/06/2023] [Indexed: 12/29/2023] Open
Abstract
Background Epithelial-mesenchymal transition (EMT) might be central to lung cancer development in smokers and COPD. We illustrate EMT changes in a broader demographic of patient groups who were diagnosed with nonsmall cell lung cancer (adenocarcinoma and squamous cell carcinoma). These included COPD current and ex-smokers, patients with small airway disease and normal lung function smokers compared to normal controls. Methods We had access to surgically resected small airway tissue from 46 subjects and assessed for airway wall thickness and immunohistochemically for the EMT biomarkers E-cadherin, N-cadherin, S100A4, vimentin and epidermal growth factor receptor (EGFR). All tissue analysis was done with a computer and microscope-assisted Image-Pro Plus 7.0 software. Results Airway wall thickness significantly increased across all pathological groups (p<0.05) compared to normal controls. Small airway epithelial E-cadherin expression markedly decreased (p<0.01), and increases in N-cadherin, vimentin, S100A4 and EGFR expression were observed in all pathological groups compared to normal controls (p<0.01). Vimentin-positive cells in the reticular basement membrane, lamina propria and adventitia showed a similar trend to epithelium across all pathological groups (p<0.05); however, such changes were only observed in reticular basement membrane for S100A4 (p<0.05). Vimentin was higher in adenocarcinoma versus squamous cell carcinoma; in contrast, S100A4 was higher in the squamous cell carcinoma group. EGFR and N-cadherin expression in both phenotypes was markedly higher than E-cadherin, vimentin and S100A4 (p<0.0001). Conclusion EMT is an active process in the small airway of smokers and COPD diagnosed with nonsmall cell lung cancer, contributing to small airway remodelling and cancer development as seen in these patients.
Collapse
Affiliation(s)
- Wenying Lu
- Respiratory Translational Research Group, School of Health Sciences, University of Tasmania, Newnham, TAS, Australia
- Launceston Respiratory and Sleep Centre, Launceston, TAS, Australia
| | - Mathew Suji Eapen
- Respiratory Translational Research Group, School of Health Sciences, University of Tasmania, Newnham, TAS, Australia
| | - Ashutosh Hardikar
- Department of Cardiothoracic Surgery, Royal Hobart Hospital, Hobart, TAS, Australia
| | - Collin Chia
- Respiratory Translational Research Group, School of Health Sciences, University of Tasmania, Newnham, TAS, Australia
- Launceston Respiratory and Sleep Centre, Launceston, TAS, Australia
- Department of Respiratory Medicine, Launceston General Hospital, Launceston, TAS, Australia
| | - Iain Robertson
- Respiratory Translational Research Group, School of Health Sciences, University of Tasmania, Newnham, TAS, Australia
| | - Gurpreet Kaur Singhera
- Department of Anesthesiology, Pharmacology and Therapeutics, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- UBC Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
| | - Tillie L. Hackett
- Department of Anesthesiology, Pharmacology and Therapeutics, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- UBC Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, School of Health Sciences, University of Tasmania, Newnham, TAS, Australia
- Launceston Respiratory and Sleep Centre, Launceston, TAS, Australia
| |
Collapse
|
3
|
Zhang Q, Pang R, Cai Z. Effect and safety of traditional Chinese exercises (Qigong therapy) for patients with chronic obstructive pulmonary disease: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2022; 101:e32284. [PMID: 36626479 PMCID: PMC9750521 DOI: 10.1097/md.0000000000032284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Traditional Chinese Exercises (Qigong therapy) are more and more popular for chronic pulmonary obstructive disease (COPD) patients for the treatment and rehabilitation, however, the comparative effectiveness and safety remains unclear. Our study aims to compare the pros and cons of these exercise interventions for COPD by implementing a network meta-analysis. METHODS Publicly available scientific databases including ClinicalTrials.gov database, PubMed, Embase database, database in Web of Science, database in Cochrane Library, China Biomedical Literature Service System (SinoMed), Chinese Periodical Service Platform (VIP), China National Knowledge Infrastructure (CNKI), and Wanfang Data Knowledge Service Platform (Wanfang) will be searched for the relevant clinical studies from 2000 to 2022. Randomized controlled trials related to Qigong therapy in COPD treatment will be included. Systematic review and meta-analysis in the current study will be investigated according to the guidelines of the preferred reporting items for systematic reviews and meta-analyses extension statement for reporting of systematic reviews incorporating meta-analyses of health care interventions. The grading of recommendations assessment, development, and evaluation system will be used to evaluate the rank of evidence. RESULTS This systematic review will summarize the evidence for different kinds of Qigong therapies. CONCLUSION The network meta-analysis was designed to update and expand on previous research results of clinical trials to better evaluate the effectiveness and safety of different interventions of traditional Chinese exercises for COPD.
Collapse
Affiliation(s)
- Qiumei Zhang
- Physical Education and Health School of Guangzhou University of Chinese Medicine, China
- * Correspondence: Qiumei Zhang, Guangzhou University of Chinese Medicine, Guangzhou University Town, 232 Waihuan East Road, Panyu District, Guangzhou, China (e-mail: )
| | - Rongzhen Pang
- Physical Education and Health School of Guangzhou University of Chinese Medicine, China
| | - Zhanhao Cai
- Physical Education and Health School of Guangzhou University of Chinese Medicine, China
| |
Collapse
|
4
|
Sohal SS. Therapeutic Modalities for Asthma, COPD, and Pathogenesis of COVID-19: Insights from the Special Issue. J Clin Med 2022; 11:jcm11154525. [PMID: 35956140 PMCID: PMC9369734 DOI: 10.3390/jcm11154525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/02/2022] [Indexed: 12/10/2022] Open
Affiliation(s)
- Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS 7248, Australia
| |
Collapse
|
5
|
Zhong S, Yang L, Liu N, Zhou G, Hu Z, Chen C, Wang Y. Identification and validation of aging-related genes in COPD based on bioinformatics analysis. Aging (Albany NY) 2022; 14:4336-4356. [PMID: 35609226 PMCID: PMC9186770 DOI: 10.18632/aging.204064] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/12/2022] [Indexed: 11/25/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a serious chronic respiratory disorder. One of the major risk factors for COPD progression is aging. Therefore, we investigated aging-related genes in COPD using bioinformatic analyses. Firstly, the Aging Atlas database containing 500 aging-related genes and the Gene Expression Omnibus database (GSE38974) were utilized to screen candidates. A total of 24 candidate genes were identified related to both COPD and aging. Using gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses, we found that this list of 24 genes was enriched in genes associated with cytokine activity, cell apoptosis, NF-κB and IL-17 signaling. Four of these genes (CDKN1A, HIF1A, MXD1 and SOD2) were determined to be significantly upregulated in clinical COPD samples and in cigarette smoke extract-exposed Beas-2B cells in vitro, and their expression was negatively correlated with predicted forced expiratory volume and forced vital capacity. In addition, the combination of expression levels of these four genes had a good discriminative ability for COPD patients (AUC = 0.794, 95% CI 0.743-0.845). All four were identified as target genes of hsa-miR-519d-3p, which was significantly down-regulated in COPD patients. The results from this study proposed that regulatory network of hsa-miR-519d-3p/CDKN1A, HIF1A, MXD1, and SOD2 closely associated with the progression of COPD, which provides a theoretical basis to link aging effectors with COPD progression, and may suggest new diagnostic and therapeutic targets of this disease.
Collapse
Affiliation(s)
- Shan Zhong
- Guangdong Key Laboratory of Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, P.R. China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518061, P.R. China
| | - Li Yang
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, P.R. China
| | - Naijia Liu
- Guangdong Key Laboratory of Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, P.R. China
| | - Guangkeng Zhou
- Guangdong Key Laboratory of Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, P.R. China
| | - Zhangli Hu
- Guangdong Key Laboratory of Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, P.R. China.,Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P.R. China
| | - Chengshui Chen
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, P.R. China
| | - Yun Wang
- Guangdong Key Laboratory of Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, P.R. China
| |
Collapse
|
6
|
Electronic cigarettes: Modern instruments for toxic lung delivery and posing risk for the development of chronic disease. Int J Biochem Cell Biol 2021; 137:106039. [PMID: 34242684 DOI: 10.1016/j.biocel.2021.106039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/18/2021] [Accepted: 07/04/2021] [Indexed: 02/07/2023]
Abstract
Following the emergence of electronic cigarette, or vaping product use associated lung injury (EVALI) in 2019 in the US, regulation of e-cigarettes has become globally tighter and the collective evidence of the detrimental effects of vaping has grown. The danger of cellular distress and altered homeostasis is heavily associated with the modifiable nature of electronic cigarette devices. An array of harmful chemicals and elevated concentrations of metals have been detected in e-cigarette aerosols which have been linked to various pathogeneses. Vaping is linked to increased inflammation, altered lipid homeostasis and mitochondrial dysfunction whilst also increasing microbial susceptibility whilst the long-term damage is yet to be observed. The scientific evidence is mounting and highlighting that, along with traditional tobacco cigarette smoking, electronic cigarette vaping is not a safe practice.
Collapse
|
7
|
Eapen MS, Lu W, Hackett TL, Singhera GK, Mahmood MQ, Hardikar A, Ward C, Walters EH, Sohal SS. Increased myofibroblasts in the small airways, and relationship to remodelling and functional changes in smokers and COPD patients: potential role of epithelial-mesenchymal transition. ERJ Open Res 2021; 7:00876-2020. [PMID: 34109247 PMCID: PMC8181830 DOI: 10.1183/23120541.00876-2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/10/2021] [Indexed: 12/11/2022] Open
Abstract
Introduction Previous reports have shown epithelial-mesenchymal transition (EMT) as an active process that contributes to small airway fibrotic pathology. Myofibroblasts are highly active pro-fibrotic cells that secrete excessive and altered extracellular matrix (ECM). Here we relate small airway myofibroblast presence with airway remodelling, physiology and EMT activity in smokers and COPD patients. Methods Lung resections from nonsmoker controls, normal lung function smokers and COPD current and ex-smokers were stained with anti-human α-smooth muscle actin (SMA), collagen 1 and fibronectin. αSMA+ cells were computed in reticular basement membrane (Rbm), lamina propria and adventitia and presented per mm of Rbm and mm2 of lamina propria. Collagen-1 and fibronectin are presented as a percentage change from normal. All analyses including airway thickness were measured using Image-pro-plus 7.0. Results We found an increase in subepithelial lamina propria (especially) and adventitia thickness in all pathological groups compared to nonsmoker controls. Increases in αSMA+ myofibroblasts were observed in subepithelial Rbm, lamina propria and adventitia in both the smoker and COPD groups compared to nonsmoker controls. Furthermore, the increase in the myofibroblast population in the lamina propria was strongly associated with decrease in lung function, lamina propria thickening, increase in ECM protein deposition, and finally EMT activity in epithelial cells. Conclusions This is the first systematic characterisation of small airway myofibroblasts in COPD based on their localisation, with statistically significant correlations between them and other pan-airway structural, lung function and ECM protein changes. Finally, we suggest that EMT may be involved in such changes.
Collapse
Affiliation(s)
- Mathew Suji Eapen
- Respiratory Translational Research Group, Dept of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Australia
| | - Wenying Lu
- Respiratory Translational Research Group, Dept of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Australia
| | - Tillie L Hackett
- Dept of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada.,UBC Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
| | - Gurpreet Kaur Singhera
- UBC Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada.,Dept of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Malik Q Mahmood
- School of Medicine, Deakin University, Waurn Ponds, Australia
| | - Ashutosh Hardikar
- Respiratory Translational Research Group, Dept of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Australia.,Dept of Cardiothoracic Surgery, Royal Hobart Hospital, Hobart, Australia
| | - Chris Ward
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Eugene Haydn Walters
- School of Medicine, and Menzies Institute of Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia.,These authors contributed equally
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Dept of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Australia.,These authors contributed equally
| |
Collapse
|
8
|
Fieldes M, Bourguignon C, Assou S, Nasri A, Fort A, Vachier I, De Vos J, Ahmed E, Bourdin A. Targeted therapy in eosinophilic chronic obstructive pulmonary disease. ERJ Open Res 2021; 7:00437-2020. [PMID: 33855061 PMCID: PMC8039900 DOI: 10.1183/23120541.00437-2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common and preventable airway disease causing significant worldwide mortality and morbidity. Lifetime exposure to tobacco smoking and environmental particles are the two major risk factors. Over recent decades, COPD has become a growing public health problem with an increase in incidence. COPD is defined by airflow limitation due to airway inflammation and small airway remodelling coupled to parenchymal lung destruction. Most patients exhibit neutrophil-predominant airway inflammation combined with an increase in macrophages and CD8+ T-cells. Asthma is a heterogeneous chronic inflammatory airway disease. The most studied subtype is type 2 (T2) high eosinophilic asthma, for which there are an increasing number of biologic agents developed. However, both asthma and COPD are complex and share common pathophysiological mechanisms. They are known as overlapping syndromes as approximately 40% of patients with COPD present an eosinophilic airway inflammation. Several studies suggest a putative role of eosinophilia in lung function decline and COPD exacerbation. Recently, pharmacological agents targeting eosinophilic traits in uncontrolled eosinophilic asthma, especially monoclonal antibodies directed against interleukins (IL-5, IL-4, IL-13) or their receptors, have shown promising results. This review examines data on the rationale for such biological agents and assesses efficacy in T2-endotype COPD patients. Patients with severe COPD and eosinophilic inflammation experience uncontrolled symptoms despite optimal pharmaceutical treatment. The development of new biomarkers is needed for better phenotyping of patients to propose innovative targeted therapy.https://bit.ly/2KzWuNO
Collapse
Affiliation(s)
- Mathieu Fieldes
- IRMB, INSERM, Montpellier University Hospital, Montpellier, France
| | | | - Said Assou
- IRMB, INSERM, Montpellier University Hospital, Montpellier, France
| | - Amel Nasri
- IRMB, INSERM, Montpellier University Hospital, Montpellier, France
| | - Aurélie Fort
- Dept of Respiratory Diseases, Montpellier University Hospital, INSERM, Montpellier, France.,PhyMedExp, University of Montpellier, INSERM U1046, Montpellier, France
| | - Isabelle Vachier
- Dept of Respiratory Diseases, Montpellier University Hospital, INSERM, Montpellier, France
| | - John De Vos
- IRMB, INSERM, Montpellier University Hospital, Montpellier, France.,Dept of Cell and Tissue Engineering, Montpellier University Hospital, Montpellier, France
| | - Engi Ahmed
- Dept of Respiratory Diseases, Montpellier University Hospital, INSERM, Montpellier, France
| | - Arnaud Bourdin
- Dept of Respiratory Diseases, Montpellier University Hospital, INSERM, Montpellier, France.,PhyMedExp, University of Montpellier, INSERM U1046, Montpellier, France
| |
Collapse
|
9
|
Liu G, Philp AM, Corte T, Travis MA, Schilter H, Hansbro NG, Burns CJ, Eapen MS, Sohal SS, Burgess JK, Hansbro PM. Therapeutic targets in lung tissue remodelling and fibrosis. Pharmacol Ther 2021; 225:107839. [PMID: 33774068 DOI: 10.1016/j.pharmthera.2021.107839] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 03/03/2021] [Indexed: 02/07/2023]
Abstract
Structural changes involving tissue remodelling and fibrosis are major features of many pulmonary diseases, including asthma, chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). Abnormal deposition of extracellular matrix (ECM) proteins is a key factor in the development of tissue remodelling that results in symptoms and impaired lung function in these diseases. Tissue remodelling in the lungs is complex and differs between compartments. Some pathways are common but tissue remodelling around the airways and in the parenchyma have different morphologies. Hence it is critical to evaluate both common fibrotic pathways and those that are specific to different compartments; thereby expanding the understanding of the pathogenesis of fibrosis and remodelling in the airways and parenchyma in asthma, COPD and IPF with a view to developing therapeutic strategies for each. Here we review the current understanding of remodelling features and underlying mechanisms in these major respiratory diseases. The differences and similarities of remodelling are used to highlight potential common therapeutic targets and strategies. One central pathway in remodelling processes involves transforming growth factor (TGF)-β induced fibroblast activation and myofibroblast differentiation that increases ECM production. The current treatments and clinical trials targeting remodelling are described, as well as potential future directions. These endeavours are indicative of the renewed effort and optimism for drug discovery targeting tissue remodelling and fibrosis.
Collapse
Affiliation(s)
- Gang Liu
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia
| | - Ashleigh M Philp
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia; St Vincent's Medical School, UNSW Medicine, UNSW, Sydney, NSW, Australia
| | - Tamera Corte
- Royal Prince Alfred Hospital, Camperdown, NSW, Australia; Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Mark A Travis
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre and Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom
| | - Heidi Schilter
- Pharmaxis Ltd, 20 Rodborough Road, Frenchs Forest, Sydney, NSW, Australia
| | - Nicole G Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia
| | - Chris J Burns
- Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Mathew S Eapen
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston, TAS, Australia
| | - Sukhwinder S Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston, TAS, Australia
| | - Janette K Burgess
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Department of Pathology and Medical Biology, Groningen, The Netherlands; Woolcock Institute of Medical Research, Discipline of Pharmacology, The University of Sydney, Sydney, NSW, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia.
| |
Collapse
|
10
|
Evaluation of Naringenin as a Promising Treatment Option for COPD Based on Literature Review and Network Pharmacology. Biomolecules 2020; 10:biom10121644. [PMID: 33302350 PMCID: PMC7762561 DOI: 10.3390/biom10121644] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic respiratory disease characterized by incompletely reversible airflow limitation and seriously threatens the health of humans due to its high morbidity and mortality. Naringenin, as a natural flavanone, has shown various potential pharmacological activities against multiple pathological stages of COPD, but available studies are scattered and unsystematic. Thus, we combined literature review with network pharmacology analysis to evaluate the potential therapeutic effects of naringenin on COPD and predict its underlying mechanisms, expecting to provide a promising tactic for clinical treatment of COPD.
Collapse
|
11
|
Affiliation(s)
- Peter J Barnes
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|