1
|
Zheng F, Li W, Cheng C, Xiong D, Wei M, Wang T, Niu D, Hui Q. Formyl Peptide Receptor 1 Inhibits Reparative Angiogenesis and Aggravates Neuroretinal Dysfunction in Ischemic Retinopathy. Curr Eye Res 2024; 49:1193-1200. [PMID: 38856166 DOI: 10.1080/02713683.2024.2363473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/07/2024] [Accepted: 05/29/2024] [Indexed: 06/11/2024]
Abstract
PURPOSE Ischemic retinopathy is the major cause of vision-threatening conditions. Inflammation plays an important role in the pathogenesis of ischemic retinopathy. Formyl peptide receptor 1 (FPR1) has been reported to be implicated in the regulation of inflammatory disorders. However, the role of FPR1 in the progression of ischemic retinal injury has not been fully explained. METHODS The activation of FPR1 was measured by real-time PCR and western blotting in the retina of OIR. The effect of FPR1 on the expression of inflammatory cytokines and relevant pro-angiogenic factors was assessed between wild-type and FPR1-deficiency OIR mice. The impact of FPR1 on retinal angiogenesis was evaluated through quantifying retinal vaso-obliteration and neovascularization between FPR1+/+ and FPR1-/- OIR mice. At last, the neuronal effect of FPR1 on the ischemic retina was investigated by ERG between wild-type and FPR1-deficient OIR mice. RESULTS The expression of FPR1 significantly increased in the retina of OIR. Furthermore, FPR1 deficiency downregulated pro-inflammatory and pro-angiogenic factors. Ablation of FPR1 suppressed the retinal pathological neovascularization and promoted reparative revascularization, ultimately improving retinal neural function after ischemic injury. CONCLUSION In ischemic retinopathy, FPR1 aggravates inflammation and inhibits reparative angiogenesis to exacerbate neuronal dysfunction.
Collapse
Affiliation(s)
- Fengwei Zheng
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Weixin Li
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Chao Cheng
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Dong Xiong
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Minghao Wei
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Tianze Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Dongling Niu
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, Shaanxi, China
| | - Qiaoyan Hui
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, Shaanxi, China
| |
Collapse
|
2
|
Yagi H, Boeck M, Petrishka-Lozenska M, Lundgren P, Kasai T, Cagnone G, Neilsen K, Wang C, Lee J, Tomita Y, Singh SA, Joyal JS, Aikawa M, Negishi K, Fu Z, Hellström A, Smith LEH. Timed topical dexamethasone eye drops improve mitochondrial function to prevent severe retinopathy of prematurity. Angiogenesis 2024:10.1007/s10456-024-09948-2. [PMID: 39287727 DOI: 10.1007/s10456-024-09948-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024]
Abstract
Pathological neovascularization in retinopathy of prematurity (ROP) can cause visual impairment in preterm infants. Current ROP treatments which are not preventative and only address late neovascular ROP, are costly and can lead to severe complications. We showed that topical 0.1% dexamethasone eye drops administered prior to peak neovessel formation prevented neovascularization in five extremely preterm infants at high risk for ROP and suppressed neovascularization by 30% in mouse oxygen-induced retinopathy (OIR) modeling ROP. In contrast, in OIR, topical dexamethasone treatment before any neovessel formation had limited efficacy in preventing later neovascularization, while treatment after peak neovessel formation had a non-statistically significant trend to exacerbating disease. Optimally timed topical dexamethasone suppression of neovascularization in OIR was associated with increased retinal mitochondrial gene expression and decreased inflammatory marker expression, predominantly found in immune cells. Blocking mitochondrial ATP synthetase reversed the inhibitory effect of dexamethasone on neovascularization in OIR. This study provides new insights into topical steroid effects in retinal neovascularization and into mitochondrial function in phase II ROP, and suggests a simple clinical approach to prevent severe ROP.
Collapse
Affiliation(s)
- Hitomi Yagi
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 3 Blackfan Circle, CLS 18, Boston, MA, 02115, USA
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Myriam Boeck
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 3 Blackfan Circle, CLS 18, Boston, MA, 02115, USA
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, 79106, Germany
| | - Mariya Petrishka-Lozenska
- The Sahlgrenska Centre for Pediatric Ophthalmology Research, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530, Sweden
| | - Pia Lundgren
- The Sahlgrenska Centre for Pediatric Ophthalmology Research, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530, Sweden
| | - Taku Kasai
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Gael Cagnone
- CHU Sainte-Justine Research Center, Montreal, QC, CA, H3T 1C5, Canada
- Department of Pediatrics, Ophthalmology, and Pharmacology, CHU Sainte-Justine, Université de Montréal, Montreal, QC, CA, H3T 1C5, Canada
| | - Katherine Neilsen
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 3 Blackfan Circle, CLS 18, Boston, MA, 02115, USA
| | - Chaomei Wang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 3 Blackfan Circle, CLS 18, Boston, MA, 02115, USA
| | - Jeff Lee
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 3 Blackfan Circle, CLS 18, Boston, MA, 02115, USA
| | - Yohei Tomita
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 3 Blackfan Circle, CLS 18, Boston, MA, 02115, USA
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Sasha A Singh
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jean-Sébastien Joyal
- CHU Sainte-Justine Research Center, Montreal, QC, CA, H3T 1C5, Canada
- Department of Pediatrics, Ophthalmology, and Pharmacology, CHU Sainte-Justine, Université de Montréal, Montreal, QC, CA, H3T 1C5, Canada
- Department of Ophthalmology, Université de Montréal, Montreal, QC, CA, H3T 1J4, Canada
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Zhongjie Fu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 3 Blackfan Circle, CLS 18, Boston, MA, 02115, USA
| | - Ann Hellström
- The Sahlgrenska Centre for Pediatric Ophthalmology Research, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530, Sweden.
| | - Lois E H Smith
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 3 Blackfan Circle, CLS 18, Boston, MA, 02115, USA.
| |
Collapse
|
3
|
Maurya M, Liu CH, Bora K, Kushwah N, Pavlovich MC, Wang Z, Chen J. Animal Models of Retinopathy of Prematurity: Advances and Metabolic Regulators. Biomedicines 2024; 12:1937. [PMID: 39335451 PMCID: PMC11428941 DOI: 10.3390/biomedicines12091937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 09/30/2024] Open
Abstract
Retinopathy of prematurity (ROP) is a primary cause of visual impairment and blindness in premature newborns, characterized by vascular abnormalities in the developing retina, with microvascular alteration, neovascularization, and in the most severe cases retinal detachment. To elucidate the pathophysiology and develop therapeutics for ROP, several pre-clinical experimental models of ROP were developed in different species. Among them, the oxygen-induced retinopathy (OIR) mouse model has gained the most popularity and critically contributed to our current understanding of pathological retinal angiogenesis and the discovery of potential anti-angiogenic therapies. A deeper comprehension of molecular regulators of OIR such as hypoxia-inducible growth factors including vascular endothelial growth factors as primary perpetrators and other new metabolic modulators such as lipids and amino acids influencing pathological retinal angiogenesis is also emerging, indicating possible targets for treatment strategies. This review delves into the historical progressions that gave rise to the modern OIR models with a focus on the mouse model. It also reviews the fundamental principles of OIR, recent advances in its automated assessment, and a selected summary of metabolic investigation enabled by OIR models including amino acid transport and metabolism.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jing Chen
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
4
|
Tsui JC, Willett K, Cohen JB, Yu Y, VanderBeek BL. Erythropoiesis-Stimulating Agents and the Risk of Vision-Threatening Diabetic Retinopathy. Ophthalmic Epidemiol 2024; 31:249-257. [PMID: 37427852 PMCID: PMC10776797 DOI: 10.1080/09286586.2023.2235001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
PURPOSE Animal studies have suggested that Erythropoiesis-Stimulating Agents (ESAs) may increase vascular endothelial growth factor (VEGF)-related retinopathies, but this effect is unclear in humans. This study evaluates the risk of vision-threatening diabetic retinopathy (VTDR), defined as either diabetic macular edema (DME) or proliferative diabetic retinopathy (PDR), in patients exposed to an ESA. METHODS Two analyses were performed. First, a retrospective matched-cohort study was designed using a de-identified commercial and Medicare Advantage medical claims database. The ESA cohort of non-proliferative diabetic retinopathy patients who were new users of an ESA from 2000 to 2022 was matched to controls up to a 3:1 ratio. Exclusion criteria included less than 2 years in the plan, history of VTDR or history of other retinopathy. Multivariable Cox proportional hazards regression with inverse proportional treatment weighting (IPTW) was used to assess the hazard of developing VTDR, DME, and PDR. The second analysis was a self-controlled case series (SCCS) evaluating the incidence rate ratios (IRR) of VTDR during 30-day periods before and after initiating an ESA. RESULTS After inclusion of 1502 ESA-exposed patients compared with 2656 controls, IPTW-adjusted hazard ratios found the ESA cohort had an increased hazard of progressing to VTDR (HR = 3.0 95%CI:2.3-3.8;p < .001) and DME (HR = 3.4,95%CI:2.6-4.4,p < .001), but not PDR (HR = 1.0,95%CI:0.5-2.3,p = .95). Similar results were found within the SCCS which demonstrated higher IRRs for VTDR (IRRs = 1.09-1.18;p < .001) and DME (IRRs = 1.16-1.18;p < .001), but not increased IRRs in PDR (IRR = 0.92-0.97,p = .02-0.39). CONCLUSION ESAs are associated with higher risks for VTDR and DME, but not PDR. Those studying ESAs as adjunctive therapy for DR should be cautious of possible unintended effects.
Collapse
Affiliation(s)
- Jonathan C. Tsui
- Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Keirnan Willett
- Kittner Eye Center, Department of Ophthalmology, University of North Carolina, Chapel Hill, NC, USA
| | - Jordana B. Cohen
- Renal-Electrolyte and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania. Philadelphia, PA, USA
| | - Yinxi Yu
- Center for Preventative Ophthalmology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Brian L. VanderBeek
- Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Center for Pharmacoepidemiology Research and Training, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Leonard Davis Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
5
|
Fukui K, Ito Y, Kokubo M, Nakanishi H, Hirano S, Kusuda S, Ito S, Isayama T. Erythropoietin and retinopathy of prematurity: a retrospective cohort study in Japan, 2008-2018. J Perinatol 2024; 44:886-891. [PMID: 38514743 DOI: 10.1038/s41372-024-01929-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 02/20/2024] [Accepted: 03/04/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Erythropoietin has an angiogenic effect on the retina and might increase the risk of retinopathy of prematurity (ROP). METHODS This retrospective cohort study included infants born at 22 to 27 weeks' gestation between 2008 and 2018 who were admitted to neonatal intensive care units (NICUs). We compared mortality and morbidities between infants who received erythropoietin and those who did not. RESULTS Among 18,955 livebirth infants, this study included 16,031 infants, among which 14,373 infants received erythropoietin. The risk of ROP requiring treatment was significantly higher in the erythropoietin group than in the control group (33% vs. 26%; aOR 1.50 [95% CI 1.28-1.76]). On the other hand, the erythropoietin group had lower risks of death and necrotizing enterocolitis. CONCLUSIONS This study with a large sample size found that erythropoietin use was associated with increased risk of ROP requiring treatment, while being associated with reductions in deaths and NEC.
Collapse
Affiliation(s)
- Kana Fukui
- Division of Neonatology, National Center for Child Health and Development, Tokyo, Japan
- Department of Pediatrics, Graduate School of Medicine, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Yushi Ito
- Division of Neonatology, National Center for Child Health and Development, Tokyo, Japan
| | - Masayo Kokubo
- Division of Neonatology, Nagano Children's Hospital, Nagano, Japan
| | - Hidehiko Nakanishi
- Research and Development Center for New Medical Frontiers, Division of Neonatal Intensive Care Medicine, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Shinya Hirano
- Department of Neonatal Medicine, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Satoshi Kusuda
- Department of Pediatrics, Kyorin University, Tokyo, Japan
| | - Shuichi Ito
- Department of Pediatrics, Graduate School of Medicine, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Tetsuya Isayama
- Division of Neonatology, National Center for Child Health and Development, Tokyo, Japan.
- Department of Pediatrics, Graduate School of Medicine, Yokohama City University, Yokohama, Kanagawa, Japan.
| |
Collapse
|
6
|
Zhang Q, Jiang Y, Deng C, Wang J. Effects and potential mechanisms of exercise and physical activity on eye health and ocular diseases. Front Med (Lausanne) 2024; 11:1353624. [PMID: 38585147 PMCID: PMC10995365 DOI: 10.3389/fmed.2024.1353624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/12/2024] [Indexed: 04/09/2024] Open
Abstract
In the field of eye health, the profound impact of exercise and physical activity on various ocular diseases has become a focal point of attention. This review summarizes and elucidates the positive effects of exercise and physical activities on common ocular diseases, including dry eye disease (DED), cataracts, myopia, glaucoma, diabetic retinopathy (DR), and age-related macular degeneration (AMD). It also catalogues and offers exercise recommendations based on the varying impacts that different types and intensities of physical activities may have on specific eye conditions. Beyond correlations, this review also compiles potential mechanisms through which exercise and physical activity beneficially affect eye health. From mitigating ocular oxidative stress and inflammatory responses, reducing intraocular pressure, enhancing mitochondrial function, to promoting ocular blood circulation and the release of protective factors, the complex biological effects triggered by exercise and physical activities reveal their substantial potential in preventing and even assisting in the treatment of ocular diseases. This review aims not only to foster awareness and appreciation for how exercise and physical activity can improve eye health but also to serve as a catalyst for further exploration into the specific mechanisms and key targets through which exercise impacts ocular health. Such inquiries are crucial for advancing innovative strategies for the treatment of eye diseases, thereby holding significant implications for the development of new therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Chaohua Deng
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junming Wang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Di Pietro M, Decembrino N, Afflitto MG, Malerba E, Avitabile T, Franco LM, Longo A, Betta P. Risk factors in the development of retinopathy of prematurity: A 10-year retrospective study. Early Hum Dev 2023; 185:105844. [PMID: 37672895 DOI: 10.1016/j.earlhumdev.2023.105844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 09/08/2023]
Abstract
OBJECTIVE To evaluate Retinopathy of Prematurity (ROP) rate and risk factors in a large cohort of preterm newborns. METHODS Single center retrospective study. All preterm inborn hospitalized at the Neonatal Intensive Care Unit of the Policlinico of Catania from January 1, 2009 till December 31, 2018, were included. ROP stage and location, treatments required, maternal and infant risk factors were evaluated. RESULTS Medical records of 898 preterms were retrospectively examined (mean gestational age 32.9 ± 2.3 weeks). Of them 149 (16.6 %) developed bilateral ROP (92 stage 1, 44 stage 2 and 13 stage 3); 66 (7.3 %) received bilateral laser treatment. Six eyes of three patients affected by zone I ROP 1, with plus persistence 15 days after an optimal laser treatment, also received intravitreal ranibizumab injection. Risk factors for ROP development were gestational age (GA) (p < 0.001), birthweight (p < 0.001), assisted ventilation duration (p < 0.001), multiple birth (p = 0.003), erythropoietin (EPO) administration (p = 0.005) and persistence of tunica vasculosa lentis. The decision-tree analysis showed gestational age as the most significant predictive factor (P < 0.001); secondary predictive factors were EPO administration (p = 0.001) in newborns 29-31 weeks GA and birthweight lower than 2090 g (p < 0.001) in 32-34 weeks GA; in this latter group patent ductus arteriosus (PDA) was a tertiary predictive factor (p = 0.043). CONCLUSIONS In our study ROP incidence was 16,6 %; 7.3 % of the patients required laser treatment. Besides well-known factors, such as GA and birthweight, other factors like duration of assisted ventilation, EPO, multiple births, PDA, tunica vasculosa lentis persistence should be considered to tailor ophthalmic evaluation and follow-up.
Collapse
Affiliation(s)
- Massimo Di Pietro
- Department of General Surgery and Surgical Specialties, AOU Policlinico-San Marco, University of Catania, via S. Sofia 78, 95100 Catania, Italy.
| | - Nunzia Decembrino
- Integrated Activity Department for the Protection of Mother and Child Health, Neonatal Intensive Care Unit, AOU Policlinico-San Marco, University of Catania, via S. Sofia 78, 95100 Catania, Italy.
| | - Miriam Gallo Afflitto
- Multizonal Ophtalmology Unit, Hospital of Trento and Rovereto, corso Verona, 4, 38068 Rovereto, Italy.
| | - Emilio Malerba
- Department of General Surgery and Surgical Specialties, AOU Policlinico-San Marco, University of Catania, via S. Sofia 78, 95100 Catania, Italy
| | - Teresio Avitabile
- Department of General Surgery and Surgical Specialties, AOU Policlinico-San Marco, University of Catania, via S. Sofia 78, 95100 Catania, Italy.
| | - Livio Marco Franco
- Ophtalmology Unit, Great Metropolitan Hospital of Reggio Calabria, via G. Melacrino 21, 891244 Reggio Calabria, Italy
| | - Antonio Longo
- Department of General Surgery and Surgical Specialties, AOU Policlinico-San Marco, University of Catania, via S. Sofia 78, 95100 Catania, Italy.
| | - Pasqua Betta
- Integrated Activity Department for the Protection of Mother and Child Health, Neonatal Intensive Care Unit, AOU Policlinico-San Marco, University of Catania, via S. Sofia 78, 95100 Catania, Italy
| |
Collapse
|
8
|
Li X, Chen M. Correlation of hemoglobin levels with diabetic retinopathy in US adults aged ≥40 years: the NHANES 2005-2008. Front Endocrinol (Lausanne) 2023; 14:1195647. [PMID: 37600684 PMCID: PMC10433903 DOI: 10.3389/fendo.2023.1195647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/14/2023] [Indexed: 08/22/2023] Open
Abstract
Purpose The aim of this study was to explore the connection between hemoglobin levels and diabetic retinopathy (DR). Methods Cross-sectional research used data from the National Health and Nutrition Examination Survey (NHANES) 2005-2008. A multiple logistic regression analysis was performed to investigate the association between DR and hemoglobin levels. Additionally, generalized additivity models and smoothed curve fitting were carried out. Results After adjusting for several covariates, there was a negative association between hemoglobin levels and DR in the study, which included 837 participants. The negative association between hemoglobin levels and DR was present in men and women, the obese (BMI > 30), and 60- to 69-year-olds in subgroup analyses stratified by sex, BMI, and age. The association between hemoglobin levels and DR in the normal weight group (BMI < 25) displayed an inverted U-shaped curve with an inflection point of 13.7 (g/dL). Conclusion In conclusion, our research reveals that high hemoglobin levels are related to a decreased risk of DR. Ascertaining the hemoglobin levels ought to be regarded as an integral facet of the monitoring regimen for patients with diabetic complications and that the risk of DR is reduced through the detection and management of hemoglobin levels.
Collapse
Affiliation(s)
- Xiao Li
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Meirong Chen
- Ophthalmology Department, Shandong Hospital of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
9
|
Zhang J, Sharma D, Dinabandhu A, Sanchez J, Applewhite B, Jee K, Deshpande M, Flores-Bellver M, Hu MW, Guo C, Salman S, Hwang Y, Anders NM, Rudek MA, Qian J, Canto-Soler MV, Semenza GL, Montaner S, Sodhi A. Targeting hypoxia-inducible factors with 32-134D safely and effectively treats diabetic eye disease in mice. J Clin Invest 2023; 133:e163290. [PMID: 37227777 PMCID: PMC10313368 DOI: 10.1172/jci163290] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
Many patients with diabetic eye disease respond inadequately to anti-VEGF therapies, implicating additional vasoactive mediators in its pathogenesis. We demonstrate that levels of angiogenic proteins regulated by HIF-1 and -2 remain elevated in the eyes of people with diabetes despite treatment with anti-VEGF therapy. Conversely, by inhibiting HIFs, we normalized the expression of multiple vasoactive mediators in mouse models of diabetic eye disease. Accumulation of HIFs and HIF-regulated vasoactive mediators in hyperglycemic animals was observed in the absence of tissue hypoxia, suggesting that targeting HIFs may be an effective early treatment for diabetic retinopathy. However, while the HIF inhibitor acriflavine prevented retinal vascular hyperpermeability in diabetic mice for several months following a single intraocular injection, accumulation of acriflavine in the retina resulted in retinal toxicity over time, raising concerns for its use in patients. Conversely, 32-134D, a recently developed HIF inhibitor structurally unrelated to acriflavine, was not toxic to the retina, yet effectively inhibited HIF accumulation and normalized HIF-regulated gene expression in mice and in human retinal organoids. Intraocular administration of 32-134D prevented retinal neovascularization and vascular hyperpermeability in mice. These results provide the foundation for clinical studies assessing 32-134D for the treatment of patients with diabetic eye disease.
Collapse
Affiliation(s)
- Jing Zhang
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Deepti Sharma
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Aumreetam Dinabandhu
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Oncology and Diagnostic Sciences, School of Dentistry, Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland, USA
| | - Jaron Sanchez
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Brooks Applewhite
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kathleen Jee
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Monika Deshpande
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Miguel Flores-Bellver
- CellSight Ocular Stem Cell and Regeneration Research Program, Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Ming-Wen Hu
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chuanyu Guo
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shaima Salman
- Armstrong Oxygen Biology Research Center; Vascular Program, Institute for Cell Engineering; Departments of Pediatrics, Medicine, Oncology, Radiation Oncology, Biological Chemistry, and Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yousang Hwang
- Armstrong Oxygen Biology Research Center; Vascular Program, Institute for Cell Engineering; Departments of Pediatrics, Medicine, Oncology, Radiation Oncology, Biological Chemistry, and Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nicole M. Anders
- The Sidney Kimmel Comprehensive Cancer Center, Department of Oncology and the Division of Clinical Pharmacology at the School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Michelle A. Rudek
- The Sidney Kimmel Comprehensive Cancer Center, Department of Oncology and the Division of Clinical Pharmacology at the School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jiang Qian
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - M. Valeria Canto-Soler
- CellSight Ocular Stem Cell and Regeneration Research Program, Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Gregg L. Semenza
- Armstrong Oxygen Biology Research Center; Vascular Program, Institute for Cell Engineering; Departments of Pediatrics, Medicine, Oncology, Radiation Oncology, Biological Chemistry, and Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Silvia Montaner
- Department of Oncology and Diagnostic Sciences, School of Dentistry, Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland, USA
| | - Akrit Sodhi
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Fickweiler W, Mitzner M, Jacoba CMP, Sun JK. Circulatory Biomarkers and Diabetic Retinopathy in Racial and Ethnic Populations. Semin Ophthalmol 2023:1-11. [PMID: 36710371 DOI: 10.1080/08820538.2023.2168488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Clinical staging systems for diagnosis and treatment of diabetic retinopathy (DR) must closely relate to endpoints that are both relevant for patients and feasible for physicians to implement. Current DR staging systems for clinical eye care and research provide detailed phenotypic characterization to predict patient outcomes in diabetes but have limitations. Biochemical biomarkers provide a rich pool of potential candidates for new DR staging systems that can be readily measured in accessible fluids. Circulating biomarkers that are specific to the retina and relate to angiogenesis and inflammation have been suggested as relevant for DR. Although there is a lack of multi-ethnic studies evaluating circulatory biomarkers in DR, variability in circulatory biomarkers have been reported in people from different ethnic and racial backgrounds. Therefore, there is a need for future studies to evaluate individual or combinations of biomarkers in diverse populations with DR from different ethnic and racial backgrounds.
Collapse
Affiliation(s)
- Ward Fickweiler
- Research Division, Joslin Diabetes Center, Boston, MA, USA.,Beetham Eye Institute, Joslin Diabetes Center, Boston, MA, USA.,Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Margalit Mitzner
- Research Division, Joslin Diabetes Center, Boston, MA, USA.,Beetham Eye Institute, Joslin Diabetes Center, Boston, MA, USA
| | - Cris Martin P Jacoba
- Beetham Eye Institute, Joslin Diabetes Center, Boston, MA, USA.,Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Jennifer K Sun
- Research Division, Joslin Diabetes Center, Boston, MA, USA.,Beetham Eye Institute, Joslin Diabetes Center, Boston, MA, USA.,Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Kim AH, Kolesnikova M, Ngo WK, Tsang SH. Effects of medications on hypoxia-inducible factor in the retina: A review. Clin Exp Ophthalmol 2023; 51:205-216. [PMID: 36594241 DOI: 10.1111/ceo.14161] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 01/04/2023]
Abstract
Hypoxia-inducible factor (HIF) plays a critical role in the mechanisms that allow cells to adapt to various oxygen levels in the environment. Specifically, HIF-1⍺ has shown to be widely involved in cellular repair, survival, and energy metabolism. HIF-1⍺ has also been found in increased levels in cancer cells, highlighting the importance of balance in the hypoxic response. Promoting HIF-1⍺ activity as a potential therapy for degenerative diseases and inhibiting HIF-1⍺ as a therapy for pathologies with overactive cell proliferation are actively being explored. Digoxin and metformin, HIF-1⍺ inhibitors, and deferoxamine and ⍺-ketoglutarate analogues, HIF-1⍺ activators, are being studied for application in age-related macular degeneration, diabetic retinopathy, and retinitis pigmentosa. However, these same medications have retinal toxicities that must be assessed before implementation of therapeutic care. Herein, we highlight the duality of therapeutic and toxic potential of HIF-1⍺ that must be carefully assessed prior to its clinical application in retinal disorders.
Collapse
Affiliation(s)
- Angela H Kim
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, New York-Presbyterian Hospital, New York, New York, USA.,Edward S. Harkness Eye Institute, Columbia University Irving Medical Center/New York-Presbyterian Hospital, New York, New York, USA.,SUNY Downstate Medical School, Brooklyn, New York, USA
| | - Masha Kolesnikova
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, New York-Presbyterian Hospital, New York, New York, USA.,Edward S. Harkness Eye Institute, Columbia University Irving Medical Center/New York-Presbyterian Hospital, New York, New York, USA.,SUNY Downstate Medical School, Brooklyn, New York, USA
| | - Wei Kiong Ngo
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, New York-Presbyterian Hospital, New York, New York, USA.,Edward S. Harkness Eye Institute, Columbia University Irving Medical Center/New York-Presbyterian Hospital, New York, New York, USA.,National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore, Singapore
| | - Stephen H Tsang
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, New York-Presbyterian Hospital, New York, New York, USA.,Edward S. Harkness Eye Institute, Columbia University Irving Medical Center/New York-Presbyterian Hospital, New York, New York, USA.,Departments of Pathology & Cell Biology, Columbia Stem Cell Initiative, New York, New York, USA.,Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
12
|
Liu W, Guo R, Huang D, Ji J, Gansevoort RT, Snieder H, Jansonius NM. Co-occurrence of chronic kidney disease and glaucoma: Epidemiology and etiological mechanisms. Surv Ophthalmol 2023; 68:1-16. [PMID: 36088997 DOI: 10.1016/j.survophthal.2022.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 02/01/2023]
Abstract
As the histology, physiology, and pathophysiology of eyes and kidneys show substantial overlap, it has been suggested that eye and kidney diseases, such as glaucoma and chronic kidney disease (CKD), may be closely interlinked. We review the relationship between CKD and various subtypes of glaucoma, including primary open-angle glaucoma, primary angle- closure glaucoma, normal tension glaucoma, pseudoexfoliation syndrome, and several glaucoma endophenotypes. We also discuss the underlying pathogenic mechanisms and common risk factors for CKD and glaucoma, including atherosclerosis, the renin-angiotensin system, genes and genetic polymorphisms, vitamin D deficiency, and erythropoietin. The prevalence of glaucoma appears elevated in CKD patients, and vice versa, and the literature points to many intriguing associations; however, the associations are not always confirmed, and sometimes apparently opposite observations are reported. Glaucoma and CKD are complex diseases, and their mutual influence is only partially understood.
Collapse
Affiliation(s)
- Wei Liu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China; Department of Ophthalmology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ruru Guo
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Dandan Huang
- Department of Ophthalmology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Jian Ji
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Ron T Gansevoort
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Nomdo M Jansonius
- Department of Ophthalmology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
13
|
Lee J, Dey S, Rajvanshi PK, Merling RK, Teng R, Rogers HM, Noguchi CT. Neuronal nitric oxide synthase is required for erythropoietin stimulated erythropoiesis in mice. Front Cell Dev Biol 2023; 11:1144110. [PMID: 36895793 PMCID: PMC9988911 DOI: 10.3389/fcell.2023.1144110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/10/2023] [Indexed: 02/23/2023] Open
Abstract
Introduction: Erythropoietin (EPO), produced in the kidney in a hypoxia responsive manner, is required for red blood cell production. In non-erythroid tissue, EPO increases endothelial cell production of nitric oxide (NO) and endothelial nitric oxide synthase (eNOS) that regulates vascular tone to improve oxygen delivery. This contributes to EPO cardioprotective activity in mouse models. Nitric oxide treatment in mice shifts hematopoiesis toward the erythroid lineage, increases red blood cell production and total hemoglobin. In erythroid cells, nitric oxide can also be generated by hydroxyurea metabolism that may contribute to hydroxyurea induction of fetal hemoglobin. We find that during erythroid differentiation, EPO induces neuronal nitric oxide synthase (nNOS) and that neuronal nitric oxide synthase is required for normal erythropoietic response. Methods: Wild type (WT) mice and mice with targeted deletion of nNOS (nNOS-/-) and eNOS (eNOS-/-) were assessed for EPO stimulated erythropoietic response. Bone marrow erythropoietic activity was assessed in culture by EPO dependent erythroid colony assay and in vivo by bone marrow transplantation into recipient WT mice. Contribution of nNOS to EPO stimulated cell proliferation was assessed in EPO dependent erythroid cells and in primary human erythroid progenitor cell cultures. Results: EPO treatment increased hematocrit similarly in WT and eNOS-/- mice and showed a lower increase in hematocrit nNOS-/- mice. Erythroid colony assays from bone marrow cells were comparable in number from wild type, eNOS-/- and nNOS-/- mice at low EPO concentration. Colony number increased at high EPO concentration is seen only in cultures from bone marrow cells of wild type and eNOS-/- mice but not from nNOS-/- mice. Colony size with high EPO treatment also exhibited a marked increase in erythroid cultures from wild type and eNOS-/- mice but not from nNOS-/- mice. Bone marrow transplant from nNOS-/- mice into immunodeficient mice showed engraftment at comparable levels to WT bone marrow transplant. With EPO treatment, the increase in hematocrit was blunted in recipient mice that received with nNOS-/- donor marrow compared with recipient mice that received WT donor marrow. In erythroid cell cultures, addition of nNOS inhibitor resulted in decreased EPO dependent proliferation mediated in part by decreased EPO receptor expression, and decreased proliferation of hemin induced differentiating erythroid cells. Discussion: EPO treatment in mice and in corresponding cultures of bone marrow erythropoiesis suggest an intrinsic defect in erythropoietic response of nNOS-/- mice to high EPO stimulation. Transplantation of bone marrow from donor WT or nNOS-/- mice into recipient WT mice showed that EPO treatment post-transplant recapitulated the response of donor mice. Culture studies suggest nNOS regulation of EPO dependent erythroid cell proliferation, expression of EPO receptor and cell cycle associated genes, and AKT activation. These data provide evidence that nitric oxide modulates EPO dose dependent erythropoietic response.
Collapse
Affiliation(s)
- Jeeyoung Lee
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Soumyadeep Dey
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Praveen K Rajvanshi
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Randall K Merling
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Ruifeng Teng
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Heather M Rogers
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Constance T Noguchi
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
14
|
Lin TY, Lai YF, Chen YH, Lu DW. The Latest Evidence of Erythropoietin in the Treatment of Glaucoma. Int J Mol Sci 2022; 23:ijms232416038. [PMID: 36555679 PMCID: PMC9784015 DOI: 10.3390/ijms232416038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Erythropoietin (EPO) is a circulating hormone conventionally considered to be responsible for erythropoiesis. In addition to facilitating red blood cell production, EPO has pluripotent potential, such as for cognition improvement, neurogenesis, and anti-fibrotic, anti-apoptotic, anti-oxidative, and anti-inflammatory effects. In human retinal tissues, EPO receptors (EPORs) are expressed in the photoreceptor cells, retinal pigment epithelium, and retinal ganglion cell layer. Studies have suggested its potential therapeutic effects in many neurodegenerative diseases, including glaucoma. In this review, we discuss the correlation between glaucoma and EPO, physiology and potential neuroprotective function of the EPO/EPOR system, and latest evidence for the treatment of glaucoma with EPO.
Collapse
Affiliation(s)
| | | | | | - Da-Wen Lu
- Correspondence: ; Tel.: +886-2-87927163
| |
Collapse
|
15
|
Ebrahimi M, Sivaprasad S, Thompson P, Perry G. Retinal Neurodegeneration in Euglycemic Hyperinsulinemia, Prediabetes, and Diabetes. Ophthalmic Res 2022; 66:385-397. [PMID: 36463857 DOI: 10.1159/000528503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2023]
Abstract
Diabetic retinopathy (DR) is a challenging public health problem mainly because of its growing prevalence and risk of blindness. In general, our current knowledge and practice have failed to prevent the onset or progression of DR to sight-threatening complications. While there are treatment options for sight-threatening complications of DR, it is crucial to pay more attention to the early stages of DR to decrease its prevalence. Growing evidence suggests many pathologic changes occur before clinical presentations of DR in euglycemic hyperinsulinemia, prediabetes, and diabetes. These pathological changes occur in retinal neurons, glia, and microvasculature. A new focus on these preclinical pathologies - especially on hyperinsulinemia - may provide further insight into disease mechanisms, endpoints for clinical trials, and druggable targets in early disease. Here, we review the current evidence on the pathophysiological changes reported in preclinical DR and appraise preventive and treatment options for DR.
Collapse
Affiliation(s)
- Moein Ebrahimi
- Network of Immunity in Infection, Malignancy, and Autoimmunity, Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sobha Sivaprasad
- NIHR Moorfields Biomedical Research Centre, Moorfields Eye Hospital, London, UK
| | - Paul Thompson
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - George Perry
- Department of Biology, University of Texas and San Antonio, San Antonio, Texas, USA
| |
Collapse
|
16
|
Arrigo A, Aragona E, Bandello F. VEGF-targeting drugs for the treatment of retinal neovascularization in diabetic retinopathy. Ann Med 2022; 54:1089-1111. [PMID: 35451900 PMCID: PMC9891228 DOI: 10.1080/07853890.2022.2064541] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Diabetic retinopathy (DR) is the most common microangiopathic complication of diabetes mellitus, representing a major cause of visual impairment in developed countries. Proliferative DR (PDR) represents the last stage of this extremely complex retinal disease, characterized by the development of neovascularization induced by the abnormal production and release of vascular endothelial growth factor (VEGF). The term VEGF includes different isoforms; VEGF-A represents one of the most important pathogenic factors of DR. Anti-VEGF intravitreal therapies radically changed the outcome of DR, due to combined anti-angiogenic and anti-edematous activities. Nowadays, several anti-VEGF molecules exist, characterized by different pharmacological features and duration. With respect to PDR, although anti-VEGF treatments represented a fundamental step forward in the management of this dramatic complication, a big debate is present in the literature regarding the role of anti-VEGF as substitute of panretinal photocoagulation or if these two approaches may be used in combination. In the present review, we provided an update on VEGF isoforms and their role in DR pathogenesis, on current anti-VEGF molecules and emerging new drugs, and on the current management strategies of PDR. There is an overall agreement regarding the relative advantage provided by anti-VEGF, especially looking at the management of PDR patients requiring vitrectomy, with respect to laser. Based on the current data, laser approaches might be avoided when a perfectly planned anti-VEGF therapeutic strategy can be adopted. Conversely, laser treatment may have a role for those patients unable to guarantee enough compliance to anti-VEGF injections.Key messagesVEGF increased production, stimulated by retinal hypoperfusion and ischaemia, is a major pathogenic factor of neovascular complication onset in diabetic retinopathy and of DR stages progression.Nowadays, several anti-VEGF molecules are available in clinical practice and other molecules are currently under investigation. Each anti-VEGF molecule is characterized by different targets and may interact with multiple biochemical pathways within the eye.All the data agreed in considering anti-VEGF molecules as a first line choice for the management of diabetic retinopathy. Laser treatments may have a role in selected advanced cases and for those patients unable to guarantee enough compliance to intravitreal treatments schemes.
Collapse
Affiliation(s)
- Alessandro Arrigo
- IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Emanuela Aragona
- IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Francesco Bandello
- IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
17
|
Ryu J. New Aspects on the Treatment of Retinopathy of Prematurity: Currently Available Therapies and Emerging Novel Therapeutics. Int J Mol Sci 2022; 23:8529. [PMID: 35955664 PMCID: PMC9369302 DOI: 10.3390/ijms23158529] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 02/05/2023] Open
Abstract
Retinopathy of prematurity (ROP) is a rare proliferative ocular disorder in preterm infants. Because of the advancements in neonatal care, the incidence of ROP has increased gradually. Now, ROP is one of the leading causes of blindness in children. Preterm infants with immature retinal development are exposed to supplemental oxygen inside an incubator until their cardiopulmonary system is adequately developed. Once they are returned to room air, the relatively low oxygen level stimulates various angiogenesis factors initiating retinal neovascularization. If patients with ROP are not offered adequate and timely treatment, they can experience vision loss that may ultimately lead to permanent blindness. Although laser therapy and anti-vascular endothelial growth factor agents are widely used to treat ROP, they have limitations. Thus, it is important to identify novel therapeutics with minimal adverse effects for the treatment of ROP. To date, various pharmacologic and non-pharmacologic therapies have been assessed as treatments for ROP. In this review, the major molecular factors involved in the pathogenesis of ROP, currently offered therapies, therapies under investigation, and emerging novel therapeutics of ROP are discussed.
Collapse
Affiliation(s)
- Juhee Ryu
- Vessel-Organ Interaction Research Center, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea; ; Tel.: +82-539508583
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
18
|
Lv W, Chen W, Huang S, Xu Y, Liang JJ, Zheng Y, Chen S, Chen SL, Ng TK, Chen H. Reduction of Laser-Induced Choroidal Neovascularization in Mice With Erythropoietin RNA Interference. Transl Vis Sci Technol 2022; 11:1. [PMID: 35913417 PMCID: PMC9351596 DOI: 10.1167/tvst.11.8.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
PURPOSE The purpose of this study was to evaluate the pathological involvement of erythropoietin (EPO) in experimental choroidal neovascularization (CNV) and its association with neovascular age-related macular degeneration (AMD) and polypoidal choroidal vasculopathy (PCV) in the Chinese population. METHODS Treatment effect of recombinant EPO protein were assessed by human umbilical vein endothelial cell (HUVEC) proliferation, migration, and tube formation, and ex vivo choroid-sprouting ability. The effect of intravitreal injection of Epo siRNA against neovascularization was evaluated in the laser-induced CNV mouse model. In addition, the association of EPO variants with neovascular AMD and PCV was determined. RESULTS Exogenous supplementation of EPO significantly enhanced the migration and tube formation of HUVECs and promoted ex vivo choroid sprouting in mouse retinal pigment epithelium (RPE)-choroid-sclera complex culture. In the experimental CNV mouse model, Epo expression was found to be significantly upregulated by 3.5-folds in RPE-choroid-sclera complex at day 10 after laser induction as compared to the baseline. Immunofluorescence analysis showed that Epo was mainly expressed around the vascular endothelial cells in the RPE-choroid-sclera complex. Intravitreal injection of siRNA targeting Epo reduced 40% Epo expression and 40% CNV lesion areas as compared to the scramble control. However, EPO variants were not associated with neovascular AMD nor PCV in the Chinese population. CONCLUSIONS This study revealed the promotion of human endothelial cell tube formation in vitro and choroid sprouting ex vivo by EPO, and the reduction of laser-induced CNV in vivo by Epo RNA interference. TRANSLATIONAL RELEVANCE Targeting EPO could be a potential additional treatment for CNV-related diseases.
Collapse
Affiliation(s)
- Wenjuan Lv
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Wen Chen
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Shaofen Huang
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Yanxuan Xu
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Jia-Jian Liang
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Yuqian Zheng
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Shaowan Chen
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Shao-Lang Chen
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Tsz Kin Ng
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
- Department of Ophthalmology and Visual Sciences, the Chinese University of Hong Kong, Hong Kong
| | - Haoyu Chen
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China
| |
Collapse
|
19
|
Lai YF, Lin TY, Ho PK, Chen YH, Huang YC, Lu DW. Erythropoietin in Optic Neuropathies: Current Future Strategies for Optic Nerve Protection and Repair. Int J Mol Sci 2022; 23:ijms23137143. [PMID: 35806148 PMCID: PMC9267007 DOI: 10.3390/ijms23137143] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/13/2022] [Accepted: 06/24/2022] [Indexed: 02/05/2023] Open
Abstract
Erythropoietin (EPO) is known as a hormone for erythropoiesis in response to anemia and hypoxia. However, the effect of EPO is not only limited to hematopoietic tissue. Several studies have highlighted the neuroprotective function of EPO in extra-hematopoietic tissues, especially the retina. EPO could interact with its heterodimer receptor (EPOR/βcR) to exert its anti-apoptosis, anti-inflammation and anti-oxidation effects in preventing retinal ganglion cells death through different intracellular signaling pathways. In this review, we summarized the available pre-clinical studies of EPO in treating glaucomatous optic neuropathy, optic neuritis, non-arteritic anterior ischemic optic neuropathy and traumatic optic neuropathy. In addition, we explore the future strategies of EPO for optic nerve protection and repair, including advances in EPO derivates, and EPO deliveries. These strategies will lead to a new chapter in the treatment of optic neuropathy.
Collapse
Affiliation(s)
- Yi-Fen Lai
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-F.L.); (T.-Y.L.); (Y.-H.C.)
| | - Ting-Yi Lin
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-F.L.); (T.-Y.L.); (Y.-H.C.)
| | - Pin-Kuan Ho
- School of Dentistry, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Yi-Hao Chen
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-F.L.); (T.-Y.L.); (Y.-H.C.)
| | - Yu-Chuan Huang
- School of Pharmacy, National Defense Medical Center, Taipei 11490, Taiwan
- Department of Research and Development, National Defense Medical Center, Taipei 11490, Taiwan
- Correspondence: (Y.-C.H.); (D.-W.L.); Tel.: +886-2-87923100 (Y.-C.H.); +886-2-87927163 (D.-W.L.)
| | - Da-Wen Lu
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-F.L.); (T.-Y.L.); (Y.-H.C.)
- Correspondence: (Y.-C.H.); (D.-W.L.); Tel.: +886-2-87923100 (Y.-C.H.); +886-2-87927163 (D.-W.L.)
| |
Collapse
|
20
|
Cung T, Wang H, Hartnett ME. The Effects of Nicotinamide Adenine Dinucleotide Phosphate (NADPH) Oxidase and Erythropoietin, and Their Interactions in Angiogenesis: Implications in Retinopathy of Prematurity. Cells 2022; 11:cells11121951. [PMID: 35741081 PMCID: PMC9222209 DOI: 10.3390/cells11121951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 01/27/2023] Open
Abstract
Retinopathy of prematurity (ROP) is a leading cause of vision impairment and blindness in premature infants. Oxidative stress is implicated in its pathophysiology. NADPH oxidase (NOX), a major enzyme responsible for reactive oxygen species (ROS) generation in endothelial cells, has been studied for its involvement in physiologic and pathologic angiogenesis. Erythropoietin (EPO) has gained interest recently due to its tissue protective and angiogenic effects, and it has been shown to act as an antioxidant. In this review, we summarize studies performed over the last five years regarding the role of various NOXs in physiologic and pathologic angiogenesis. We also discuss the effect of EPO in tissue and vasoprotection, and the intersection of EPO and NOX-mediated oxidative stress in angiogenesis and the pathophysiology of ROP.
Collapse
|
21
|
Mason RH, Minaker SA, Lahaie Luna G, Bapat P, Farahvash A, Garg A, Bhambra N, Muni RH. Changes in aqueous and vitreous inflammatory cytokine levels in proliferative diabetic retinopathy: a systematic review and meta-analysis. Eye (Lond) 2022:10.1038/s41433-022-02127-x. [PMID: 35672457 DOI: 10.1038/s41433-022-02127-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/05/2022] [Accepted: 05/26/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Diabetic retinopathy is a major complication of diabetes mellitus, where in its most advanced form ischemic changes lead to the development of retinal neovascularization, termed proliferative diabetic retinopathy (PDR). While the development of PDR is often associated with angiogenic and inflammatory cytokines, studies differ on which cytokines are implicated in disease pathogenesis and on the strength of these associations. We therefore conducted a systematic review and meta-analysis to quantitatively assess the existing body of data on intraocular cytokines as biomarkers in PDR. METHODS A comprehensive search of the literature without year limitation was conducted to January 18, 2021, which identified 341 studies assessing vitreous or aqueous cytokine levels in PDR, accounting for 10379 eyes with PDR and 6269 eyes from healthy controls. Effect sizes were calculated as standardized mean differences (SMD) of cytokine concentrations between PDR and control patients. RESULTS Concentrations (SMD, 95% confidence interval, and p-value) of aqueous IL-1β, IL-6, IL-8, MCP-1, TNF-α, and VEGF, and vitreous IL-2, IL-4, IL-6, IL-8, angiopoietin-2, eotaxin, erythropoietin, GM-CSF, GRO, HMGB-1, IFN-γ, IGF, IP-10, MCP-1, MIP-1, MMP-9, PDGF-AA, PlGF, sCD40L, SDF-1, sICAM-1, sVEGFR, TIMP, TNF-α, and VEGF were significantly higher in patients with PDR when compared to healthy nondiabetic controls. For all other cytokines no differences, failed sensitivity analyses or insufficient data were found. CONCLUSIONS This extensive list of cytokines speaks to the complexity of PDR pathogenesis, and informs future investigations into disease pathogenesis, prognosis, and management.
Collapse
Affiliation(s)
- Ryan H Mason
- Department of Ophthalmology, St. Michael's Hospital/Unity Health Toronto, Toronto, ON, Canada
- Department of Ophthalmology & Vision Sciences, University of Toronto, Toronto, ON, Canada
- Kensington Vision and Research Centre, Toronto, ON, Canada
| | - Samuel A Minaker
- Department of Ophthalmology, St. Michael's Hospital/Unity Health Toronto, Toronto, ON, Canada
- Department of Ophthalmology & Vision Sciences, University of Toronto, Toronto, ON, Canada
- Kensington Vision and Research Centre, Toronto, ON, Canada
| | | | - Priya Bapat
- Department of Ophthalmology, St. Michael's Hospital/Unity Health Toronto, Toronto, ON, Canada
- Department of Ophthalmology & Vision Sciences, University of Toronto, Toronto, ON, Canada
- Kensington Vision and Research Centre, Toronto, ON, Canada
| | - Armin Farahvash
- Department of Ophthalmology, St. Michael's Hospital/Unity Health Toronto, Toronto, ON, Canada
- Department of Ophthalmology & Vision Sciences, University of Toronto, Toronto, ON, Canada
- Kensington Vision and Research Centre, Toronto, ON, Canada
| | - Anubhav Garg
- Department of Ophthalmology, St. Michael's Hospital/Unity Health Toronto, Toronto, ON, Canada
- Department of Ophthalmology & Vision Sciences, University of Toronto, Toronto, ON, Canada
- Kensington Vision and Research Centre, Toronto, ON, Canada
| | - Nishaant Bhambra
- Department of Ophthalmology, St. Michael's Hospital/Unity Health Toronto, Toronto, ON, Canada
- Department of Ophthalmology & Vision Sciences, University of Toronto, Toronto, ON, Canada
- Kensington Vision and Research Centre, Toronto, ON, Canada
| | - Rajeev H Muni
- Department of Ophthalmology, St. Michael's Hospital/Unity Health Toronto, Toronto, ON, Canada.
- Department of Ophthalmology & Vision Sciences, University of Toronto, Toronto, ON, Canada.
- Kensington Vision and Research Centre, Toronto, ON, Canada.
- University of Toronto/Kensington Health Ophthalmology Biobank and Cytokine Laboratory, Toronto, ON, Canada.
| |
Collapse
|
22
|
Role of EPO and TCF7L2 Gene Polymorphism Contribution to the Occurrence of Diabetic Retinopathy. DISEASE MARKERS 2022; 2022:6900660. [PMID: 35677638 PMCID: PMC9168213 DOI: 10.1155/2022/6900660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/18/2022] [Accepted: 04/06/2022] [Indexed: 11/17/2022]
Abstract
Objective: For studying the association of EPO (rs551238), EPO (rs1617640), and TCF7L2 (rs7903146) gene with diabetic retinopathy in Northern Chinese population. Methods: We conducted a case-control study, which enrolled 680 subjects and performed SNP genotyping and calculated allele frequencies. Results: When comparison was performed between DR patients and normal persons, the EPO (rs551238) AA genotype has a significant risk association with DR, and AC genotype has a significant protective association with DR. The EPO (rs551238) A allele has a significant risk association with DR, and C allele has a significant protective association with DR. When comparison was performed between DR patients and DM patients, the EPO (rs551238) CC genotype has a significant protective association with DR; the EPO (rs551238) A allele has a significant risk association with DR; and C allele has a significant protective association with DR. When comparison was performed between DR patients and normal persons, the EPO (rs1617640) GT genotype has a significant protective association with DR, and TT genotype has a significant risk association with DR. The EPO (rs1617640) G allele has a significant protective association with DR, and T allele has a significant risk association with DR. In addition, we found that TT genotype does not exist in rs7903146 of TCF7L2 in Chinese population so that the data could not be used. Conclusions: EPO (rs551238, rs1617640) genotype is a susceptible gene for DR in Chinese type 2 diabetic patients, especially the high-risk PDR.
Collapse
|
23
|
Hong JM, Choi MH, Park GH, Shin HS, Lee SJ, Lee JS, Lim YC. Transdural Revascularization by Multiple Burrhole After Erythropoietin in Stroke Patients With Cerebral Hypoperfusion: A Randomized Controlled Trial. Stroke 2022; 53:2739-2748. [PMID: 35579016 PMCID: PMC9389942 DOI: 10.1161/strokeaha.122.038650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In patients with acute symptomatic stroke, reinforcement of transdural angiogenesis using multiple burr hole (MBH) procedures after EPO (erythropoietin) treatment has rarely been addressed. We aimed to investigate the efficacy and safety of cranial MBH procedures under local anesthesia for augmenting transdural revascularization after EPO treatment in patients with stroke with perfusion impairments.
Collapse
Affiliation(s)
- Ji Man Hong
- Department of Neurology, Ajou University School of Medicine, Ajou University Medical Center, Suwon, South Korea. (J.M.H., M.H.C., G.H.P., S.-J.L., J.S.L)
| | - Mun Hee Choi
- Department of Neurology, Ajou University School of Medicine, Ajou University Medical Center, Suwon, South Korea. (J.M.H., M.H.C., G.H.P., S.-J.L., J.S.L)
| | - Geun Hwa Park
- Department of Neurology, Ajou University School of Medicine, Ajou University Medical Center, Suwon, South Korea. (J.M.H., M.H.C., G.H.P., S.-J.L., J.S.L)
| | - Hee Sun Shin
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, South Korea (H.S.S.)
| | - Seong-Joon Lee
- Department of Neurology, Ajou University School of Medicine, Ajou University Medical Center, Suwon, South Korea. (J.M.H., M.H.C., G.H.P., S.-J.L., J.S.L)
| | - Jin Soo Lee
- Department of Neurology, Ajou University School of Medicine, Ajou University Medical Center, Suwon, South Korea. (J.M.H., M.H.C., G.H.P., S.-J.L., J.S.L)
| | - Yong Cheol Lim
- Department of Neurosurgery, Ajou University School of Medicine, Ajou University Medical Center, Suwon, South Korea. (Y.C.L.)
| |
Collapse
|
24
|
Wang B, Zhang X, Chen H, Koh A, Zhao C, Chen Y. A Review of Intraocular Biomolecules in Retinal Vein Occlusion: Toward Potential Biomarkers for Companion Diagnostics. Front Pharmacol 2022; 13:859951. [PMID: 35559255 PMCID: PMC9086509 DOI: 10.3389/fphar.2022.859951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/25/2022] [Indexed: 12/04/2022] Open
Abstract
Retinal vein occlusion (RVO) is one of the most common retinal vascular diseases. The pathogenesis of RVO is multifactorial and involves a complex interplay among a variety of vascular and inflammatory mediators. Many cytokines, chemokines, growth factors, and cell adhesion molecules have been reported to be implicated. Treatments for RVO are directed at the management of underlying risk factors and vision-threatening complications, including macula edema (ME) and neovascularization. Intravitreal anti-VEGF agents are currently considered as the first-line treatment for ME secondary to RVO (RVO-ME), but a substantial proportion of patients responded insufficiently to anti-VEGF agents. Since RVO-ME refractory to anti-VEGF agents generally responds to corticosteroids and its visual outcome is negatively correlated to disease duration, prediction of treatment response at baseline in RVO-ME may significantly improve both cost-effectiveness and visual prognosis. Several bioactive molecules in the aqueous humor were found to be associated with disease status in RVO. This review aims to present a comprehensive review of intraocular biomolecules reported in RVO, including VEGF, IL-6, IL-8, MCP-1, sICAM-1, IL-12, IL-13, sVEGFR-1, sVEGFR-2, PDGF-AA, etc., highlighting their association with disease severity and/or phenotype, and their potential roles in prognostic prediction and treatment selection. Some of these molecules may serve as biomarkers for aqueous humor-based companion diagnostics for the treatment of RVO in the future.
Collapse
Affiliation(s)
- Bingjie Wang
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- School of Medicine, Tsinghua University, Beijing, China
| | - Xiao Zhang
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huan Chen
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Adrian Koh
- Eye & Retina Surgeons, Camden Medical Centre, Singapore, Singapore
| | - Chan Zhao
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Youxin Chen
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
25
|
Rashidi A, Garimella PS, Al-Asaad A, Kharadjian T, Torres MN, Thakkar J. Anemia Management in the Cancer Patient With CKD and End-Stage Kidney Disease. Adv Chronic Kidney Dis 2022; 29:180-187.e1. [PMID: 35817525 DOI: 10.1053/j.ackd.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 02/18/2022] [Accepted: 03/10/2022] [Indexed: 11/11/2022]
Abstract
Anemia is a common medical problem among patients with cancer and chronic kidney disease (CKD). Although anemia in patients with CKD is often treated with iron and erythropoietin-stimulating agents, there are controversies with regard to the use of erythropoietin-stimulating agents in cancer patients. In this article, we review the treatment of anemia in patients with cancer and CKD, in addition to summarizing the current guidelines in treatment of anemia in these patients.
Collapse
Affiliation(s)
- Arash Rashidi
- Division of Nephrology and Hypertension, University Hospitals Cleveland Medical Center, Cleveland, OH.
| | - Pranav S Garimella
- Division of Nephrology and Hypertension, University of California San Diego, La Jolla, CA
| | - Abdullah Al-Asaad
- Division of Nephrology and Hypertension, University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Talar Kharadjian
- Division of Nephrology and Hypertension, University of California San Diego, La Jolla, CA
| | - Mariela Navarro Torres
- Department of Medicine/Division of Nephrology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY
| | - Jyotsana Thakkar
- Department of Medicine/Division of Nephrology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY
| |
Collapse
|
26
|
Hui Q, Zheng F, Qin L, Pei C. Annexin A1 promotes reparative angiogenesis and ameliorates neuronal injury in ischemic retinopathy. Curr Eye Res 2022; 47:791-801. [PMID: 35179426 DOI: 10.1080/02713683.2022.2029904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE Retinal ischemia is the main reason for vision threatening. Inflammation and aberrant angiogenesis play an important role in the pathogenesis of ischemia. Annexin A1 is an endogenous protein modulating anti-inflammatory processes, and its therapeutic potential has been reported in a range of inflammatory diseases. However, the effect of annexin A1 on ischemic retinal injury has not been examined. METHODS Expression of annexin A1 was assessed by real time PCR and western blotting, and location of annexin A1 was evaluated by immunofluorescence staining in retina of OIR. The activation of annexin A1 were assayed in HRECs after hypoxia stimuli. The effect of annexin A1 on vascularization of OIR mouse through quantification vaso-obliteration and neovascularization, as well as expression of relevant angiogenic factors and inflammatory cytokines was compared between wild type and annexin A1 deficiency mice. We also investigated the effect of annexin A1 on retinal neuronal degeneration as measured by ERG and OCT. RESULTS In retinas of OIR, the expression of annexin A1 significantly increased and located in inner retinal layers. Annexin A1 was induced in HRECs after hypoxic stimuli. Furthermore, annexin A1 deficiency increased pro-angiogenic and pro-inflammatory cytokines. Ablation of annexin A1 suppressed aortic outgrowth and retinal reparative revascularization and promoted pathological neovascularization to exacerbate retinal dysfunction after ischemia injury. CONCLUSION Annexin A1 inhibits angiogenic and inhibits pro-inflammatory cytokines and promotes reparative angiogenesis, thus exhibits neuronal protective function in ischemic retinopathy.
Collapse
Affiliation(s)
- Qiaoyan Hui
- Department of Ophthalmology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Ophthalmology, Xi'an Fourth Hospital, Affiliated Xi'an Fourth Hospital, Northwestern Polytechnical University, Affiliated Guangren Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Fengwei Zheng
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Li Qin
- Department of Ophthalmology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Cheng Pei
- Department of Ophthalmology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
27
|
Xie H, Zhang C, Zhang J, Xu Y, Liu K, Luo D, Qiu Q, Xu GT, Zhang J. An in vitro cell model to study microglia activation in diabetic retinopathy. Cell Biol Int 2022; 46:129-138. [PMID: 34647397 DOI: 10.1002/cbin.11710] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/22/2021] [Accepted: 10/11/2021] [Indexed: 11/10/2022]
Abstract
Microglial activation has been studied extensively in diabetic retinopathy. We have previously detected activation and migration of microglia in 8-week-old diabetic rat retinas. It is widely acknowledged that microglia-mediated inflammation contributes to the progression of diabetic retinopathy. However, existing cell models do not explore the role of activated microglia in vitro. In this study, microglia were subject to various conditions mimicking diabetic retinopathy, including high glucose, glyoxal, and hypoxia. Under high glucose or glyoxal treatment, microglia demonstrated only partially functional changes, while under hypoxia, microglia became fully activated showing enlarged cell bodies, enhanced migration and phagocytosis as well as increased production of pro-inflammatory factors such as cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), and inducible nitric oxide synthase (iNOS). The data indicate that hypoxia-treated microglia is an optimal in vitro model for exploration of microglia activation in diabetic retinopathy.
Collapse
Affiliation(s)
- Hai Xie
- Department of Ophthalmology of Shanghai Tenth People's Hospital, Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
- Department of Regenerative Medicine, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
| | - Chaoyang Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Jingting Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Yihua Xu
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Kun Liu
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Dawei Luo
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Qinghua Qiu
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Guo-Tong Xu
- Department of Ophthalmology of Shanghai Tenth People's Hospital, Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
- Department of Regenerative Medicine, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
| | - Jingfa Zhang
- Department of Ophthalmology of Shanghai Tenth People's Hospital, Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
- Department of Regenerative Medicine, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| |
Collapse
|
28
|
Ji L, Waduge P, Hao L, Kaur A, Wan W, Wu Y, Tian H, Zhang J, Webster KA, Li W. Selectively targeting disease-restricted secretogranin III to alleviate choroidal neovascularization. FASEB J 2022; 36:e22106. [PMID: 34918375 PMCID: PMC8694659 DOI: 10.1096/fj.202101085rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/25/2021] [Accepted: 12/02/2021] [Indexed: 01/03/2023]
Abstract
Choroidal neovascularization (CNV), a leading cause of blindness in the elderly, is routinely treated with vascular endothelial growth factor (VEGF) inhibitors that have limited efficacy and potentially adverse side effects. An unmet clinical need is to develop novel therapies against other angiogenic factors for alternative or combination treatment to improve efficacy and safety. We recently described secretogranin III (Scg3) as a disease-selective angiogenic factor, causally linked to diabetic retinopathy and acting independently of the VEGF pathway. An important question is whether such a disease-selective Scg3 pathway contributes to other states of pathological angiogenesis beyond diabetic retinopathy. By applying a novel in vivo endothelial ligand binding assay, we found that the binding of Scg3 to CNV vessels in live mice was markedly increased over background binding to healthy choriocapillaris and blocked by an Scg3-neutralizing antibody, whereas VEGF showed no such differential binding. Intravitreal injection of anti-Scg3 humanized antibody Fab (hFab) inhibited Matrigel-induced CNV with similar efficacy to the anti-VEGF drug aflibercept. Importantly, a combination of anti-Scg3 hFab and aflibercept synergistically alleviated CNV. Homozygous deletion of the Scg3 gene markedly reduced CNV severity and abolished the therapeutic activity of anti-Scg3 hFab, but not aflibercept, suggesting a role for Scg3 in VEGF-independent CNV pathogenesis and therapy. Our work demonstrates the stringent disease selectivity of Scg3 binding and positions anti-Scg3 hFab as a next-generation disease-targeted anti-angiogenic therapy for CNV.
Collapse
Affiliation(s)
- Liyang Ji
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX.,Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL.,Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Prabuddha Waduge
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX.,Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL
| | - Lili Hao
- Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL.,Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Avinash Kaur
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX.,Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL
| | - Wencui Wan
- Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL.,Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yan Wu
- Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL
| | - Hong Tian
- Everglades Biopharma, LLC, Houston, TX
| | - Jinsong Zhang
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Keith A. Webster
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX.,Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL.,Everglades Biopharma, LLC, Houston, TX
| | - Wei Li
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX.,Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL
| |
Collapse
|
29
|
Mankoč Ramuš S, Pungeršek G, Petrovič MG, Petrovič D. The GG genotype of erythropoietin rs1617640 polymorphism affects the risk of proliferative diabetic retinopathy in Slovenian subjects with type 2 diabetes mellitus: enemy or ally? Acta Ophthalmol 2021; 99:e1382-e1389. [PMID: 33599115 DOI: 10.1111/aos.14813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE The aim of this study was to investigate the relationship between erythropoietin rs1617640 polymorphism and proliferative diabetic retinopathy (PDR) in Slovenian subjects with type 2 diabetes mellitus. The second aim was to find whether erythropoietin expression in fibrovascular membranes varies among individuals carrying different genotypes of the rs1617640. METHODS This was a retrospective cross-sectional study based on 797 unrelated Slovenian (Caucasian) participants with type 2 diabetes mellitus. The study group consisted of 217 cases with PDR and 580 controls without clinical signs of diabetic retinopathy. Each subject was genotyped for rs1617640 polymorphism. Fibrovascular membranes from 27 subjects who underwent vitreoretinal surgery were analysed with immunohistochemistry. We searched for expression of erythropoietin, its cognate receptor and for a pan-endothelial marker CD-34. RESULTS Our results show that subjects carrying a minor GG genotype had significantly higher risk for PDR in both unadjusted (p = 0.02) and adjusted (p = 0.04) recessive genetic models. Subjects with the GG genotype had a 1.6-fold increased risk of developing PDR compared to subjects carrying the major T allele. In fibrovascular membranes from subjects with PDR, the mean number of cells expressing EPO was significantly higher in G allele carriers compared to the homozygotes for the common T allele. CONCLUSION In Slovenian subjects with type 2 diabetes mellitus, a significant increased risk of PDR was found in GG carriers of the erythropoietin gene rs1617640 polymorphism.
Collapse
Affiliation(s)
- Sara Mankoč Ramuš
- International Center for Cardiovascular diseases MC Medicor Izola Slovenia
| | - Gregor Pungeršek
- Institute of Histology and Embryology Faculty of Medicine University of Ljubljana Ljubljana Slovenia
| | | | - Danijel Petrovič
- Institute of Histology and Embryology Faculty of Medicine University of Ljubljana Ljubljana Slovenia
| |
Collapse
|
30
|
Menger MM, Nalbach L, Roma LP, Laschke MW, Menger MD, Ampofo E. Erythropoietin exposure of isolated pancreatic islets accelerates their revascularization after transplantation. Acta Diabetol 2021; 58:1637-1647. [PMID: 34254190 PMCID: PMC8542558 DOI: 10.1007/s00592-021-01760-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/06/2021] [Indexed: 12/15/2022]
Abstract
AIMS The exposure of isolated pancreatic islets to pro-angiogenic factors prior to their transplantation represents a promising strategy to accelerate the revascularization of the grafts. It has been shown that erythropoietin (EPO), a glycoprotein regulating erythropoiesis, also induces angiogenesis. Therefore, we hypothesized that EPO exposure of isolated islets improves their posttransplant revascularization. METHODS Flow cytometric, immunohistochemical and quantitative real-time (qRT)-PCR analyses were performed to study the effect of EPO on the viability, cellular composition and gene expression of isolated islets. Moreover, islets expressing a mitochondrial or cytosolic H2O2 sensor were used to determine reactive oxygen species (ROS) levels. The dorsal skinfold chamber model in combination with intravital fluorescence microscopy was used to analyze the revascularization of transplanted islets. RESULTS We found that the exposure of isolated islets to EPO (3 units/mL) for 24 h does not affect the viability and the production of ROS when compared to vehicle-treated and freshly isolated islets. However, the exposure of islets to EPO increased the number of CD31-positive cells and enhanced the gene expression of insulin and vascular endothelial growth factor (VEGF)-A. The revascularization of the EPO-cultivated islets was accelerated within the initial phase after transplantation when compared to both controls. CONCLUSION These findings indicate that the exposure of isolated islets to EPO may be a promising approach to improve clinical islet transplantation.
Collapse
Affiliation(s)
- Maximilian M Menger
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Saar, Germany
- Department of Trauma and Reconstructive Surgery, Faculty of Medicine, BG Hospital Tuebingen, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
| | - Lisa Nalbach
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Saar, Germany
| | - Leticia P Roma
- Biophysics Department, Center for Human and Molecular Biology, Saarland University, 66421, Homburg, Saar, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Saar, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Saar, Germany
| | - Emmanuel Ampofo
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Saar, Germany.
| |
Collapse
|
31
|
Chen L, Feng J, Shi Y, Luan F, Ma F, Wang Y, Yang W, Tao Y. Reduced Expression of Erythropoietin After Intravitreal Ranibizumab in Proliferative Diabetic Retinopathy Patients-Retrospective Interventional Study. Front Med (Lausanne) 2021; 8:710079. [PMID: 34621759 PMCID: PMC8490617 DOI: 10.3389/fmed.2021.710079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/24/2021] [Indexed: 02/02/2023] Open
Abstract
Purpose: To evaluate the expressions of erythropoietin (EPO) and vascular endothelial growth factor (VEGF) in the vitreous and fibrovascular membranes (FVMs) of proliferative diabetic retinopathy (PDR) after the intravitreal injection of ranibizumab (IVR) and further explore the relationship between EPO and VEGF. Method: The concentrations of EPO and VEGF levels in the vitreous fluid were measured in 35 patients (24 PDR and 11 non-diabetic patients) using enzyme-linked immunosorbent assay. The patients were divided into three groups: PDR with IVR (IVR group) before par plana vitrectomy (n = 10), PDR without IVR (Non-IVR group) (n = 14) and a control group [macular holes (MHs) or epiretinal membranes (ERM), n = 11]. Fluorescence immunostaining was performed to examine the expressions of VEGF, EPO and CD 105 in the excised epiretinal membranes. Result: The PDR eyes of Non-IVR group had the highest vitreous VEGF and EPO levels (836.30 ± 899.50 pg/ml, 99.29 ± 27.77 mIU/ml, respectively) compared to the control group (10.98 ± 0.98 pg/ml and 18.96 ± 13.30 mIU/ml/ml). Both the VEGF and EPO levels in the IVR group (13.22 ± 2.72 pg/ml and 68.57 ± 41.47 mIU/ml) were significantly lower than the Non-IVR group (P = 0.004 and P = 0.04, respectively). Furthermore, no significant difference was observed for VEGF levels between the control and IVR groups (10.9 ± 0.98 pg/ml and 13.22 ± 2.72 pg/ml, respectively, P = 0.9). Yet the EPO level in the IVR group was significantly higher than that in the Non-diabetic group (68.57 ± 41.47 pg/ml and 18.96 ± 13.30 pg/ml, respectively, P = 0.001). The expressions of EPO, VEGF, and CD105 were significantly reduced in fluorescence immunostaining of FVMs in the IVR group compared with the Non-IVR group. The receiver operating characteristic (ROC) curve of the EPO and VEGF levels were 0.951 and 0.938 in the PDR group. Conclusion: Both of the VEGF and EPO level were significantly increased in PDR patients, which have equal diagnostic value in the prediction of PDR. IVR could reduce the EPO level, but not enough to the normal level.
Collapse
Affiliation(s)
- Li Chen
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jing Feng
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yanhong Shi
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Fuxiao Luan
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Fang Ma
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yingjie Wang
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Weiqiang Yang
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yong Tao
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
32
|
Tsiftsoglou AS. Erythropoietin (EPO) as a Key Regulator of Erythropoiesis, Bone Remodeling and Endothelial Transdifferentiation of Multipotent Mesenchymal Stem Cells (MSCs): Implications in Regenerative Medicine. Cells 2021; 10:cells10082140. [PMID: 34440909 PMCID: PMC8391952 DOI: 10.3390/cells10082140] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 02/06/2023] Open
Abstract
Human erythropoietin (EPO) is an N-linked glycoprotein consisting of 166 aa that is produced in the kidney during the adult life and acts both as a peptide hormone and hematopoietic growth factor (HGF), stimulating bone marrow erythropoiesis. EPO production is activated by hypoxia and is regulated via an oxygen-sensitive feedback loop. EPO acts via its homodimeric erythropoietin receptor (EPO-R) that increases cell survival and drives the terminal erythroid maturation of progenitors BFU-Es and CFU-Es to billions of mature RBCs. This pathway involves the activation of multiple erythroid transcription factors, such as GATA1, FOG1, TAL-1, EKLF and BCL11A, and leads to the overexpression of genes encoding enzymes involved in heme biosynthesis and the production of hemoglobin. The detection of a heterodimeric complex of EPO-R (consisting of one EPO-R chain and the CSF2RB β-chain, CD131) in several tissues (brain, heart, skeletal muscle) explains the EPO pleotropic action as a protection factor for several cells, including the multipotent MSCs as well as cells modulating the innate and adaptive immunity arms. EPO induces the osteogenic and endothelial transdifferentiation of the multipotent MSCs via the activation of EPO-R signaling pathways, leading to bone remodeling, induction of angiogenesis and secretion of a large number of trophic factors (secretome). These diversely unique properties of EPO, taken together with its clinical use to treat anemias associated with chronic renal failure and other blood disorders, make it a valuable biologic agent in regenerative medicine for the treatment/cure of tissue de-regeneration disorders.
Collapse
Affiliation(s)
- Asterios S Tsiftsoglou
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
33
|
Wang J, Fu MS, Zhou MW, Ke BL, Zhang ZH, Xu X. Potential effects of angiogenesis-related factors on the severity of APAC and surgical outcomes of trabeculectomy. BMC Ophthalmol 2021; 21:297. [PMID: 34384366 PMCID: PMC8359530 DOI: 10.1186/s12886-021-02051-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 07/26/2021] [Indexed: 11/10/2022] Open
Abstract
Background EPO (erythropoietin) and PDGF (platelet derived growth factor) families are thought to be associated with angiogenesis under hypoxic condition. The sharp rise of intraocular pressure in acute primary angle closure (APAC) results in an inefficient supply of oxygen and nutrients. We aimed to measure the expression of EPO and PDGF family members in APAC eyes and demonstrate their associations with APAC’s surgical success rate. Methods Concentrations of EPO, PDGF-AA, -BB, -CC and -DD collected in aqueous humor samples of 55 patients recruited were measured. Before operations, correlations between target proteins and IOP (intraocular pressure) were detected between APAC (acute primary angle closure) and cataract patients. Based on the post-operative follow-up, the effects of EPO and PDGF family members on the successful rate of trabeculectomy were tested. Results The levels of EPO, PDGF-CC and -DD were significantly elevated in the APAC group compared to the cataract group. During the post-operative follow-up, EPO, PDGF-CC and -DD showed significant differences between the success and failure groups. In multivariable linear regression analyses, failed filtration surgery was more likely in APAC eyes with higher EPO level. The Kaplan-Meier survival plot suggested that the success rate in eyes with low EPO level was significantly higher than that in eyes with high EPO level. Conclusion The levels of EPO, PDGF-CC and -DD were significantly elevated in failure group. EPO level correlated with preoperative IOP and numbers of eyedrops, and higher EPO level in aqueous humor is a risk factor for trabeculectomy failure. It can be a biomarker to estimate the severity of APAC and the success rate of surgery. The investigation of mechanism of EPO in APAC a may have potential clinical applications for the surgical treatment of APAC.
Collapse
Affiliation(s)
- Jing Wang
- National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, China.,Eye & ENT Hospital, Fudan University, 83 Fenyang Rd, Shanghai, 20000, China
| | - Ming-Shui Fu
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, China.,Eye & ENT Hospital, Fudan University, 83 Fenyang Rd, Shanghai, 20000, China.,Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Min-Wen Zhou
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, China.,Eye & ENT Hospital, Fudan University, 83 Fenyang Rd, Shanghai, 20000, China.,Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Bi-Lian Ke
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, China.,Eye & ENT Hospital, Fudan University, 83 Fenyang Rd, Shanghai, 20000, China.,Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi-Hua Zhang
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China. .,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China. .,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, China. .,Eye & ENT Hospital, Fudan University, 83 Fenyang Rd, Shanghai, 20000, China. .,Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Xun Xu
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Disease, Shanghai, China.,Eye & ENT Hospital, Fudan University, 83 Fenyang Rd, Shanghai, 20000, China.,Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
34
|
Sun Y, Ni Y, Kong N, Huang C. TLR2 signaling contributes to the angiogenesis of oxygen-induced retinopathy. Exp Eye Res 2021; 210:108716. [PMID: 34352266 DOI: 10.1016/j.exer.2021.108716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 07/05/2021] [Accepted: 07/30/2021] [Indexed: 11/15/2022]
Abstract
PURPOSE To evaluate the role of Toll-like receptor 2 (TLR2) signaling in retinal neovascularization in a mouse model of oxygen-induced retinopathy (OIR). MATERIALS AND METHODS The OIR model was established in C57BL/6J wild type (WT) mice and TLR2-/- mice. Retinal neovascularization in the OIR model was measured by counting new vascular cell nuclei above the internal limiting membrane and analyzing flat-mounted retinas perfused with fluorescein dextran and immunostained with Griffonia Simplicifolia (GS) isolectin. The expression of TLR2 and VEGF in the retina was detected by immunofluorescence. Expression of TGF- β1, b-FGF, and IL-6 mRNA in the retina was measured by quantitative real-time PCR. RESULTS Compared to WT OIR mice, retinal neovascularization was attenuated in TLR2-/- OIR mice. The co-expressions of TLR2 and VEGF were remarkably and consistently increased in WT OIR mice; however, there was no expression of TLR2 and a significant decrease in VEGF expression in TLR2-/- OIR mice. These results suggest that TLR2 plays a central role in OIR model angiogenesis. Expression of TGF- β1, b-FGF, and IL-6 mRNA were reduced in the TLR2-/- OIR mice, suggesting that the inflammatory response induced by TLR2 relates to angiogenesis. CONCLUSION TLR2 signaling in the retina is associated with neovascularization in mice. Inflammation contributes to the activation of angiogenesis and is partially mediated through the TLR2-VEGF retinal signaling pathway.
Collapse
Affiliation(s)
- Yuying Sun
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China; Department of Cancer Prevention, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China
| | - Yao Ni
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, Guangdong Province, China
| | - Ning Kong
- Department of Ophthalmology, Panyu Central Hospital, Guangzhou, 510080, Guangdong Province, China.
| | - Chunyu Huang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China; Department of Endoscopy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China.
| |
Collapse
|
35
|
Arrigo A, Bandello F. Molecular Features of Classic Retinal Drugs, Retinal Therapeutic Targets and Emerging Treatments. Pharmaceutics 2021; 13:pharmaceutics13071102. [PMID: 34371793 PMCID: PMC8309124 DOI: 10.3390/pharmaceutics13071102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/02/2021] [Indexed: 12/27/2022] Open
Abstract
The management of exudative retinal diseases underwent a revolution due to the introduction of intravitreal treatments. There are two main classes of intravitreal drugs, namely anti-vascular endothelial growth factors (anti-VEGF) and corticosteroids molecules. The clinical course and the outcome of retinal diseases radically changed thanks to the efficacy of these molecules in determining the regression of the exudation and the restoration of the macular profile. In this review, we described the molecular features of classic retinal drugs, highlighting the main therapeutic targets, and we provided an overview of new emerging molecules. We performed a systematic review of the current literature available in the MEDLINE library, focusing on current intravitreal molecules and on new emerging therapies. The anti-VEGF molecules include Bevacizumab, Pegaptanib, Ranibizumab, Aflibercept, Conbercept, Brolucizumab, Abicipar-pegol and Faricimab. The corticosteroids approach is mainly based on the employment of triamcinolone acetonide, dexamethasone and fluocinolone acetonide molecules. Many clinical trials and real-life reports demonstrated their efficacy in exudative retinal diseases, highlighting differences in terms of molecular targeting and pharmacologic profiles. Furthermore, several new molecules are currently under investigation. Intravitreal drugs focus their activity on a wide range of therapeutic targets and are safe and efficacy in managing retinal diseases.
Collapse
|
36
|
Neurovascular regulation in diabetic retinopathy and emerging therapies. Cell Mol Life Sci 2021; 78:5977-5985. [PMID: 34230991 DOI: 10.1007/s00018-021-03893-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/15/2021] [Accepted: 06/25/2021] [Indexed: 12/11/2022]
Abstract
Diabetic retinopathy (DR) is the leading cause of vision loss in working adults in developed countries. The disease traditionally classified as a microvascular complication of diabetes is now widely recognized as a neurovascular disorder resulting from disruption of the retinal neurovascular unit (NVU). The NVU comprising retinal neurons, glia and vascular cells coordinately regulates blood flow, vascular density and permeability to maintain homeostasis. Disturbance of the NVU during DR can lead to vision-threatening clinical manifestations. A limited number of signaling pathways have been identified for intercellular communication within the NVU, including vascular endothelial growth factor (VEGF), the master switch for angiogenesis. VEGF inhibitors are now widely used to treat DR, but their limited efficacy implies that other signaling molecules are involved in the pathogenesis of DR. By applying a novel screening technology called comparative ligandomics, we recently discovered secretogranin III (Scg3) as a unique DR-selective angiogenic and vascular leakage factor with therapeutic potential for DR. This review proposes neuron-derived Scg3 as the first diabetes-selective neurovascular regulator and discusses important features of Scg3 inhibition for next-generation disease-targeted anti-angiogenic therapies of DR.
Collapse
|
37
|
Feizi S, Alemzadeh-Ansari M, Karimian F, Esfandiari H. Use of erythropoietin in ophthalmology: a review. Surv Ophthalmol 2021; 67:427-439. [PMID: 34157346 DOI: 10.1016/j.survophthal.2021.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 12/17/2022]
Abstract
Erythropoietin (EPO) is a glycoprotein hormone that regulates hematopoiesis in the human body. The presence of EPO and its receptors in different tissues indicates that this hormone has extramedullary effects in other tissues, including the eye. We focus on the biological roles of this hormone in the development and normal physiologic functions of the eye. Furthermore, we explore the role of EPO in the management of different ocular diseases - including diabetic retinopathy, retinopathy of prematurity, inherited retinal degeneration, branch and central retinal vein occlusion, retinal detachment, traumatic optic neuropathy, optic neuritis, methanol optic neuropathy, nonarteritic anterior ischemic optic neuropathy, glaucoma, and scleral necrosis.
Collapse
Affiliation(s)
- Sepehr Feizi
- Ophthalmic Research Center, Department of Ophthalmology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | - Farid Karimian
- Ophthalmic Research Center, Department of Ophthalmology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Esfandiari
- Department of Ophthalmology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
38
|
Wang R, Xu Y, Niu C, Gao X, Xu X. A Novel Small Peptide H-KI20 Inhibits Retinal Neovascularization Through the JNK/ATF2 Signaling Pathway. Invest Ophthalmol Vis Sci 2021; 62:16. [PMID: 33439229 PMCID: PMC7814360 DOI: 10.1167/iovs.62.1.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Purpose Abundant evidence has shown benefits of antivascular endothelial growth factor (anti-VEGF) therapies in neovascular eye diseases. However, the high cost, side effects, and inconvenience of frequent injections demand alternative novel drug candidates. This study aimed to analyze antiangiogenic effects of peptide H-KI20 and illustrated signaling mechanisms. Methods Live cell culture and tracing, wound healing assay, and tube formation were performed in human retinal microvascular endothelial cells (HRECs). The chick embryo chorioallantoic membrane and mouse oxygen-induced ischemic retinopathy model were applied to examine the effects of H-KI20 in vivo. The intracellular signaling pathways were examined. Molecular docking and surface plasmon resonance assay were used to validate the direct interaction of H-KI20 and c-Jun N-terminal kinase 2 (JNK2). Results H-KI20 had high penetration ability in vitro and in vivo. It inhibited motility, migration, and tube formation of HRECs, without cytotoxicity, and inhibited angiogenesis in vivo. Furthermore, H-KI20 treatment reduced the phosphorylation level of activating transcription factor 2 (ATF2) stimulated by VEGF via downregulating p-JNK. H-KI20 bound to JNK2 directly with a dissociation constant value of 83.68 µM. The knockdown of ATF2 attenuated VEGF-induced tube formation and decreased the movement speed of HRECs. Conclusions H-KI20 inhibited angiogenesis both in vitro and in vivo. The ratios of p-ATF2/ATF2 and p-JNK/JNK stimulated by VEGF were decreased by H-KI20, and H-KI20 targeted JNK2 directly. In addition, the pivotal role of ATF2 in VEGF-induced retinal neovascularization was elucidated for the first time. Taken together, H-KI20 displays potential for pathological retinal angiogenesis as a sustained and low-toxic peptide.
Collapse
Affiliation(s)
- Ruonan Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Preventative Ophthalmology, Shanghai Eye Disease Prevention and Treatment Center/Shanghai Eye Hospital, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Yi Xu
- Department of Preventative Ophthalmology, Shanghai Eye Disease Prevention and Treatment Center/Shanghai Eye Hospital, Shanghai, China
| | - Chen Niu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xihui Gao
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xun Xu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Preventative Ophthalmology, Shanghai Eye Disease Prevention and Treatment Center/Shanghai Eye Hospital, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| |
Collapse
|
39
|
Adefegha SA, Oboh G, Dada FA, Oyeleye SI, Okeke BM. Berberine modulates crucial erectogenic biomolecules and alters histological architecture in penile tissues of diabetic rats. Andrologia 2021; 53:e14074. [PMID: 33930193 DOI: 10.1111/and.14074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 03/12/2021] [Accepted: 04/01/2021] [Indexed: 11/29/2022] Open
Abstract
Berberine is an isoquinoline alkaloid, found in several plants. Diabetes induces erectile dysfunction (ED) via reduction in some hormones and enzymes implicated in sexual function. This study aimed to investigate the role of berberine on crucial biomolecules linked to penile function in diabetic rats. Sixty-three (63) adult male rats were used and distributed into nine groups (each = 7). Group I-IV normal rats administered with citrate buffer (pH 4.5), sildenafil citrate (SD, 5.0 mg/kg), 50 and 100 mg/kg of berberine, respectively, via oral gavage. Rats in groups V-IX were diabetic rat with ED treated with buffer, SD, 50 and 100 mg/kg of berberine, and acarbose (25 mg/kg ACA) respectively. The result revealed that histological architecture in penile tissues were altered in diabetic groups treated with berberine, sildenafil citrate and acarbose when compared to the diabetic control group. Treatment with berberine, increased testosterone, luteinizing hormone and follicle-stimulating hormone in diabetic rat with ED. Also, reduced prolactin level and acetylcholinesterase, angiotensin-1 converting enzyme, adenosine deaminase and arginase activities were observed in berberine treated diabetic rat with ED. Molecular docking analysis revealed that berberine had strong binding affinities for these enzymes. Thus, berberine could represent a potential therapeutic agent for diabetes-induced ED.
Collapse
Affiliation(s)
- Stephen Adeniyi Adefegha
- Functional Foods, Nutraceuticals and Phytomedicine Laboratory, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Ganiyu Oboh
- Functional Foods, Nutraceuticals and Phytomedicine Laboratory, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Felix Abayomi Dada
- Functional Foods, Nutraceuticals and Phytomedicine Laboratory, Department of Biochemistry, Federal University of Technology, Akure, Nigeria.,Science Laboratory Technology Department (Biochemistry Unit), Federal Polytechnic Ede, Ede, Nigeria
| | - Sunday Idowu Oyeleye
- Functional Foods, Nutraceuticals and Phytomedicine Laboratory, Department of Biochemistry, Federal University of Technology, Akure, Nigeria.,Department of Biomedical Technology, Federal University of Technology, Akure, Nigeria
| | - Bathlomew Maduka Okeke
- Functional Foods, Nutraceuticals and Phytomedicine Laboratory, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| |
Collapse
|
40
|
Zheng Y, Deng Z, Tang M, Cai P. Erythropoietin promoter polymorphism is associated with treatment efficacy and severe hematologic toxicity for platinum-based chemotherapy. Expert Opin Drug Metab Toxicol 2021; 17:495-502. [PMID: 33461346 DOI: 10.1080/17425255.2021.1879048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Background: Erythropoietin (EPO) plays a substantial role in cancer development and probably affects clinical outcomes. A functional polymorphism (rs1617640, G > T) in the promoter region of the EPO increases protein expression. This study investigated the association of EPO rs1617640 with treatment efficacy and severe toxicity in non-small cell lung cancer (NSCLC) patients undergoing platinum-based regimens.Methods: 437 Chinese NSCLC patients treated with platinum-based chemotherapy were recruited. Association between EPO rs1617640 and clinical outcomes was calculated by multivariable logistic regression.Results: The TT genotype of EPO rs1617640 was significantly correlated with a higher response rate to platinum-based treatment than the other genotypes (OR, 0.507; 95% CI: 0.305-0.842; P = 0.009), particularly in elderly patients (>55 years), male gender, smokers, IV stage, cisplatin-based chemotherapies, and platinum-gemcitabine regimen subgroups. As for toxicity, EPO rs1617640 TT genotype demonstrated poorer tolerance to grade 3-4 hematologic toxicity (OR, 1.783; 95% CI: 1.098-2.898; P = 0.019), particularly in subgroups of elderly patients (>55 years), male gender, smokers, IIIA+IIIB stage, and cisplatin-based chemotherapies.Conclusion: Our results demonstrated the role of EPO rs1617640 as a possible predictive marker of treatment efficacy and severe toxicity for platinum-based chemotherapy.
Collapse
Affiliation(s)
- Yi Zheng
- Department of Pharmacy, Hunan Provincial Maternal and Child Health Care Hospital, Changsha People's Republic of China
| | - Zheng Deng
- General Department, Hunan Institute for Tuberculosis Control Changsha, People's Republic of China.,General Department, Hunan Chest Hospital, Changsha, People's Republic of China
| | - Mimi Tang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Pei Cai
- Department of Pharmacy, Hunan Provincial Maternal and Child Health Care Hospital, Changsha People's Republic of China
| |
Collapse
|
41
|
Arima M, Fujii Y, Sonoda KH. Translational Research in Retinopathy of Prematurity: From Bedside to Bench and Back Again. J Clin Med 2021; 10:331. [PMID: 33477419 PMCID: PMC7830975 DOI: 10.3390/jcm10020331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/09/2021] [Accepted: 01/15/2021] [Indexed: 12/11/2022] Open
Abstract
Retinopathy of prematurity (ROP), a vascular proliferative disease affecting preterm infants, is a leading cause of childhood blindness. Various studies have investigated the pathogenesis of ROP. Clinical experience indicates that oxygen levels are strongly correlated with ROP development, which led to the development of oxygen-induced retinopathy (OIR) as an animal model of ROP. OIR has been used extensively to investigate the molecular mechanisms underlying ROP and to evaluate the efficacy of new drug candidates. Large clinical trials have demonstrated the efficacy of anti-vascular endothelial growth factor (VEGF) agents to treat ROP, and anti-VEGF therapy is presently becoming the first-line treatment worldwide. Anti-VEGF therapy has advantages over conventional treatments, including being minimally invasive with a low risk of refractive error. However, long-term safety concerns and the risk of late recurrence limit this treatment. There is an unmet medical need for novel ROP therapies, which need to be addressed by safe and minimally invasive therapies. The recent progress in biotechnology has contributed greatly to translational research. In this review, we outline how basic ROP research has evolved with clinical experience and the subsequent emergence of new drugs. We discuss previous and ongoing trials and present the candidate molecules expected to become novel targets.
Collapse
Affiliation(s)
- Mitsuru Arima
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 8128582, Japan; (Y.F.); (K.-H.S.)
- Center for Clinical and Translational Research, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 8128582, Japan
| | - Yuya Fujii
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 8128582, Japan; (Y.F.); (K.-H.S.)
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 8128582, Japan; (Y.F.); (K.-H.S.)
| |
Collapse
|
42
|
Bretz CA, Ramshekar A, Kunz E, Wang H, Hartnett ME. Signaling Through the Erythropoietin Receptor Affects Angiogenesis in Retinovascular Disease. Invest Ophthalmol Vis Sci 2021; 61:23. [PMID: 32785675 PMCID: PMC7441364 DOI: 10.1167/iovs.61.10.23] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Purpose Exogenous erythropoietin (EPO) is being considered for tissue protection and angiogenesis in retinal vascular diseases. However, studies are limited by insufficient tools to address signaling effects through the EPO receptor (EPOR). We used a humanized mouse model of hypoactive EPOR signaling to test the hypothesis that EPOR signaling supports angiogenesis in retinovascular diseases. Methods Humanized Knockin EPOR mice (hWtEPOR) with hypoactive EPOR signaling were compared to littermate wild-type mice (WT). Postnatal day (p)7 mice of each genotype were exposed to 75% oxygen for five days, followed by 21% oxygen in the oxygen-induced retinopathy model (OIR) and compared to room-air (RA)–raised pups. At time points after OIR, pups were sacrificed, and flat-mounted, lectin-stained retinas were analyzed for central avascular area or intravitreal neovascular area (IVNV). Flash-frozen retinas were analyzed for angiogenic protein (Epo, VEGF, p-Stat3) and gene (Vegfa, Kdr, Epo, Hif1α, Hif2α) expression levels. Results In OIR, hWtEPOR mice had increased AVA compared with WT at p8, p12, and p17, but there was no difference in IVNV between hWtEPOR and WT mice at p17. Although VEGF and p-STAT3 proteins were increased in WT at p17 OIR, there were no differences in retinal angiogenic factor expression levels between hWtEPOR and WT OIR at p17 despite similar areas of IVNV. Conclusions Our data support the hypothesis that EPOR signaling was associated with regrowth of vascularization following oxygen-induced capillary dropout and played a role in intravitreal angiogenesis. Additional study of EPOR signaling regulation on other angiogenic factor pathways may be considered.
Collapse
Affiliation(s)
- Colin A Bretz
- John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, United States
| | - Aniket Ramshekar
- John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, United States
| | - Eric Kunz
- John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, United States
| | - Haibo Wang
- John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, United States
| | - M Elizabeth Hartnett
- John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
43
|
Sugawa SW, Yoshida Y, Hikima Y, Sato H, Shimada A, Noda M, Kushiyama A. Characteristics Associated with Early Worsening of Retinopathy in Patients with Type 2 Diabetes Diagnosed with Retinopathy at Their First Visit: A Retrospective Observational Study. J Diabetes Res 2021; 2021:7572326. [PMID: 34337073 PMCID: PMC8313317 DOI: 10.1155/2021/7572326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/06/2021] [Indexed: 11/17/2022] Open
Abstract
MATERIALS AND METHODS Our study design was a retrospective observational study. Subjects with type 2 diabetes diagnosed with either simple or preproliferative diabetic retinopathy by ophthalmologists at their first visit and followed up for 6-18 months thereafter were included and divided into worsening and nonworsening groups. Thereafter, baseline characteristics and changes in HbA1c and therapy over a year were investigated. RESULTS Among the 88 subjects with simple diabetic retinopathy, 16% improved to no retinopathy, 65% retained their simple diabetic retinopathy, 18% worsened to preproliferative diabetic retinopathy, and 1% worsened to proliferative diabetic retinopathy. Among the 47 subjects with preproliferative diabetic retinopathy, 9% improved to simple diabetic retinopathy, 72% retained their preproliferative diabetic retinopathy, and 19% worsened to proliferative diabetic retinopathy. Patients with simple diabetic retinopathy had an odds ratio of 1.44 for worsening retinopathy with a 1% increase in baseline HbA1c. Meanwhile, the odds ratios for worsening retinopathy with a 1% decrease in HbA1c from baseline at 3, 6, and 12 months were 1.34, 1.31, and 1.38, respectively. Among patients with simple diabetic retinopathy, significantly more new interventions were introduced in the worsening group than in the nonworsening group. CONCLUSIONS Increased baseline HbA1c, a substantial decrease in HbA1c, and intensified therapy were identified as risk factors for early worsening of diabetic retinopathy in patients with simple diabetic retinopathy at the first visit. Patients should therefore be intimately followed for retinopathy after their first visit.
Collapse
Affiliation(s)
- Sayaka Wakabayashi Sugawa
- Division of Diabetes and Metabolism, The Institute of Medical Science, Asahi Life Foundation, 2-2-6, Nihonbashi Bakurocho, Chuo-ku, Tokyo 103-0002, Japan
- Department of Endocrinology and Diabetes, Saitama Medical University, 38 Morohongo Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - Yoko Yoshida
- Division of Diabetes and Metabolism, The Institute of Medical Science, Asahi Life Foundation, 2-2-6, Nihonbashi Bakurocho, Chuo-ku, Tokyo 103-0002, Japan
| | - Yusuke Hikima
- Department of Endocrinology and Diabetes, Saitama Medical University, 38 Morohongo Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - Haruhiko Sato
- Department of Endocrinology and Diabetes, Saitama Medical University, 38 Morohongo Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - Akira Shimada
- Department of Endocrinology and Diabetes, Saitama Medical University, 38 Morohongo Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - Mitsuhiko Noda
- Department of Endocrinology and Diabetes, Saitama Medical University, 38 Morohongo Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
- Department of Diabetes, Metabolism and Endocrinology, Ichikawa Hospital, International University of Health and Welfare, 6-1-14 Kounodai, Ichikawa City, Chiba 272-0827, Japan
| | - Akifumi Kushiyama
- Division of Diabetes and Metabolism, The Institute of Medical Science, Asahi Life Foundation, 2-2-6, Nihonbashi Bakurocho, Chuo-ku, Tokyo 103-0002, Japan
- Department of Pharmacotherapy, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose City, Tokyo 204-8588, Japan
| |
Collapse
|
44
|
The Erythropoetin rs1617640 Gene Polymorphism Associates with Hemoglobin Levels, Hematocrit and Red Blood Cell Count in Patients with Peripheral Arterial Disease. Genes (Basel) 2020; 11:genes11111305. [PMID: 33158076 PMCID: PMC7694227 DOI: 10.3390/genes11111305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 11/16/2022] Open
Abstract
Background: Erythropoietin has a pivotal role in erythropoiesis and angiogenesis. A common polymorphism (rs1617640, A > C) in the promoter of the erythropoietin gene (EPO) has been associated with erythropoietin expression and microvascular complications of diabetes. We aimed to analyze the potential role of this polymorphism in the pathogenesis of peripheral arterial disease (PAD). Methods: EPO genotypes and laboratory markers for erythropoiesis were determined in 945 patients with PAD. Results: The minor EPO rs1617640 C-allele was associated in an allele-dose-dependent manner with hemoglobin levels (p = 0.006), hematocrit (p = 0.029), and red blood cell count (p = 0.003). In a multivariate linear regression analysis including conventional risk factors diabetes, sex, and smoking, EPO genotypes were furthermore associated with age at onset of PAD symptoms (p = 0.009). Conclusions: The EPO rs1617640 gene polymorphism affects erythropoiesis, leads to an earlier onset of PAD, and is a potential biomarker for the pathogenesis of this disease.
Collapse
|
45
|
Koh BMQR, Banu R, Nusinovici S, Sabanayagam C. 100 most-cited articles on diabetic retinopathy. Br J Ophthalmol 2020; 105:1329-1336. [PMID: 32855165 DOI: 10.1136/bjophthalmol-2020-316609] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/22/2020] [Accepted: 07/30/2020] [Indexed: 12/27/2022]
Abstract
Diabetic retinopathy (DR) research has had significant advancements over the past decades. We analysed the impact and characteristics of the top 100 (T100) most-cited articles in DR research. The Scopus database was searched for articles published from 1960 to June 2020 by two independent investigators. The T100 DR articles were published between 1961 and 2017 with median citations of 503 (range: 306-20 100); 84% were published after 1990. More than half (59%) were published in general medical/diabetes journals while 37% in ophthalmology journals. The top six journals contributed to 56% of the T100: Ophthalmology (n=13), Archives of Ophthalmology (n=12), Diabetes (n=9), New England Journal of Medicine (n=8), Journal of the American Medical Association (n=7) and The Lancet (n=7). Although observational studies were most popular (33%), randomised controlled trials (RCTs, 24%) published in journals with higher impact factor (IF) and citations (median IF and citations=7.113, 503 vs 21.437, 696.5, both p-value<0.05). 33 of the T100 were cited by several international DR clinical guidelines. The USA contributed to 63% of T100, but 18% of articles published after 2000 came from Asia. More than 80% of both first and last authors were men. Artificial intelligence (AI) to screen for DR ranked 14th and 99th despite recent publications in 2016 and 2017, respectively. To conclude, our T100 analysis showed that RCTs were most-cited and more articles were published in non-ophthalmology than ophthalmology journals. It highlights the impact the T100 DR has in shaping guidelines used to date in DR management, identifies AI for DR screening as an emerging area and shows a contemporary rise of Asian contribution in DR research.
Collapse
Affiliation(s)
- Barry Moses Quan Ren Koh
- Duke-NUS Medical School, Singapore.,School of Medical Sciences, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Riswana Banu
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Simon Nusinovici
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Charumathi Sabanayagam
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore .,Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore
| |
Collapse
|
46
|
Wang SV, Kulldorff M, Poor S, Rice DS, Banks A, Li N, Lii J, Gagne JJ. Screening Medications for Association with Progression to Wet Age-Related Macular Degeneration. Ophthalmology 2020; 128:248-255. [PMID: 32777229 DOI: 10.1016/j.ophtha.2020.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 11/27/2022] Open
Abstract
PURPOSE There is an urgent need for treatments that prevent or delay development to advanced age-related macular degeneration (AMD). Drugs already on the market for other conditions could affect progression to neovascular AMD (nAMD). If identified, these drugs could provide insights for drug development targets. The objective of this study was to use a novel data mining method that can simultaneously evaluate thousands of correlated hypotheses, while adjusting for multiple testing, to screen for associations between drugs and delayed progression to nAMD. DESIGN We applied a nested case-control study to administrative insurance claims data to identify cases with nAMD and risk-set sampled controls that were 1:4 variable ratio matched on age, gender, and recent healthcare use. PARTICIPANTS The study population included cases with nAMD and risk set matched controls. METHODS We used a tree-based scanning method to evaluate associations between hierarchical classifications of drugs that patients were exposed to within 6 months, 7 to 24 months, or ever before their index date. The index date was the date of first nAMD diagnosis in cases. Risk-set sampled controls were assigned the same index date as the case to which they were matched. The study was implemented using Medicare data from New Jersey and Pennsylvania, and national data from IBM MarketScan Research Database. We set an a priori threshold for statistical alerting at P ≤ 0.01 and focused on associations with large magnitude (relative risks ≥ 2.0). MAIN OUTCOME MEASURES Progression to nAMD. RESULTS Of approximately 4000 generic drugs and drug classes evaluated, the method detected 19 distinct drug exposures with statistically significant, large relative risks indicating that cases were less frequently exposed than controls. These included (1) drugs with prior evidence for a causal relationship (e.g., megestrol); (2) drugs without prior evidence for a causal relationship, but potentially worth further exploration (e.g., donepezil, epoetin alfa); (3) drugs with alternative biologic explanations for the association (e.g., sevelamer); and (4) drugs that may have resulted in statistical alerts due to their correlation with drugs that alerted for other reasons. CONCLUSIONS This exploratory drug-screening study identified several potential targets for follow-up studies to further evaluate and determine if they may prevent or delay progression to advanced AMD.
Collapse
Affiliation(s)
- Shirley V Wang
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Martin Kulldorff
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Stephen Poor
- Ophthalmology, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Dennis S Rice
- Ophthalmology, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Angela Banks
- Ophthalmology, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Ning Li
- Ophthalmology, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Joyce Lii
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Joshua J Gagne
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
47
|
Abstract
PURPOSE To study the association between thrombocytopenia and retinopathy of prematurity (ROP). METHODS The case-control study was conducted on preterm newborns with ROP between January 2011 and January 2014, retrospectively. The patients were assigned into two groups: Cases required intervention and controls developed no or Stage I ROP. RESULTS Eighty-one premature infants with Type I ROP were enrolled to the study with a mean gestational age of 27.6 ± 2.1 (range: 24-32) weeks and birth weight of 993 ± 292 (range: 560-1,930) g. Mean follow-up time was 38.3 ± 2.7 weeks (min: 32 and max: 46 weeks). Cases were individually matched to a set of controls (1:1 ratio). Thrombocytopenia (<150.000/mm) was seen in 58 (71.6%) of the cases with Type I ROP, whereas only 17 (21%) of the controls had thrombocytopenia (P < 0.001). Logistic regression analysis showed that bronchopulmonary dysplasia and thrombocytopenia were significantly associated with Type I ROP (relative risk [95% confidence interval]: 4.19 [1.47-12] and 6.69 [2.83-15.9], respectively). The thrombocytopenia ratio (P = 0.073), thrombocytopenia 1 week before intervention (P = 0.076) and platelet transfusion ratio (P = 0.062) tended to be higher in Zone I ROP compared with Zone II ROP. CONCLUSION In our study, there was a significant association between thrombocytopenia and Type I ROP.
Collapse
|
48
|
Hypoxia-Inducible Factor Inhibitors Derived from Marine Products Suppress a Murine Model of Neovascular Retinopathy. Nutrients 2020; 12:nu12041055. [PMID: 32290307 PMCID: PMC7231390 DOI: 10.3390/nu12041055] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/04/2020] [Accepted: 04/08/2020] [Indexed: 01/01/2023] Open
Abstract
Neovascular retinal degenerative diseases are the leading causes of blindness in developed countries. Anti-vascular endothelial growth factor (VEGF) therapy is commonly used to treat these diseases currently. However, recent reports indicate that long term suppression of VEGF in the eye is associated with chorioretinal atrophy. Therefore, a physiological amount of VEGF is required for retinal homeostasis. Hypoxia-inducible factor (HIF) is a transcriptional factor upstream of VEGF. We previously reported that HIF regulated pathological angiogenesis in the retina of murine models of oxygen-induced retinopathy and laser-induced choroidal neovascularization. Most of the known HIF inhibitors are anti-cancer agents which may have systemic adverse effects in for clinical use; thus, there is a need for safer and less invasive HIF inhibitors. In this study, we screened marine products, especially fish ingredients, and found that six species of fish had HIF inhibitory effects. Among them, administration of Decapterus tabl ingredients significantly suppressed retinal neovascular tufts by inhibiting HIF expression in a murine oxygen-induced retinopathy model. These results indicate that particular fish ingredients can act as anti-angiogenic agents in retinal neovascularization diseases.
Collapse
|
49
|
Piao C, Sun Z, Jin D, Wang H, Wu X, Zhang N, Lian F, Tong X. Network Pharmacology-based Investigation of the Underlying Mechanism of Panax notoginseng Treatment of Diabetic Retinopathy. Comb Chem High Throughput Screen 2020; 23:334-344. [PMID: 32133960 PMCID: PMC7497535 DOI: 10.2174/1386207323666200305093709] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/23/2020] [Accepted: 02/19/2020] [Indexed: 02/07/2023]
Abstract
Background: Panax notoginseng, a Chinese herbal medicine, has been widely used to treat vascular diseases. Diabetic retinopathy (DR) is one of the complications of diabetic
microangiopathy. According to recent studies, the application of Panax notoginseng extract and related Chinese patent medicine preparations can significantly improve DR. However, the
pharmacological mechanisms remain unclear. Therefore, the purpose of this study was to decipher the potential mechanism of Panax notoginseng treatment of DR using network pharmacology. Method: We evaluated and screened the active compounds of Panax notoginseng using the
Traditional Chinese Medicine Systems Pharmacology database and collected potential targets of
the compounds by target fishing. A multi-source database was also used to organize targets of DR.
The potential targets as the treatment of DR with Panax notoginseng were then obtained by
matching the compound targets with the DR targets. Using protein-protein interaction networks
and topological analysis, interactions between potential targets were identified. In addition, we also
performed gene ontology-biological process and pathway enrichment analysis for the potential
targets by using the Biological Information Annotation Database. Results: Eight active ingredients of Panax notoginseng and 31 potential targets for the treatment of
DR were identified. The screening and enrichment analysis revealed that the treatment of DR using
Panax notoginseng primarily involved 28 biological processes and 10 related pathways. Further
analyses indicated that angiogenesis, inflammatory reactions, and apoptosis may be the main
processes involved in the treatment of DR with Panax notoginseng. In addition, we determined that
the mechanism of intervention of Panax notoginseng in treating DR may involve five core targets,
VEGFA, MMP-9, MMP-2, FGF2, and COX-2. Conclusion: Panax notoginseng may treat diabetic retinopathy through the mechanism of network
pharmacological analysis. The underlying molecular mechanisms were closely related to the
intervention of angiogenesis, inflammation, and apoptosis with VEGFA, MMP-9, MMP-2, FGF2,
and COX-2 being possible targets.
Collapse
Affiliation(s)
- Chunli Piao
- Shenzhen Hospital, Guangzhou University of Chinese Medicine (Futian), Shenzhen, Guangdong 51800, China
| | - Zheyu Sun
- Shenzhen Hospital, Guangzhou University of Chinese Medicine (Futian), Shenzhen, Guangdong 51800, China
| | - De Jin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100000, China
| | - Han Wang
- Shenzhen Hospital, Guangzhou University of Chinese Medicine (Futian), Shenzhen, Guangdong 51800, China
| | - Xuemin Wu
- Shenzhen Hospital, Guangzhou University of Chinese Medicine (Futian), Shenzhen, Guangdong 51800, China
| | - Naiwen Zhang
- Shenzhen Hospital, Guangzhou University of Chinese Medicine (Futian), Shenzhen, Guangdong 51800, China
| | - Fengmei Lian
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100000, China
| | - Xiaolin Tong
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100000, China
| |
Collapse
|
50
|
Menger MM, Nalbach L, Roma LP, Körbel C, Wrublewsky S, Glanemann M, Laschke MW, Menger MD, Ampofo E. Erythropoietin accelerates the revascularization of transplanted pancreatic islets. Br J Pharmacol 2020; 177:1651-1665. [PMID: 31721150 DOI: 10.1111/bph.14925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 10/30/2019] [Accepted: 11/03/2019] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND AND PURPOSE Pancreatic islet transplantation is a promising therapeutic approach for Type 1 diabetes. A major prerequisite for the survival of grafted islets is a rapid revascularization after transplantation. Erythropoietin (EPO), the primary regulator of erythropoiesis, has been shown to promote angiogenesis. Therefore, we investigated in this study whether EPO improves the revascularization of transplanted islets. EXPERIMENTAL APPROACH Islets from FVB/N mice were transplanted into dorsal skinfold chambers of recipient animals, which were daily treated with an intraperitoneal injection of EPO (500 IU·kg-1 ) or vehicle (control) throughout an observation period of 14 days. In a second set of experiments, animals were only pretreated with EPO over a 6-day period prior to islet transplantation. The revascularization of the grafts was assessed by repetitive intravital fluorescence microscopy and immunohistochemistry. In addition, a streptozotocin-induced diabetic mouse model was used to study the effect of EPO-pretreatment on the endocrine function of the grafts. KEY RESULTS EPO treatment slightly accelerated the revascularization of the islet grafts. This effect was markedly more pronounced in EPO-pretreated animals, resulting in significantly higher numbers of engrafted islets and an improved perfusion of endocrine tissue without affecting systemic haematocrit levels when compared with controls. Moreover, EPO-pretreatment significantly accelerated the recovery of normoglycaemia in diabetic mice after islet transplantation. CONCLUSION AND IMPLICATIONS These findings demonstrate that, particularly, short-term EPO-pretreatment represents a promising therapeutic approach to improve the outcome of islet transplantation, without an increased risk of thromboembolic events.
Collapse
Affiliation(s)
- Maximilian M Menger
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Lisa Nalbach
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Leticia P Roma
- Biophysics Department, Center for Human and Molecular Biology, Saarland University, Homburg/Saar, Germany
| | - Christina Körbel
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Selina Wrublewsky
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Matthias Glanemann
- Department for General, Visceral, Vascular and Pediatric Surgery, Saarland University, Homburg/Saar, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Emmanuel Ampofo
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| |
Collapse
|