1
|
Watabe N, Subsomwong P, Yamane K, Asano K, Nakane A. Polygonum tinctorium extract suppresses the virulence of methicillin-resistant Staphylococcus aureus by disrupting its extracellular vesicles. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118933. [PMID: 39396717 DOI: 10.1016/j.jep.2024.118933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Methicillin-resistant S. aureus (MRSA) is a significant global health concern, causing both hospital- and community-acquired infections. The extracellular vesicles released by S. aureus (SaEVs) contain essential factors related to the bacterial survival and pathogenicity. Polygonum tinctorium is traditionally used as a natural dye (indigo) and for treating various infectious diseases caused by microorganisms. However, the effect of P. tinctorium extract (Indigo Ex) and its mechanism on SaEVs is unknown. AIM OF THE STUDY We investigated the effect and mechanism of Indigo Ex on SaEVs, which could be used in controlling S. aureus, especially MRSA infection. MATERIALS AND METHODS Indigo Ex was prepared from pesticide-free P. tinctorium, which was dried, powdered, and extracted with d-limonene. SaEVs were isolated and purified from MRSA culture supernatant by step-gradient ultracentrifugation. The effect of Indigo Ex on SaEVs morphology was observed by both transmission and scanning electron microscopy after incubating the Indigo Ex and SaEVs under shaking conditions. The cytotoxicity of Indigo Ex was performed using mouse macrophage cell line, RAW 264.7. In addition, the ability of Indigo Ex-treated SaEVs to stimulate the immune response and cytotoxicity in RAW 264.7 cells were evaluated by ELISA and WST-1 assay, respectively. RESULTS SaEV particles were disrupted when treated with undiluted Indigo Ex in a time-dependent manner. For the cytotoxicity of Indigo Ex on RAW 264.7 cells, over 50% of the cell viability decreased when diluted Indigo Ex 1000-fold and no cytotoxic effect was observed at a 25,000-fold dilution of Indigo Ex. Interestingly, the Indigo Ex-treated SaEVs showed less cytotoxic effect than SaEVs alone. Similarly, SaEVs treated with Indigo Ex reduced stimulation of pro-inflammatory cytokines (TNF-α and IL-6) and anti-inflammatory cytokine (IL-10) in RAW 264.7 cells compared to untreated SaEVs. Our results indicate that Indigo Ex disrupted SaEV particles, resulting in reduced virulence and stimulation of immune response. CONCLUSIONS This study reveals that the low concentration of Indigo Ex can suppresses the virulence of SaEVs without causing cytotoxicity to the host cells. Therefore, Indigo Ex may have the potential to be used to control S. aureus infection.
Collapse
Affiliation(s)
- Naoko Watabe
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan.
| | - Phawinee Subsomwong
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan.
| | | | - Krisana Asano
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan; Department of Biopolymer and Health Science, Hirosaki University Graduate School of. Medicine, Hirosaki, Aomori, Japan.
| | - Akio Nakane
- Department of Biopolymer and Health Science, Hirosaki University Graduate School of. Medicine, Hirosaki, Aomori, Japan.
| |
Collapse
|
2
|
See I, Jackson KA, Hatfield KM, Paul P, Li R, Nadle J, Petit S, Ray SM, Harrison LH, Jeffrey L, Lynfield R, Bernu C, Dumyati G, Gellert A, Schaffner W, Markus T, Gokhale RH, Stone ND, Jacobs Slifka K. Characteristics of nursing homes with high rates of invasive methicillin-resistant Staphylococcus aureus infections. J Am Geriatr Soc 2025. [PMID: 39829432 DOI: 10.1111/jgs.19189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/29/2024] [Accepted: 08/10/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND Nursing home residents experience a large burden of invasive methicillin-resistant Staphylococcus aureus (MRSA) infections. Data are limited regarding nursing home characteristics associated with differences in facility-level invasive MRSA rates. METHODS We analyzed 2011-2015 data from CDC's Emerging Infections Program (EIP) active population- and laboratory-based surveillance for invasive MRSA cases within seven states. A nursing home-onset case was defined as MRSA cultured from a normally sterile site in a person living in a nursing home 3 days before culture collection. Facility rates were calculated as nursing home-onset cases per 100,000 resident-days. Nursing home resident-day denominators and facility characteristics were obtained from four Centers for Medicare & Medicaid Services (CMS) datasets. A general estimating equations model with a logit link assessed characteristics of the facilities with highest rates comprising 50% of nursing home MRSA cases ("high rates"). RESULTS The 626 nursing homes in the surveillance area had 2824 invasive MRSA cases; 82% of facilities had at ≥1 case. The 20% of facilities with highest rates (≥3.84 cases/100,000 resident-days) had 50% of nursing home-onset cases. In multivariable regression, facilities with high rates were more likely to have CMS-derived characteristics of presence of a resident with a multidrug-resistant organism; or greater proportions of residents who were male, were short stay (in the facility <100 days), had a nasogastric or percutaneous gastrostomy tube, or require extensive assistance with bed repositioning; and more likely to be in an EIP area with higher hospital-onset MRSA rates. Higher registered nurses staffing levels (hours/resident/day) and higher proportions of White residents were associated with lower rates. CONCLUSIONS Facilities with higher invasive MRSA rates served residents with more clinical and functional care needs. Increasing registered nurse staffing in high-risk facilities might assist with reduction of invasive MRSA rates. These findings could help prioritize nursing homes for future MRSA prevention work.
Collapse
Affiliation(s)
- Isaac See
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Kelly A Jackson
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Kelly M Hatfield
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Prabasaj Paul
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Rongxia Li
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Joelle Nadle
- Healthcare-associated Infections, California Emerging Infections Program, Oakland, California, USA
| | - Susan Petit
- Infectious Diseases Section, Connecticut Department of Public Health, Hartford, Connecticut, USA
| | - Susan M Ray
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Lee H Harrison
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Laura Jeffrey
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Ruth Lynfield
- Emerging Infections Program, Minnesota Department of Health, St. Paul, Minnesota, USA
| | - Carmen Bernu
- Emerging Infections Program, Minnesota Department of Health, St. Paul, Minnesota, USA
| | - Ghinwa Dumyati
- Center for Community Health and Prevention, University of Rochester Medical Center, Rochester, New York, USA
| | - Anita Gellert
- Center for Community Health and Prevention, University of Rochester Medical Center, Rochester, New York, USA
| | - William Schaffner
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Tiffanie Markus
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Runa H Gokhale
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Nimalie D Stone
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Kara Jacobs Slifka
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Frieders-Justin V, Eckmann C, Glaser B. Appropriate surgical management in skin and soft tissue infections. Curr Opin Infect Dis 2025:00001432-990000000-00207. [PMID: 39786981 DOI: 10.1097/qco.0000000000001088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
PURPOSE OF REVIEW To present standards and recent technical innovations in the surgical management of skin and soft tissue infections (SSTI). RECENT FINDINGS SSTI are a frequent cause of presentation in the acute care setting. They can range from simple and uncomplicated to severe and necrotizing infections. Surgical management plays an important role in the treatment of uncomplicated SSTI. Recent evidence indicates that a subgroup of patients (e.g. immunocompromised patients) profits from a postoperative course of antibiotic treatment of 5-7 days. In diabetic foot infections (DFI), repeated debridement to remove necrotic tissue and control infection can prevent minor and major amputation. In necrotizing soft tissue infections (NSTI), early and aggressive surgical debridement is paramount. Recent advancements have explored skin-sparing techniques in selective cases. SUMMARY The management of SSTIs requires a combination of surgical and antimicrobial strategies tailored to the type and severity of the infection. Further clinical research is necessary in order to define more accurately those collectives in severe SSTI who profit from a less aggressive surgical approach.
Collapse
Affiliation(s)
- Viktor Frieders-Justin
- Section for Surgical Research, Medical University of Graz
- Department of Surgery, Klinik Donaustadt, Vienna Healthcare Group, Austria
| | - Christian Eckmann
- Department of General, Visceral and Thoracic Surgery, Academic Hospital of Goettingen University, Klinikum Hanoversch-Muenden, Germany
| | - Benjamin Glaser
- Department of Surgery, Klinik Donaustadt, Vienna Healthcare Group, Austria
| |
Collapse
|
4
|
Huo S, Lyu Z, Wang X, Liu S, Chen X, Yang M, Liu Z, Yin X. Engineering mesoporous polydopamine-based potentiate STING pathway activation for advanced anti-biofilm therapy. Biomaterials 2025; 312:122739. [PMID: 39096840 DOI: 10.1016/j.biomaterials.2024.122739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/07/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
The biofilm-induced "relatively immune-compromised zone" creates an immunosuppressive microenvironment that is a significant contributor to refractory infections in orthopedic endophytes. Consequently, the manipulation of immune cells to co-inhibit or co-activate signaling represents a crucial strategy for the management of biofilm. This study reports the incorporation of Mn2+ into mesoporous dopamine nanoparticles (Mnp) containing the stimulator of interferon genes (STING) pathway activator cGAMP (Mncp), and outer wrapping by M1-like macrophage cell membrane (m-Mncp). The cell membrane enhances the material's targeting ability for biofilm, allowing it to accumulate locally at the infectious focus. Furthermore, m-Mncp mechanically disrupts the biofilm through photothermal therapy and induces antigen exposure through photodynamic therapy-generated reactive oxygen species (ROS). Importantly, the modulation of immunosuppression and immune activation results in the augmentation of antigen-presenting cells (APCs) and the commencement of antigen presentation, thereby inducing biofilm-specific humoral immunity and memory responses. Additionally, this approach effectively suppresses the activation of myeloid-derived suppressor cells (MDSCs) while simultaneously boosting the activity of T cells. Our study showcases the efficacy of utilizing m-Mncp immunotherapy in conjunction with photothermal and photodynamic therapy to effectively mitigate residual and recurrent infections following the extraction of infected implants. As such, this research presents a viable alternative to traditional antibiotic treatments for biofilm that are challenging to manage.
Collapse
Affiliation(s)
- Shicheng Huo
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Navy Medical University, Shanghai, China
| | - Zhuocheng Lyu
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xiaoyuan Wang
- Physical Examination Center, Xi'an International Medical Center Hospital, Xi'an, China
| | - Shichang Liu
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Xuxu Chen
- Department of Sports Medicine, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Ming Yang
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Zhongkai Liu
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, China.
| | - Xinhua Yin
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
5
|
Silvestro E, Mussinatto I, Versace A, Denina M, Pruccoli G, Marino R, Mazzetti G, Scaglione L, Vigna F, Macciotta A, Garazzino S, Bondone C. Antimicrobial Stewardship in the Pediatric Emergency Department: An Observational Pre-Post Study. CHILDREN (BASEL, SWITZERLAND) 2024; 12:46. [PMID: 39857877 PMCID: PMC11764019 DOI: 10.3390/children12010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/27/2025]
Abstract
Background/Objectives: To face antimicrobial resistance, antimicrobial stewardship programs (ASPs) have been implemented in the pediatric age, but the area of urgency remains understudied. We aimed to assess the impact of an educational program on optimizing antibiotic appropriateness in a pediatric ED. Methods: We conducted a pre-post observational study with an audit, intervention, and feedback given to prescribers. We recorded all systemic antibiotic prescriptions for children attending our pediatric ED from January to March and from July to September 2020. The study's team assigned a score to each prescription, regarding the appropriate molecule, dose, and duration of therapy, according to the diagnosis. From April to June 2020, we held weekly meetings focusing on different pediatric infectious diseases, with interaction between one to three ED physicians and the infectious disease (ID) specialist of the study's team. We then distributed synthetic digital guidelines adapted to our reality to all prescribers. Results: Optimal antibiotic prescriptions increased after the intervention, with statistical significance (p < 0.001) in four main aspects (overall adequacy: 13% PRE vs. 43% POST; need of antibiotics: 53% vs. 68%; adequacy of the spectrum: 55% vs. 63%; adequacy of the chosen molecule: 54% vs. 62%). We observed an improvement in all the main infectious diseases and concerns all the ED physicians. The prescription of first-choice drugs increased in specific and common illnesses such as otitis and pharyngotonsillitis. Conclusions: An antimicrobial stewardship program is a relevant method for improving the appropriateness of antimicrobial use also in the complex setting of a pediatric ED.
Collapse
Affiliation(s)
- Erika Silvestro
- Infectious Diseases Unit, Department of Pediatrics, Regina Margherita Children’s Hospital, A.O.U. Città della Salute e della Scienza di Torino, 10126 Turin, TO, Italy; (E.S.); (G.P.); (R.M.); (G.M.); (L.S.); (F.V.); (S.G.)
| | - Ilaria Mussinatto
- Division of Pediatrics and Neonatology, P.O. Chivasso, ASL TO4, Corso G. Ferraris 3, 10034 Chivasso, TO, Italy;
| | - Antonia Versace
- Department of Pediatric Emergency, Regina Margherita Children’s Hospital, A.O.U. Città della Salute e della Scienza di Torino, 10126 Turin, TO, Italy; (A.V.); (C.B.)
| | - Marco Denina
- Infectious Diseases Unit, Department of Pediatrics, Regina Margherita Children’s Hospital, A.O.U. Città della Salute e della Scienza di Torino, 10126 Turin, TO, Italy; (E.S.); (G.P.); (R.M.); (G.M.); (L.S.); (F.V.); (S.G.)
- Department of Pediatric Emergency, Regina Margherita Children’s Hospital, A.O.U. Città della Salute e della Scienza di Torino, 10126 Turin, TO, Italy; (A.V.); (C.B.)
| | - Giulia Pruccoli
- Infectious Diseases Unit, Department of Pediatrics, Regina Margherita Children’s Hospital, A.O.U. Città della Salute e della Scienza di Torino, 10126 Turin, TO, Italy; (E.S.); (G.P.); (R.M.); (G.M.); (L.S.); (F.V.); (S.G.)
| | - Raffaella Marino
- Infectious Diseases Unit, Department of Pediatrics, Regina Margherita Children’s Hospital, A.O.U. Città della Salute e della Scienza di Torino, 10126 Turin, TO, Italy; (E.S.); (G.P.); (R.M.); (G.M.); (L.S.); (F.V.); (S.G.)
| | - Giulia Mazzetti
- Infectious Diseases Unit, Department of Pediatrics, Regina Margherita Children’s Hospital, A.O.U. Città della Salute e della Scienza di Torino, 10126 Turin, TO, Italy; (E.S.); (G.P.); (R.M.); (G.M.); (L.S.); (F.V.); (S.G.)
| | - Lorenzo Scaglione
- Infectious Diseases Unit, Department of Pediatrics, Regina Margherita Children’s Hospital, A.O.U. Città della Salute e della Scienza di Torino, 10126 Turin, TO, Italy; (E.S.); (G.P.); (R.M.); (G.M.); (L.S.); (F.V.); (S.G.)
| | - Federico Vigna
- Infectious Diseases Unit, Department of Pediatrics, Regina Margherita Children’s Hospital, A.O.U. Città della Salute e della Scienza di Torino, 10126 Turin, TO, Italy; (E.S.); (G.P.); (R.M.); (G.M.); (L.S.); (F.V.); (S.G.)
| | - Alessandra Macciotta
- Department of Clinical and Biological Sciences, University of Turin, 10126 Turin, TO, Italy;
| | - Silvia Garazzino
- Infectious Diseases Unit, Department of Pediatrics, Regina Margherita Children’s Hospital, A.O.U. Città della Salute e della Scienza di Torino, 10126 Turin, TO, Italy; (E.S.); (G.P.); (R.M.); (G.M.); (L.S.); (F.V.); (S.G.)
| | - Claudia Bondone
- Department of Pediatric Emergency, Regina Margherita Children’s Hospital, A.O.U. Città della Salute e della Scienza di Torino, 10126 Turin, TO, Italy; (A.V.); (C.B.)
| |
Collapse
|
6
|
Saeki H, Ohya Y, Arakawa H, Ichiyama S, Katsunuma T, Katoh N, Tanaka A, Tanizaki H, Tsunemi Y, Nakahara T, Nagao M, Narita M, Hide M, Fujisawa T, Futamura M, Masuda K, Matsubara T, Murota H, Yamamoto-Hanada K, Furuta J. English version of clinical practice guidelines for the management of atopic dermatitis 2024. J Dermatol 2024. [PMID: 39707640 DOI: 10.1111/1346-8138.17544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 12/23/2024]
Abstract
This is the English version of the 2024 clinical practice guidelines for the management of atopic dermatitis (AD). AD is a disease characterized by relapsing eczema with pruritus as a primary lesion. A crucial aspect of AD treatment is the prompt induction of remission via the suppression of existing skin inflammation and pruritus. To achieve this, topical anti-inflammatory drugs, such as topical corticosteroids, tacrolimus ointment, delgocitinib ointment, and difamilast ointment, have been used. However, the following treatments should be considered in addition to topical therapy for patients with refractory moderate-to-severe AD: oral cyclosporine, subcutaneous injections of biologics (dupilumab, nemolizumab, tralokinumab), oral Janus kinase inhibitors (baricitinib, upadacitinib, abrocitinib), and phototherapy. In these revised guidelines, descriptions of five new drugs, namely, difamilast, nemolizumab, tralokinumab, upadacitinib, and abrocitinib, have been added. The guidelines present recommendations to review clinical research articles, evaluate the balance between the advantages and disadvantages of medical activities, and optimize medical activity-related patient outcomes with respect to several important points requiring decision-making in clinical practice.
Collapse
Affiliation(s)
- Hidehisa Saeki
- Department of Dermatology, Nippon Medical School, Tokyo, Japan
| | - Yukihiro Ohya
- Department of Occupational and Environmental Health, Graduate School of Medical Sciences and Medical School, Nagoya City University, Nagoya, Japan
| | - Hirokazu Arakawa
- Kitakanto Allergy Research Institute, Kibounoie Hospital, Gunma, Japan
| | - Susumu Ichiyama
- Department of Dermatology, Nippon Medical School, Tokyo, Japan
| | - Toshio Katsunuma
- Department of Pediatrics, The Jikei University Daisan Hospital, Tokyo, Japan
| | - Norito Katoh
- Department for Medical Innovation and Translational Medical Science, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Akio Tanaka
- Department of Dermatology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hideaki Tanizaki
- Department of Dermatology, Kansai Medical University, Osaka, Japan
| | - Yuichiro Tsunemi
- Department of Dermatology, Saitama Medical University, Saitama, Japan
| | - Takeshi Nakahara
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mizuho Nagao
- Allergy Center, National Hospital Organization Mie National Hospital, Tsu, Japan
| | - Masami Narita
- Department of Pediatrics, Faculty of Medicine, Kyorin University, Tokyo, Japan
| | - Michihiro Hide
- Department of Dermatology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Dermatology, Hiroshima City Hiroshima Citizens Hospital, Hiroshima, Japan
| | - Takao Fujisawa
- Allergy Center, National Hospital Organization Mie National Hospital, Tsu, Japan
| | - Masaki Futamura
- Division of Pediatrics, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Koji Masuda
- Department of Dermatology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Tomoyo Matsubara
- Department of Pediatrics, Dokkyo Medical University Saitama Medical Center, Saitama, Japan
| | - Hiroyuki Murota
- Department of Dermatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | - Junichi Furuta
- Medical Informatics and Management, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
7
|
Torres VJ. Interleukin 10 drives Staphylococcus aureus imprinting and vaccine failure in murine models via antibody glycosylation. J Clin Invest 2024; 134:e187055. [PMID: 39680461 DOI: 10.1172/jci187055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024] Open
Abstract
Despite many attempts, there is currently no approved vaccine to prevent Staphylococcus aureus infections. Preclinical vaccination models have failed to predict vaccine efficacy in humans as S. aureus exposure in humans imprints an immune response that is lacking in naive animals. In this issue of the JCI, Tsai and colleagues identify the cytokine IL-10 as the driver of humoral imprinting by S. aureus. Upon vaccination, S. aureus-experienced animals produced copious levels of IL-10, resulting in the hyper-α2,3 sialylation of antibodies, which interfered with the phagocytic-promoting properties of the vaccine-elicited anti-S. aureus antibodies. These findings correlate with the observation that hyperproduction of IL-10 in humans also induces hyper-α2,3 sialylation of antibodies and provide a possible mechanism for previous vaccine failures.
Collapse
|
8
|
Nicholas A, Speidel H, Gonzalez T, Fleisher AB. Antibiotic prescribing for skin infections: broader coverage in emergency settings and differences by race. Arch Dermatol Res 2024; 317:80. [PMID: 39644410 DOI: 10.1007/s00403-024-03604-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 09/18/2024] [Accepted: 11/26/2024] [Indexed: 12/09/2024]
Affiliation(s)
- Andrew Nicholas
- Department of Dermatology, University of Cincinnati College of Medicine, Cincinnati, Ohio), USA.
- University of Cincinnati College of Medicine, 231 Albert Sabin Way, PO Box 670592, Cincinnati, OH, 45267-0592, USA.
| | - Hanley Speidel
- University of Toledo College of Medicine, Toledo, Ohio, USA
| | - Tammy Gonzalez
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine Dr. Phillip Frost, Miami (Florida), Miami, Florida, USA
| | - Alan B Fleisher
- Department of Dermatology, University of Cincinnati College of Medicine, Cincinnati, Ohio), USA
| |
Collapse
|
9
|
McReynolds AKG, Pagella EA, Ridder MJ, Rippee O, Clark Z, Rekowski MJ, Pritchard MT, Bose JL. YjbH contributes to Staphylococcus aureus skin pathology and immune response through Agr-mediated α-toxin regulation. Virulence 2024; 15:2399798. [PMID: 39229975 PMCID: PMC11404607 DOI: 10.1080/21505594.2024.2399798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/31/2024] [Accepted: 08/13/2024] [Indexed: 09/05/2024] Open
Abstract
Staphylococcus aureus is the most common cause of skin and soft tissue infections (SSTIs) with Methicillin-Resistant S. aureus (MRSA) strains being a major contributor in both community and hospital settings. S. aureus relies on metabolic diversity and a large repertoire of virulence factors to cause disease. This includes α-hemolysin (Hla), an integral player in tissue damage found in various models, including SSTIs. Previously, we identified a role for the Spx adapter protein, YjbH, in the regulation of several virulence factors and as an inhibitor of pathogenesis in a sepsis model. In this study, we found that YjbH is critical for tissue damage during SSTI, and its absence leads to decreased proinflammatory chemokines and cytokines in the skin. We identified no contribution of YjbI, encoded on the same transcript as YjbH. Using a combination of reporters and quantitative hemolysis assays, we demonstrated that YjbH impacts Hla expression and activity both in vitro and in vivo. Additionally, expression of Hla from a non-native promoter reversed the tissue damage phenotype of the ΔyjbIH mutant. Lastly, we identified reduced Agr activity as the likely cause for reduced Hla production in the ΔyjbH mutant. This work continues to define the importance of YjbH in the pathogenesis of S. aureus infection as well as identify a new pathway important for Hla production.
Collapse
Affiliation(s)
- Aubrey K. G. McReynolds
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Emma A. Pagella
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Miranda J. Ridder
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Olivia Rippee
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Zachary Clark
- The Mass Spectrometry and Proteomics Core, University of Kansas Medical Center, Kansas City, KS, USA
| | - Michaella J. Rekowski
- The Mass Spectrometry and Proteomics Core, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Michele T. Pritchard
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jeffrey L. Bose
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
10
|
Jin Y, Zhou W, Ge Q, Shen P, Xiao Y. Epidemiology and clinical features of Skin and Soft Tissue Infections Caused by PVL-Positive and PVL-Negative Methicillin-Resistant Staphylococcus aureus Isolates in inpatients in China: a single-center retrospective 7-year study. Emerg Microbes Infect 2024; 13:2316809. [PMID: 38323591 PMCID: PMC10883109 DOI: 10.1080/22221751.2024.2316809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 02/06/2024] [Indexed: 02/08/2024]
Abstract
Previous studies have mainly focused on outpatient cases of skin and soft tissue infections (SSTIs), with limited attention to inpatient occurrences. Thus, we aimed to compare the clinical parameters of inpatients with SSTIs, performed genomic characterization, and determined the subtypes of Panton-Valentine leucocidin (PVL) bacteriophages of methicillin-resistant Staphylococcus aureus (MRSA) strains isolated from these patients. We found that PVL-positive patients had shorter hospital stays (mean, 9 vs. 24 days; p < 0.001) and abscess resolution durations (mean, 8 vs. 13 days; p < 0.01). PVL-positive MRSA-induced SSTIs were more frequently associated with abscesses [36/55 (65.5%) vs. 15/124 (12.1%), p < 0.001], with 52.7% undergoing incision and drainage; over 80% of PVL-negative patients received incision, drainage, and antibiotics. In PVL-positive patients receiving empirical antibiotics, anti-staphylococcal agents such as vancomycin and linezolid were administered less frequently (32.7%, 18/55) than in PVL-negative patients (74.2%, 92/124), indicating that patients with PVL-positive SSTIs are more likely to require surgical drainage rather than antimicrobial treatment. We also found that the ST59 lineage was predominant, regardless of PVL status (41.3%, 74/179). Additionally, we investigated the linear structure of the lukSF-PV gene, revealing that major clusters were associated with specific STs, suggesting independent acquisition of PVL by different strain types and indicating that significant diversity was observed even within PVL-positive strains detected in the same facility. Overall, our study provides comprehensive insights into the clinical, genetic, and phage-related aspects of MRSA-induced SSTIs in hospitalized patients and contributes to a more profound understanding of the epidemiology and evolution of these pathogens in the Chinese population.
Collapse
Affiliation(s)
- Ye Jin
- Department of General Intensive Care Unit, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- Key Laboratory of Early Warning and Intervention of Multiple Organ Failure, China National Ministry of Education, Hangzhou, Zhejiang, People's Republic of China
| | - Wangxiao Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Qi Ge
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Ping Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| |
Collapse
|
11
|
Simpson B, Han K, Yee S, Alsaadawi R, Sabo R, Aurora T, Lykins J. Factors associated with emergency department methicillin-resistant Staphylococcus aureus coverage in patients with skin and soft tissue infections in an urban, tertiary care emergency department. Am J Emerg Med 2024; 88:49-56. [PMID: 39591803 DOI: 10.1016/j.ajem.2024.11.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/13/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
INTRODUCTION Skin and soft tissue infections (SSTIs) are common and contribute significantly to morbidity and healthcare costs in emergency departments (EDs). The rise of antimicrobial resistance, particularly due to community-acquired methicillin-resistant Staphylococcus aureus (MRSA), complicates treatment decisions. Objective physical examination findings suggesting need for empiric MRSA coverage are sometimes ignored. Improving initial antimicrobial selection in the ED, especially regarding MRSA, could enhance antimicrobial stewardship. METHODS We conducted a retrospective review of patient records for those who presented with SSTIs to an urban tertiary care ED between January 1, 2017, to December 31, 2019. Patients admitted during their initial visit were excluded. Data collected included demographics, vital signs, and laboratory results. Logistic regression was used to assess factors associated with the decision to provide MRSA coverage at presentation, reporting odds ratios with 95 % confidence intervals. RESULTS Among 1675 patients, 42.2 % received empiric MRSA coverage. Factors associated with MRSA coverage included male gender, white race, intravenous drug use, immunocompromised status, systemic symptoms, tachycardia, presence of abscess, and surgical consultation. After adjusting for confounders, male gender, history of intravenous drug use, immunocompromised status, systemic symptoms, tachycardia, surgical consultation, and recent antibiotic use remained significantly associated. CONCLUSION Several factors, not always aligned with clinical guidelines, influenced the decision to initiate MRSA coverage in the ED. Understanding these determinants may improve antimicrobial stewardship and reduce costs. Future research should focus on patient outcomes based on methicillin-sensitive S. aureus (MSSA) versus MRSA coverage decisions and educational initiatives to improve guideline compliance.
Collapse
Affiliation(s)
- Brady Simpson
- School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Kevin Han
- School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Steven Yee
- School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Rasha Alsaadawi
- Department of Biostatistics, School of Public Health, Virginia Commonwealth University, Richmond, VA, USA
| | - Roy Sabo
- Department of Biostatistics, School of Public Health, Virginia Commonwealth University, Richmond, VA, USA
| | - Taruna Aurora
- Department of Emergency Medicine, Virginia Commonwealth University Health System, Richmond, VA, USA.
| | - Joseph Lykins
- Department of Emergency Medicine, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA.
| |
Collapse
|
12
|
Kami W, Baba M, Chinen T, Fujita J, Yamaguchi T. A case of refractory disseminated subcutaneous abscess with intrahousehold transmission by a USA300-LV-like strain of PVL-positive community-acquired MRSA clone. J Infect Chemother 2024; 30:1162-1165. [PMID: 38508338 DOI: 10.1016/j.jiac.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/08/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
A 44-year-old man with hypertension and dyslipidemia presented with pain in the buttocks. The patient was diagnosed with perianal ischiorectal fossa abscesses and cellulitis. He was subsequently diagnosed with a perineal subcutaneous abscess after a week, a right lower leg impetigo after a month, right periorchitis, a scrotal abscess, and Fournier's gangrene after two months. The patient was treated with various antimicrobials and underwent incisional drainage. Methicillin-resistant Staphylococcus aureus (MRSA) was detected in all draining specimens. Her daughter and son, who lived with the patient, presented with subcutaneous abscesses caused by MRSA. Suspecting repeated infections and household infections by virulent types of MRSA, such as PVL-positive strains, we performed genetic analyses of his and his son's strains. The results showed that the genotype and toxin gene profiles [ST8/t008/SCCmec type IVc/Panton-Valentine leucocidin (PVL) (+)/arginine catabolic mobile element (ACME) (-)] of both strains matched. single nucleotide polymorphism (SNP) analysis confirmed genetic homology between the two, concluding that home transmission by the same clone had occurred. In addition, the strain in this case differed from USA300 [ST8/t008/SCCmec type IVa/PVL (+) ACME (+)], which is a PVL-positive MRSA worldwide, including Japan, and its genetic profile matches that of USA300-LV, which is detected mainly in South America. Furthermore, SNP analysis showed that this strain is similar to USA300-LV/J (derived from USA300-LV) detected on Ishigaki Island, Okinawa Prefecture, Japan. This is the first report of refractory infections and household transmission of USA300-LV/J. Therefore, it is necessary to closely monitor both the USA300 and the USA300-LV.
Collapse
Affiliation(s)
- Wakaki Kami
- Department of Respiratory Medicine, Ohama Dai-ichi Hospital, Okinawa, Japan; Department of Infectious, Respiratory and Digestive Medicine, Graduate School of Medicine, University of the Ryukyus, 207 Uehara Nishihara, Okinawa, 903-0215, Japan.
| | - Motoo Baba
- Department of Respiratory Medicine, Ohama Dai-ichi Hospital, Okinawa, Japan
| | - Tetsu Chinen
- Department of Respiratory Medicine, Ohama Dai-ichi Hospital, Okinawa, Japan
| | - Jiro Fujita
- Department of Respiratory Medicine, Ohama Dai-ichi Hospital, Okinawa, Japan
| | - Tetsuo Yamaguchi
- Department of Microbiology and Infectious Diseases, Faculty of Medicine, Toho University School of Medicine, Tokyo, Japan
| |
Collapse
|
13
|
Chambers HF, Fowler VG. Intertwining clonality and resistance: Staphylococcus aureus in the antibiotic era. J Clin Invest 2024; 134:e185824. [PMID: 39352382 PMCID: PMC11444188 DOI: 10.1172/jci185824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024] Open
Affiliation(s)
- Henry F. Chambers
- Division of Infectious Diseases, UCSF, San Francisco, California, USA
| | - Vance G. Fowler
- Division of Infectious Diseases, and
- Duke Clinical Research Institute, Duke University, Durham, North Carolina, USA
| |
Collapse
|
14
|
Rodrigues AE, Dolivo DM, Hou C, Li Y, Sun LS, Mustoe TA, Hong SJ, Galiano RD. Influence of Staphylococcus aureus Infection on Partially Ischemic Excisional Skin Wounds. Adv Med 2024; 2024:2281747. [PMID: 39345350 PMCID: PMC11438516 DOI: 10.1155/2024/2281747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/31/2024] [Indexed: 10/01/2024] Open
Abstract
Background Skin wounds, whether medically or incidentally induced, are always at a risk of becoming infected, but the infection risks are greater when the wounds are recovering under ischemic, poorly perfused conditions. Staphylococcus aureus, which frequently infects cutaneous and soft tissue, can infect to a greater extent when wounds are poorly perfused. Bad as this may be, both MSSA and MRSA strains of S. aureus can cause severe infections, with MRSA being considered more aggressive. Methods In this study, we used a lagomorph ear excisional wound model to initially test the influence of partial ischemia on uninfected wound healing. We then subsequently test the same ischemic injury model under an active MSSA infection and compared these wounds against normally perfused MSSA-infected wounds. Lastly, we test whether differences in healing exist between MSSA-infected and MRSA-infected wounds, both under the same ischemic model. Results The data suggest that partial ischemia considerably reduces healing of noninfected wounds (epithelial gap P=∗∗∗∗, granulation gap P=∗∗∗, and granulation area P=∗∗∗∗). Similarly, partial ischemic wounds coupled with MSSA infection display healing impairments against likewise-infected wounds healing under normal perfusion (epithelial gap P=∗, granulation gap P=∗, and granulation area P=∗∗). No significant differences were observed between MSSA-infected and MRSA-infected wounds healing under ischemia. Conclusion The data produced quantitative differences in healing under various conditions consequent to ischemia and S. aureus infection. Although it is well recognized that ischemia and infection adversely influence healing, by testing these conditions, we determined the detrimental magnitude such circumstances inflict on skin healing, thereby providing a relative reference to compare and gauge when met with similar conditions clinically.
Collapse
Affiliation(s)
- Adrian E Rodrigues
- Department of Surgery, Division of Plastic Surgery Northwestern University Feinberg School of Medicine, Chicago, USA
| | - David M Dolivo
- Department of Surgery, Division of Plastic Surgery Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Chun Hou
- Department of Surgery, Division of Plastic Surgery Northwestern University Feinberg School of Medicine, Chicago, USA
- Department of Plastic and Cosmetic Surgery First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yingxing Li
- Department of Surgery, Division of Plastic Surgery Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Lauren S Sun
- Department of Surgery, Division of Plastic Surgery Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Thomas A Mustoe
- Department of Surgery, Division of Plastic Surgery Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Seok Jong Hong
- Department of Surgery, Division of Plastic Surgery Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Robert D Galiano
- Department of Surgery, Division of Plastic Surgery Northwestern University Feinberg School of Medicine, Chicago, USA
| |
Collapse
|
15
|
Liu Q, He D, Wang L, Wu Y, Liu X, Yang Y, Chen Z, Dong Z, Luo Y, Song Y. Efficacy and Safety of Antibiotics in the Treatment of Methicillin-Resistant Staphylococcus aureus (MRSA) Infections: A Systematic Review and Network Meta-Analysis. Antibiotics (Basel) 2024; 13:866. [PMID: 39335039 PMCID: PMC11428633 DOI: 10.3390/antibiotics13090866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Vancomycin is a first-line drug for the treatment of MRSA infection. However, overuse of vancomycin can cause bacteria to become resistant, forming resistant strains and making infections more difficult to treat. This study aimed to evaluate the efficacy and safety of different antibiotics in the treatment of MRSA infections and to compare them, mainly with vancomycin, to find better vancomycin alternatives. METHODS All studies were obtained from the PubMed and Embase databases from inception to 13 April 2023. The three comprehensive indicators of clinical cure success rate, clinical microbiological success rate, and adverse reactions were evaluated, and the clinical cure success rates of three disease types, complex skin and skin structure infections (cSSSIs), complex skin and soft tissue infections (cSSTIs), and pneumonia, were analyzed in subgroups. All statistical analyses were performed using R and STATA 14.0 software for network meta-analysis. RESULTS A total of 38 trials with 6281 patients were included, and 13 drug treatments were evaluated. For MRSA infections, the results of network meta-analysis showed that the clinical success rates of linezolid, the combination of vancomycin and rifampin, and the combination of minocycline and rifampin were better than that of vancomycin (RR 1.71; 95%-CI 1.45-2.02), (RR 2.46; 95%-CI 1.10-5.49) (RR, 2.77; 95%-CI 1.06-7.21). The success rate of clinical microbiological treatment with vancomycin was inferior to that with telavancin (RR 0.74; 95%-CI 0.55-0.99). Linezolid had a higher rate of adverse reactions than teicoplanin (RR 5.35; 95%-CI 1.10-25.98). Subgroup analysis showed that vancomycin had a lower clinical success rate than linezolid in the treatment of MRSA-induced cSSSIs, cSSTIs, and pneumonia (RR 0.59; 95%-CI 0.44-0.80) (RR 0.55; 95%-CI 0.35-0.89) (RR 0.55; 95%-CI 0.32-0.93). CONCLUSIONS This systematic review and NMA provide a new comparison framework for the clinical treatment of MRSA infection. The NMA suggests that linezolid may be the antibiotic of choice for the treatment of MRSA infections, with the ability to improve clinical and microbiological success rates despite its disadvantage in terms of adverse effects. At the same time, the combination of minocycline and rifampicin may be the most effective drug to treat MRSA-induced cSSSIs, tedizolid may be the best drug to treat MRSA-induced cSSTIs, and the combination of vancomycin and rifampicin may be the most effective treatment for MRSA-induced pneumonia. More high-quality studies are still needed in the future to further identify alternatives to vancomycin. TRIAL REGISTRATION PROSPERO registration number CRD42023416788.
Collapse
Affiliation(s)
- Qi Liu
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (Q.L.); (D.H.); (L.W.); (Y.W.); (X.L.); (Y.Y.); (Z.C.); (Z.D.); (Y.L.)
| | - Dongxia He
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (Q.L.); (D.H.); (L.W.); (Y.W.); (X.L.); (Y.Y.); (Z.C.); (Z.D.); (Y.L.)
| | - Lei Wang
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (Q.L.); (D.H.); (L.W.); (Y.W.); (X.L.); (Y.Y.); (Z.C.); (Z.D.); (Y.L.)
| | - Yuewei Wu
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (Q.L.); (D.H.); (L.W.); (Y.W.); (X.L.); (Y.Y.); (Z.C.); (Z.D.); (Y.L.)
| | - Xian Liu
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (Q.L.); (D.H.); (L.W.); (Y.W.); (X.L.); (Y.Y.); (Z.C.); (Z.D.); (Y.L.)
| | - Yahan Yang
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (Q.L.); (D.H.); (L.W.); (Y.W.); (X.L.); (Y.Y.); (Z.C.); (Z.D.); (Y.L.)
| | - Zhizhi Chen
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (Q.L.); (D.H.); (L.W.); (Y.W.); (X.L.); (Y.Y.); (Z.C.); (Z.D.); (Y.L.)
| | - Zhan Dong
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (Q.L.); (D.H.); (L.W.); (Y.W.); (X.L.); (Y.Y.); (Z.C.); (Z.D.); (Y.L.)
| | - Ying Luo
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (Q.L.); (D.H.); (L.W.); (Y.W.); (X.L.); (Y.Y.); (Z.C.); (Z.D.); (Y.L.)
| | - Yuzhu Song
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (Q.L.); (D.H.); (L.W.); (Y.W.); (X.L.); (Y.Y.); (Z.C.); (Z.D.); (Y.L.)
- Graduate School, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
16
|
Nygaard TK, Borgogna TR, Pallister KB, Predtechenskaya M, Burroughs OS, Gao A, Lubick EG, Voyich JM. The Relative Importance of Cytotoxins Produced by Methicillin-Resistant Staphylococcus aureus Strain USA300 for Causing Human PMN Destruction. Microorganisms 2024; 12:1782. [PMID: 39338457 PMCID: PMC11434515 DOI: 10.3390/microorganisms12091782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Staphylococcus aureus (S. aureus) is a prominent Gram-positive bacterial pathogen that expresses numerous cytotoxins known to target human polymorphonuclear leukocytes (PMNs or neutrophils). These include leukocidin G/H (LukGH, also known as LukAB), the Panton-Valentine leukocidin (PVL), γ-hemolysin A/B (HlgAB), γ-hemolysin B/C (HlgBC), leukocidin E/D (LukED), α-hemolysin (Hla), and the phenol-soluble modulin-α peptides (PSMα). However, the relative contribution of each of these cytotoxins in causing human PMN lysis is not clear. In this study, we used a library of cytotoxin deletion mutants in the clinically relevant methicillin-resistant S. aureus (MRSA) isolate LAC (strain ST8:USA300) to determine the relative importance of each for causing human PMN lysis upon exposure to extracellular components as well as following phagocytosis. Using flow cytometry to examine plasma membrane permeability and assays quantifying lactose dehydrogenase release, we found that PVL was the dominant extracellular factor causing human PMN lysis produced by USA300. In contrast, LukGH was the most important cytotoxin causing human PMN lysis immediately following phagocytosis with contributions from the other bicomponent leukocidins only observed at later time points. These results not only clarify the relative importance of different USA300 cytotoxins for causing human PMN destruction but also demonstrate how two apparently redundant virulence factors play distinctive roles in promoting S. aureus pathogenesis.
Collapse
Affiliation(s)
- Tyler K Nygaard
- Department of Microbiology Cell Biology, Montana State University, Bozeman, MT 59718, USA
| | - Timothy R Borgogna
- Department of Microbiology Cell Biology, Montana State University, Bozeman, MT 59718, USA
| | - Kyler B Pallister
- Department of Microbiology Cell Biology, Montana State University, Bozeman, MT 59718, USA
| | - Maria Predtechenskaya
- Department of Microbiology Cell Biology, Montana State University, Bozeman, MT 59718, USA
| | - Owen S Burroughs
- Department of Microbiology Cell Biology, Montana State University, Bozeman, MT 59718, USA
| | - Annika Gao
- Department of Microbiology Cell Biology, Montana State University, Bozeman, MT 59718, USA
| | - Evan G Lubick
- Department of Microbiology Cell Biology, Montana State University, Bozeman, MT 59718, USA
| | - Jovanka M Voyich
- Department of Microbiology Cell Biology, Montana State University, Bozeman, MT 59718, USA
| |
Collapse
|
17
|
Lang JC, Brutscher A, Ehrström M, Melican K. Tissue resident cells differentiate S. aureus from S. epidermidis via IL-1β following barrier disruption in healthy human skin. PLoS Pathog 2024; 20:e1012056. [PMID: 39208402 PMCID: PMC11389914 DOI: 10.1371/journal.ppat.1012056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 09/11/2024] [Accepted: 08/11/2024] [Indexed: 09/04/2024] Open
Abstract
The Staphylococcus sp. are a dominant part of the human skin microbiome and present across the body. Staphylococcus epidermidis is a ubiquitous skin commensal, while S. aureus is thought to colonize at least 30% of the population. S. aureus are not only colonizers but a leading cause of skin and soft tissue infections and a critical healthcare concern. To understand how healthy human skin may differentiate commensal bacteria, such as S. epidermidis, from the potential pathogen methicillin-resistant S. aureus (MRSA), we use ex vivo human skin models that allow us to study this host-bacterial interaction in the most clinically relevant environment. Our work highlights the role of the outer stratum corneum as a protective physical barrier against invasion by colonizing Staphylococci. We show how the structural cells of the skin can internalize and respond to different Staphylococci with increasing sensitivity. In intact human skin, a discriminatory IL-1β response was identified, while disruption of the protective stratum corneum triggered an increased and more diverse immune response. We identified and localized tissue resident Langerhans cells (LCs) as a potential source of IL-1β and go on to show a dose-dependent response of MUTZ-LCs to S. aureus but not S. epidermidis. This suggests an important role of LCs in sensing and discriminating between bacteria in healthy human skin, particularly in intact skin and provides a detailed snapshot of how human skin differentiates between friend and potential foe. With the rise in antibiotic resistance, understanding the innate immune response of healthy skin may help us find ways to enhance or manipulate these natural defenses to prevent invasive infection.
Collapse
Affiliation(s)
- Julia C Lang
- AIMES-Center for the Advancement of Integrated Medical and Engineering Sciences, Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Andreas Brutscher
- AIMES-Center for the Advancement of Integrated Medical and Engineering Sciences, Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Keira Melican
- AIMES-Center for the Advancement of Integrated Medical and Engineering Sciences, Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
18
|
Bai Y, Zhang W, Zheng W, Meng XZ, Duan Y, Zhang C, Chen F, Wang KJ. A 14-amino acid cationic peptide Bolespleenin 334-347 from the marine fish mudskipper Boleophthalmus pectinirostris exhibiting potent antimicrobial activity and therapeutic potential. Biochem Pharmacol 2024; 226:116344. [PMID: 38852647 DOI: 10.1016/j.bcp.2024.116344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Antimicrobial peptides (AMPs) are an important component of innate immunity in both vertebrates and invertebrates, and some of the unique characteristics of AMPs are usually associated with their living environment. The marine fish, mudskipper Boleophthalmus pectinirostris, usually live amphibiously in intertidal environments that are quite different from other fish species, which would be an exceptional source of new AMPs. In the study, an AMP named Bolespleenin334-347 was identified, which was a truncated peptide derived from a new functional gene found in B. pectinirostris, that was up-regulated in response to bacterial challenge. Bolespleenin334-347 had only 14 amino acid residues, including five consecutive arginine residues. It was found that the peptide had broad-spectrum antibacterial activity, good thermal stability and sodium ion tolerance. Bolespleenin334-347 killed Acinetobacter baumannii and Staphylococcus aureus by disrupting the structural integrity of the bacterial membrane, leading to leakage of the cellular contents, and inducing accumulation of bacterial endogenous reactive oxygen species (ROS). In addition, Bolespleenin334-347 effectively inhibited biofilm formation of A. baumannii and S. aureus and long-term treatment did not lead to the development of resistance. Importantly, Bolespleenin334-347 maintained stable activity against clinically multi-drug resistant bacterial strains. In addition, it was noteworthy that Bolespleenin334-347 showed superior efficacy to LL-37 and vancomycin in a constructed mouse model of MRSA-induced superficial skin infections, as evidenced by a significant reduction in bacterial load and more favorable wound healing. This study provides an effective antimicrobial agent for topical skin infections with potential therapeutic efficacy for infections with drug-resistant bacteria, including MRSA.
Collapse
Affiliation(s)
- Yuqi Bai
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Weibin Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Wenbin Zheng
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xin-Zhan Meng
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yingyi Duan
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Chang Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Fangyi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China; Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen, China.
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China; Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
19
|
Salle R, Del Giudice P, Skayem C, Hua C, Chosidow O. Secondary Bacterial Infections in Patients with Atopic Dermatitis or Other Common Dermatoses. Am J Clin Dermatol 2024; 25:623-637. [PMID: 38578398 DOI: 10.1007/s40257-024-00856-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2024] [Indexed: 04/06/2024]
Abstract
Secondary bacterial infections of common dermatoses such as atopic dermatitis, ectoparasitosis, and varicella zoster virus infections are frequent, with Staphylococcus aureus and Streptococcus pyogenes being the bacteria most involved. There are also Gram-negative infections secondary to common dermatoses such as foot dyshidrotic eczema and tinea pedis. Factors favoring secondary bacterial infections in atopic dermatitis, ectoparasitosis, and varicella zoster virus infections mainly include an epidermal barrier alteration as well as itch. Mite-bacteria interaction is also involved in scabies and some environmental factors can promote Gram-negative bacterial infections of the feet. Furthermore, the bacterial ecology of these superinfections may depend on the geographical origin of the patients, especially in ectoparasitosis. Bacterial superinfections can also have different clinical aspects depending on the underlying dermatoses. Subsequently, the choice of class, course, and duration of antibiotic treatment depends on the severity of the infection and the suspected bacteria, primarily targeting S. aureus. Prevention of these secondary bacterial infections depends first and foremost on the management of the underlying skin disorder. At the same time, educating the patient on maintaining good skin hygiene and reporting changes in the primary lesions is crucial. In the case of recurrent secondary infections, decolonization of S. aureus is deemed necessary, particularly in atopic dermatitis.
Collapse
Affiliation(s)
- Romain Salle
- Service de Dermatologie Générale et Oncologique, UVSQ, EA4340-BECCOH, AP-HP, Hôpital Ambroise-Paré, Université Paris-Saclay, 9 Avenue Charles de Gaulle, 92100, Boulogne-Billancourt, France.
| | - Pascal Del Giudice
- Unité D'Infectiologie et Dermatologie, Centre Hospitalier Intercommunal de Fréjus-Saint-Raphaël, Fréjus, France
| | - Charbel Skayem
- Service de Dermatologie Générale et Oncologique, UVSQ, EA4340-BECCOH, AP-HP, Hôpital Ambroise-Paré, Université Paris-Saclay, 9 Avenue Charles de Gaulle, 92100, Boulogne-Billancourt, France
| | - Camille Hua
- AP-HP, Service de Dermatologie, Hôpital Henri Mondor, Créteil, France
| | - Olivier Chosidow
- Consultation Dermatoses Faciales, Service d'ORL, AP-HP, Hôpital Universitaire Pitié-Salpêtrière, Paris, France
- UPEC Créteil, Créteil, France
| |
Collapse
|
20
|
Wu Y, Zhang J, Lin A, Zhang T, Liu Y, Zhang C, Yin Y, Guo R, Gao J, Li Y, Chu Y. Immunomodulatory poly(L-lactic acid) nanofibrous membranes promote diabetic wound healing by inhibiting inflammation, oxidation and bacterial infection. BURNS & TRAUMA 2024; 12:tkae009. [PMID: 38841099 PMCID: PMC11151119 DOI: 10.1093/burnst/tkae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 06/07/2024]
Abstract
Background Given the significant impact on human health, it is imperative to develop novel treatment approaches for diabetic wounds, which are prevalent and serious complications of diabetes. The diabetic wound microenvironment has a high level of reactive oxygen species (ROS) and an imbalance between proinflammatory and anti-inflammatory cells/factors, which hamper the healing of chronic wounds. This study aimed to develop poly(L-lactic acid) (PLLA) nanofibrous membranes incorporating curcumin and silver nanoparticles (AgNPs), defined as PLLA/C/Ag, for diabetic wound healing. Methods PLLA/C/Ag were fabricated via an air-jet spinning approach. The membranes underwent preparation and characterization through various techniques including Fourier-transform infrared spectroscopy, measurement of water contact angle, X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy, assessment of in vitro release of curcumin and Ag+, testing of mechanical strength, flexibility, water absorption and biodegradability. In addition, the antioxidant, antibacterial and anti-inflammatory properties of the membranes were evaluated in vitro, and the ability of the membranes to heal wounds was tested in vivo using diabetic mice. Results Loose hydrophilic nanofibrous membranes with uniform fibre sizes were prepared through air-jet spinning. The membranes enabled the efficient and sustained release of curcumin. More importantly, antibacterial AgNPs were successfully reduced in situ from AgNO3. The incorporation of AgNPs endowed the membrane with superior antibacterial activity, and the bioactivities of curcumin and the AgNPs gave the membrane efficient ROS scavenging and immunomodulatory effects, which protected cells from oxidative damage and reduced inflammation. Further results from animal studies indicated that the PLLA/C/Ag membranes had the most efficient wound healing properties, which were achieved by stimulating angiogenesis and collagen deposition and inhibiting inflammation. Conclusions In this research, we successfully fabricated PLLA/C/Ag membranes that possess properties of antioxidants, antibacterial agents and anti-inflammatory agents, which can aid in the process of wound healing. Modulating wound inflammation, these new PLLA/C/Ag membranes serve as a novel dressing to enhance the healing of diabetic wounds.
Collapse
Affiliation(s)
- Yan Wu
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, 3 Tongxiang Street, Aimin District, Mudanjiang 157011, China
| | - Jin Zhang
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, 3 Tongxiang Street, Aimin District, Mudanjiang 157011, China
- Clinical Laboratory, Zhejiang Medical & Health Group Quzhou Hospital, 62 Wenchang Road, Kecheng District, Quzhou 324004, China
| | - Anqi Lin
- The Key Laboratory for Ultrafine Materials of Ministry of Education, State Key Laboratory of Bioreactor Engineering, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Lingyun Street, Xuhui District, Shanghai 200237, China
| | - Tinglin Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, 168 Changhai Road, Yangpu District, Shanghai 200433, China
| | - Yong Liu
- Scientific Research Sharing Platform, Mudanjiang Medical University, 3 Tongxiang Street, Aimin District, Mudanjiang 157011, China
| | - Chunlei Zhang
- Scientific Research Sharing Platform, Mudanjiang Medical University, 3 Tongxiang Street, Aimin District, Mudanjiang 157011, China
| | - Yongkui Yin
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, 3 Tongxiang Street, Aimin District, Mudanjiang 157011, China
| | - Ran Guo
- Department of Physiology, Mudanjiang Medical University, 3 Tongxiang Street, Aimin District, Mudanjiang 157011, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, 168 Changhai Road, Yangpu District, Shanghai 200433, China
| | - Yulin Li
- The Key Laboratory for Ultrafine Materials of Ministry of Education, State Key Laboratory of Bioreactor Engineering, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Lingyun Street, Xuhui District, Shanghai 200237, China
| | - Yanhui Chu
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, 3 Tongxiang Street, Aimin District, Mudanjiang 157011, China
| |
Collapse
|
21
|
Costa FG, Mills KB, Crosby HA, Horswill AR. The Staphylococcus aureus regulatory program in a human skin-like environment. mBio 2024; 15:e0045324. [PMID: 38546267 PMCID: PMC11077960 DOI: 10.1128/mbio.00453-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/04/2024] [Indexed: 04/09/2024] Open
Abstract
Staphylococcus aureus is a Gram-positive pathogen responsible for the majority of skin and soft tissue infections (SSTIs). S. aureus colonizes the anterior nares of approximately 20%-30% of the population and transiently colonizes the skin, thereby increasing the risk of developing SSTIs and more serious infections. Current laboratory models that mimic the skin surface environment are expensive, require substantial infrastructure, and limit the scope of bacterial physiology studies under human skin conditions. To overcome these limitations, we developed a cost-effective, open-source, chemically defined media recipe termed skin-like medium (SLM) that incorporates key aspects of the human skin surface environment and supports growth of several staphylococcal species. We utilized SLM to investigate the transcriptional response of methicillin-resistant Staphylococcus aureus (MRSA) following growth in SLM compared to a commonly used laboratory media. Through RNA-seq analysis, we observed the upregulation of several virulence factors, including genes encoding functions involved in adhesion, proteolysis, and cytotoxicity. To further explore these findings, we conducted quantitative reverse transcription-PCR (qRT-PCR) experiments to determine the influence of media composition, pH, and temperature on the transcriptional response of key factors involved in adhesion and virulence. We also demonstrated that MRSA primed in SLM adhered better to human corneocytes and demonstrated adhesin-specific phenotypes that previously required genetic manipulation. This improved adherence to corneocytes was dependent on both acidic pH and growth in SLM. These results support the potential utility of SLM as an in vitro model for assessing staphylococcal physiology and metabolism on human skin. IMPORTANCE Staphylococcus aureus is the major cause of skin diseases, and its increased prevalence in skin colonization and infections present a need to understand its physiology in this environment. The work presented here outlines S. aureus upregulation of colonization and virulence factors using a newly developed medium that strives to replicate the human skin surface environment and demonstrates roles for adhesins clumping factor A (ClfA), serine-rich repeat glycoprotein adhesin (SraP), and the fibronectin binding proteins (Fnbps) in human corneocyte adherence.
Collapse
Affiliation(s)
- Flavia G. Costa
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Krista B. Mills
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Heidi A. Crosby
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Alexander R. Horswill
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Veterans Affairs, Eastern Colorado Healthcare System, Aurora, Colorado, USA
| |
Collapse
|
22
|
Dai H, Hu Y, Zhang Y, Zhu Q, Xu T, Cui P, Fan R, He Q. Identification of CH 2-linked quinolone-aminopyrimidine hybrids as potent anti-MRSA agents: Low resistance potential and lack of cross-resistance with fluoroquinolone antibiotics. Eur J Med Chem 2024; 271:116399. [PMID: 38640868 DOI: 10.1016/j.ejmech.2024.116399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/03/2024] [Accepted: 04/06/2024] [Indexed: 04/21/2024]
Abstract
The structural optimization of B14, an antibacterial agent we previously obtained, has led to the discovery of a new class of CH2-linked quinolone-aminopyrimidine hybrids with potent anti-MRSA activities. Surprisingly, the hybrids lacking a C-6 fluoro atom at the quinolone nucleus showed equal or even stronger anti-MRSA activities than their corresponding 6-fluoro counterparts, despite the well-established structure-activity relationships (SARs) indicating that the 6-fluoro substituent enhances the antibacterial activity in conventional fluoroquinolone antibiotics. Moreover, these new hybrids, albeit structurally related to conventional fluoroquinolones, showed no cross-resistance with fluoroquinolone drugs. The most active compound, 15m, exhibited excellent activities with a MIC value of 0.39 μg/mL against both fluoroquinolone-sensitive strain USA500 and -resistant MRSA isolate Mu50. Further resistance development studies indicated MRSA is unlikely to acquire resistance against 15m. Moreover, 15m displayed favorable in vivo half-life and safety profiles. These findings suggest a rationale for further evolution of quinolone antibiotics with a high barrier to resistance.
Collapse
Affiliation(s)
- Hongxue Dai
- Department of Chemistry, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai, China
| | - Yue Hu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai, China
| | - Yiwen Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai, China
| | - Qi Zhu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai, China
| | - Tao Xu
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, 525 Wulumuqizhong Road, Jing'an District, Shanghai, China
| | - Peng Cui
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, 525 Wulumuqizhong Road, Jing'an District, Shanghai, China.
| | - Renhua Fan
- Department of Chemistry, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai, China.
| | - Qiuqin He
- Department of Chemistry, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai, China.
| |
Collapse
|
23
|
Bang J, Park J, Lee SH, Jang J, Hwang J, Kamarov O, Park HJ, Lee SJ, Seo MD, Won HS, Seok SH, Kim JH. Nontraditional Roles of Magnesium Ions in Modulating Sav2152: Insight from a Haloacid Dehalogenase-like Superfamily Phosphatase from Staphylococcus aureus. Int J Mol Sci 2024; 25:5021. [PMID: 38732240 PMCID: PMC11084212 DOI: 10.3390/ijms25095021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) infection has rapidly spread through various routes. A genomic analysis of clinical MRSA samples revealed an unknown protein, Sav2152, predicted to be a haloacid dehalogenase (HAD)-like hydrolase, making it a potential candidate for a novel drug target. In this study, we determined the crystal structure of Sav2152, which consists of a C2-type cap domain and a core domain. The core domain contains four motifs involved in phosphatase activity that depend on the presence of Mg2+ ions. Specifically, residues D10, D12, and D233, which closely correspond to key residues in structurally homolog proteins, are responsible for binding to the metal ion and are known to play critical roles in phosphatase activity. Our findings indicate that the Mg2+ ion known to stabilize local regions surrounding it, however, paradoxically, destabilizes the local region. Through mutant screening, we identified D10 and D12 as crucial residues for metal binding and maintaining structural stability via various uncharacterized intra-protein interactions, respectively. Substituting D10 with Ala effectively prevents the interaction with Mg2+ ions. The mutation of D12 disrupts important structural associations mediated by D12, leading to a decrease in the stability of Sav2152 and an enhancement in binding affinity to Mg2+ ions. Additionally, our study revealed that D237 can replace D12 and retain phosphatase activity. In summary, our work uncovers the novel role of metal ions in HAD-like phosphatase activity.
Collapse
Affiliation(s)
- Jaeseok Bang
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea; (J.B.); (J.P.); (S.-H.L.); (J.J.); (J.H.); (O.K.); (H.-J.P.); (S.-J.L.)
| | - Jaehui Park
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea; (J.B.); (J.P.); (S.-H.L.); (J.J.); (J.H.); (O.K.); (H.-J.P.); (S.-J.L.)
| | - Sung-Hee Lee
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea; (J.B.); (J.P.); (S.-H.L.); (J.J.); (J.H.); (O.K.); (H.-J.P.); (S.-J.L.)
| | - Jinhwa Jang
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea; (J.B.); (J.P.); (S.-H.L.); (J.J.); (J.H.); (O.K.); (H.-J.P.); (S.-J.L.)
| | - Junwoo Hwang
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea; (J.B.); (J.P.); (S.-H.L.); (J.J.); (J.H.); (O.K.); (H.-J.P.); (S.-J.L.)
| | - Otabek Kamarov
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea; (J.B.); (J.P.); (S.-H.L.); (J.J.); (J.H.); (O.K.); (H.-J.P.); (S.-J.L.)
| | - Hae-Joon Park
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea; (J.B.); (J.P.); (S.-H.L.); (J.J.); (J.H.); (O.K.); (H.-J.P.); (S.-J.L.)
| | - Soo-Jae Lee
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea; (J.B.); (J.P.); (S.-H.L.); (J.J.); (J.H.); (O.K.); (H.-J.P.); (S.-J.L.)
| | - Min-Duk Seo
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea;
- College of Pharmacy, Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon 16499, Republic of Korea
| | - Hyung-Sik Won
- Department of Biotechnology, Research Institute (RIBHS), College of Biomedical and Health Science, Konkuk University, Chungju 27478, Republic of Korea;
- BK21 Project Team, Department of Applied Life Science, Graduate School, Konkuk University, Chungju 27478, Republic of Korea
| | - Seung-Hyeon Seok
- College of Pharmacy, Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 632433, Republic of Korea
| | - Ji-Hun Kim
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea; (J.B.); (J.P.); (S.-H.L.); (J.J.); (J.H.); (O.K.); (H.-J.P.); (S.-J.L.)
| |
Collapse
|
24
|
Boennec N, Renous AS. [Inorganic nanosheets facilitate humoral immunity against medical implant infections by modulating immune co-stimulatory pathway]. Med Sci (Paris) 2024; 40:474-476. [PMID: 38819287 DOI: 10.1051/medsci/2024049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Affiliation(s)
- Natacha Boennec
- Master 2 infectiologie, immunité, vaccinologie et biomédicaments, Université de Tours, 37000 Tours, France
| | - Anne-Sophie Renous
- Master 2 infectiologie, immunité, vaccinologie et biomédicaments, Université de Tours, 37000 Tours, France
| |
Collapse
|
25
|
Anderson ES, Frazee BW. The Intersection of Substance Use Disorders and Infectious Diseases in the Emergency Department. Emerg Med Clin North Am 2024; 42:391-413. [PMID: 38641396 DOI: 10.1016/j.emc.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Substance use disorders (SUDs) intersect clinically with many infectious diseases, leading to significant morbidity and mortality if either condition is inadequately treated. In this article, we will describe commonly seen SUDs in the emergency department (ED) as well as their associated infectious diseases, discuss social drivers of patient outcomes, and introduce novel ED-based interventions for co-occurring conditions. Clinicians should come away from this article with prescriptions for both antimicrobial medications and pharmacotherapy for SUDs, as well as an appreciation for social barriers, to care for these patients.
Collapse
Affiliation(s)
- Erik S Anderson
- Department of Emergency Medicine, Alameda Health System, Wilma Chan Highland Hospital, 1411 East 31st Street, Oakland, CA 94602, USA; Division of Addiction Medicine, Highland Hospital, Alameda Health System, 1411 East 31st Street, Oakland, CA 94602, USA.
| | - Bradley W Frazee
- Department of Emergency Medicine, Alameda Health System, Wilma Chan Highland Hospital, 1411 East 31st Street, Oakland, CA 94602, USA
| |
Collapse
|
26
|
Rana P, Parupalli R, Akhir A, Saxena D, Maitra R, Imran M, Malik P, Mahammad Ghouse S, Joshi SV, Srikanth D, Madhavi YV, Dasgupta A, Chopra S, Nanduri S. Synthesis and biological evaluation of new naphthalimide-thiourea derivatives as potent antimicrobial agents active against multidrug-resistant Staphylococcus aureus and Mycobacterium tuberculosis. RSC Med Chem 2024; 15:1381-1391. [PMID: 38665829 PMCID: PMC11042119 DOI: 10.1039/d4md00062e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 02/21/2024] [Indexed: 04/28/2024] Open
Abstract
The emergence of antibiotic resistance to S. aureus and M. tuberculosis, particularly MRSA, VRSA, and drug-resistant tuberculosis, poses a serious threat to human health. Towards discovering new antibacterial agents, we designed and synthesized a series of new naphthalimide-thiourea derivatives and evaluated them against a panel of bacterial strains consisting of E. coli, S. aureus, K. pneumoniae, P. aeruginosa, A. baumannii and various mycobacterial pathogens. Compounds 4a, 4l, 4m, 4n, 4q, 9f, 9l, 13a, 13d, 13e, 17a, 17b, 17c, 17d, and 17e demonstrated potent antibacterial activity against S. aureus with MIC 0.03-8 μg mL-1. In addition, these compounds have also exhibited potent inhibition against MDR strains of S. aureus, including VRSA with MICs 0.06-4 μg mL-1. Compounds 4h, 4j, 4l, 4m, 4q, 4r, 9a, 9b, 9c, 9d, 9e, 9g, 9h, 9j, 13f and 17e also exhibited good antimycobacterial activity against M. tuberculosis with MIC 2-64 μg mL-1. The cytotoxicity assay using Vero cells revealed that all the compounds were non-toxic and exhibited a favorable selectivity index (SI >40). Time kill kinetics data indicated that compounds exhibited concentration-dependent killing. Furthermore, in silico studies were performed to decipher the possible mechanism of action. Comprehensively, these results highlight the potential of naphthalimide-thiourea derivatives as promising antibacterial agents.
Collapse
Affiliation(s)
- Preeti Rana
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad Telangana-500037 India
| | - Ramulu Parupalli
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad Telangana-500037 India
| | - Abdul Akhir
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute Sitapur Road, Sector 10, Janakipuram Extension Lucknow-226031 Uttar Pradesh India
| | - Deepanshi Saxena
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute Sitapur Road, Sector 10, Janakipuram Extension Lucknow-226031 Uttar Pradesh India
| | - Rahul Maitra
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute Sitapur Road, Sector 10, Janakipuram Extension Lucknow-226031 Uttar Pradesh India
| | - Mohmmad Imran
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute Sitapur Road, Sector 10, Janakipuram Extension Lucknow-226031 Uttar Pradesh India
| | - Pradip Malik
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute Sitapur Road, Sector 10, Janakipuram Extension Lucknow-226031 Uttar Pradesh India
| | - Shaik Mahammad Ghouse
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad Telangana-500037 India
| | - Swanand Vinayak Joshi
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad Telangana-500037 India
| | - Danaboina Srikanth
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad Telangana-500037 India
| | - Y V Madhavi
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad Telangana-500037 India
| | - Arunava Dasgupta
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute Sitapur Road, Sector 10, Janakipuram Extension Lucknow-226031 Uttar Pradesh India
- AcSIR: Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Sidharth Chopra
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute Sitapur Road, Sector 10, Janakipuram Extension Lucknow-226031 Uttar Pradesh India
- AcSIR: Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Srinivas Nanduri
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad Telangana-500037 India
| |
Collapse
|
27
|
Mills KB, Maciag JJ, Wang C, Crawford JA, Enroth TJ, Keim KC, Dufrêne YF, Robinson DA, Fey PD, Herr AB, Horswill AR. Staphylococcus aureus skin colonization is mediated by SasG lectin variation. Cell Rep 2024; 43:114022. [PMID: 38568806 DOI: 10.1016/j.celrep.2024.114022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/23/2024] [Accepted: 03/15/2024] [Indexed: 04/05/2024] Open
Abstract
Staphylococcus aureus causes the majority of skin and soft tissue infections, but this pathogen only transiently colonizes healthy skin. However, this transient skin exposure enables S. aureus to transition to infection. The initial adhesion of S. aureus to skin corneocytes is mediated by surface protein G (SasG). Here, phylogenetic analyses reveal the presence of two major divergent SasG alleles in S. aureus: SasG-I and SasG-II. Structural analyses of SasG-II identify a nonaromatic arginine in the binding pocket of the lectin subdomain that mediates adhesion to corneocytes. Atomic force microscopy and corneocyte adhesion assays indicate that SasG-II can bind to a broader variety of ligands than SasG-I. Glycosidase treatment results in different binding profiles between SasG-I and SasG-II on skin cells. In addition, SasG-mediated adhesion is recapitulated using differentiated N/TERT keratinocytes. Our findings indicate that SasG-II has evolved to adhere to multiple ligands, conferring a distinct advantage to S. aureus during skin colonization.
Collapse
Affiliation(s)
- Krista B Mills
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Joseph J Maciag
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Can Wang
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - John A Crawford
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Timothy J Enroth
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Klara C Keim
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yves F Dufrêne
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - D Ashley Robinson
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA; Center for Immunology and Microbial Research, University of Mississippi Medical Center, Jackson, MS, USA
| | - Paul D Fey
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Andrew B Herr
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Veterans Affairs, VA Eastern Colorado Healthcare System, Aurora, CO, USA.
| |
Collapse
|
28
|
Ulrich RJ, Podkowik M, Tierce R, Irnov I, Putzel G, Samhadaneh N, Lacey KA, Boff D, Morales SM, Makita S, Karagounis TK, Zwack EE, Zhou C, Kim R, Drlica K, Pironti A, van Bakel H, Torres VJ, Shopsin B. Prophage-encoded methyltransferase drives adaptation of community-acquired methicillin-resistant Staphylococcus aureus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.17.589803. [PMID: 38659881 PMCID: PMC11042277 DOI: 10.1101/2024.04.17.589803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
We recently described the evolution of a community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) USA300 variant responsible for an outbreak of skin and soft tissue infections. Acquisition of a mosaic version of the Φ11 prophage (mΦ11) that increases skin abscess size was an early step in CA-MRSA adaptation that primed the successful spread of the clone. The present report shows how prophage mΦ11 exerts its effect on virulence for skin infection without encoding a known toxin or fitness genes. Abscess size and skin inflammation were associated with DNA methylase activity of an mΦ11-encoded adenine methyltransferase (designated pamA). pamA increased expression of fibronectin-binding protein A (fnbA; FnBPA), and inactivation of fnbA eliminated the effect of pamA on abscess virulence without affecting strains lacking pamA. Thus, fnbA is a pamA-specific virulence factor. Mechanistically, pamA was shown to promote biofilm formation in vivo in skin abscesses, a phenotype linked to FnBPA's role in biofilm formation. Collectively, these data reveal a novel mechanism-epigenetic regulation of staphylococcal gene expression-by which phage can regulate virulence to drive adaptive leaps by S. aureus.
Collapse
Affiliation(s)
- Robert J. Ulrich
- Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Magdalena Podkowik
- Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
- Antimicrobial-Resistant Pathogens Program, NYU Grossman School of Medicine, New York, NY, USA
| | - Rebecca Tierce
- Division of Comparative Medicine, NYU Langone Health, New York, NY, USA
| | - Irnov Irnov
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Gregory Putzel
- Antimicrobial-Resistant Pathogens Program, NYU Grossman School of Medicine, New York, NY, USA
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Nora Samhadaneh
- Antimicrobial-Resistant Pathogens Program, NYU Grossman School of Medicine, New York, NY, USA
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Keenan A. Lacey
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Daiane Boff
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Sabrina M. Morales
- Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Sohei Makita
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Theodora K. Karagounis
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Erin E. Zwack
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Chunyi Zhou
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Randie Kim
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Karl Drlica
- Department of Microbiology, Biochemistry & Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
| | - Alejandro Pironti
- Antimicrobial-Resistant Pathogens Program, NYU Grossman School of Medicine, New York, NY, USA
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Victor J. Torres
- Antimicrobial-Resistant Pathogens Program, NYU Grossman School of Medicine, New York, NY, USA
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
- Department of Host-Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Bo Shopsin
- Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
- Antimicrobial-Resistant Pathogens Program, NYU Grossman School of Medicine, New York, NY, USA
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
29
|
Ho M, Nguyen HN, Van Hoang M, Bui TTT, Vu BQ, Dinh THT, Vo HTM, Blaydon DC, Eldirany SA, Bunick CG, Bui CB. Altered skin microbiome, inflammation, and JAK/STAT signaling in Southeast Asian ichthyosis patients. Hum Genomics 2024; 18:38. [PMID: 38627868 PMCID: PMC11022333 DOI: 10.1186/s40246-024-00603-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 04/01/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Congenital ichthyosis (CI) is a collective group of rare hereditary skin disorders. Patients present with epidermal scaling, fissuring, chronic inflammation, and increased susceptibility to infections. Recently, there is increased interest in the skin microbiome; therefore, we hypothesized that CI patients likely exhibit an abnormal profile of epidermal microbes because of their various underlying skin barrier defects. Among recruited individuals of Southeast Asian ethnicity, we performed skin meta-genomics (i.e., whole-exome sequencing to capture the entire multi-kingdom profile, including fungi, protists, archaea, bacteria, and viruses), comparing 36 CI patients (representing seven subtypes) with that of 15 CI age-and gender-matched controls who had no family history of CI. RESULTS This case-control study revealed 20 novel and 31 recurrent pathogenic variants. Microbiome meta-analysis showed distinct microbial populations, decreases in commensal microbiota, and higher colonization by pathogenic species associated with CI; these were correlated with increased production of inflammatory cytokines and Th17- and JAK/STAT-signaling pathways in peripheral blood mononuclear cells. In the wounds of CI patients, we identified specific changes in microbiota and alterations in inflammatory pathways, which are likely responsible for impaired wound healing. CONCLUSIONS Together, this research enhances our understanding of the microbiological, immunological, and molecular properties of CI and should provide critical information for improving therapeutic management of CI patients.
Collapse
Affiliation(s)
- Minh Ho
- Department of Dermatology and Program in Translational Biomedicine, Yale University, New Haven, CT, USA
| | - Huynh-Nga Nguyen
- Microbial Genomics DNA Medical Technology, Ho Chi Minh, Vietnam
- Department of Biology, Dalat University, Da Lat, Lam Dong, Vietnam
| | - Minh Van Hoang
- Vietnam Vascular Anomalies Center, University Medical Center 3, Ho Chi Minh, Vietnam
| | | | - Bao-Quoc Vu
- Microbial Genomics DNA Medical Technology, Ho Chi Minh, Vietnam
- Department of Biology, Dalat University, Da Lat, Lam Dong, Vietnam
| | - Truc Huong Thi Dinh
- Department of Pathophysiology and Immunology, Can Tho University of Medicine and Pharmacy, Can Tho, Vietnam
| | - Hoa Thi My Vo
- Oxford University Clinical Research Unit, Ho Chi Minh, Vietnam
| | - Diana C Blaydon
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London, UK
| | - Sherif A Eldirany
- Department of Dermatology and Program in Translational Biomedicine, Yale University, New Haven, CT, USA
| | - Christopher G Bunick
- Department of Dermatology and Program in Translational Biomedicine, Yale University, New Haven, CT, USA.
| | - Chi-Bao Bui
- Microbial Genomics DNA Medical Technology, Ho Chi Minh, Vietnam.
- Department of Microbiology, City Children's Hospital, Ho Chi Minh, Vietnam.
- School of Medicine, Vietnam National University, Ho Chi Minh, Vietnam.
| |
Collapse
|
30
|
Pugazhendhi AS, Seal A, Hughes M, Kumar U, Kolanthai E, Wei F, Schwartzman JD, Coathup MJ. Extracellular Proteins Isolated from L. acidophilus as an Osteomicrobiological Therapeutic Agent to Reduce Pathogenic Biofilm Formation, Regulate Chronic Inflammation, and Augment Bone Formation In Vitro. Adv Healthc Mater 2024; 13:e2302835. [PMID: 38117082 DOI: 10.1002/adhm.202302835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/31/2023] [Indexed: 12/21/2023]
Abstract
Periprosthetic joint infection (PJI) is a challenging complication that can occur following joint replacement surgery. Efficacious strategies to prevent and treat PJI and its recurrence remain elusive. Commensal bacteria within the gut convey beneficial effects through a defense strategy named "colonization resistance" thereby preventing pathogenic infection along the intestinal surface. This blueprint may be applicable to PJI. The aim is to investigate Lactobacillus acidophilus spp. and their isolated extracellular-derived proteins (LaEPs) on PJI-relevant Staphylococcus aureus, methicillin-resistant S. aureus, and Escherichia coli planktonic growth and biofilm formation in vitro. The effect of LaEPs on cultured macrophages and osteogenic, and adipogenic human bone marrow-derived mesenchymal stem cell differentiation is analyzed. Data show electrostatically-induced probiotic-pathogen species co-aggregation and pathogenic growth inhibition together with LaEP-induced biofilm prevention. LaEPs prime macrophages for enhanced microbial phagocytosis via cathepsin K, reduce lipopolysaccharide-induced DNA damage and receptor activator nuclear factor-kappa B ligand expression, and promote a reparative M2 macrophage morphology under chronic inflammatory conditions. LaEPs also significantly augment bone deposition while abating adipogenesis thus holding promise as a potential multimodal therapeutic strategy. Proteomic analyses highlight high abundance of lysyl endopeptidase, and urocanate reductase. Further, in vivo analyses are warranted to elucidate their role in the prevention and treatment of PJIs.
Collapse
Affiliation(s)
| | - Anouska Seal
- Biionix Cluster, University of Central Florida, Orlando, FL, 32827, USA
| | | | - Udit Kumar
- Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center (NSTC), University of Central Florida, Orlando, FL, 32826, USA
| | - Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center (NSTC), University of Central Florida, Orlando, FL, 32826, USA
| | - Fei Wei
- Biionix Cluster, University of Central Florida, Orlando, FL, 32827, USA
| | | | - Melanie J Coathup
- Biionix Cluster, University of Central Florida, Orlando, FL, 32827, USA
- College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| |
Collapse
|
31
|
Nigo M, Rasmy L, Mao B, Kannadath BS, Xie Z, Zhi D. Deep learning model for personalized prediction of positive MRSA culture using time-series electronic health records. Nat Commun 2024; 15:2036. [PMID: 38448409 PMCID: PMC10917736 DOI: 10.1038/s41467-024-46211-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/19/2024] [Indexed: 03/08/2024] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) poses significant morbidity and mortality in hospitals. Rapid, accurate risk stratification of MRSA is crucial for optimizing antibiotic therapy. Our study introduced a deep learning model, PyTorch_EHR, which leverages electronic health record (EHR) time-series data, including wide-variety patient specific data, to predict MRSA culture positivity within two weeks. 8,164 MRSA and 22,393 non-MRSA patient events from Memorial Hermann Hospital System, Houston, Texas are used for model development. PyTorch_EHR outperforms logistic regression (LR) and light gradient boost machine (LGBM) models in accuracy (AUROCPyTorch_EHR = 0.911, AUROCLR = 0.857, AUROCLGBM = 0.892). External validation with 393,713 patient events from the Medical Information Mart for Intensive Care (MIMIC)-IV dataset in Boston confirms its superior accuracy (AUROCPyTorch_EHR = 0.859, AUROCLR = 0.816, AUROCLGBM = 0.838). Our model effectively stratifies patients into high-, medium-, and low-risk categories, potentially optimizing antimicrobial therapy and reducing unnecessary MRSA-specific antimicrobials. This highlights the advantage of deep learning models in predicting MRSA positive cultures, surpassing traditional machine learning models and supporting clinicians' judgments.
Collapse
Affiliation(s)
- Masayuki Nigo
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.
- McWilliams School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, USA.
- Division of Infectious Diseases, Department of Medicine, Houston Methodist Hospital, Texas Medical Center, Houston, TX, USA.
| | - Laila Rasmy
- McWilliams School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Bingyu Mao
- McWilliams School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Bijun Sai Kannadath
- Department of Internal Medicine, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - Ziqian Xie
- McWilliams School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Degui Zhi
- McWilliams School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
32
|
Seal A, Hughes M, Wei F, Pugazhendhi AS, Ngo C, Ruiz J, Schwartzman JD, Coathup MJ. Sphingolipid-Induced Bone Regulation and Its Emerging Role in Dysfunction Due to Disease and Infection. Int J Mol Sci 2024; 25:3024. [PMID: 38474268 PMCID: PMC10932382 DOI: 10.3390/ijms25053024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
The human skeleton is a metabolically active system that is constantly regenerating via the tightly regulated and highly coordinated processes of bone resorption and formation. Emerging evidence reveals fascinating new insights into the role of sphingolipids, including sphingomyelin, sphingosine, ceramide, and sphingosine-1-phosphate, in bone homeostasis. Sphingolipids are a major class of highly bioactive lipids able to activate distinct protein targets including, lipases, phosphatases, and kinases, thereby conferring distinct cellular functions beyond energy metabolism. Lipids are known to contribute to the progression of chronic inflammation, and notably, an increase in bone marrow adiposity parallel to elevated bone loss is observed in most pathological bone conditions, including aging, rheumatoid arthritis, osteoarthritis, and osteomyelitis. Of the numerous classes of lipids that form, sphingolipids are considered among the most deleterious. This review highlights the important primary role of sphingolipids in bone homeostasis and how dysregulation of these bioactive metabolites appears central to many chronic bone-related diseases. Further, their contribution to the invasion, virulence, and colonization of both viral and bacterial host cell infections is also discussed. Many unmet clinical needs remain, and data to date suggest the future use of sphingolipid-targeted therapy to regulate bone dysfunction due to a variety of diseases or infection are highly promising. However, deciphering the biochemical and molecular mechanisms of this diverse and extremely complex sphingolipidome, both in terms of bone health and disease, is considered the next frontier in the field.
Collapse
Affiliation(s)
- Anouska Seal
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
| | - Megan Hughes
- School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK;
| | - Fei Wei
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| | - Abinaya S. Pugazhendhi
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| | - Christopher Ngo
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| | - Jonathan Ruiz
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| | | | - Melanie J. Coathup
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| |
Collapse
|
33
|
Moglia T, Falkenstein C, Rieker F, Tun N, Rajaram-Gilkes M. Anatomical Ignorance Resulting in Iatrogenic Causes of Human Morbidity. Cureus 2024; 16:e56480. [PMID: 38638713 PMCID: PMC11025880 DOI: 10.7759/cureus.56480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2024] [Indexed: 04/20/2024] Open
Abstract
This article discusses how inadequate anatomy education contributes to iatrogenic causes of human morbidity and mortality. Through a review of the relevant literature, high-yield clinical cases were identified in which a lack of sufficient anatomical knowledge contributed to patient morbidity, such as abscess formation and neuropathy as a result of improper intramuscular injections, superior gluteal nerve injuries due to surgical procedures, and misdiagnoses due to physicians' inability to examine and correlate clinical and radiological findings. The importance of a multimodal learning approach in anatomy education for medical students, which includes the utilization of the cadaveric dissection approach to emphasize spatial understanding, is crucial for the development of competent physicians with a deep-rooted foundational knowledge of anatomy and related concepts, such as physiology, pathology, and radiology. It cannot be understated that anatomy education and a lack of knowledge of anatomy and related concepts may influence iatrogenic causes of human morbidity and mortality. Therefore, all efforts should be made to ensure that students develop a strong foundational anatomy knowledge during their preclinical years.
Collapse
Affiliation(s)
- Taylor Moglia
- Medical Education, Geisinger Commonwealth School of Medicine, Scranton, USA
| | | | - Finn Rieker
- Medical Education, Geisinger Commonwealth School of Medicine, Scranton, USA
| | - Nang Tun
- Medical Education, Geisinger Commonwealth School of Medicine, Scranton, USA
| | | |
Collapse
|
34
|
Nashebi R, Sari M, Kotil SE. Mathematical modelling of antibiotic interaction on evolution of antibiotic resistance: an analytical approach. PeerJ 2024; 12:e16917. [PMID: 38426146 PMCID: PMC10903357 DOI: 10.7717/peerj.16917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/18/2024] [Indexed: 03/02/2024] Open
Abstract
Background The emergence and spread of antibiotic-resistant pathogens have led to the exploration of antibiotic combinations to enhance clinical effectiveness and counter resistance development. Synergistic and antagonistic interactions between antibiotics can intensify or diminish the combined therapy's impact. Moreover, these interactions can evolve as bacteria transition from wildtype to mutant (resistant) strains. Experimental studies have shown that the antagonistically interacting antibiotics against wildtype bacteria slow down the evolution of resistance. Interestingly, other studies have shown that antibiotics that interact antagonistically against mutants accelerate resistance. However, it is unclear if the beneficial effect of antagonism in the wildtype bacteria is more critical than the detrimental effect of antagonism in the mutants. This study aims to illuminate the importance of antibiotic interactions against wildtype bacteria and mutants on the deacceleration of antimicrobial resistance. Methods To address this, we developed and analyzed a mathematical model that explores the population dynamics of wildtype and mutant bacteria under the influence of interacting antibiotics. The model investigates the relationship between synergistic and antagonistic antibiotic interactions with respect to the growth rate of mutant bacteria acquiring resistance. Stability analysis was conducted for equilibrium points representing bacteria-free conditions, all-mutant scenarios, and coexistence of both types. Numerical simulations corroborated the analytical findings, illustrating the temporal dynamics of wildtype and mutant bacteria under different combination therapies. Results Our analysis provides analytical clarification and numerical validation that antibiotic interactions against wildtype bacteria exert a more significant effect on reducing the rate of resistance development than interactions against mutants. Specifically, our findings highlight the crucial role of antagonistic antibiotic interactions against wildtype bacteria in slowing the growth rate of resistant mutants. In contrast, antagonistic interactions against mutants only marginally affect resistance evolution and may even accelerate it. Conclusion Our results emphasize the importance of considering the nature of antibiotic interactions against wildtype bacteria rather than mutants when aiming to slow down the acquisition of antibiotic resistance.
Collapse
Affiliation(s)
- Ramin Nashebi
- Department of Mathematics, Yildiz Technical University, Istanbul, Turkey
| | - Murat Sari
- Department of Mathematical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Seyfullah Enes Kotil
- Department of Biophysics, Bahcesehir University, Istanbul, Turkey
- Department of Molecular Biology and Genetics, Bogazici University, Istanbul, Turkey
| |
Collapse
|
35
|
De K, Dey R, Acharya Y, Aswal VK, Haldar J. Cleavable Amphiphilic Biocides with Ester-Bearing Moieties: Aggregation Properties and Antibacterial Activity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38324708 DOI: 10.1021/acs.langmuir.3c02771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The rise of multidrug-resistant bacterial infections and the dwindling supply of newly approved antibiotics have emerged as a grave threat to public health. Toward the ever-growing necessity of the development of novel antimicrobial agents, herein, we synthesized a series of cationic amphiphilic biocides featuring two cationic headgroups separated by different hydrophobic spacers, accompanied by the inclusion of two lipophilic tails through cleavable ester functionality. The detailed aggregation properties offered by these biocides were investigated by small-angle neutron scattering (SANS) and conductivity. The critical micellar concentration of the biocides and the size and shape of the micellar aggregates differed with variation of pendant and spacer hydrophobicity. Furthermore, the aggregation number and size of the micelles were found to vary with changing concentration and temperature. These easily synthesized biocides exhibited potent antibacterial properties against various multidrug-resistant bacteria. The optimized biocides with minimum hematotoxicity and potent antibacterial activity against methicillin-resistant Staphylococcus aureus and Acinetobacter baumannii exhibited rapid killing kinetics against planktonic bacteria. Also, these membrane-active agents were able to eradicate preformed biofilms. The enzymatic and acidic degradation profile further offered proof of gradual degradation. Collectively, these cleavable amphiphilic biocides demonstrated excellent potency for combating the multidrug-resistant bacterial infection.
Collapse
Affiliation(s)
- Kathakali De
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| | - Rajib Dey
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| | - Yash Acharya
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| | - Vinod Kumar Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre (BARC), Mumbai 400085, Maharashtra, India
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| |
Collapse
|
36
|
Benvenga V, Cuénod A, Purushothaman S, Dasen G, Weisser M, Bassetti S, Roloff T, Siegemund M, Heininger U, Bielicki J, Wehrli M, Friderich P, Frei R, Widmer A, Herzog K, Fankhauser H, Nolte O, Bodmer T, Risch M, Dubuis O, Pranghofer S, Calligaris-Maibach R, Graf S, Perreten V, Seth-Smith HMB, Egli A. Historic methicillin-resistant Staphylococcus aureus: expanding current knowledge using molecular epidemiological characterization of a Swiss legacy collection. Genome Med 2024; 16:23. [PMID: 38317199 PMCID: PMC10840241 DOI: 10.1186/s13073-024-01292-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/22/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Few methicillin-resistant Staphylococcus aureus (MRSA) from the early years of its global emergence have been sequenced. Knowledge about evolutionary factors promoting the success of specific MRSA multi-locus sequence types (MLSTs) remains scarce. We aimed to characterize a legacy MRSA collection isolated from 1965 to 1987 and compare it against publicly available international and local genomes. METHODS We accessed 451 historic (1965-1987) MRSA isolates stored in the Culture Collection of Switzerland, mostly collected from the Zurich region. We determined phenotypic antimicrobial resistance (AMR) and performed whole genome sequencing (WGS) using Illumina short-read sequencing on all isolates and long-read sequencing on a selection with Oxford Nanopore Technology. For context, we included 103 publicly available international assemblies from 1960 to 1992 and sequenced 1207 modern Swiss MRSA isolates from 2007 to 2022. We analyzed the core genome (cg)MLST and predicted SCCmec cassette types, AMR, and virulence genes. RESULTS Among the 451 historic Swiss MRSA isolates, we found 17 sequence types (STs) of which 11 have been previously described. Two STs were novel combinations of known loci and six isolates carried previously unsubmitted MLST alleles, representing five new STs (ST7843, ST7844, ST7837, ST7839, and ST7842). Most isolates (83% 376/451) represented ST247-MRSA-I isolated in the 1960s, followed by ST7844 (6% 25/451), a novel single locus variant (SLV) of ST239. Analysis by cgMLST indicated that isolates belonging to ST7844-MRSA-III cluster within the diversity of ST239-MRSA-III. Early MRSA were predominantly from clonal complex (CC)8. From 1980 to the end of the twentieth century, we observed that CC22 and CC5 as well as CC8 were present, both locally and internationally. CONCLUSIONS The combined analysis of 1761 historic and contemporary MRSA isolates across more than 50 years uncovered novel STs and allowed us a glimpse into the lineage flux between Swiss-German and international MRSA across time.
Collapse
Affiliation(s)
- Vanni Benvenga
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 28/30, Zurich, 8006, Switzerland
| | - Aline Cuénod
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 28/30, Zurich, 8006, Switzerland
| | - Srinithi Purushothaman
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 28/30, Zurich, 8006, Switzerland
| | | | - Maja Weisser
- Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - Stefano Bassetti
- Internal Medicine, University Hospital Basel, Basel, Switzerland
| | - Tim Roloff
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 28/30, Zurich, 8006, Switzerland
- Swiss Institute of Bioinformatics, University of Basel, Lausanne, Switzerland
- Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
| | - Martin Siegemund
- Intensive Care Medicine, University Hospital Basel, Basel, Switzerland
| | - Ulrich Heininger
- Infectious Diseases and Hospital Epidemiology, University of Basel Children's Hospital, Basel, Switzerland
| | - Julia Bielicki
- Infectious Diseases and Hospital Epidemiology, University of Basel Children's Hospital, Basel, Switzerland
| | - Marianne Wehrli
- Microbiology Department, Hospital of Schaffhausen, Schaffhausen, Switzerland
| | - Paul Friderich
- Medicinal microbiology department, Hospital of Lucerne, Lucerne, Switzerland
| | - Reno Frei
- Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
| | - Andreas Widmer
- Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - Kathrin Herzog
- Clinical Microbiology, Cantonal Hospital Thurgau, Münsterlingen, Switzerland
| | - Hans Fankhauser
- Clinical Microbiology, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Oliver Nolte
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 28/30, Zurich, 8006, Switzerland
- Clinical Microbiology, Zentrum für Labormedizin St, Gallen, St. Gallen, Switzerland
| | | | | | - Olivier Dubuis
- Clinical Microbiology, Viollier AG, Allschwil, Switzerland
| | | | | | - Susanne Graf
- Clinical Microbiology, Cantonal Hospital Basellandschaft, Liestal, Switzerland
| | - Vincent Perreten
- Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland
- Swiss Pathogen Surveillance Platform (SPSP), Lausanne, Switzerland
| | - Helena M B Seth-Smith
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 28/30, Zurich, 8006, Switzerland
- Swiss Institute of Bioinformatics, University of Basel, Lausanne, Switzerland
- Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
| | - Adrian Egli
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland.
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 28/30, Zurich, 8006, Switzerland.
- Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland.
- Swiss Pathogen Surveillance Platform (SPSP), Lausanne, Switzerland.
| |
Collapse
|
37
|
Morgan Bustamante BL, Fejerman L, May L, Martínez-López B. Community-acquired Staphylococcus aureus skin and soft tissue infection risk assessment using hotspot analysis and risk maps: the case of California emergency departments. BMC Public Health 2024; 24:123. [PMID: 38195461 PMCID: PMC10775506 DOI: 10.1186/s12889-023-17336-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/25/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Community-acquired Staphylococcus aureus (CA-Sa) skin and soft tissue infections (SSTIs) are historically associated with densely populated urban areas experiencing high poverty rates, intravenous drug use, and homelessness. However, the epidemiology of CA-Sa SSTIs in the United States has been poorly understood since the plateau of the Community-acquired Methicillin-resistant Staphylococcus aureus epidemic in 2010. This study examines the spatial variation of CA-Sa SSTIs in a large, geographically heterogeneous population and identifies neighborhood characteristics associated with increased infection risk. METHODS Using a unique neighborhood boundary, California Medical Service Study Areas, a hotspot analysis, and estimates of neighborhood infection risk ratios were conducted for all CA-Sa SSTIs presented in non-Federal California emergency departments between 2016 and 2019. A Bayesian Poisson regression model evaluated the association between neighborhood-level infection risk and population structure, neighborhood poverty rates, and being a healthcare shortage area. RESULTS Emergency departments in more rural and mountainous parts of California experienced a higher burden of CA-Sa SSTIs between 2016 and 2019. Neighborhoods with high infection rates were more likely to have a high percentage of adults living below the federal poverty level and be a designated healthcare shortage area. Measures of population structure were not associated with infection risk in California neighborhoods. CONCLUSIONS Our results highlight a potential change in the epidemiology of CA-Sa SSTIs in California emergency departments. Future studies should investigate the CA-Sa burden in other geographies to identify whether this shift in epidemiology holds across other states and populations. Further, a more thorough evaluation of potential mechanisms for the clustering of infections seen across California neighborhoods is needed.
Collapse
Affiliation(s)
- Brittany L Morgan Bustamante
- Public Health Sciences, School of Medicine, University of California, Davis, Davis, CA, USA.
- Center for Animal Disease Modeling and Surveillance, Department of Veterinary Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA.
| | - Laura Fejerman
- Public Health Sciences, School of Medicine, University of California, Davis, Davis, CA, USA
| | - Larissa May
- Emergency Medicine, School of Medicine, University of California, Davis, Davis, CA, USA
| | - Beatriz Martínez-López
- Center for Animal Disease Modeling and Surveillance, Department of Veterinary Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| |
Collapse
|
38
|
Hagras M, Abuelkhir AA, Abutaleb NS, Helal AM, Fawzy IM, Hegazy M, Seleem MN, Mayhoub AS. Novel phenylthiazoles with a tert-butyl moiety: promising antimicrobial activity against multidrug-resistant pathogens with enhanced ADME properties. RSC Adv 2024; 14:1513-1526. [PMID: 38174234 PMCID: PMC10763701 DOI: 10.1039/d3ra07619a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
The structure-activity relationship of a new tert-butylphenylthiazole series, with a pyrimidine linker, was investigated. We wished to expand knowledge of this novel class of antibiotics by generating 21 new derivatives bearing ≥2 heteroatoms in their side chains. Their activity was examined against isolates of methicillin-resistant Staphylococcus aureus (MRSA), Clostridium difficile, Escherichia coli, Neisseria gonorrhoeae, and Candida albicans. Two compounds with 1,2-diaminocyclohexane as a nitrogenous side chain showed promising activity against the highly infectious MRSA USA300 strain, with a minimum inhibitory concentration (MIC) of 4 μg mL-1. One of these two compounds demonstrated potent activity against C. difficile, with a MIC of 4 μg mL-1. Moderate activities against a C. difficile strain with a MIC of 8 μg mL-1 were noted. Some new compounds possessed antifungal activity against a wild fluconazole-resistant C. albicans strain, with MIC values of 4-16 μg mL-1. ADME and metabolism-simulation studies were performed for the most promising compound and compared with lead compounds. Our results revealed that one compound possessed greater penetration of bacterial membranes and metabolic resistance, which aided a longer duration of action against MRSA.
Collapse
Affiliation(s)
- Mohamed Hagras
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy (Boys), Al-Azhar University Cairo 11884 Egypt
| | - Abdelrahman A Abuelkhir
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy (Boys), Al-Azhar University Cairo 11884 Egypt
| | - Nader S Abutaleb
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University Blacksburg Virginia 24061 USA
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University Zagazig 44519 Egypt
| | - Ahmed M Helal
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy (Boys), Al-Azhar University Cairo 11884 Egypt
| | - Iten M Fawzy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Future University in Egypt 11835 Cairo Egypt
| | - Maghawry Hegazy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University Cairo 11884 Egypt
| | - Mohamed N Seleem
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University Blacksburg Virginia 24061 USA
- Center for One Health Research, Virginia Polytechnic Institute and State University Blacksburg Virginia 24061 USA
| | - Abdelrahman S Mayhoub
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy (Boys), Al-Azhar University Cairo 11884 Egypt
- University of Science and Technology, Nanoscience Program, Zewail City of Science and Technology October Gardens 6th of October Giza 12578 Egypt
| |
Collapse
|
39
|
Balakirski G, Hofmann SC. [Genitoanal infections caused by Panton-Valentine leukocidin (PVL)-positive Staphylococcus aureus : Smear infection or sexually transmitted disease?]. DERMATOLOGIE (HEIDELBERG, GERMANY) 2024; 75:55-60. [PMID: 37982858 DOI: 10.1007/s00105-023-05255-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 11/21/2023]
Abstract
Panton-Valentine leukocidin (PVL) is a pore-forming exotoxin produced by certain Staphylococcus (S.) aureus strains, which is responsible for the increased virulence of the pathogen. Thus, infections caused by PVL-positive S. aureus tend to recur. Usually, the infection is a smear infection, which can cause folliculitis and purulent lid margin inflammation in addition to the classic mucocutaneous abscesses. Recently, recurrent genitoanal infections caused by PVL-positive S. aureus have also been described. In most cases, this is a sexually transmitted disease. Currently, it is assumed that most infections are imported from abroad. In addition to treatment of these infections, decolonization should be performed for prophylaxis of recurrence.
Collapse
Affiliation(s)
- Galina Balakirski
- Zentrum für Dermatologie, Allergologie und Dermatochirurgie, Helios Universitätsklinikum Wuppertal, Heusnerstr. 40, 42283, Wuppertal, Deutschland.
| | - Silke C Hofmann
- Zentrum für Dermatologie, Allergologie und Dermatochirurgie, Helios Universitätsklinikum Wuppertal, Heusnerstr. 40, 42283, Wuppertal, Deutschland
| |
Collapse
|
40
|
Brébant V, Eschenbacher E, Hitzenbichler F, Pemmerl S, Prantl L, Pawlik M. Pathogens and their resistance behavior in necrotizing fasciitis. Clin Hemorheol Microcirc 2024; 86:169-181. [PMID: 37807775 DOI: 10.3233/ch-238119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
BACKGROUND Necrotizing fasciitis (NF) is a rare but life-threatening condition in which extensive soft tissue destruction can occur very quickly if left untreated. Therefore, timely broad-spectrum antibiotic administration is of prognostic importance in addition to radical surgical debridement. AIM This study evaluates the cases of NF in our hospital during the last ten years retrospectively with respect to the pathogens involved and their antimicrobial resistance. This approach aims to provide guidance regarding the most targeted initial antibiotic therapy. METHODS We performed a retrospective microbiological study evaluating pathogen detection and resistance patterns including susceptibility testing of 42 patients with NF. RESULTS Type 1 NF (polymicrobial infection) occurred in 45% of the patients; 31% presented type 2 NF (monomicrobial infection). The most common pathogens detected were E. coli, staphylococci such as Staphylococcus aureus and Staphylococcus epidermidis, Proteus mirabilis, enterococci, and streptococci such as Streptococcus pyogenes. Twelve percent presented an additional fungus infection (type 4). Ten percent showed no cultivation. Two percent (one patient) presented cocci without specification. CONCLUSION Most pathogens were sensitive to antibiotics recommended by guidelines. This confirms the targeting accuracy of the guidelines. Further studies are necessary to identify risk factors associated with multidrug resistant infections requiring early vancomycin/meropenem administration.
Collapse
Affiliation(s)
- Vanessa Brébant
- University Centre for Plastic, Aesthetic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Elisabeth Eschenbacher
- University Centre for Plastic, Aesthetic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Florian Hitzenbichler
- Department of Infection Prevention and Infectious Diseases, University Hospital Regensburg, Regensburg, Germany
| | - Sylvia Pemmerl
- Department of Hygiene, Caritas-Hospital St. Josef, Regensburg, Germany
| | - Lukas Prantl
- University Centre for Plastic, Aesthetic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Michael Pawlik
- Department of Anaesthesiology, Intensive Care and Emergency Medicine, Caritas St. Josef Medical Centre, University Medical Centre Regensburg, Regensburg, Germany
| |
Collapse
|
41
|
Montméat V, Bonny V, Urbina T, Missri L, Baudel JL, Retbi A, Penaud V, Voiriot G, Cohen Y, De Prost N, Guidet B, Maury E, Ait-Oufella H, Joffre J. Epidemiology and Clinical Patterns of Lung Abscesses in ICU: A French Multicenter Retrospective Study. Chest 2024; 165:48-57. [PMID: 37652296 DOI: 10.1016/j.chest.2023.08.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/13/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Data are scarce regarding epidemiology and management of critically ill patients with lung abscesses. RESEARCH QUESTION What are the clinical and microbiological characteristics of critically ill patients with lung abscesses, how are they managed in the ICU, and what are the risk factors of in-ICU mortality? STUDY DESIGN AND METHODS This was a retrospective observational multicenter study, based on International Classification of Diseases, 10th Revision, codes, between 2015 and 2022 in France. In-ICU mortality-associated factors were determined by multivariate logistic regression. RESULTS We analyzed 171 ICU patients with pulmonary abscesses. Seventy-eight percent were male, with a mean age of 56.5 ± 16.4 years; 20.4% misused alcohol, 25.2% had a chronic lung disease (14% COPD), and 20.5% had a history of cancer. Overall, 40.9% were immunocompromised and 38% qualified for nosocomial infection. Presenting symptoms included fatigue or weight loss in 62%, fever (50.3%), and dyspnea (47.4%). Hemoptysis was reported in 21.7%. A polymicrobial infection was present in 35.6%. The most frequent pathogens were Enterobacteriaceae in 31%, Staphylococcus aureus in 22%, and Pseudomonas aeruginosa in 19.3%. Fungal infections were found in 10.5%. Several clusters of clinicoradiologic patterns were associated with specific microbiological documentation and could guide empiric antibiotic regimen. Percutaneous abscess drainage was performed in 11.7%; surgery was performed in 12.7%, and 12% required bronchial artery embolization for hemoptysis. In-ICU mortality was 21.5%, and age (OR: 1.05 [1.02-1.91], P = .007], renal replacement therapy during ICU stay (OR, 3.56 [1.24-10.57], P = .019), and fungal infection (OR, 9.12 [2.69-34.5], P = .0006) were independent predictors of mortality after multivariate logistic regression, and drainage or surgery were not. INTERPRETATION Pulmonary abscesses in the ICU are a rare but severe disease often resulting from a polymicrobial infection, with a high proportion of Enterobacteriaceae, S aureus, and P aeruginosa. Percutaneous drainage, surgery, or arterial embolization was required in more than one-third of cases. Further prospective studies focusing on first-line antimicrobial therapy and source control procedure are warranted to improve and standardize patient management.
Collapse
Affiliation(s)
- Vinca Montméat
- Intensive Care Unit, Saint-Antoine University Hospital, APHP, Sorbonne University, Paris, France
| | - Vincent Bonny
- Intensive Care Unit, Saint-Antoine University Hospital, APHP, Sorbonne University, Paris, France
| | - Tomas Urbina
- Intensive Care Unit, Saint-Antoine University Hospital, APHP, Sorbonne University, Paris, France
| | - Louai Missri
- Intensive Care Unit, Saint-Antoine University Hospital, APHP, Sorbonne University, Paris, France
| | - Jean-Luc Baudel
- Intensive Care Unit, Saint-Antoine University Hospital, APHP, Sorbonne University, Paris, France
| | - Aurélia Retbi
- Département d'Information Médicale, Saint-Antoine University Hospital, APHP, Sorbonne University, Paris, France
| | - Victor Penaud
- Intensive Care Unit, Saint-Antoine University Hospital, APHP, Sorbonne University, Paris, France
| | - Guillaume Voiriot
- Service de Médecine Intensive Réanimation, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, Paris, France; Centre de Recherche Saint-Antoine, Inserm UMRS-938, Sorbonne University, Paris, France
| | - Yves Cohen
- Intensive Care Unit, Avicennes Hospital, APHP, University Sorbonne Paris Nord, Bobigny, France
| | - Nicolas De Prost
- Intensive Care Unit, Henri Mondor University Hospital, APHP, Paris-est Créteil -val de marne University, Créteil, France
| | - Bertrand Guidet
- Intensive Care Unit, Saint-Antoine University Hospital, APHP, Sorbonne University, Paris, France; Pierre Louis Institute of Epidemiology and Public Health, Inserm U1136, Sorbonne University, Paris, France
| | - Eric Maury
- Intensive Care Unit, Saint-Antoine University Hospital, APHP, Sorbonne University, Paris, France
| | - Hafid Ait-Oufella
- Intensive Care Unit, Saint-Antoine University Hospital, APHP, Sorbonne University, Paris, France; 8 Paris Cardiovascular Research Center, Inserm U970, Paris University, Paris, France
| | - Jérémie Joffre
- Intensive Care Unit, Saint-Antoine University Hospital, APHP, Sorbonne University, Paris, France; Centre de Recherche Saint-Antoine, Inserm UMRS-938, Sorbonne University, Paris, France.
| |
Collapse
|
42
|
Musuroi SI, Voinescu A, Musuroi C, Baditoiu LM, Muntean D, Izmendi O, Jumanca R, Licker M. The Challenges of The Diagnostic and Therapeutic Approach of Patients with Infectious Pathology in Emergency Medicine. J Pers Med 2023; 14:46. [PMID: 38248747 PMCID: PMC10821085 DOI: 10.3390/jpm14010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/23/2023] [Accepted: 12/24/2023] [Indexed: 01/23/2024] Open
Abstract
The emergency department (ED) represents an important setting for addressing inappropriate antimicrobial prescribing practices because of the time constraints and the duration of microbiological diagnosis. The purpose of this study is to evaluate the etiology and antimicrobial resistance (AMR) pattern of the community-acquired pathogens, as well as the epidemiological characteristics of patients admitted through the ED, in order to guide appropriate antibiotic therapy. METHODS A retrospective observational study was performed on 657 patients, from whom clinical samples (urine, purulent secretions, blood cultures, etc.) were collected for microbiological diagnosis in the first 3 days after presentation in the ED. The identification of pathogens and the antimicrobial susceptibility testing with minimum inhibitory concentration determination were carried out according to the laboratory protocols. RESULTS From the 767 biological samples analyzed, 903 microbial isolates were identified. E. coli was most frequently isolated (24.25%), followed by Klebsiella spp., S. aureus (SA), and non-fermentative Gram-negative bacilli. E. coli strains maintained their natural susceptibility to most antibiotics tested. In the case of Pseudomonas spp. and Acinetobacter spp., increased rates of AMR were identified. Also, 32.3% of SA strains were community-acquired MRSA. CONCLUSIONS The introduction of rapid microbiological diagnostic methods in emergency medicine is imperative in order to timely identify AMR strains and improve therapeutic protocols.
Collapse
Affiliation(s)
- Silvia Ioana Musuroi
- Doctoral School, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (S.I.M.)
- Internal Medicine Department, Municipal Emergency Clinical Hospital, 300254 Timisoara, Romania
| | - Adela Voinescu
- Doctoral School, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (S.I.M.)
- Microbiology Department, Multidisciplinary Research Center of Antimicrobial Resistance, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (D.M.); (M.L.)
- Microbiology Laboratory, “Pius Brinzeu” County Clinical Emergency Hospital, 300723 Timisoara, Romania
| | - Corina Musuroi
- Microbiology Department, Multidisciplinary Research Center of Antimicrobial Resistance, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (D.M.); (M.L.)
- Microbiology Laboratory, “Pius Brinzeu” County Clinical Emergency Hospital, 300723 Timisoara, Romania
| | - Luminita Mirela Baditoiu
- Epidemiology Department, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Delia Muntean
- Microbiology Department, Multidisciplinary Research Center of Antimicrobial Resistance, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (D.M.); (M.L.)
- Microbiology Laboratory, “Pius Brinzeu” County Clinical Emergency Hospital, 300723 Timisoara, Romania
| | - Oana Izmendi
- Doctoral School, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (S.I.M.)
- Microbiology Department, Multidisciplinary Research Center of Antimicrobial Resistance, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (D.M.); (M.L.)
- Microbiology Laboratory, “Pius Brinzeu” County Clinical Emergency Hospital, 300723 Timisoara, Romania
| | - Romanita Jumanca
- Romanian and Foreign Languages Department, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Monica Licker
- Microbiology Department, Multidisciplinary Research Center of Antimicrobial Resistance, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (D.M.); (M.L.)
- Microbiology Laboratory, “Pius Brinzeu” County Clinical Emergency Hospital, 300723 Timisoara, Romania
| |
Collapse
|
43
|
Jiang JH, Cameron DR, Nethercott C, Aires-de-Sousa M, Peleg AY. Virulence attributes of successful methicillin-resistant Staphylococcus aureus lineages. Clin Microbiol Rev 2023; 36:e0014822. [PMID: 37982596 PMCID: PMC10732075 DOI: 10.1128/cmr.00148-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a leading cause of severe and often fatal infections. MRSA epidemics have occurred in waves, whereby a previously successful lineage has been replaced by a more fit and better adapted lineage. Selection pressures in both hospital and community settings are not uniform across the globe, which has resulted in geographically distinct epidemiology. This review focuses on the mechanisms that trigger the establishment and maintenance of current, dominant MRSA lineages across the globe. While the important role of antibiotic resistance will be mentioned throughout, factors which influence the capacity of S. aureus to colonize and cause disease within a host will be the primary focus of this review. We show that while MRSA possesses a diverse arsenal of toxins including alpha-toxin, the success of a lineage involves more than just producing toxins that damage the host. Success is often attributed to the acquisition or loss of genetic elements involved in colonization and niche adaptation such as the arginine catabolic mobile element, as well as the activity of regulatory systems, and shift metabolism accordingly (e.g., the accessory genome regulator, agr). Understanding exactly how specific MRSA clones cause prolonged epidemics may reveal targets for therapies, whereby both core (e.g., the alpha toxin) and acquired virulence factors (e.g., the Panton-Valentine leukocidin) may be nullified using anti-virulence strategies.
Collapse
Affiliation(s)
- Jhih-Hang Jiang
- Department of Microbiology, Infection Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - David R Cameron
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Cara Nethercott
- Department of Microbiology, Infection Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Marta Aires-de-Sousa
- Laboratory of Molecular Genetics, Institutode Tecnologia Químicae Biológica António Xavier (ITQB-NOVA), Universidade Nova de Lisboa, Oeiras, Portugal
- Escola Superior de Saúde da Cruz Vermelha Portuguesa-Lisboa (ESSCVP-Lisboa), Lisbon, Portugal
| | - Anton Y Peleg
- Department of Microbiology, Infection Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Centre to Impact Antimicrobial Resistance, Monash University, Clayton, Melbourne, Victoria, Australia
| |
Collapse
|
44
|
Roy A, Poddar N, Panigrahi K, Pathi B, Nayak SR, Dandapat R, Pattnaik D, Praharaj AK, Patro ARK. Evaluation of In-Vitro Activity of Ceftaroline Against Methicillin-Resistant Staphylococcus aureus Clinical Isolates. Cureus 2023; 15:e49859. [PMID: 38169856 PMCID: PMC10758905 DOI: 10.7759/cureus.49859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2023] [Indexed: 01/05/2024] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the major causes of hospital and community-acquired infections. Fewer drugs, such as vancomycin, teicoplanin, and daptomycin, are effective against it, but they come with high toxicity. Fifth-generation cephalosporins like ceftaroline and second-generation cefuroxime are effective against MRSA. Limited studies are available on ceftaroline resistance in the literature. This study was undertaken to determine ceftaroline resistance in MRSA in a tertiary care hospital in Eastern India. A cross-sectional, hospital-based study was carried out with MRSA isolates obtained from various clinical samples of patients. Identification of the isolates to the species level was performed by an automated Vitek system, and selected samples were genotypically confirmed by detecting the mecA gene via real-time PCR. Out of a total of 334 Staphylococcus aureus isolates examined in this study, the prevalence of MRSA was seen in 59.3% (198/334), and methicillin-sensitive Staphylococcus aureus was in 40.7% (136/334). Of the total 198 MRSA isolates, ceftaroline intermediate MRSA was seen in 8.6% (17/198), and ceftaroline sensitive MRSA was in 91.4% (181/198), respectively. Among the 17 ceftaroline intermediate MRSA isolates, 88.2% (15/17) showed a minimum inhibitory concentration (MIC) of 2 µg/ml, and 11.8% (2/17) showed an MIC of 3 µg/ml. All the remaining 91.4% (181/198) isolates were sensitive to ceftaroline and showed an MIC ≤1 µg/ml. Real-time PCR confirmed the presence of the mecA gene in MRSA isolates. In this present study, not a single isolate was resistant to ceftaroline, suggesting that it, being a safer drug, can be used in place of glycopeptides such as vancomycin or teicoplanin and linezolid, where resistance has already been detected. The rational use of ceftaroline could be useful in clinical settings, and further studies will confirm the findings.
Collapse
Affiliation(s)
- Ankita Roy
- Microbiology, Kalinga Institute of Medical Sciences, Bhubaneswar, IND
| | - Nirmala Poddar
- Microbiology, Kalinga Institute of Medical Sciences, Bhubaneswar, IND
| | | | - Basanti Pathi
- Microbiology, Kalinga Institute of Medical Sciences, Bhubaneswar, IND
| | - Subham Ravi Nayak
- Microbiology, Kalinga Institute of Medical Sciences, Bhubaneswar, IND
| | - Roshni Dandapat
- Microbiology, Kalinga Institute of Medical Sciences, Bhubaneswar, IND
| | - Dipti Pattnaik
- Microbiology, Kalinga Institute of Medical Sciences, Bhubaneswar, IND
| | - Ashok K Praharaj
- Microbiology, Kalinga Institute of Medical Sciences, Bhubaneswar, IND
| | - A Raj Kumar Patro
- Microbiology, Kalinga Institute of Medical Sciences, Bhubaneswar, IND
| |
Collapse
|
45
|
Gangar T, Patra S. Antibiotic persistence and its impact on the environment. 3 Biotech 2023; 13:401. [PMID: 37982084 PMCID: PMC10654327 DOI: 10.1007/s13205-023-03806-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/10/2023] [Indexed: 11/21/2023] Open
Abstract
From boon molecules to molecules contributing to rising concern has been the sojourn of antibiotics. The problem of antibiotic contamination has gotten worse due to antibiotics' pervasive use in every aspect of the environment. One such consequence of pollution is the increase in infections with antibiotic resistance. All known antimicrobials being used for human benefit lead to their repetitive and routine release into the environment. The misuse of antibiotics has aggravated the situation to a level that we are short of antibiotics to treat infections as organisms have developed resistance against them. Overconsumption is not just limited to human health care, but also occurs in other areas such as aquaculture, livestock, and veterinary applications for the purpose of improving feed and meat products. Due to their harmful effects on non-target species, the trace level of antibiotics in the aquatic ecosystem presents a significant problem. Since the introduction of antibiotics into the environment is more than their removal, they have been given the status of persistent pollutants. The buildup of antibiotics in the environment threatens aquatic life and may lead to bacterial strains developing resistance. As newer organisms are becoming resistant, there exists a shortage of antibiotics to treat infections. This has presented a very critical problem for the health-care community. Another rising concern is that the development of newer drug molecules as antibiotics is minimal. This review article critically explains the cause and nature of the pollution and the effects of this emerging trend. Also, in the latter sections, why we need newer antibiotics is questioned and discussed.
Collapse
Affiliation(s)
- Tarun Gangar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039 India
| | - Sanjukta Patra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039 India
| |
Collapse
|
46
|
Castater C, Bishop E, Santos A, Freedberg M, Kim P, Sciarretta C. Diabetic Soft Tissue Infections. Surg Clin North Am 2023; 103:1191-1216. [PMID: 37838463 DOI: 10.1016/j.suc.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2023]
Abstract
Diabetes is a systemic illness that can cause a broad range of physiologic effects. Infection rates and wound healing are both affected through multiple mechanisms. Other physiologic changes increase risk for wounds as well as complex soft tissue infections ranging from simple cellulitis to necrotizing soft tissue infections. Clinicians and surgeons need to have a low index of suspicion for severe infection in a patient presenting with diabetes, and even more so in patients with uncontrolled diabetes.
Collapse
Affiliation(s)
- Christine Castater
- Morehouse School of Medicine, Grady Memorial Hospital 1C-144, 80 Jesse Hill Jr Drive Southeast, Atlanta, GA 30303, USA.
| | - Elliot Bishop
- Emory University, Grady Memorial Hospital Glenn Building 69 Jesse Hill Jr Drive Southeast, Atlanta, GA 30303, USA
| | - Adora Santos
- Emory University, Grady Memorial Hospital Glenn Building 69 Jesse Hill Jr Drive Southeast, Atlanta, GA 30303, USA
| | - Mari Freedberg
- Emory University, Grady Memorial Hospital Glenn Building 69 Jesse Hill Jr Drive Southeast, Atlanta, GA 30303, USA
| | - Phillip Kim
- Emory University, Grady Memorial Hospital Glenn Building 69 Jesse Hill Jr Drive Southeast, Atlanta, GA 30303, USA
| | - Christopher Sciarretta
- University of Tennessee, University of Tennessee College of Medicine, 975 3rd Avenue, Chattanooga, TN 37403, USA
| |
Collapse
|
47
|
Deng L, Costa F, Blake KJ, Choi S, Chandrabalan A, Yousuf MS, Shiers S, Dubreuil D, Vega-Mendoza D, Rolland C, Deraison C, Voisin T, Bagood MD, Wesemann L, Frey AM, Palumbo JS, Wainger BJ, Gallo RL, Leyva-Castillo JM, Vergnolle N, Price TJ, Ramachandran R, Horswill AR, Chiu IM. S. aureus drives itch and scratch-induced skin damage through a V8 protease-PAR1 axis. Cell 2023; 186:5375-5393.e25. [PMID: 37995657 PMCID: PMC10669764 DOI: 10.1016/j.cell.2023.10.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 08/20/2023] [Accepted: 10/18/2023] [Indexed: 11/25/2023]
Abstract
Itch is an unpleasant sensation that evokes a desire to scratch. The skin barrier is constantly exposed to microbes and their products. However, the role of microbes in itch generation is unknown. Here, we show that Staphylococcus aureus, a bacterial pathogen associated with itchy skin diseases, directly activates pruriceptor sensory neurons to drive itch. Epicutaneous S. aureus exposure causes robust itch and scratch-induced damage. By testing multiple isogenic bacterial mutants for virulence factors, we identify the S. aureus serine protease V8 as a critical mediator in evoking spontaneous itch and alloknesis. V8 cleaves proteinase-activated receptor 1 (PAR1) on mouse and human sensory neurons. Targeting PAR1 through genetic deficiency, small interfering RNA (siRNA) knockdown, or pharmacological blockade decreases itch and skin damage caused by V8 and S. aureus exposure. Thus, we identify a mechanism of action for a pruritogenic bacterial factor and demonstrate the potential of inhibiting V8-PAR1 signaling to treat itch.
Collapse
Affiliation(s)
- Liwen Deng
- Department of Immunology, Harvard Medical School, Boston, MA 02215, USA
| | - Flavia Costa
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kimbria J Blake
- Department of Immunology, Harvard Medical School, Boston, MA 02215, USA
| | - Samantha Choi
- Department of Immunology, Harvard Medical School, Boston, MA 02215, USA
| | - Arundhasa Chandrabalan
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Muhammad Saad Yousuf
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Stephanie Shiers
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Daniel Dubreuil
- Departments of Neurology and Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Daniela Vega-Mendoza
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Corinne Rolland
- IRSD, Université de Toulouse, INSERM, INRAe, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Celine Deraison
- IRSD, Université de Toulouse, INSERM, INRAe, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Tiphaine Voisin
- Department of Immunology, Harvard Medical School, Boston, MA 02215, USA
| | - Michelle D Bagood
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lucia Wesemann
- Department of Immunology, Harvard Medical School, Boston, MA 02215, USA
| | - Abigail M Frey
- Department of Immunology, Harvard Medical School, Boston, MA 02215, USA
| | - Joseph S Palumbo
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Brian J Wainger
- Departments of Neurology and Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Richard L Gallo
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Nathalie Vergnolle
- IRSD, Université de Toulouse, INSERM, INRAe, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Theodore J Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Rithwik Ramachandran
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Isaac M Chiu
- Department of Immunology, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
48
|
Mills KB, Maciag JJ, Wang C, Crawford JA, Enroth TJ, Keim KC, Dufrêne YF, Robinson DA, Fey PD, Herr AB, Horswill AR. Staphylococcus aureus skin colonization is mediated by SasG lectin variation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.20.567970. [PMID: 38045275 PMCID: PMC10690190 DOI: 10.1101/2023.11.20.567970] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Staphylococcus aureus causes the majority of skin and soft tissue infections, but this pathogen only transiently colonizes healthy skin. However, this transient skin exposure enables S. aureus to transition to infection. Initial adhesion of S. aureus to skin corneocytes is mediated by surface protein G (SasG). Here, phylogenetic analyses reveal the presence of two major divergent SasG alleles in S. aureus, SasG-I and SasG-II. Structural analyses of SasG-II identified a unique non-aromatic arginine in the binding pocket of the lectin subdomain that mediates adhesion to corneocytes. Atomic force microscopy and corneocyte adhesion assays indicated SasG-II can bind to a broader variety of ligands than SasG-I. Glycosidase treatment resulted in different binding profiles between SasG-I and SasG-II on skin cells. Additionally, SasG-mediated adhesion was recapitulated using differentiated N/TERT keratinocytes. Our findings indicate that SasG-II has evolved to adhere to multiple ligands, conferring a distinct advantage to S. aureus during skin colonization.
Collapse
Affiliation(s)
- Krista B. Mills
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Joseph J. Maciag
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Can Wang
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - John A. Crawford
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Timothy J. Enroth
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Klara C. Keim
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yves F. Dufrêne
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - D. Ashley Robinson
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA
- Center for Immunology and Microbial Research, University of Mississippi Medical Center, Jackson, MS, USA
| | - Paul D. Fey
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Andrew B. Herr
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Alexander R. Horswill
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Veterans Affairs, VA Eastern Colorado Healthcare System, Aurora, CO, USA
| |
Collapse
|
49
|
Ferhaoui N, Tanaka R, Sekizuka T, Kuroda M, Sebaihia M. Whole genome sequencing and pan-genome analysis of Staphylococcus/Mammaliicoccus spp. isolated from diabetic foot ulcers and contralateral healthy skin of Algerian patients. BMC Microbiol 2023; 23:342. [PMID: 37974097 PMCID: PMC10652506 DOI: 10.1186/s12866-023-03087-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Diabetic foot infections (DFIs) are the most common complications of diabetic foot ulcers (DFUs), and a significant cause of lower extremity amputation. In this study we used whole genome sequencing to characterize the clonal composition, virulence and resistance genetic determinants of 58 Staphylococcus/Mammaliicoccus spp. isolates from contralateral healthy skin and DFU from 44 hospitalized patients. RESULTS S. aureus (n = 32) and S. epidermidis (n = 10) isolates were recovered from both DFUs and healthy skin, whereas, S. haemolyticus (n = 8), M. sciuri (n = 1), S. hominis (n = 1) and S. simulans (n = 3) were recovered exclusively from healthy skin. In contrast, S. caprae (n = 2) and S. saprophyticus (n = 1) were recovered only from DFUs. Among S. aureus isolates, MRSA were present with high prevalence (27/32, 84.4%), 18 of which (66.7%) were from DFUs and 9 (33.3%) from healthy skin. In contrast, the coagulase-negative Staphylococcus (CoNS)/Mammaliicoccus isolates (n = 26), in particular S. epidermidis and S. haemolyticus were more prevalent in healthy skin, (10/26, 38.5%) and (8/26, 30.8%), respectively. MLST, spa and SCCmec typing classified the 32 S. aureus isolates into 6 STs, ST672, ST80, ST241, ST1, ST97, ST291 and 4 unknown STs (STNF); 8 spa types, t044, t037, t3841, t1247, t127, t639, t937 and t9432 and 2 SCCmec types, type IV and type III(A). Among CoNS, the S. epidermidis isolates belonged to ST54, ST35 and ST640. S. haemolyticus belonged to ST3, ST25, ST29, ST1 and ST56. The sole M. sciuri isolate was found to carry an SCCmec type III(A). A wide range of virulence genes and antimicrobial resistance genes were found among our isolates, with varying distribution between species or STs. The pan-genome analysis revealed a highly clonal population of Staphylococcus isolates, particularly among S. aureus isolates. Interestingly, the majority of S. aureus isolates including MRSA, recovered from the healthy skin and DFUs of the same patient belonged to the same clone and exhibited similar virulence/resistance genotype. CONCLUSIONS Our study provides clinically relevant information on the population profile, virulence and antibiotic resistance of Staphylococcus/Mammaliicoccus spp. in DFIs, which could serve as a basis for further studies on these as well as other groups of pathogens associated with DFIs.
Collapse
Affiliation(s)
- Nerdjes Ferhaoui
- Laboratory of Molecular Biology, Genomics and Bioinformatics, Department of Biology, Faculty of Nature and Life Sciences, University Hassiba Benbouali, Chlef, Algeria
| | - Rina Tanaka
- Pathogen Genomics Center, National Institute of Infectious Diseases (NIID), Tokyo, Japan
| | - Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases (NIID), Tokyo, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases (NIID), Tokyo, Japan
| | - Mohammed Sebaihia
- Laboratory of Molecular Biology, Genomics and Bioinformatics, Department of Biology, Faculty of Nature and Life Sciences, University Hassiba Benbouali, Chlef, Algeria.
| |
Collapse
|
50
|
Arya R, Kim T, Youn JW, Bae T, Kim KK. Identification of an antivirulence agent targeting the master regulator of virulence genes in Staphylococcus aureus. Front Cell Infect Microbiol 2023; 13:1268044. [PMID: 38029271 PMCID: PMC10644738 DOI: 10.3389/fcimb.2023.1268044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
The emergence of bactericidal antibiotic-resistant strains has increased the demand for alternative therapeutic agents, such as antivirulence agents targeting the virulence regulators of pathogens. Staphylococcus aureus exoprotein expression (sae) locus, the master regulator of virulence gene expression in multiple drug-resistant S. aureus, is a promising therapeutic target. In this study, we screened a small-molecule library using a SaeRS green fluorescent protein (GFP)-reporter that responded to transcription controlled by the sae locus. We identified the compound, N-(2-methylcyclohexyl)-11-oxo-10,11-dihydrodibenzo[b,f][1,4]thiazepine-8-carboxamide (SKKUCS), as an efficient repressor of sae-regulated GFP activity. SKKUCS inhibited hemolysin production and reduced α-hemolysin-mediated cell lysis. Moreover, SKKUCS substantially reduced the expression levels of various virulence genes controlled by the master regulators, sae, and the accessory gene regulator (agr), demonstrating its potential as an antivirulence reagent targeting the key virulence regulators. Furthermore, autokinase inhibition assay and molecular docking suggest that SKKUCS inhibits the kinase activity of SaeS and potentially targets the active site of SaeS kinase, possibly inhibiting ATP binding. Next, we evaluated the efficacy and toxicity of SKKUCS in vivo using murine models of staphylococcal intraperitoneal and skin infections. Treatment with SKKUCS markedly increased animal survival and significantly decreased the bacterial burden in organs and skin lesion sizes. These findings highlight SKKUCS as a potential antivirulence drug for drug-resistant staphylococcal infections.
Collapse
Affiliation(s)
- Rekha Arya
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Institute of Antibacterial Resistance Research and Therapeutics, Suwon, Republic of Korea
- Department of Orthopedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Truc Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Institute of Antibacterial Resistance Research and Therapeutics, Suwon, Republic of Korea
| | - Joo Won Youn
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Institute of Antibacterial Resistance Research and Therapeutics, Suwon, Republic of Korea
| | - Taeok Bae
- Department of Microbiology and Immunology, Indiana University School of Medicine-Northwest, Gary, IN, United States
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Institute of Antibacterial Resistance Research and Therapeutics, Suwon, Republic of Korea
| |
Collapse
|