1
|
Yao N, Liu Y, Zhang ZY, Tian M, Xie WJ, Zhao H, Yang H, Rodewald LE, Wen N, Yin ZD, Wang FZ, Wang Q, Xu JW. Excretion and clearance of Sabin-like type 3 poliovirus in a child diagnosed with severe combined immunodeficiency. Hum Vaccin Immunother 2025; 21:2484882. [PMID: 40170570 PMCID: PMC11970734 DOI: 10.1080/21645515.2025.2484882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/06/2025] [Accepted: 03/22/2025] [Indexed: 04/03/2025] Open
Abstract
Children with primary immunodeficiency disorder (PID) are at higher risk of developing vaccine-associated paralytic poliomyelitis (VAPP) or vaccine-derived polioviruses (VDPV) infection when inadvertently expose to poliovirus vaccine, oral (OPV). A pilot study was initiated to describe the epidemiology of immunodeficiency-associated VDPV (iVDPV) and to estimate the risk of iVDPV shedding among individuals with PID. Children under 18 years of age newly diagnosed with PID were recruited for investigation and tested for poliovirus excretion. Children with poliovirus-positive stool samples had regular follow-up testing for poliovirus excretion and determination of clinical prognosis. A patient with severe combined immunodeficiency (SCID) with compound heterozygous mutations in the RAG1 gene was found to be excreting Sabin-like type 3 (SL3) poliovirus. Excretion stopped six weeks after hematopoietic stem-cell transplantation (HSCT). Graft versus host disease (GVHD) and poor graft function (PGF) occurred after HSCT, resulting in failure of hematopoiesis and immune system reconstitution. Given deficient innate and adaptive immunity, immune-mediated destruction of gastrointestinal (GI) tract caused by GVHD and inflammatory diarrheal illness of the girl may have contributed to her clearance of SL3 poliovirus. Intermittent surveillance of immune system parameters for iVDPV excreters receiving HSCT should be included in the PID surveillance program for further understanding poliovirus clearance mechanisms.
Collapse
Affiliation(s)
- Ning Yao
- Department of Expanded Immunization Program, Chongqing Municipal Center for Disease Control and Prevention, Chongqing, China
| | - Yang Liu
- Department of Expanded Immunization Program, Chongqing Municipal Center for Disease Control and Prevention, Chongqing, China
| | - Zhi-Yong Zhang
- Department of Rheumatology and Immunology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Min Tian
- Department of Rheumatology and Immunology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Wu-Juan Xie
- Department of Expanded Immunization Program, Chongqing Municipal Center for Disease Control and Prevention, Chongqing, China
| | - Hua Zhao
- Department of Expanded Immunization Program, Chongqing Municipal Center for Disease Control and Prevention, Chongqing, China
| | - Hong Yang
- National Immunization Program, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lance E. Rodewald
- National Immunization Program, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ning Wen
- National Immunization Program, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zun-Dong Yin
- National Immunization Program, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Fu-Zhen Wang
- National Immunization Program, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qing Wang
- Department of Expanded Immunization Program, Chongqing Municipal Center for Disease Control and Prevention, Chongqing, China
| | - Jia-Wei Xu
- Department of Expanded Immunization Program, Chongqing Municipal Center for Disease Control and Prevention, Chongqing, China
| |
Collapse
|
2
|
Ceccato J, Gualtiero G, Piazza M, Carraro S, Buso H, Felice C, Rattazzi M, Scarpa R, Vianello F, Cinetto F. Shaping Rare Granulomatous Diseases in the Lab: How New Models Are Changing the Game. Cells 2025; 14:293. [PMID: 39996765 PMCID: PMC11853845 DOI: 10.3390/cells14040293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/10/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025] Open
Abstract
In vitro models serve as valuable tools for understanding the complex cellular and molecular interactions involved in granuloma formation, providing a controlled environment to explore the underlying mechanisms of their development and function. Various models have been developed to replicate granulomatous diseases, even though they may lack the sophistication needed to fully capture the variability present in clinical spectra and environmental influences. Traditional cultures of PBMCs have been widely used to generate granuloma models, enabling the study of aggregation responses to various stimuli. However, growing cells on a two-dimensional (2D) plastic surface as a monolayer can lead to altered cellular responses and the modulation of signaling pathways, which may not accurately represent in vivo conditions. In response to these limitations, the past decade has seen significant advancements in the development of three-dimensional (3D) in vitro models, which more effectively mimic in vivo conditions and provide better insights into cell-cell and cell-microenvironment interactions. Meanwhile, the use of in vivo animal models in biomedical research must adhere to the principle of the three Rs (replacement, reduction, and refinement) while ensuring that the models faithfully replicate human-specific processes. This review summarizes and compares the main models developed to investigate granulomas, focusing on their contribution to advancing our understanding of granuloma biology. We also discuss the strengths and limitations of each model, offering insights into their biological relevance and practical applications.
Collapse
Affiliation(s)
- Jessica Ceccato
- Hematology and Clinical Immunology Unit, Department of Medicine (DIMED), University of Padua, 35128 Padua, Italy; (J.C.); (G.G.)
- Veneto Institute of Molecular Medicine (VIMM), 35128 Padua, Italy
| | - Giulia Gualtiero
- Hematology and Clinical Immunology Unit, Department of Medicine (DIMED), University of Padua, 35128 Padua, Italy; (J.C.); (G.G.)
- Veneto Institute of Molecular Medicine (VIMM), 35128 Padua, Italy
| | - Maria Piazza
- Department of Medicine (DIMED), University of Padua, 35128 Padua, Italy; (M.P.); (H.B.); (C.F.); (M.R.); (R.S.); (F.C.)
| | - Samuela Carraro
- Rare Diseases Referral Center, Internal Medicine 1, Ca’ Foncello Hospital, AULSS2 Marca Trevigiana, 31100 Treviso, Italy;
| | - Helena Buso
- Department of Medicine (DIMED), University of Padua, 35128 Padua, Italy; (M.P.); (H.B.); (C.F.); (M.R.); (R.S.); (F.C.)
- Rare Diseases Referral Center, Internal Medicine 1, Ca’ Foncello Hospital, AULSS2 Marca Trevigiana, 31100 Treviso, Italy;
| | - Carla Felice
- Department of Medicine (DIMED), University of Padua, 35128 Padua, Italy; (M.P.); (H.B.); (C.F.); (M.R.); (R.S.); (F.C.)
- Rare Diseases Referral Center, Internal Medicine 1, Ca’ Foncello Hospital, AULSS2 Marca Trevigiana, 31100 Treviso, Italy;
| | - Marcello Rattazzi
- Department of Medicine (DIMED), University of Padua, 35128 Padua, Italy; (M.P.); (H.B.); (C.F.); (M.R.); (R.S.); (F.C.)
- Rare Diseases Referral Center, Internal Medicine 1, Ca’ Foncello Hospital, AULSS2 Marca Trevigiana, 31100 Treviso, Italy;
| | - Riccardo Scarpa
- Department of Medicine (DIMED), University of Padua, 35128 Padua, Italy; (M.P.); (H.B.); (C.F.); (M.R.); (R.S.); (F.C.)
- Rare Diseases Referral Center, Internal Medicine 1, Ca’ Foncello Hospital, AULSS2 Marca Trevigiana, 31100 Treviso, Italy;
| | - Fabrizio Vianello
- Hematology and Clinical Immunology Unit, Department of Medicine (DIMED), University of Padua, 35128 Padua, Italy; (J.C.); (G.G.)
- Veneto Institute of Molecular Medicine (VIMM), 35128 Padua, Italy
| | - Francesco Cinetto
- Department of Medicine (DIMED), University of Padua, 35128 Padua, Italy; (M.P.); (H.B.); (C.F.); (M.R.); (R.S.); (F.C.)
- Rare Diseases Referral Center, Internal Medicine 1, Ca’ Foncello Hospital, AULSS2 Marca Trevigiana, 31100 Treviso, Italy;
| |
Collapse
|
3
|
Bosticardo M, Dobbs K, Delmonte OM, Martins AJ, Pala F, Kawai T, Kenney H, Magro G, Rosen LB, Yamazaki Y, Yu HH, Calzoni E, Lee YN, Liu C, Stoddard J, Niemela J, Fink D, Castagnoli R, Ramba M, Cheng A, Riley D, Oikonomou V, Shaw E, Belaid B, Keles S, Al-Herz W, Cancrini C, Cifaldi C, Baris S, Sharapova S, Schuetz C, Gennery AR, Freeman AF, Somech R, Choo S, Giliani SC, Güngör T, Drozdov D, Meyts I, Moshous D, Neven B, Abraham RS, El-Marsafy A, Kanariou M, King A, Licciardi F, Cruz-Muñoz ME, Palma P, Poli C, Adeli M, Algeri M, Alroqi FJ, Bastard P, Bergerson JRE, Booth C, Brett A, Burns SO, Butte MJ, Padem N, de la Morena M, Dbaibo G, de Ravin SS, Dimitrova D, Djidjik R, Dorna MB, Dutmer CM, Elfeky R, Facchetti F, Fuleihan RL, Geha RS, Gonzalez-Granado LI, Haljasmägi L, Ale H, Hayward A, Hifanova AM, Ip W, Kaplan B, Kapoor N, Karakoc-Aydiner E, Kärner J, Keller MD, Dávila Saldaña BJ, Kiykim A, Kuijpers TW, Kuznetsova EE, Latysheva EA, Leiding JW, Locatelli F, Alva-Lozada G, McCusker C, Celmeli F, Morsheimer M, Ozen A, Parvaneh N, Pasic S, Plebani A, Preece K, Prockop S, Sakovich IS, Starkova EE, et alBosticardo M, Dobbs K, Delmonte OM, Martins AJ, Pala F, Kawai T, Kenney H, Magro G, Rosen LB, Yamazaki Y, Yu HH, Calzoni E, Lee YN, Liu C, Stoddard J, Niemela J, Fink D, Castagnoli R, Ramba M, Cheng A, Riley D, Oikonomou V, Shaw E, Belaid B, Keles S, Al-Herz W, Cancrini C, Cifaldi C, Baris S, Sharapova S, Schuetz C, Gennery AR, Freeman AF, Somech R, Choo S, Giliani SC, Güngör T, Drozdov D, Meyts I, Moshous D, Neven B, Abraham RS, El-Marsafy A, Kanariou M, King A, Licciardi F, Cruz-Muñoz ME, Palma P, Poli C, Adeli M, Algeri M, Alroqi FJ, Bastard P, Bergerson JRE, Booth C, Brett A, Burns SO, Butte MJ, Padem N, de la Morena M, Dbaibo G, de Ravin SS, Dimitrova D, Djidjik R, Dorna MB, Dutmer CM, Elfeky R, Facchetti F, Fuleihan RL, Geha RS, Gonzalez-Granado LI, Haljasmägi L, Ale H, Hayward A, Hifanova AM, Ip W, Kaplan B, Kapoor N, Karakoc-Aydiner E, Kärner J, Keller MD, Dávila Saldaña BJ, Kiykim A, Kuijpers TW, Kuznetsova EE, Latysheva EA, Leiding JW, Locatelli F, Alva-Lozada G, McCusker C, Celmeli F, Morsheimer M, Ozen A, Parvaneh N, Pasic S, Plebani A, Preece K, Prockop S, Sakovich IS, Starkova EE, Torgerson T, Verbsky J, Walter JE, Ward B, Wisner EL, Draper D, Myint-Hpu K, Truong PM, Lionakis MS, Similuk MB, Walkiewicz MA, Klion A, Holland SM, Oguz C, Bogunovic D, Kisand K, Su HC, Tsang JS, Kuhns D, Villa A, Rosenzweig SD, Pittaluga S, Notarangelo LD. Multiomics dissection of human RAG deficiency reveals distinctive patterns of immune dysregulation but a common inflammatory signature. Sci Immunol 2025; 10:eadq1697. [PMID: 39792639 DOI: 10.1126/sciimmunol.adq1697] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 12/12/2024] [Indexed: 01/30/2025]
Abstract
Human recombination-activating gene (RAG) deficiency can manifest with distinct clinical and immunological phenotypes. By applying a multiomics approach to a large group of RAG-mutated patients, we aimed at characterizing the immunopathology associated with each phenotype. Although defective T and B cell development is common to all phenotypes, patients with hypomorphic RAG variants can generate T and B cells with signatures of immune dysregulation and produce autoantibodies to a broad range of self-antigens, including type I interferons. T helper 2 (TH2) cell skewing and a prominent inflammatory signature characterize Omenn syndrome, whereas more hypomorphic forms of RAG deficiency are associated with a type 1 immune profile both in blood and tissues. We used cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) analysis to define the cell lineage-specific contribution to the immunopathology of the distinct RAG phenotypes. These insights may help improve the diagnosis and clinical management of the various forms of the disease.
Collapse
Affiliation(s)
- Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kerry Dobbs
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ottavia M Delmonte
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Andrew J Martins
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Francesca Pala
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tomoki Kawai
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Heather Kenney
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Gloria Magro
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lindsey B Rosen
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yasuhiro Yamazaki
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hsin-Hui Yu
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Department of Pediatrics, National Taiwan University Children's Hospital, Taipei, Taiwan
| | - Enrica Calzoni
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yu Nee Lee
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, 52621 Tel HaShomer, Israel
| | - Can Liu
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Jennifer Stoddard
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Julie Niemela
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Danielle Fink
- Neutrophil Monitoring Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Riccardo Castagnoli
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Meredith Ramba
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Aristine Cheng
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Deanna Riley
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vasileios Oikonomou
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Elana Shaw
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Brahim Belaid
- Department of Medical Immunology, Beni Messous University Hospital Center, Faculty of Pharmacy, University of Algiers, Algiers, Algeria
| | - Sevgi Keles
- Division of Pediatric Allergy and Immunology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Waleed Al-Herz
- Department of Pediatrics, College of Medicine, Kuwait University, Safat, Kuwait City, Kuwait
- Allergy and Clinical Immunology Unit, Pediatric Department, Al-Sabah Hospital, Kuwait City, Kuwait
| | - Caterina Cancrini
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Research Unit of Primary Immunodeficiencies, Academic Department of Pediatrics, Bambino Gesu' Children's Hospital, Scientific Institute for Research and Heathcare (IRCCS), Rome, Italy
| | - Cristina Cifaldi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Safa Baris
- Faculty of Medicine, Division of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
- Isil Berat Barlan Center for Translational Medicine, Istanbul Jeffrey Modell Foundation Diagnostic Center for Primary Immune Deficiencies, Istanbul, Turkey
| | - Svetlana Sharapova
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Catharina Schuetz
- Department of Paediatrics, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Andrew R Gennery
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Raz Somech
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, 52621 Tel HaShomer, Israel
| | - Sharon Choo
- Department of Allergy and Immunology, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Silvia C Giliani
- Angelo Nocivelli Institute for Molecular Medicine, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Laboratory Department, Spedali Civili, Brescia, Italy
- National Center for Gene Therapy and Drugs based on RNA Technology, CN3, Brescia, Italy
| | - Tayfun Güngör
- Division of Hematology/Oncology/Immunology, Gene-Therapy, and Stem Cell Transplantation, University Children's Hospital Zürich, Zürich, Switzerland
- Eleonore Foundation & Children's Research Center (CRC), Zürich, Switzerland
| | - Daniel Drozdov
- Division of Hematology/Oncology/Immunology, Gene-Therapy, and Stem Cell Transplantation, University Children's Hospital Zürich, Zürich, Switzerland
- Eleonore Foundation & Children's Research Center (CRC), Zürich, Switzerland
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Kantonsspital Aarau, Aarau, Switzerland
| | - Isabelle Meyts
- Department of Immunology and Microbiology, Inborn Errors of Immunity, KU Leuven, Leuven, Belgium
- University Hospitals Leuven and ERN-RITA Core Center, Leuven, Belgium
| | - Despina Moshous
- Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France
- Institut Imagine, Université Paris Cité, Paris, France
| | - Benedicte Neven
- Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France
- Institut Imagine, Université Paris Cité, Paris, France
| | - Roshini S Abraham
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Aisha El-Marsafy
- Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Maria Kanariou
- Department of Immunology-Histocompatibility, Specialized & Referral Center for Primary Immunodeficiencies-Paediatric Immunology, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Alejandra King
- Departamento de Pediatría, Hospital Luis Calvo Mackenna, Santiago, Chile
| | - Francesco Licciardi
- Immuno-reumatologia, Pediatria Specialistica Universitaria, Ospedale Infantile Regina Margherita, Torino, Italy
| | - Mario E Cruz-Muñoz
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Paolo Palma
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Clinical Immunology and Vaccinology Unit, Children's Hospital "Bambino Gesu," Rome, Italy
| | - Cecilia Poli
- Faculty of Medicine, Clínica Alemana Universidad del Desarrollo Roberto del Rio, Santiago, Chile
| | - Mehdi Adeli
- Department of Immunology, Sidra Medicine, Ar-Rayyan, Qatar
| | - Mattia Algeri
- Department of Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Catholic University of the Sacred Heart, Rome, Italy
| | - Fayhan J Alroqi
- King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Paul Bastard
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
| | - Jenna R E Bergerson
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Claire Booth
- Molecular and Cellular Immunology, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Ana Brett
- Hospital Pediátrico, Unidade Local de Saúde de Coimbra, Coimbra, Portugal
- Clínica Universitária de Pediatria, Faculdade de Medicina, Universidade de Coimbra, Coimbra, Portugal
| | - Siobhan O Burns
- Institute of Immunity and Transplantation, University College London, London, UK
- Department of Immunology, Royal Free London NHS Foundation Trust, London, UK
| | - Manish J Butte
- Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nurcicek Padem
- Division of Pediatric Pulmonology, Allergy-Immunology and Sleep Medicine, Riley Hospital for Children/Indiana University, Indianapolis, IN, USA
| | - M de la Morena
- Division of Immunology, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | - Ghassan Dbaibo
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
- Center for Infectious Diseases Research (CIDR) and WHO Collaborating Center for Reference and Research on Bacterial Pathogens, American University of Beirut, Beirut, Lebanon
| | - Suk See de Ravin
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Dimana Dimitrova
- Experimental Transplantation and Immunotherapy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Reda Djidjik
- Department of Medical Immunology, Beni Messous University Hospital Center, Faculty of Pharmacy, University of Algiers, Algiers, Algeria
| | - Mayra B Dorna
- Division of Allergy and Immunology, Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Cullen M Dutmer
- Allergy and Immunology Section, Children's Hospital Colorado and University of Colorado School of Medicine, Aurora, CO, USA
| | - Reem Elfeky
- Department of Clinical Immunology, Royal Free Hospital, London, UK
| | - Fabio Facchetti
- Section of Pathology, Department of Molecular and Translational Medicine, University of Brescia, Spedali Civili di Brescia, Brescia, Italy
| | - Ramsay L Fuleihan
- Division of Allergy & Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Raif S Geha
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA
| | - Luis I Gonzalez-Granado
- Primary Immunodeficiency Unit, Pediatrics, Hospital 12 Octubre, Madrid, Spain
- Instituto de Investigation Hospital 12 Octubre (imas12), Madrid, Spain
- School of Medicine Complutense University, Madrid, Spain
| | - Liis Haljasmägi
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Hanadys Ale
- Division of Immunology, Allergy and Rheumatology, Joe DiMaggio Children's Hospital, Memorial Healthcare System, Hollywood, FL, USA
- Florida International University Herbert Wertheim College of Medicine, Miami, FL, USA
| | - Anthony Hayward
- Division of Infectious Diseases, Department of Pediatrics, Brown University and Rhode Island Hospital, Providence, RI, USA
| | - Anna M Hifanova
- Department of Pediatric Infectious Diseases and Pediatric Immunology, Shupyk National Healthcare University of Ukraine, Kiev, Ukraine
| | - Winnie Ip
- Molecular and Cellular Immunology, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Blanka Kaplan
- Division of Allergy, Asthma and Immunology, Cohen Children's Medical Center, Northwell Health, New Hyde Park, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Neena Kapoor
- Children's Hospital of Los Angeles, Los Angeles, CA, USA
| | - Elif Karakoc-Aydiner
- Faculty of Medicine, Division of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
- Isil Berat Barlan Center for Translational Medicine, Istanbul Jeffrey Modell Foundation Diagnostic Center for Primary Immune Deficiencies, Istanbul, Turkey
| | - Jaanika Kärner
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Michael D Keller
- Division of Allergy and Immunology, Children's National Hospital, Washington, DC, USA
| | | | - Ayça Kiykim
- Division of Pediatric Allergy and Immunology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Taco W Kuijpers
- Department of Pediatric Immunology, Amsterdam UMC Locatie AMC, Amsterdam, Netherlands
| | | | - Elena A Latysheva
- Immunopathology Department, NRC Institute of Immunology FMBA, Pigorov Russian National Research Medical University, Moscow, Russia
| | - Jennifer W Leiding
- Division of Allergy and Immunology, Department of Pediatrics, Johns Hopkins University, Baltimore, MD, USA
- Institute for Clinical and Translational Research, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
- Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Franco Locatelli
- Department of Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Catholic University of the Sacred Heart, Rome, Italy
| | - Guisela Alva-Lozada
- Allergy and Immunology Division Hospital Nacional Edgardo Rebagliati Martins, Lima, Peru
| | - Christine McCusker
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Montreal Children's Hospital, McGill University Health Centre, Montreal, QC, Canada
| | - Fatih Celmeli
- Immunology and Allergy Diseases, Saglık Bilimleri University, Antalya Training and Research Hospital Pediatric, Antalya, Turkey
| | - Megan Morsheimer
- Division of Allergy, Immunology and Transplantation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ahmet Ozen
- Faculty of Medicine, Division of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
- Isil Berat Barlan Center for Translational Medicine, Istanbul Jeffrey Modell Foundation Diagnostic Center for Primary Immune Deficiencies, Istanbul, Turkey
| | - Nima Parvaneh
- Infectious Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Srdjan Pasic
- Department of Pediatric Immunology, Mother and Child Health Institute, Medical Faculty, University of Belgrade, Belgrade, Serbia
| | | | - Kahn Preece
- Department of Immunology, John Hunter Children's Hospital, Newcastle, NSW, Australia
| | - Susan Prockop
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Inga S Sakovich
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Elena E Starkova
- Clinical Department, Regional Clinical Hospital No. 2, Orenburg, Russia
| | | | - James Verbsky
- Division of Rheumatology, Department of Pediatrics, Medical College of Wisconsin and Children's Wisconsin, Milwaukee, WI, USA
| | - Jolan E Walter
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Brant Ward
- Division of Rheumatology, Allergy and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Elizabeth L Wisner
- Division of Allergy Immunology, Department of Pediatrics, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, USA
| | - Deborah Draper
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Katherine Myint-Hpu
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Pooi M Truong
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michail S Lionakis
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Morgan B Similuk
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Magdalena A Walkiewicz
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Amy Klion
- Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, MD, USA
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Cihan Oguz
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Dusan Bogunovic
- Center for Genetic Errors of Immunity, Columbia University Medical Center, New York City, NY, USA
| | - Kai Kisand
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Helen C Su
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John S Tsang
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Douglas Kuhns
- Neutrophil Monitoring Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Anna Villa
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Stefania Pittaluga
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Chuleerarux N, Makkoukdji N, Satnarine T, Kuhn JE, Nopsopon T, Valyasevi P, Schmidt FB, Kleiner G, Gans M. Inborn Errors of Immunity Presenting with Early-Onset Severe Atopy. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:62. [PMID: 39859044 PMCID: PMC11767231 DOI: 10.3390/medicina61010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025]
Abstract
Inborn errors of immunity (IEIs), also known as primary immunodeficiencies, are a group of genetic disorders affecting the development and function of the immune system. While IEIs traditionally present with recurrent infections, an increasing number of cases manifest with early-onset severe atopy, including atopic dermatitis, food allergies, asthma, and allergic rhinitis-features that are often overlooked. This can lead to delayed diagnosis and treatment, which is crucial for IEI patients due to the risk of severe infections. We conducted a literature search and reviewed all IEIs that can present with early-onset severe atopy. The hallmark features of these disorders often include early-onset, persistent, and severe atopic dermatitis, food allergies, and recurrent episodes of asthma, which may be refractory to treatments. Additionally, we discuss the importance of recognizing such severe atopy as a potential indicator of an underlying immune deficiency, particularly when accompanied by unusual infections, growth failure, or autoimmunity. This review aims to raise awareness of this association and emphasize the need for early diagnosis and genetic testing in patients with atypical or treatment-resistant allergic diseases, allowing for more timely diagnosis of underlying immunodeficiencies and appropriate treatments.
Collapse
Affiliation(s)
- Nipat Chuleerarux
- Department of Internal Medicine, Jackson Memorial Hospital, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Nadia Makkoukdji
- Department of Pediatrics, Jackson Memorial Holtz Children’s Hospital, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Travis Satnarine
- Department of Pediatrics, Jackson Memorial Holtz Children’s Hospital, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jessica Elise Kuhn
- Department of Pediatrics, Jackson Memorial Holtz Children’s Hospital, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Tanawin Nopsopon
- Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Peerada Valyasevi
- Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Fernanda Bellodi Schmidt
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Gary Kleiner
- Division of Allergy/Immunology, Department of Pediatrics, Jackson Memorial Holtz Children’s Hospital, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Melissa Gans
- Division of Allergy/Immunology, Department of Pediatrics, Jackson Memorial Holtz Children’s Hospital, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
5
|
Sestan M, Arsov T, Kifer N, Frkovic M, Grguric D, Ellyard J, Cook M, Vinuesa CG, Jelusic M. Whole exome sequencing in patients with childhood-onset systemic lupus erythematosus: Results from a Croatian national study. Scand J Immunol 2024; 100:e13411. [PMID: 39380326 DOI: 10.1111/sji.13411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 09/15/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024]
Abstract
The purpose of this study was to identify new and low-frequency gene variants using whole exome sequencing (WES) in patients with childhood-onset systemic lupus erythematosus (cSLE), that may be involved in the pathogenesis of SLE. We performed WES on selected 17 trios (in some cases including other informative family members) in which the proband presented with severe, atypical clinical features, resistance to conventional therapy, a family pattern of occurrence and/or syndromic characteristics. After performing WES and analysis of gene variants, 17 novel and/or low-frequency variants were identified in 7 patients. One variant was classified as pathogenic (KMT2D, NM_003482.3:c.8626delC, predicted to truncate the protein p.(Gln2876Serfs*34)) and two as likely pathogenic according to the American College of Medical Genetics and Genomics classification guidelines (ADAR, NM_001111.3:c.2815A>G, predicted to encode p.(Ile939Val); BLK, NM_001715.2:c.211G>A, predicted to encode p.(Ala71Thr)). The other variants remain of uncertain significance at this point of time. WES is an important diagnostic and research instrument, producing a growing list of likely genes and gene variants that may be of relevance in the pathogenesis of cSLE and potentially point to novel therapeutic targets.
Collapse
Affiliation(s)
- Mario Sestan
- Department of Paediatrics, University of Zagreb School of Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Todor Arsov
- Faculty of Medical Sciences, University Goce Delchev, Shtip, North Macedonia
- The Francis Crick Institute, London, UK
| | - Nastasia Kifer
- Department of Paediatrics, University of Zagreb School of Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Marijan Frkovic
- Department of Paediatrics, University of Zagreb School of Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Danica Grguric
- Department of Paediatrics, University of Zagreb School of Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Julia Ellyard
- Department of Immunology and Infectious Diseases, The John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Matthew Cook
- Department of Immunology and Infectious Diseases, The John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
- University of Cambridge, Cambridge, UK
| | - Carola G Vinuesa
- The Francis Crick Institute, London, UK
- Department of Immunology and Infectious Diseases, The John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Marija Jelusic
- Department of Paediatrics, University of Zagreb School of Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| |
Collapse
|
6
|
Miedema J, Cinetto F, Smed-Sörensen A, Spagnolo P. The immunopathogenesis of sarcoidosis. J Autoimmun 2024; 149:103247. [PMID: 38734536 DOI: 10.1016/j.jaut.2024.103247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Sarcoidosis is a granulomatous multiorgan disease, thought to result from exposure to yet unidentified antigens in genetically susceptible individuals. The exaggerated inflammatory response that leads to granuloma formation is highly complex and involves the innate and adaptive immune system. Consecutive immunological studies using advanced technology have increased our understanding of aberrantly activated immune cells, mediators and pathways that influence the formation, maintenance and resolution of granulomas. Over the years, it has become increasingly clear that disease immunopathogenesis can only be understood if the clinical heterogeneity of sarcoidosis is taken into consideration, along with the distribution of immune cells in peripheral blood and involved organs. Most studies offer an immunological snapshot during disease course, while the cellular composition of both the circulation and tissue microenvironment may change over time. Despite these challenges, novel insights on the role of the immune system are continuously published, thus bringing the field forward. This review highlights current knowledge on the innate and adaptive immune responses involved in sarcoidosis pathogenesis, as well as the pathways involved in non-resolving disease and fibrosis development. Additionally, we describe proposed immunological mechanisms responsible for drug-induced sarcoid like reactions. Although many aspects of disease immunopathogenesis remain to be unraveled, the identification of crucial immune reactions in sarcoidosis may help identify new treatment targets. We therefore also discuss potential therapies and future strategies based on the latest immunological findings.
Collapse
Affiliation(s)
- Jelle Miedema
- Department of Pulmonary Medicine, Center of Expertise for Interstitial Lung Disease, Erasmus University Medical Center, Rotterdam, the Netherlands.
| | - Francesco Cinetto
- Rare Diseases Referral Center, Internal Medicine 1, Ca' Foncello Hospital, AULSS2 Marca Trevigiana, Italy; Department of Medicine - DIMED, University of Padova, Padova, Italy.
| | - Anna Smed-Sörensen
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden.
| | - Paolo Spagnolo
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy.
| |
Collapse
|
7
|
Fekrvand S, Abolhassani H, Esfahani ZH, Fard NNG, Amiri M, Salehi H, Almasi-Hashiani A, Saeedi-Boroujeni A, Fathi N, Mohtashami M, Razavi A, Heidari A, Azizi G, Khanmohammadi S, Ahangarzadeh M, Saleki K, Hassanpour G, Rezaei N, Yazdani R. Cancer Trends in Inborn Errors of Immunity: A Systematic Review and Meta-Analysis. J Clin Immunol 2024; 45:34. [PMID: 39466473 DOI: 10.1007/s10875-024-01810-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/16/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Patients with inborn errors of immunity (IEI) are susceptible to developing cancer due to defects in the immune system. The prevalence of cancer is higher in IEI patients compared to the immunocompetent population and cancers are considered as an important and common cause of death in IEI patients. OBJECTIVES To systematically review demographic, genetic and cancer-related data of IEI patients with a history of malignancy. Moreover, we performed a meta-analysis aiming to determine the frequency of cancer in patients with different types of IEI. METHODS We conducted electronic searches on Embase, Web of Science, PubMed, and Scopus (until September 2023) introducing terms related to IEI and cancer. Studies with human subjects with confirmed IEI who had developed at least one malignancy during their lifetime were included. RESULTS A total number of 4607 IEI patients with a cancer history were included in the present study. Common variable immunodeficiency (CVID) had the highest number of reported cases (1284 cases), mainly due to a higher relative proportion of patients with predominantly antibody deficiencies (PAD) and their increased life expectancy contributing to the higher detection and reporting of cancers among these patients. The most common malignancy was hematologic/blood cancers (3026 cases, mainly diffuse large B cell lymphoma). A total number of 1173 cases (55.6%) succumbed to cancer, with the highest rate of bone marrow failure (64.9%). Among the patients with monogenic defects in IEI-associated genes, the majority of cases had ATM deficiency (926 cases), but the highest cancer frequency rate belonged to NBS1 deficiency (50.5%). 1928 cases out of total 4607 eligible cases had detailed data to allow further statistical analysis that revealed BRCA2 deficiency had the earliest cancer development (~ 38 months), lowest cure frequency, and highest fatality rate (85%), while ATM deficiency had the lowest cure frequency and highest fatality rate (72%) among total cases reviewed with exclusion of Fanconi anemia. CONCLUSION The overall reported cancer frequency in the cases reviewed with and without exclusion of Fanconi anemia was 11.1% (95% confidence interval: 9.8-12.5%) and 12.0% (95% confidence interval: 10.6-13.5%), respectively. Our study revealed that the incidence of cancer is significantly dependent on the molecular and pathway defects in IEI patients, and individualized early screening and appropriate treatment, might improve the prognosis of these patients.
Collapse
Affiliation(s)
- Saba Fekrvand
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institutet, Karolinska University Hospital, Stockholm, Huddinge, Sweden
| | - Zahra Hamidi Esfahani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Najmeh Nameh Goshay Fard
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahboube Amiri
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Helia Salehi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Almasi-Hashiani
- Department of Epidemiology, School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Ali Saeedi-Boroujeni
- Department of Basic Medical Sciences, Faculty of Medicine, Abadan University of Medical Sciences, Abadan, Iran
| | - Nazanin Fathi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maryam Mohtashami
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Azadehsadat Razavi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Arash Heidari
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gholamreza Azizi
- Noncommunicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Shaghayegh Khanmohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Milad Ahangarzadeh
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- Department of E-Learning, Virtual School of Medical Education and Management, Shahid Beheshti University of MedicalSciences (SBMU), Tehran, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Gholamreza Hassanpour
- Center for Research of Endemic Parasites of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
8
|
Volodashchik TP, Polyakova EA, Mikhaleuskaya TM, Sakovich IS, Kupchinskaya AN, Dubrouski AC, Belevtsev MV, Dasso JF, Varabyou DS, Notarangelo LD, Walter JE, Sharapova SO. Infant with diffuse large B-cell lymphoma identified postmortem with homozygous founder Slavic RAG1 variant: a case report and literature review. Front Pediatr 2024; 12:1415020. [PMID: 39026935 PMCID: PMC11254792 DOI: 10.3389/fped.2024.1415020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024] Open
Abstract
Background and aims There is an increased risk of lymphomas in inborn errors of immunity (IEI); however, germline genetic testing is rarely used in oncological patients, even in those with early onset of cancer. Our study focuses on a child with a recombination-activating gene 1 (RAG1) deficiency who was identified through a screening program for Slavic founder genetic variants among patients who died with malignancy at an early age in Belarus. Results We identified one homozygous founder RAG1 variant out of 24 available DNA samples from 71 patients who developed lymphoma aged <3 years from the Belarusian cancer registry between 1986 and 2023. Our patient had an episode of pneumonia at 3 months of age and was hospitalized for respiratory distress, candida-positive lung disease, and lymphadenopathy at 14 months of age. The diagnosis of Epstein-Barr virus (EBV)-positive diffuse large B-cell lymphoma (DLBCL) was established. The patient had a normal lymphocyte count that decreased over time. One month after chemotherapy initiation, the patient died due to sepsis and multiple organ failure without a genetic diagnosis. In a retrospective analysis, T-cell receptor excision circles (TRECs) and kappa-deleting recombination excision circles (KRECs) were undetectable in peripheral blood. Conclusions A targeted screening program designed to detect a Slavic founder variant in the RAG1 gene among children revealed a 14-month-old Belarusian male infant with low TREC levels who died of EBV-driven DLBCL and complications of chemotherapy including infections. This case highlights how patients with IEI and recurrent infections may develop serious non-infectious complications, such as fatal malignancy. It also emphasizes the importance of early identification, such as newborn screening for severe combined immune deficiency. Earlier diagnosis of RAG deficiency could have prompted hematopoietic stem cell transplant well before the DLBCL occurrence. This likely would impact the onset and/or management strategies for the cancer.
Collapse
Affiliation(s)
- Tatiana P. Volodashchik
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Ekaterina A. Polyakova
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Taisia M. Mikhaleuskaya
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Inga S. Sakovich
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Aleksandra N. Kupchinskaya
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | | | - Mikhail V. Belevtsev
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Joseph F. Dasso
- Division of Pediatric Allergy/Immunology, Johns Hopkins All Children’s Hospital, Saint Petersburg, FL, United States
- Division of Pediatric Allergy/Immunology, University of South Florida, Tampa, FL, United States
| | - Dzmitry S. Varabyou
- Department of Geographical Ecology, Faculty of Geography and Geoinformatics, Belarusian State University, Minsk, Belarus
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIH), Bethesda, MD, United States
| | - Jolan E. Walter
- Division of Pediatric Allergy/Immunology, Johns Hopkins All Children’s Hospital, Saint Petersburg, FL, United States
- Division of Pediatric Allergy/Immunology, University of South Florida, Tampa, FL, United States
| | - Svetlana O. Sharapova
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| |
Collapse
|
9
|
Erman B, Aba U, Ipsir C, Pehlivan D, Aytekin C, Cildir G, Cicek B, Bozkurt C, Tekeoglu S, Kaya M, Aydogmus C, Cipe F, Sucak G, Eltan SB, Ozen A, Barıs S, Karakoc-Aydiner E, Kıykım A, Karaatmaca B, Kose H, Uygun DFK, Celmeli F, Arikoglu T, Ozcan D, Keskin O, Arık E, Aytekin ES, Cesur M, Kucukosmanoglu E, Kılıc M, Yuksek M, Bıcakcı Z, Esenboga S, Ayvaz DÇ, Sefer AP, Guner SN, Keles S, Reisli I, Musabak U, Demirbas ND, Haskologlu S, Kilic SS, Metin A, Dogu F, Ikinciogulları A, Tezcan I. Genetic Evaluation of the Patients with Clinically Diagnosed Inborn Errors of Immunity by Whole Exome Sequencing: Results from a Specialized Research Center for Immunodeficiency in Türkiye. J Clin Immunol 2024; 44:157. [PMID: 38954121 PMCID: PMC11219406 DOI: 10.1007/s10875-024-01759-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/22/2024] [Indexed: 07/04/2024]
Abstract
Molecular diagnosis of inborn errors of immunity (IEI) plays a critical role in determining patients' long-term prognosis, treatment options, and genetic counseling. Over the past decade, the broader utilization of next-generation sequencing (NGS) techniques in both research and clinical settings has facilitated the evaluation of a significant proportion of patients for gene variants associated with IEI. In addition to its role in diagnosing known gene defects, the application of high-throughput techniques such as targeted, exome, and genome sequencing has led to the identification of novel disease-causing genes. However, the results obtained from these different methods can vary depending on disease phenotypes or patient characteristics. In this study, we conducted whole-exome sequencing (WES) in a sizable cohort of IEI patients, consisting of 303 individuals from 21 different clinical immunology centers in Türkiye. Our analysis resulted in likely genetic diagnoses for 41.1% of the patients (122 out of 297), revealing 52 novel variants and uncovering potential new IEI genes in six patients. The significance of understanding outcomes across various IEI cohorts cannot be overstated, and we believe that our findings will make a valuable contribution to the existing literature and foster collaborative research between clinicians and basic science researchers.
Collapse
Affiliation(s)
- Baran Erman
- Institute of Child Health, Hacettepe University, Ankara, Turkey.
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey.
| | - Umran Aba
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
- Department of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Canberk Ipsir
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
- Department of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Damla Pehlivan
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
| | - Caner Aytekin
- Pediatric Immunology, SBU Ankara Dr Sami Ulus Maternity Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Gökhan Cildir
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, 5000, Australia
| | - Begum Cicek
- Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Ceren Bozkurt
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
| | - Sidem Tekeoglu
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
| | - Melisa Kaya
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
| | - Cigdem Aydogmus
- Department of Pediatric Allergy and Clinical Immunology, University of Health Sciences, Istanbul Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Funda Cipe
- Department of Pediatric Allergy and Clinical Immunology, Altinbas University School of Medicine, Istanbul, Turkey
| | - Gulsan Sucak
- Medical Park Bahçeşehir Hospital, Clinic of Hematology and Transplantation, İstanbul, Turkey
| | - Sevgi Bilgic Eltan
- Marmara University, Faculty of Medicine, Department of Pediatric Allergy and Immunology, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Ahmet Ozen
- Marmara University, Faculty of Medicine, Department of Pediatric Allergy and Immunology, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Safa Barıs
- Marmara University, Faculty of Medicine, Department of Pediatric Allergy and Immunology, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Elif Karakoc-Aydiner
- Marmara University, Faculty of Medicine, Department of Pediatric Allergy and Immunology, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Ayca Kıykım
- Pediatric Allergy and Immunology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Betul Karaatmaca
- Department of Pediatric Allergy and Immunology, University of Health Sciences, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Hulya Kose
- Department of Pediatric Immunology, Diyarbakir Children Hospital, Diyarbakır, Turkey
| | - Dilara Fatma Kocacık Uygun
- Division of Allergy Immunology, Department of Pediatrics, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Fatih Celmeli
- Republic of Turkey Ministry of Health Antalya Training and Research Hospital Pediatric Immunology and Allergy Diseases, Antalya, Turkey
| | - Tugba Arikoglu
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Dilek Ozcan
- Division of Pediatric Allergy and Immunology, Faculty of Medicine, Balcali Hospital, Cukurova University, Adana, Turkey
| | - Ozlem Keskin
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Elif Arık
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Elif Soyak Aytekin
- Department of Pediatric Allergy and Immunology, Etlik City Hospital, Ankara, Turkey
| | - Mahmut Cesur
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Ercan Kucukosmanoglu
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Mehmet Kılıc
- Division of Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, University of Firat, Elazığ, Turkey
| | - Mutlu Yuksek
- Department of Pediatric Immunology and Allergy, Faculty of Medicine, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | - Zafer Bıcakcı
- Department of Pediatric Hematology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Saliha Esenboga
- Department of Pediatrics, Division of Pediatric Immunology, Hacettepe University School of Medicine, Ankara, Turkey
| | - Deniz Çagdaş Ayvaz
- Department of Pediatrics, Division of Pediatric Immunology, Hacettepe University School of Medicine, Ankara, Turkey
- Section of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Asena Pınar Sefer
- Department of Pediatric Allergy and Immunology, Şanlıurfa Training and Research Hospital, Şanlıurfa, Turkey
| | - Sukrü Nail Guner
- Department of Pediatric Immunology and Allergy, Medicine Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Sevgi Keles
- Department of Pediatric Immunology and Allergy, Medicine Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Ismail Reisli
- Department of Pediatric Immunology and Allergy, Medicine Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Ugur Musabak
- Department of Immunology and Allergy, Baskent University School of Medicine, Ankara, Turkey
| | - Nazlı Deveci Demirbas
- Department of Pediatric Immunology and Allergy, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Sule Haskologlu
- Department of Pediatric Immunology and Allergy, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Sara Sebnem Kilic
- Division of Pediatric Immunology-Rheumatology, Bursa Uludag University Faculty of Medicine, Bursa, Turkey
- Translational Medicine, Bursa Uludag University, Bursa, Turkey
| | - Ayse Metin
- Department of Pediatric Allergy and Immunology, University of Health Sciences, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Figen Dogu
- Department of Pediatric Immunology and Allergy, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Aydan Ikinciogulları
- Department of Pediatric Immunology and Allergy, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Ilhan Tezcan
- Department of Pediatrics, Division of Pediatric Immunology, Hacettepe University School of Medicine, Ankara, Turkey
| |
Collapse
|
10
|
Fawzy MM, Nazmy MH, El-Sheikh AAK, Fathy M. Evolutionary preservation of CpG dinucleotides in RAG1 may elucidate the relatively high rate of methylation-mediated mutagenesis of RAG1 transposase. Immunol Res 2024; 72:438-449. [PMID: 38240953 PMCID: PMC11217092 DOI: 10.1007/s12026-023-09451-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/24/2023] [Indexed: 07/03/2024]
Abstract
Recombination-activating gene 1 (RAG1) is a vital player in V(D)J recombination, a fundamental process in primary B cell and T cell receptor diversification of the adaptive immune system. Current vertebrate RAG evolved from RAG transposon; however, it has been modified to play a crucial role in the adaptive system instead of being irreversibly silenced by CpG methylation. By interrogating a range of publicly available datasets, the current study investigated whether RAG1 has retained a disproportionate level of its original CpG dinucleotides compared to other genes, thereby rendering it more exposed to methylation-mediated mutation. Here, we show that 57.57% of RAG1 pathogenic mutations and 51.6% of RAG1 disease-causing mutations were associated with CpG methylation, a percentage that was significantly higher than that of its RAG2 cofactor alongside the whole genome. The CpG scores and densities for all RAG ancestors suggested that RAG transposon was CpG denser. The percentage of the ancestral CpG of RAG1 and RAG2 were 6% and 4.2%, respectively, with no preference towards CG containing codons. Furthermore, CpG loci of RAG1 in sperms were significantly higher methylated than that of RAG2. In conclusion, RAG1 has been exposed to CpG mediated methylation mutagenesis more than RAG2 and the whole genome, presumably due to its late entry to the genome later with an initially higher CpG content.
Collapse
Affiliation(s)
- Mariam M Fawzy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Maiiada H Nazmy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Azza A K El-Sheikh
- Basic Health Sciences Department, College of Medicine, Princess Nourah bint Abdulrahman University, 11671, Riyadh, Saudi Arabia
| | - Moustafa Fathy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt.
| |
Collapse
|
11
|
Pavel-Dinu M, Gardner CL, Nakauchi Y, Kawai T, Delmonte OM, Palterer B, Bosticardo M, Pala F, Viel S, Malech HL, Ghanim HY, Bode NM, Kurgan GL, Detweiler AM, Vakulskas CA, Neff NF, Sheikali A, Menezes ST, Chrobok J, Hernández González EM, Majeti R, Notarangelo LD, Porteus MH. Genetically corrected RAG2-SCID human hematopoietic stem cells restore V(D)J-recombinase and rescue lymphoid deficiency. Blood Adv 2024; 8:1820-1833. [PMID: 38096800 PMCID: PMC11006817 DOI: 10.1182/bloodadvances.2023011766] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 10/23/2023] [Indexed: 04/10/2024] Open
Abstract
ABSTRACT Recombination-activating genes (RAG1 and RAG2) are critical for lymphoid cell development and function by initiating the variable (V), diversity (D), and joining (J) (V(D)J)-recombination process to generate polyclonal lymphocytes with broad antigen specificity. The clinical manifestations of defective RAG1/2 genes range from immune dysregulation to severe combined immunodeficiencies (SCIDs), causing life-threatening infections and death early in life without hematopoietic cell transplantation (HCT). Despite improvements, haploidentical HCT without myeloablative conditioning carries a high risk of graft failure and incomplete immune reconstitution. The RAG complex is only expressed during the G0-G1 phase of the cell cycle in the early stages of T- and B-cell development, underscoring that a direct gene correction might capture the precise temporal expression of the endogenous gene. Here, we report a feasibility study using the CRISPR/Cas9-based "universal gene-correction" approach for the RAG2 locus in human hematopoietic stem/progenitor cells (HSPCs) from healthy donors and RAG2-SCID patient. V(D)J-recombinase activity was restored after gene correction of RAG2-SCID-derived HSPCs, resulting in the development of T-cell receptor (TCR) αβ and γδ CD3+ cells and single-positive CD4+ and CD8+ lymphocytes. TCR repertoire analysis indicated a normal distribution of CDR3 length and preserved usage of the distal TRAV genes. We confirmed the in vivo rescue of B-cell development with normal immunoglobulin M surface expression and a significant decrease in CD56bright natural killer cells. Together, we provide specificity, toxicity, and efficacy data supporting the development of a gene-correction therapy to benefit RAG2-deficient patients.
Collapse
Affiliation(s)
- Mara Pavel-Dinu
- Division of Oncology, Hematology, Stem Cell Transplantation, Department of Pediatrics, Stanford University, Stanford, CA
| | - Cameron L. Gardner
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Yusuke Nakauchi
- Division of Hematology, Department of Medicine, Cancer Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA
| | - Tomoki Kawai
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Ottavia M. Delmonte
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Boaz Palterer
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Marita Bosticardo
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Francesca Pala
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Sebastien Viel
- Division of Oncology, Hematology, Stem Cell Transplantation, Department of Pediatrics, Stanford University, Stanford, CA
- Service d’immunologie biologique, Hospices Civils de Lyon, Centre International de Recherche en Infectivologie, Centre International de Recheerche in Infectivalogie, INSERM U1111, Université Claude Bernard Lyon 1, Centre National de la Recherge Scientifique, UMR5308, École Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | - Harry L. Malech
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Hana Y. Ghanim
- Division of Oncology, Hematology, Stem Cell Transplantation, Department of Pediatrics, Stanford University, Stanford, CA
| | | | | | | | | | | | - Adam Sheikali
- Division of Oncology, Hematology, Stem Cell Transplantation, Department of Pediatrics, Stanford University, Stanford, CA
| | - Sherah T. Menezes
- Division of Oncology, Hematology, Stem Cell Transplantation, Department of Pediatrics, Stanford University, Stanford, CA
| | - Jade Chrobok
- Division of Oncology, Hematology, Stem Cell Transplantation, Department of Pediatrics, Stanford University, Stanford, CA
| | - Elaine M. Hernández González
- Division of Oncology, Hematology, Stem Cell Transplantation, Department of Pediatrics, Stanford University, Stanford, CA
| | - Ravindra Majeti
- Division of Hematology, Department of Medicine, Cancer Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA
| | - Luigi D. Notarangelo
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Matthew H. Porteus
- Division of Oncology, Hematology, Stem Cell Transplantation, Department of Pediatrics, Stanford University, Stanford, CA
| |
Collapse
|
12
|
Seidel MG, Hauck F. Multilayer concept of autoimmune mechanisms and manifestations in inborn errors of immunity: Relevance for precision therapy. J Allergy Clin Immunol 2024; 153:615-628.e4. [PMID: 38185417 DOI: 10.1016/j.jaci.2023.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 01/09/2024]
Abstract
Autoimmunity in inborn errors of immunity (IEIs) has a multifactorial pathogenesis and develops subsequent to a genetic predisposition in conjunction with gene regulation, environmental modifiers, and infectious triggers. On the basis of incremental data availability owing to upfront application of omics technologies, a more granular and dynamic view of mechanisms and manifestations is warranted. Here, we present a comprehensive novel concept of autoimmunity in IEIs that considers multiple layers of interdependent elements and connects 101 causative genes or deletions according to the quality of the allelic variants with 47 molecular pathways and 22 immune effector mechanisms. Furthermore, we list 50 resulting manifestations together with the corresponding Human Phenotype Ontology terms and review the types and frequencies of the most relevant clinical presentations. When all of its elements are taken together, this concept (1) extends the historical anatomic view of central versus peripheral tolerance toward multiple interdependent mechanisms of immune tolerance, (2) delineates the mechanisms underlying the protean clinical manifestations, and thereby, (3) points toward the most suitable precision therapy for autoimmunity in IEIs. The multilayer concept of autoimmune mechanisms and manifestations in IEIs will facilitate research design and provide clinical guidance on the use of precision medicine irrespective of the data depth available in each health care scenario.
Collapse
Affiliation(s)
- Markus G Seidel
- Research Unit for Pediatric Hematology and Immunology, Division of Pediatric Hemato-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria.
| | - Fabian Hauck
- Division of Pediatric Immunology and Rheumatology, Department of Pediatrics, Dr von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, München, Germany.
| |
Collapse
|
13
|
Castiello MC, Brandas C, Ferrari S, Porcellini S, Sacchetti N, Canarutto D, Draghici E, Merelli I, Barcella M, Pelosi G, Vavassori V, Varesi A, Jacob A, Scala S, Basso Ricci L, Paulis M, Strina D, Di Verniere M, Sergi Sergi L, Serafini M, Holland SM, Bergerson JRE, De Ravin SS, Malech HL, Pala F, Bosticardo M, Brombin C, Cugnata F, Calzoni E, Crooks GM, Notarangelo LD, Genovese P, Naldini L, Villa A. Exonic knockout and knockin gene editing in hematopoietic stem and progenitor cells rescues RAG1 immunodeficiency. Sci Transl Med 2024; 16:eadh8162. [PMID: 38324638 PMCID: PMC11149094 DOI: 10.1126/scitranslmed.adh8162] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 01/17/2024] [Indexed: 02/09/2024]
Abstract
Recombination activating genes (RAGs) are tightly regulated during lymphoid differentiation, and their mutations cause a spectrum of severe immunological disorders. Hematopoietic stem and progenitor cell (HSPC) transplantation is the treatment of choice but is limited by donor availability and toxicity. To overcome these issues, we developed gene editing strategies targeting a corrective sequence into the human RAG1 gene by homology-directed repair (HDR) and validated them by tailored two-dimensional, three-dimensional, and in vivo xenotransplant platforms to assess rescue of expression and function. Whereas integration into intron 1 of RAG1 achieved suboptimal correction, in-frame insertion into exon 2 drove physiologic human RAG1 expression and activity, allowing disruption of the dominant-negative effects of unrepaired hypomorphic alleles. Enhanced HDR-mediated gene editing enabled the correction of human RAG1 in HSPCs from patients with hypomorphic RAG1 mutations to overcome T and B cell differentiation blocks. Gene correction efficiency exceeded the minimal proportion of functional HSPCs required to rescue immunodeficiency in Rag1-/- mice, supporting the clinical translation of HSPC gene editing for the treatment of RAG1 deficiency.
Collapse
Affiliation(s)
- Maria Carmina Castiello
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Rozzano (MI) 20089, Italy
| | - Chiara Brandas
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- Translational and Molecular Medicine (DIMET), University of Milano-Bicocca, Monza 20900, Italy
| | - Samuele Ferrari
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Simona Porcellini
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Nicolò Sacchetti
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Daniele Canarutto
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- Vita-Salute San Raffaele University, Milan 20132, Italy
- Pediatric Immunohematology Unit and BMT Program, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Elena Draghici
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Ivan Merelli
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- National Research Council (CNR), Institute for Biomedical Technologies, Segrate (MI) 20054, Italy
| | - Matteo Barcella
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- National Research Council (CNR), Institute for Biomedical Technologies, Segrate (MI) 20054, Italy
| | - Gabriele Pelosi
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Valentina Vavassori
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Angelica Varesi
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Aurelien Jacob
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Serena Scala
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Luca Basso Ricci
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Marianna Paulis
- Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Rozzano (MI) 20089, Italy
- Humanitas Clinical and Research Center IRCCS, Rozzano (MI) 20089, Italy
| | - Dario Strina
- Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Rozzano (MI) 20089, Italy
- Humanitas Clinical and Research Center IRCCS, Rozzano (MI) 20089, Italy
| | - Martina Di Verniere
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Rozzano (MI) 20089, Italy
| | - Lucia Sergi Sergi
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Marta Serafini
- Translational and Molecular Medicine (DIMET), University of Milano-Bicocca, Monza 20900, Italy
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza (MI) 20900, Italy
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Jenna R E Bergerson
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Suk See De Ravin
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Harry L Malech
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Francesca Pala
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Chiara Brombin
- University Center for Statistics in the Biomedical Sciences, Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Federica Cugnata
- University Center for Statistics in the Biomedical Sciences, Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Enrica Calzoni
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Gay M Crooks
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Pietro Genovese
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- Gene Therapy Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA 02115, USA
| | - Luigi Naldini
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Anna Villa
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
- Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Rozzano (MI) 20089, Italy
| |
Collapse
|
14
|
Karaatmaca B, Cagdas D, Esenboga S, Erman B, Tan C, Turul Ozgur T, Boztug K, van der Burg M, Sanal O, Tezcan I. Heterogeneity in RAG1 and RAG2 deficiency: 35 cases from a single-centre. Clin Exp Immunol 2024; 215:160-176. [PMID: 37724703 PMCID: PMC10847812 DOI: 10.1093/cei/uxad110] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/03/2023] [Accepted: 09/17/2023] [Indexed: 09/21/2023] Open
Abstract
Recombination activating genes (RAG)1 and RAG2 deficiency leads to combined T/B-cell deficiency with varying clinical presentations. This study aimed to define the clinical/laboratory spectrum of RAG1 and RAG2 deficiency. We retrospectively reviewed the clinical/laboratory data of 35 patients, grouped them as severe combined immunodeficiency (SCID), Omenn syndrome (OS), and delayed-onset combined immunodeficiency (CID) and reported nine novel mutations. The male/female ratio was 23/12. Median age of clinical manifestations was 1 months (mo) (0.5-2), 2 mo (1.25-5), and 14 mo (3.63-27), age at diagnosis was 4 mo (3-6), 4.5 mo (2.5-9.75), and 27 mo (14.5-70) in SCID (n = 25; 71.4%), OS (n = 5; 14.3%), and CID (n = 5; 14.3%) patients, respectively. Common clinical manifestations were recurrent sinopulmonary infections 82.9%, oral moniliasis 62.9%, diarrhea 51.4%, and eczema/dermatitis 42.9%. Autoimmune features were present in 31.4% of the patients; 80% were in CID patients. Lymphopenia was present in 92% of SCID, 80% of OS, and 80% of CID patients. All SCID and CID patients had low T (CD3, CD4, and CD8), low B, and increased NK cell numbers. Twenty-eight patients underwent hematopoietic stem cell transplantation (HSCT), whereas seven patients died before HSCT. Median age at HSCT was 7 mo (4-13.5). Survival differed in groups; maximum in SCID patients who had an HLA-matched family donor, minimum in OS. Totally 19 (54.3%) patients survived. Early molecular genetic studies will give both individualized therapy options, and a survival advantage because of timely diagnosis and treatment. Further improvement in therapeutic outcomes will be possible if clinicians gain time for HSCT.
Collapse
Affiliation(s)
- Betul Karaatmaca
- Hacettepe University School of Medicine, Department of Pediatrics, Division of Pediatric Immunology, Ankara, Turkey
- Department of Pediatric Allergy and Immunology, University of Health Sciences, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Deniz Cagdas
- Hacettepe University School of Medicine, Department of Pediatrics, Division of Pediatric Immunology, Ankara, Turkey
- Section of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Saliha Esenboga
- Hacettepe University School of Medicine, Department of Pediatrics, Division of Pediatric Immunology, Ankara, Turkey
| | - Baran Erman
- Section of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Cagman Tan
- Section of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Tuba Turul Ozgur
- Hacettepe University School of Medicine, Department of Pediatrics, Division of Pediatric Immunology, Ankara, Turkey
| | - Kaan Boztug
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Medical University of Vienna, Department of Pediatrics and Adolescent Medicine, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children's Hospital, Vienna, Austria
| | - Mirjam van der Burg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Ozden Sanal
- Hacettepe University School of Medicine, Department of Pediatrics, Division of Pediatric Immunology, Ankara, Turkey
| | - Ilhan Tezcan
- Hacettepe University School of Medicine, Department of Pediatrics, Division of Pediatric Immunology, Ankara, Turkey
- Section of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
| |
Collapse
|
15
|
Zheng X, Huang C, Lin Y, Han B, Chen Y, Li C, Li J, Ding Y, Song X, Wang W, Liang W, Wu J, Wu J, Gao J, Wei C, Zhang X, Tu Z, Yan S. Generation of inactivated IL2RG and RAG1 monkeys with severe combined immunodeficiency using base editing. Signal Transduct Target Ther 2023; 8:327. [PMID: 37661226 PMCID: PMC10475462 DOI: 10.1038/s41392-023-01544-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/03/2023] [Accepted: 06/16/2023] [Indexed: 09/05/2023] Open
Abstract
Severe combined immunodeficiency (SCID) encompasses a range of inherited disorders that lead to a profound deterioration of the immune system. Among the pivotal genes associated with SCID, RAG1 and IL2RG play crucial roles. IL2RG is essential for the development, differentiation, and functioning of T, B, and NK cells, while RAG1 critically contributes to adaptive immunity by facilitating V(D)J recombination during the maturation of lymphocytes. Animal models carrying mutations in these genes exhibit notable deficiencies in their immune systems. Non-human primates (NHPs) are exceptionally well-suited models for biomedical research due to their genetic and physiological similarities to humans. Cytosine base editors (CBEs) serve as powerful tools for precisely and effectively modifying single-base mutations in the genome. Their successful implementation has been demonstrated in human cells, mice, and crop species. This study outlines the creation of an immunodeficient monkey model by deactivating both the IL2RG and RAG1 genes using the CBE4max system. The base-edited monkeys exhibited a severely compromised immune system characterized by lymphopenia, atrophy of lymphoid organs, and a deficiency of mature T cells. Furthermore, these base-edited monkeys were capable of hosting and supporting the growth of human breast cancer cells, leading to tumor formation. In summary, we have successfully developed an immunodeficient monkey model with the ability to foster tumor growth using the CBE4max system. These immunodeficiency monkeys show tremendous potential as valuable tools for advancing biomedical and translational research.
Collapse
Affiliation(s)
- Xiao Zheng
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, 510632, Guangzhou, China
- Department of Pathophysiology, School of Medicine, Jinan University, 510632, Guangzhou, China
| | - Chunhui Huang
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, 510632, Guangzhou, China
- Department of Pathophysiology, School of Medicine, Jinan University, 510632, Guangzhou, China
| | - Yingqi Lin
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, 510632, Guangzhou, China
- Department of Pathophysiology, School of Medicine, Jinan University, 510632, Guangzhou, China
| | - Bofeng Han
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, 510632, Guangzhou, China
| | - Yizhi Chen
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, 510632, Guangzhou, China
| | - Caijuan Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, 510632, Guangzhou, China
- Department of Pathophysiology, School of Medicine, Jinan University, 510632, Guangzhou, China
| | - Jiawei Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, 510632, Guangzhou, China
- Department of Pathophysiology, School of Medicine, Jinan University, 510632, Guangzhou, China
| | - Yongyan Ding
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, 510632, Guangzhou, China
| | - Xichen Song
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, 510632, Guangzhou, China
| | - Wei Wang
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, 510632, Guangzhou, China
| | - Weien Liang
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, 510632, Guangzhou, China
| | - Jianhao Wu
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, 510632, Guangzhou, China
| | - Jiaxi Wu
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, 510632, Guangzhou, China
| | - Jiale Gao
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, 510632, Guangzhou, China
| | - Chengxi Wei
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, 510632, Guangzhou, China
| | - Xudong Zhang
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, 510632, Guangzhou, China
| | - Zhuchi Tu
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, 510632, Guangzhou, China.
| | - Sen Yan
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, 510632, Guangzhou, China.
- Department of Pathophysiology, School of Medicine, Jinan University, 510632, Guangzhou, China.
| |
Collapse
|
16
|
Min Q, Csomos K, Li Y, Dong L, Hu Z, Meng X, Yu M, Walter JE, Wang JY. B cell abnormalities and autoantibody production in patients with partial RAG deficiency. Front Immunol 2023; 14:1155380. [PMID: 37475856 PMCID: PMC10354446 DOI: 10.3389/fimmu.2023.1155380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/15/2023] [Indexed: 07/22/2023] Open
Abstract
Mutations in the recombination activating gene 1 (RAG1) and RAG2 in humans are associated with a broad spectrum of clinical phenotypes, from severe combined immunodeficiency to immune dysregulation. Partial (hypomorphic) RAG deficiency (pRD) in particular, frequently leads to hyperinflammation and autoimmunity, with several underlying intrinsic and extrinsic mechanisms causing a break in tolerance centrally and peripherally during T and B cell development. However, the relative contributions of these processes to immune dysregulation remain unclear. In this review, we specifically focus on the recently described tolerance break and B cell abnormalities, as well as consequent molecular and cellular mechanisms of autoantibody production in patients with pRD.
Collapse
Affiliation(s)
- Qing Min
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Krisztian Csomos
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States
| | - Yaxuan Li
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Lulu Dong
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ziying Hu
- Department of Microbiology and Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xin Meng
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Meiping Yu
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Jolan E Walter
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States
- Division of Pediatric Allergy/Immunology, Massachusetts General Hospital for Children, Boston, MA, United States
| | - Ji-Yang Wang
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Microbiology and Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Shanghai Huashen Institute of Microbes and Infections, Shanghai, China
| |
Collapse
|
17
|
Chitty Lopez M, Yilmaz M, Diaz-Cabrera NM, Saco T, Ishmael L, Sotoudeh S, Bindernagel C, Ujhazi B, Gordon S, Potts DE, Danziger R, Bosticardo M, Kenney H, Illes P, Lee S, Harris M, Cuellar-Rodriguez J, Patel KN, Csomos K, Dimitrova D, Kanakry JA, Notarangelo LD, Walter JE. Separating the Wheat From the Chaff in Asthma and Bronchiectasis: The Saga Trajectory of a Patient With Adult-Onset RAG1 Deficiency. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:1972-1980. [PMID: 37088379 PMCID: PMC10332246 DOI: 10.1016/j.jaip.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/25/2023]
Affiliation(s)
- Maria Chitty Lopez
- Division of Allergy and Immunology, Department of Pediatrics, University of South Florida, Tampa, Fla; Division of Allergy and Immunology, Department of Pediatrics, Johns Hopkins All Children's Hospital, St. Petersburg, Fla
| | - Melis Yilmaz
- Division of Allergy and Immunology, Department of Pediatrics, University of South Florida, Tampa, Fla; Division of Allergy and Immunology, Department of Pediatrics, Johns Hopkins All Children's Hospital, St. Petersburg, Fla
| | - Natalie M Diaz-Cabrera
- Division of Allergy and Immunology, Department of Internal Medicine, University of South Florida, Tampa, Fla
| | - Tara Saco
- Windom Allergy, Asthma and Sinus, Sarasota, Fla
| | - Leah Ishmael
- Division of Allergy and Immunology, Department of Internal Medicine, University of South Florida, Tampa, Fla
| | - Shannon Sotoudeh
- Division of Allergy and Immunology, Department of Pediatrics, University of South Florida, Tampa, Fla; Division of Allergy and Immunology, Department of Pediatrics, Johns Hopkins All Children's Hospital, St. Petersburg, Fla
| | | | - Boglarka Ujhazi
- Division of Allergy and Immunology, Department of Pediatrics, University of South Florida, Tampa, Fla
| | - Sumai Gordon
- Division of Allergy and Immunology, Department of Pediatrics, University of South Florida, Tampa, Fla
| | - David Evan Potts
- Division of Allergy and Immunology, Department of Pediatrics, University of South Florida, Tampa, Fla; Division of Allergy and Immunology, Department of Pediatrics, Johns Hopkins All Children's Hospital, St. Petersburg, Fla
| | | | - Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Md
| | - Heather Kenney
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Md
| | - Peter Illes
- Division of Allergy and Immunology, Department of Pediatrics, University of South Florida, Tampa, Fla
| | - Sena Lee
- Riverchase Dermatology and Cosmetic Surgery, Suncity Center, Fla
| | - Megan Harris
- Infectious Disease Associates of Tampa Bay, Tampa, Fla
| | - Jennifer Cuellar-Rodriguez
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Md
| | - Kapil N Patel
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, University of South Florida, Tampa, Fla
| | - Krisztian Csomos
- Division of Allergy and Immunology, Department of Pediatrics, University of South Florida, Tampa, Fla
| | - Dimana Dimitrova
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Md
| | | | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Md
| | - Jolan E Walter
- Division of Allergy and Immunology, Department of Pediatrics, University of South Florida, Tampa, Fla; Division of Allergy and Immunology, Department of Pediatrics, Johns Hopkins All Children's Hospital, St. Petersburg, Fla; Massachusetts General Hospital for Children, Boston, Mass.
| |
Collapse
|
18
|
Schuetz C, Gerke J, Ege M, Walter J, Kusters M, Worth A, Kanakry JA, Dimitrova D, Wolska-Kuśnierz B, Chen K, Unal E, Karakukcu M, Pashchenko O, Leiding J, Kawai T, Amrolia PJ, Berghuis D, Buechner J, Buchbinder D, Cowan MJ, Gennery AR, Güngör T, Heimall J, Miano M, Meyts I, Morris EC, Rivière J, Sharapova SO, Shaw PJ, Slatter M, Honig M, Veys P, Fischer A, Cavazzana M, Moshous D, Schulz A, Albert MH, Puck JM, Lankester AC, Notarangelo LD, Neven B, Inborn Errors Working Party (IEWP) of the European Society for Immunodeficiencies (ESID) and European Society for Blood and Marrow Transplantation (EBMT) and the Primary Immune Deficiency Treatment Consortium (PIDTC). Hypomorphic RAG deficiency: impact of disease burden on survival and thymic recovery argues for early diagnosis and HSCT. Blood 2023; 141:713-724. [PMID: 36279417 PMCID: PMC10082356 DOI: 10.1182/blood.2022017667] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/19/2022] [Accepted: 10/04/2022] [Indexed: 11/20/2022] Open
Abstract
Patients with hypomorphic mutations in the RAG1 or RAG2 gene present with either Omenn syndrome or atypical combined immunodeficiency with a wide phenotypic range. Hematopoietic stem cell transplantation (HSCT) is potentially curative, but data are scarce. We report on a worldwide cohort of 60 patients with hypomorphic RAG variants who underwent HSCT, 78% of whom experienced infections (29% active at HSCT), 72% had autoimmunity, and 18% had granulomas pretransplant. These complications are frequently associated with organ damage. Eight individuals (13%) were diagnosed by newborn screening or family history. HSCT was performed at a median of 3.4 years (range 0.3-42.9 years) from matched unrelated donors, matched sibling or matched family donors, or mismatched donors in 48%, 22%, and 30% of the patients, respectively. Grafts were T-cell depleted in 15 cases (25%). Overall survival at 1 and 4 years was 77.5% and 67.5% (median follow-up of 39 months). Infection was the main cause of death. In univariable analysis, active infection, organ damage pre-HSCT, T-cell depletion of the graft, and transplant from a mismatched family donor were predictive of worse outcome, whereas organ damage and T-cell depletion remained significant in multivariable analysis (hazard ratio [HR] = 6.01, HR = 8.46, respectively). All patients diagnosed by newborn screening or family history survived. Cumulative incidences of acute and chronic graft-versus-host disease were 35% and 22%, respectively. Cumulative incidences of new-onset autoimmunity was 15%. Immune reconstitution, particularly recovery of naïve CD4+ T cells, was faster and more robust in patients transplanted before 3.5 years of age, and without organ damage. These findings support the indication for early transplantation.
Collapse
Affiliation(s)
- C. Schuetz
- Department of Paediatrics, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - J. Gerke
- Department of Paediatrics, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - M. Ege
- Dr. von Hauner Children’s Hospital at Ludwig-Maximilians-Universität, München, Germany
- Helmholtz Zentrum München, Neuherberg, Germany
| | - J. Walter
- Division of Allergy and Immunology, Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL
- Division of Allergy and Immunology, Department of Medicine, Johns Hopkins All Children’s Hospital, St. Petersburg, FL
| | - M. Kusters
- Department of Immunology and Gene therapy, Great Ormond Street Hospital, NHS Foundation trust, London, United Kingdom
| | - A. Worth
- Department of Immunology and Gene therapy, Great Ormond Street Hospital, NHS Foundation trust, London, United Kingdom
| | - J. A. Kanakry
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - D. Dimitrova
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - B. Wolska-Kuśnierz
- Department of Immunology, Children's Memorial Health Institute, Warsaw, Poland
| | - K. Chen
- Division of Allergy and Immunology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT
| | - E. Unal
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Erciyes University, Kayseri, Turkey
| | - M. Karakukcu
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Erciyes University, Kayseri, Turkey
| | - O. Pashchenko
- Department of Immunology, Pirogov Russian National Research Medical University, Moscow, Russia
| | - J. Leiding
- Division of Allergy and Immunology, Department of Pediatrics, Johns Hopkins University, Orlando Health Arnold Pamer Hospital for Children, Orlando, FL
| | - T. Kawai
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - P. J. Amrolia
- Bone Marrow Transplant Unit, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | - D. Berghuis
- Department of Pediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - J. Buechner
- Department of Pediatric Hematology and Oncology, Oslo University Hospital, Oslo, Norway
| | - D. Buchbinder
- Division of Hematology, Children's Hospital of Orange County, Orange, CA
| | - M. J. Cowan
- Division of Allergy, Immunology, and Blood and Marrow Transplant, Department of Pediatrics, University of California San Francisco, San Francisco, CA
| | - A. R. Gennery
- Translational and Clinical Research Institute, Newcastle University, Paediatric Haematopoietic Stem Cell Transplant Unit, Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom
| | - T. Güngör
- Department of Hematology/Oncology/Immunology, Gene-therapy, and Stem Cell Transplantation, University Children’s Hospital Zurich–Eleonore Foundation & Children’s Research Center, Zürich, Switzerland
| | - J. Heimall
- Division of Allergy and Immunology, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA
| | - M. Miano
- IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - I. Meyts
- Department of Pediatrics, Department of Microbiology and Immunology, University Hospitals Leuven, Leuven, Belgium
| | - E. C. Morris
- UCL Institute of Immunity & Transplantation, University College London Hospitals NHS Foundation Trust, Royal Free London Hospital NHS Foundation Trust, London, United Kingdom
| | - J. Rivière
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron Research Institute, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - S. O. Sharapova
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - P. J. Shaw
- Blood Transplant and Cell Therapies, Children’s Hospital at Westmead, Sydney, Australia
| | - M. Slatter
- Paediatric Immunology & HSCT, Great North Children's Hospital, Newcastle upon Tyne, United Kingdom
| | - M. Honig
- Department of Pediatrics and Adolescent Medicine, Ulm University, Ulm, Germany
| | - P. Veys
- Bone Marrow Transplant Unit, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | - A. Fischer
- Paediatric Immunology, Department of Immunology, Haematology and Rheumatology, Necker-Enfants Malades, Paris, France
- Institut Imagine, Paris Descartes-Sorbonne Paris Cité University, Paris, France
- Collège de France, Paris, France
| | - M. Cavazzana
- Institut Imagine, Paris Descartes-Sorbonne Paris Cité University, Paris, France
- Département de Biothérapie, Hôpital Universitaire Necker-Enfants Malades, Groupe Hospitalier Paris Centre, Assistance Publique–Hopitaux de Paris, Paris, France
- Centre d’Investigation Clinique Biothérapie, Groupe hospitalier Universitaire paris centre, Assistance Publique-Hôpitaux de Paris, INSERM CIC 1416, Paris, France
| | - D. Moshous
- Paediatric Immunology, Department of Immunology, Haematology and Rheumatology, Necker-Enfants Malades, Paris, France
- Institut Imagine, Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - A. Schulz
- Department of Pediatrics and Adolescent Medicine, Ulm University, Ulm, Germany
| | - M. H. Albert
- Pediatric SCT Program, Dr. von Hauner University Children’s Hospital, Ludwig-Maximilians Universität, München, Germany
| | - J. M. Puck
- Division of Allergy, Immunology, and Blood and Marrow Transplant, Department of Pediatrics, University of California San Francisco, San Francisco, CA
| | - A. C. Lankester
- Department of Pediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - L. D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - B. Neven
- Paediatric Immunology, Department of Immunology, Haematology and Rheumatology, Necker-Enfants Malades, Paris, France
| | - Inborn Errors Working Party (IEWP) of the European Society for Immunodeficiencies (ESID) and European Society for Blood and Marrow Transplantation (EBMT) and the Primary Immune Deficiency Treatment Consortium (PIDTC)
- Department of Paediatrics, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Dr. von Hauner Children’s Hospital at Ludwig-Maximilians-Universität, München, Germany
- Helmholtz Zentrum München, Neuherberg, Germany
- Division of Allergy and Immunology, Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL
- Division of Allergy and Immunology, Department of Medicine, Johns Hopkins All Children’s Hospital, St. Petersburg, FL
- Department of Immunology and Gene therapy, Great Ormond Street Hospital, NHS Foundation trust, London, United Kingdom
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Department of Immunology, Children's Memorial Health Institute, Warsaw, Poland
- Division of Allergy and Immunology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Erciyes University, Kayseri, Turkey
- Department of Immunology, Pirogov Russian National Research Medical University, Moscow, Russia
- Division of Allergy and Immunology, Department of Pediatrics, Johns Hopkins University, Orlando Health Arnold Pamer Hospital for Children, Orlando, FL
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
- Bone Marrow Transplant Unit, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
- Department of Pediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Center, Leiden, The Netherlands
- Department of Pediatric Hematology and Oncology, Oslo University Hospital, Oslo, Norway
- Division of Hematology, Children's Hospital of Orange County, Orange, CA
- Division of Allergy, Immunology, and Blood and Marrow Transplant, Department of Pediatrics, University of California San Francisco, San Francisco, CA
- Translational and Clinical Research Institute, Newcastle University, Paediatric Haematopoietic Stem Cell Transplant Unit, Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom
- Department of Hematology/Oncology/Immunology, Gene-therapy, and Stem Cell Transplantation, University Children’s Hospital Zurich–Eleonore Foundation & Children’s Research Center, Zürich, Switzerland
- Division of Allergy and Immunology, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA
- IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Pediatrics, Department of Microbiology and Immunology, University Hospitals Leuven, Leuven, Belgium
- UCL Institute of Immunity & Transplantation, University College London Hospitals NHS Foundation Trust, Royal Free London Hospital NHS Foundation Trust, London, United Kingdom
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron Research Institute, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
- Blood Transplant and Cell Therapies, Children’s Hospital at Westmead, Sydney, Australia
- Paediatric Immunology & HSCT, Great North Children's Hospital, Newcastle upon Tyne, United Kingdom
- Department of Pediatrics and Adolescent Medicine, Ulm University, Ulm, Germany
- Bone Marrow Transplant Unit, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
- Paediatric Immunology, Department of Immunology, Haematology and Rheumatology, Necker-Enfants Malades, Paris, France
- Institut Imagine, Paris Descartes-Sorbonne Paris Cité University, Paris, France
- Collège de France, Paris, France
- Département de Biothérapie, Hôpital Universitaire Necker-Enfants Malades, Groupe Hospitalier Paris Centre, Assistance Publique–Hopitaux de Paris, Paris, France
- Centre d’Investigation Clinique Biothérapie, Groupe hospitalier Universitaire paris centre, Assistance Publique-Hôpitaux de Paris, INSERM CIC 1416, Paris, France
- Pediatric SCT Program, Dr. von Hauner University Children’s Hospital, Ludwig-Maximilians Universität, München, Germany
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
19
|
Infections in Inborn Errors of Immunity with Combined Immune Deficiency: A Review. Pathogens 2023; 12:pathogens12020272. [PMID: 36839544 PMCID: PMC9958715 DOI: 10.3390/pathogens12020272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/13/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
Enhanced susceptibility to microbes, often resulting in severe, intractable and frequent infections due to usually innocuous organisms at uncommon sites, is the most striking feature in individuals with an inborn error of immunity. In this narrative review, based on the International Union of Immunological Societies' 2022 (IUIS 2022) Update on phenotypic classification of human inborn errors of immunity, the focus is on commonly encountered Combined Immunodeficiency Disorders (CIDs) with susceptibility to infections. Combined immune deficiency disorders are usually commensurate with survival beyond infancy unlike Severe Combined Immune Deficiency (SCID) and are often associated with clinical features of a syndromic nature. Defective humoral and cellular immune responses result in susceptibility to a broad range of microbial infections. Although disease onset is usually in early childhood, mild defects may present in late childhood or even in adulthood. A precise diagnosis is imperative not only for determining management strategies, but also for providing accurate genetic counseling, including prenatal diagnosis, and also in deciding empiric treatment of infections upfront before investigation reports are available.
Collapse
|
20
|
Zhang X, Kang X, Yang M, Cai Z, Song Y, Zhou X, Cao J, Wang C, Huang K, Peng Y, He J, Xiao Z. A variant of RAG1 gene identified in severe combined immunodeficiency: a case report. BMC Pediatr 2023; 23:56. [PMID: 36732712 PMCID: PMC9896705 DOI: 10.1186/s12887-022-03822-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/24/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The recombination-activating gene 1 (RAG1) protein is essential for the V (variable)-D (diversity)-J (joining) recombination process. Mutations in RAG1 have been reported to be associated with several types of immune disorders. Typical clinical features driven by RAG1 variants include persistent infections, severe lymphopenia, and decreased immunoglobulin levels . CASE PRESENTATION In this study, a 2-month-24-days-old infant with recurrent fever was admitted to our hospital with multiple infections and absence of T and B lymphocytes. The infant was diagnosed with severe combined immunodeficiency (SCID). A homozygous variation c.2147G>A (NM_000448.2: exonme2: c.2147G>A (p.Arg716Gln)) was identified in the RAG1 gene using whole-exome sequencing and Sanger sequencing. The predicted 3D structure of variant RAG1 indicated altered protein stability. Additionally, decreased expression of variant RAG1 gene was detected at both the mRNA and protein levels. CONCLUSIONS Our study identified a novel homozygous variant in RAG1 gene that causes SCID. This finding expands the variant spectrum of RAG1 in SCID and provides further evidence for the clinical diagnosis of SCID.
Collapse
Affiliation(s)
- Xinping Zhang
- grid.440223.30000 0004 1772 5147Department of Pediatric Intensive Care Unit of Hunan Children’s Hospital, Changsha, Hunan People’s Republic of China
| | - Xiayan Kang
- grid.440223.30000 0004 1772 5147Department of Pediatric Intensive Care Unit of Hunan Children’s Hospital, Changsha, Hunan People’s Republic of China
| | - Meiyu Yang
- grid.440223.30000 0004 1772 5147Department of Pediatric Intensive Care Unit of Hunan Children’s Hospital, Changsha, Hunan People’s Republic of China
| | - Zili Cai
- grid.440223.30000 0004 1772 5147Department of Pediatric Intensive Care Unit of Hunan Children’s Hospital, Changsha, Hunan People’s Republic of China
| | - Yulei Song
- grid.440223.30000 0004 1772 5147Department of Pediatric Intensive Care Unit of Hunan Children’s Hospital, Changsha, Hunan People’s Republic of China
| | - Xiong Zhou
- grid.440223.30000 0004 1772 5147Department of Pediatric Intensive Care Unit of Hunan Children’s Hospital, Changsha, Hunan People’s Republic of China
| | - Jianshe Cao
- grid.440223.30000 0004 1772 5147Department of Pediatric Intensive Care Unit of Hunan Children’s Hospital, Changsha, Hunan People’s Republic of China
| | - Chengjuan Wang
- grid.440223.30000 0004 1772 5147Department of Pediatric Intensive Care Unit of Hunan Children’s Hospital, Changsha, Hunan People’s Republic of China
| | - Kang Huang
- grid.440223.30000 0004 1772 5147Department of Pediatric Intensive Care Unit of Hunan Children’s Hospital, Changsha, Hunan People’s Republic of China
| | - Yani Peng
- grid.440223.30000 0004 1772 5147Department of Pediatric Intensive Care Unit of Hunan Children’s Hospital, Changsha, Hunan People’s Republic of China
| | - Jie He
- grid.440223.30000 0004 1772 5147Department of Pediatric Intensive Care Unit of Hunan Children’s Hospital, Changsha, Hunan People’s Republic of China
| | - Zhenghui Xiao
- Department of Pediatric Intensive Care Unit of Hunan Children's Hospital, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
21
|
Sacco KA, Gazzin A, Notarangelo LD, Delmonte OM. Granulomatous inflammation in inborn errors of immunity. Front Pediatr 2023; 11:1110115. [PMID: 36891233 PMCID: PMC9986611 DOI: 10.3389/fped.2023.1110115] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/23/2023] [Indexed: 02/22/2023] Open
Abstract
Granulomas have been defined as inflammatory infiltrates formed by recruitment of macrophages and T cells. The three-dimensional spherical structure typically consists of a central core of tissue resident macrophages which may merge into multinucleated giant cells surrounded by T cells at the periphery. Granulomas may be triggered by infectious and non-infectious antigens. Cutaneous and visceral granulomas are common in inborn errors of immunity (IEI), particularly among patients with chronic granulomatous disease (CGD), combined immunodeficiency (CID), and common variable immunodeficiency (CVID). The estimated prevalence of granulomas in IEI ranges from 1%-4%. Infectious agents causing granulomas such Mycobacteria and Coccidioides presenting atypically may be 'sentinel' presentations for possible underlying immunodeficiency. Deep sequencing of granulomas in IEI has revealed non-classical antigens such as wild-type and RA27/3 vaccine-strain Rubella virus. Granulomas in IEI are associated with significant morbidity and mortality. The heterogeneity of granuloma presentation in IEI presents challenges for mechanistic approaches to treatment. In this review, we discuss the main infectious triggers for granulomas in IEI and the major forms of IEI presenting with 'idiopathic' non-infectious granulomas. We also discuss models to study granulomatous inflammation and the impact of deep-sequencing technology while searching for infectious triggers of granulomatous inflammation. We summarize the overarching goals of management and highlight the therapeutic options reported for specific granuloma presentations in IEI.
Collapse
Affiliation(s)
- Keith A Sacco
- Department of Pulmonology, Section of Allergy-Immunology, Phoenix Children's Hospital, Phoenix, AZ, United States
| | - Andrea Gazzin
- Laboratory of Clinical Immunology and Microbiology, Immune Deficiency Genetics Section, National Institutes of Health, Bethesda, MD, United States
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Immune Deficiency Genetics Section, National Institutes of Health, Bethesda, MD, United States
| | - Ottavia M Delmonte
- Laboratory of Clinical Immunology and Microbiology, Immune Deficiency Genetics Section, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
22
|
Autoimmune and autoinflammatory manifestations in inborn errors of immunity. Curr Opin Allergy Clin Immunol 2022; 22:343-351. [PMID: 36165421 DOI: 10.1097/aci.0000000000000860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Autoimmune and inflammatory complications have been shown to arise in all age groups and across the spectrum of inborn errors of immunity (IEI). This review aims to highlight recent ground-breaking research and its impact on our understanding of IEI. RECENT FINDINGS Three registry-based studies of unprecedented size revealed the high prevalence of autoimmune, inflammatory and malignant complications in IEI. Two novel IEI were discovered: an autoinflammatory relopathy, cleavage-resistant RIPK1-induced autoinflammatory syndrome, as well as an inheritable phenocopy of PD-1 blockade-associated complication (as seen in cancer therapy) manifesting with multiorgan autoimmunity and Mycobacterium tuberculosis infection. A study examining patients with partial RAG deficiency pinpointed the specific defects leading to the failure of central and peripheral tolerance resulting in wide-ranging autoimmunity. A novel variant of Immunodeficiency Polyendocrinopathy Enteropathy X-linked syndrome was described, associated with preferential expression of a FOXP3 isoform lacking exon 2, linking exon-specific functions and the phenotypes corresponding to their absence. Lastly, we touch on recent findings pertaining actinopathies, the prototypical IEI with autoimmune, inflammatory and atopic complications. SUMMARY Dysregulated immunity has been associated with IEI since their discovery. Recently, large concerted efforts have shown how common these complications actually are while providing insight into normal and dysregulated molecular mechanisms, as well as describing novel diseases.
Collapse
|
23
|
Csomos K, Ujhazi B, Blazso P, Herrera JL, Tipton CM, Kawai T, Gordon S, Ellison M, Wu K, Stowell M, Haynes L, Cruz R, Zakota B, Nguyen J, Altrich M, Geier CB, Sharapova S, Dasso JF, Leiding JW, Smith G, Al-Herz W, de Barros Dorna M, Fadugba O, Fronkova E, Kanderova V, Svaton M, Henrickson SE, Hernandez JD, Kuijpers T, Kandilarova SM, Naumova E, Milota T, Sediva A, Moshous D, Neven B, Saco T, Sargur R, Savic S, Sleasman J, Sunkersett G, Ward BR, Komatsu M, Pittaluga S, Kumanovics A, Butte MJ, Cancro MP, Pillai S, Meffre E, Notarangelo LD, Walter JE. Partial RAG deficiency in humans induces dysregulated peripheral lymphocyte development and humoral tolerance defect with accumulation of T-bet + B cells. Nat Immunol 2022; 23:1256-1272. [PMID: 35902638 PMCID: PMC9355881 DOI: 10.1038/s41590-022-01271-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 06/16/2022] [Indexed: 12/22/2022]
Abstract
The recombination-activating genes (RAG) 1 and 2 are indispensable for diversifying the primary B cell receptor repertoire and pruning self-reactive clones via receptor editing in the bone marrow; however, the impact of RAG1/RAG2 on peripheral tolerance is unknown. Partial RAG deficiency (pRD) manifesting with late-onset immune dysregulation represents an ‘experiment of nature’ to explore this conundrum. By studying B cell development and subset-specific repertoires in pRD, we demonstrate that reduced RAG activity impinges on peripheral tolerance through the generation of a restricted primary B cell repertoire, persistent antigenic stimulation and an inflammatory milieu with elevated B cell-activating factor. This unique environment gradually provokes profound B cell dysregulation with widespread activation, remarkable extrafollicular maturation and persistence, expansion and somatic diversification of self-reactive clones. Through the model of pRD, we reveal a RAG-dependent ‘domino effect’ that impacts stringency of tolerance and B cell fate in the periphery. Patients with partial recombination-activating gene (RAG) deficiency (pRD) present variable late-onset autoimmune clinical phenotypes. Walter and colleagues identified a restricted primary B cell antigen receptor repertoire enriched for autoreactivity and clonal persistence in pRD. They described dysregulated B cell maturation with expansion of T-bet+ B cells revealing how RAG impacts stringency of tolerance and B cell fate in the periphery.
Collapse
Affiliation(s)
- Krisztian Csomos
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA.
| | - Boglarka Ujhazi
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Peter Blazso
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA.,Department of Pediatrics, University of Szeged, Szeged, Hungary
| | - Jose L Herrera
- Cancer and Blood Disorders Institute and Department of Surgery, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA.,Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher M Tipton
- Department of Medicine, Division of Rheumatology, Emory University, Atlanta, GA, USA
| | - Tomoki Kawai
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Sumai Gordon
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Maryssa Ellison
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Kevin Wu
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Matthew Stowell
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Lauren Haynes
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Rachel Cruz
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Bence Zakota
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Johnny Nguyen
- Department of Pathology & Laboratory Medicine, Johns Hopkins All Children's Hospital, St Petersburg, FL, USA
| | | | | | | | - Joseph F Dasso
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Jennifer W Leiding
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Grace Smith
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Waleed Al-Herz
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Mayra de Barros Dorna
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brasil
| | - Olajumoke Fadugba
- Division of Pulmonary, Allergy and Critical Care, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USA
| | - Eva Fronkova
- Childhood Leukemia Investigation Prague, Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Veronika Kanderova
- Childhood Leukemia Investigation Prague, Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Michael Svaton
- Childhood Leukemia Investigation Prague, Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Sarah E Henrickson
- Allergy Immunology Division, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Institute for Immunology, the University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph D Hernandez
- Department of Pediatrics, Division of Allergy, Immunology and Rheumatology, Stanford University, Stanford, CA, USA
| | - Taco Kuijpers
- Deptartment of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Academic Medical Center, Amsterdam, Netherlands
| | | | - Elizaveta Naumova
- Department of Clinical Immunology, University Hospital Alexandrovska, Medical University, Sofia, Bulgaria
| | - Tomas Milota
- Department of Immunology, Second Faculty of Medicine Charles University and University Hospital Motol, Prague, Czech Republic
| | - Anna Sediva
- Department of Immunology, Second Faculty of Medicine Charles University and University Hospital Motol, Prague, Czech Republic
| | - Despina Moshous
- Université de Paris, Paris, France.,Pediatric Hematology-Immunology and Rheumatology Unit, Necker-Enfants Malades Université Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.,Laboratory of Genome Dynamics in the Immune System, INSERM UMR1163, Institut Imagine, Paris, France
| | - Benedicte Neven
- Université de Paris, Paris, France.,Pediatric Hematology-Immunology and Rheumatology Unit, Necker-Enfants Malades Université Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.,Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR1163, Institut Imagine, Paris, France
| | - Tara Saco
- Windom Allergy, Asthma and Sinus, Sarasota, FL, USA
| | - Ravishankar Sargur
- Department of Immunology and Allergy, Sheffield Teaching Hospitals, Sheffield, UK
| | - Sinisa Savic
- Department of Clinical Immunology and Allergy, St James's University Hospital, Leeds, UK.,National Institute for Health Research-Leeds Musculoskeletal Biomedical Research Centre and Leeds Institute of Rheumatic and Musculoskeletal Medicine, St James's University Hospital, Leeds, UK
| | - John Sleasman
- Division of Allergy, Immunology and Pulmonary Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Gauri Sunkersett
- Cancer and Blood Disorder Institute, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Brant R Ward
- Division of Allergy and Immunology, Children's Hospital of Richmond, Virginia Commonwealth University, Richmond, VA, USA
| | - Masanobu Komatsu
- Cancer and Blood Disorders Institute and Department of Surgery, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA.,Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stefania Pittaluga
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Attila Kumanovics
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Manish J Butte
- Division of Immunology, Allergy, and Rheumatology, Department of Pediatrics and Jeffrey Modell Diagnostic and Research Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michael P Cancro
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, USA
| | - Shiv Pillai
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of technology and Harvard University, Cambridge, MA, USA
| | - Eric Meffre
- Department of Immunobiology, Yale University, New Haven, CT, USA.,Section of Rheumatology, Allergy and Clinical Immunology, Yale School of Medicine, New Haven, CT, USA
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Jolan E Walter
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA. .,Division of Allergy and Immunology, Massachusetts General Hospital for Children, Boston, MA, USA.
| |
Collapse
|
24
|
Wang Y, Abolhassani H, Hammarström L, Pan-Hammarström Q. SARS-CoV-2 infection in patients with inborn errors of immunity due to DNA repair defects. Acta Biochim Biophys Sin (Shanghai) 2022; 54:836-846. [PMID: 35713311 PMCID: PMC9827799 DOI: 10.3724/abbs.2022071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Clinical information on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in patients with inborn errors of immunity (IEI) during the current Coronavirus disease 2019 (COVID-19) pandemic is still limited. Proper DNA repair machinery is required for the development of the adaptive immune system, which provides specific and long-term protection against SARS-CoV-2. This review highlights the impact of SARS-CoV-2 infections on IEI patients with DNA repair disorders and summarizes susceptibility risk factors, pathogenic mechanisms, clinical manifestations and management strategies of COVID-19 in this special patient population.
Collapse
|
25
|
Christie SM, Fijen C, Rothenberg E. V(D)J Recombination: Recent Insights in Formation of the Recombinase Complex and Recruitment of DNA Repair Machinery. Front Cell Dev Biol 2022; 10:886718. [PMID: 35573672 PMCID: PMC9099191 DOI: 10.3389/fcell.2022.886718] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
V(D)J recombination is an essential mechanism of the adaptive immune system, producing a diverse set of antigen receptors in developing lymphocytes via regulated double strand DNA break and subsequent repair. DNA cleavage is initiated by the recombinase complex, consisting of lymphocyte specific proteins RAG1 and RAG2, while the repair phase is completed by classical non-homologous end joining (NHEJ). Many of the individual steps of this process have been well described and new research has increased the scale to understand the mechanisms of initiation and intermediate stages of the pathway. In this review we discuss 1) the regulatory functions of RAGs, 2) recruitment of RAGs to the site of recombination and formation of a paired complex, 3) the transition from a post-cleavage complex containing RAGs and cleaved DNA ends to the NHEJ repair phase, and 4) the potential redundant roles of certain factors in repairing the break. Regulatory (non-core) domains of RAGs are not necessary for catalytic activity, but likely influence recruitment and stabilization through interaction with modified histones and conformational changes. To form long range paired complexes, recent studies have found evidence in support of large scale chromosomal contraction through various factors to utilize diverse gene segments. Following the paired cleavage event, four broken DNA ends must now make a regulated transition to the repair phase, which can be controlled by dynamic conformational changes and post-translational modification of the factors involved. Additionally, we examine the overlapping roles of certain NHEJ factors which allows for prevention of genomic instability due to incomplete repair in the absence of one, but are lethal in combined knockouts. To conclude, we focus on the importance of understanding the detail of these processes in regards to off-target recombination or deficiency-mediated clinical manifestations.
Collapse
Affiliation(s)
- Shaun M. Christie
- *Correspondence: Shaun M. Christie, ; Carel Fijen, ; Eli Rothenberg,
| | - Carel Fijen
- *Correspondence: Shaun M. Christie, ; Carel Fijen, ; Eli Rothenberg,
| | - Eli Rothenberg
- *Correspondence: Shaun M. Christie, ; Carel Fijen, ; Eli Rothenberg,
| |
Collapse
|
26
|
Ruan Y, Zhao Q, Liu Q, Zhao HY, Zhang ZY, Ding Y, Zhao XD. A novel homozygous RAG1 mutation in a girl presenting with granulomas and alopecia capitis totalis. World J Pediatr 2022; 18:294-299. [PMID: 35157248 DOI: 10.1007/s12519-021-00503-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/12/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Yu Ruan
- Growth, Development, and Mental Health Center of Children and Adolescents, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing, 400014, China
| | - Qin Zhao
- Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing, 400014, China
| | - Qing Liu
- Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing, 400014, China
| | - Hong-Yi Zhao
- Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing, 400014, China
| | - Zhi-Yong Zhang
- Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing, 400014, China.,Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yuan Ding
- Growth, Development, and Mental Health Center of Children and Adolescents, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing, 400014, China
| | - Xiao-Dong Zhao
- Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, 136 Zhongshan 2nd Road, Yu Zhong District, Chongqing, 400014, China. .,Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| |
Collapse
|
27
|
Kempf W, Petrella T, Willemze R, Jansen P, Berti E, Santucci M, Geissinger E, Cerroni L, Maubac E, Battistella M, Goodlad J, Guenova E, Lappalainen K, Ranki A, Craig P, Calonje E, Martin B, Whittaker S, Oschlies I, Wehkamp U, Nicolay JP, Wobser M, Scarisbruck J, Pimpinelli N, Stadler R, Kerl K, Quaglino P, Lin J, Chen L, Beer M, Emanuel P, Dalle S, Robson A. Clinical, histopathological and prognostic features of primary cutaneous acral CD8+ T-cell lymphoma and other dermal CD8+ cutaneous lymphoproliferations - Results of an EORTC Cutaneous Lymphoma Group Workshop. Br J Dermatol 2022; 186:887-897. [PMID: 34988968 DOI: 10.1111/bjd.20973] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/27/2021] [Accepted: 12/30/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND The differential diagnosis of atypical dermal non-epidermotropic CD8+lymphocytic infiltrates includes a heterogenous spectrum of lymphoproliferations with overlapping histological and phenotypic features, but divergent clinical manifestations and prognoses. As these neoplasms are rare, more data on their clinicopathological presentation and course are needed. OBJECTIVES To assess the clinical, histological, immunophenotypic features, outcome of and differences between dermal CD8+ lymphoproliferations. METHODS Retrospective analysis of a series of 47 patients and biopsies by the international EORTC Cutaneous Lymphoma Group. RESULTS The dermal CD8+ lymphoproliferations (n=46) could be assigned to one of the following 3 groups: (1) cutaneous acral CD8+ T-cell lymphoma (n=31), characterized mostly by a solitary nodule arising at acral sites, a monotonous dermal infiltrate of small to medium-sized CD8+ lymphocytes with a characteristic dot-like pattern of CD68, a low proliferation rate and an excellent prognosis; (2) primary cutaneous CD8+ peripheral T-cell lymphoma, unspecified/NOS (n=11), presenting with one or multiple rapidly evolving tumors, mostly medium-sized pleomorphic CD8+ tumor cells with expression of several cytotoxic markers and high proliferative activity. After chemotherapy or radiotherapy relapses occurred in one third and 1 of 11 patients died due to lymphoma (9%); (3) The third group (n=4) comprised cutaneous CD8+ lymphoproliferations associated with congenital immunodeficiency syndromes in 2 patients with persisting localized or disseminated violaceous to brownish plaques on the extremities, a histiocyte-rich infiltrate of mostly small CD8+ lymphocytes with subtle atypia and a protracted course, and papular CD8+ eruptions in two patients with acquired immunosuppression (HIV-infection, solid organ transplantation). CONCLUSIONS A constellation of distinct clinical, histopathologic and phenotypic features allows discrimination and assignment of dermal CD8+ infiltrates to distinct disease entities including cutaneous acral CD8+ T-cell lymphoma, primary cutaneous CD8+ peripheral T-cell lymphoma, unspecified/NOS and cutaneous CD8+ lymphoproliferations associated with congenital or acquired immunodeficiency syndromes. Primary cutaneous acral CD8+ lymphoma, assigned a provisional category in current lymphoma classifications, is a distinct and reproducible entity. A correct diagnosis is essential to avoid unnecessarily aggressive treatment for indolent CD8+ lymphoproliferations and to identify cases with underlying immunodeficiency or potential for dismal outcome.
Collapse
Affiliation(s)
- Werner Kempf
- Kempf und Pfaltz Histologische Diagnostik, Zurich, Switzerland.,Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Tony Petrella
- Departement of Pathology, Hopital Maisonneuve-Rosemont, Montréal, Canada
| | - Rein Willemze
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Patty Jansen
- Department of Clinical Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Emilio Berti
- University of Milan, Director U.O.C of Dermatology Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico of Milan, Italy
| | - Marco Santucci
- Department of Health Sciences, University of Florence School of Human Health Sciences and Division of Histopathology and Molecular Diagnostics, Careggi University Hospital, Florence, Italy
| | - Eva Geissinger
- Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Lorenzo Cerroni
- Department of Dermatology, Medical University of Graz, Austria
| | - Eve Maubac
- Service de Dermatologie du Pr F. Caux, Hôpital Avicenne Bobigny Cedex, France
| | - Maxime Battistella
- Department of Pathology, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris, Paris University, INSERM U976, Paris, France
| | | | - Emmanuella Guenova
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland.,Department of Dermatology, University Hospital Lausanne, Faculty of Biology and Medicine, University of Lausanne, CH-1011, Lausanne, Switzerland
| | | | - Annamari Ranki
- Skin and Allergy Hospital, Helsinki University Central Hospital, Finland
| | - Paul Craig
- Gloucestershire Hospitals NHS Foundation Trust Gloucestershire Cellular Pathology Laboratory, Cheltenham General Hospital, Cheltenham, Gloucestershire, UK
| | - Eduardo Calonje
- Department of Dermatopathology, St John's Institute of Dermatology, St Thomas' Hospital, London, England, UK
| | - Blanca Martin
- Department of Dermatopathology, St John's Institute of Dermatology, St Thomas' Hospital, London, England, UK
| | - Sean Whittaker
- St John's Institute of Dermatology, Guys and St Thomas NHS Foundation Trust, Lomdo, UK
| | - Ilske Oschlies
- Dept. of Pathology, Section Hematopathology and lymph node registry, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Ulrike Wehkamp
- Department of Dermatology and Allergology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Jan P Nicolay
- Dept. of Dermatology, University Medical Center Mannheim, Germany
| | - Marion Wobser
- Department of Dermatology, Venereology and Allergology and Skin Cancer Center, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Julia Scarisbruck
- Department of Dermatology, University Hospital Birmingham, Birmingham, UK
| | - Nicola Pimpinelli
- Dermatology Unit, Department of Health Sciences, University of Florence Medical School, Florence, Italy
| | - Rudi Stadler
- Dept. Dermatology, Venerology, Allergology and Phlebology, Johannes Wesling Klinikum Minden, University Clinic Ruhr-Universität Bochum, Minden, Germany
| | - Katrin Kerl
- Dept. of Dermatology, Ludwig-Maximilian University Hospital of Munich, Munich, Germany
| | - Pietro Quaglino
- Dermatologic Clinic, Dept Medical Sciences, University of Turin Medical School, Torino, Italy
| | - Jinran Lin
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Lianjun Chen
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Michaela Beer
- Kempf und Pfaltz Histologische Diagnostik, Zurich, Switzerland
| | - Patrick Emanuel
- Clinica Ricarda Palma, Lima, Peru and University of Auckland, Auckland, New Zealand
| | - Stephane Dalle
- Unit of Dermatology, Cancer Research center of Lyon, Hôpital Lyon Sud, Hospices Civils de Lyon, Université Claude Bernard Lyon 1, France
| | - Alistair Robson
- Institute of Oncology, Lisbon, Portugal, Portugal.,LDPath, London, UK
| |
Collapse
|
28
|
Cifaldi C, Rivalta B, Amodio D, Mattia A, Pacillo L, Di Cesare S, Chiriaco M, Ursu GM, Cotugno N, Giancotta C, Manno EC, Santilli V, Zangari P, Federica G, Palumbo G, Merli P, Palma P, Rossi P, Di Matteo G, Locatelli F, Finocchi A, Cancrini C. Clinical, Immunological, and Molecular Variability of RAG Deficiency: A Retrospective Analysis of 22 RAG Patients. J Clin Immunol 2022; 42:130-145. [PMID: 34664192 PMCID: PMC8821501 DOI: 10.1007/s10875-021-01130-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/29/2021] [Indexed: 11/05/2022]
Abstract
PURPOSE We described clinical, immunological, and molecular characterization within a cohort of 22 RAG patients focused on the possible correlation between clinical and genetic data. METHODS Immunological and genetic features were investigated by multiparametric flow cytometry and by Sanger or next generation sequencing (NGS) as appropriate. RESULTS Patients represented a broad spectrum of RAG deficiencies: SCID, OS, LS/AS, and CID. Three novel mutations in RAG1 gene and one in RAG2 were reported. The primary symptom at presentation was infections (81.8%). Infections and autoimmunity occurred together in the majority of cases (63.6%). Fifteen out of 22 (68.2%) patients presented autoimmune or inflammatory manifestations. Five patients experienced severe autoimmune cytopenia refractory to different lines of therapy. Total lymphocytes count was reduced or almost lacking in SCID group and higher in OS patients. B lymphocytes were variably detected in LS/AS and CID groups. Eighteen patients underwent HSCT permitting definitive control of autoimmune/hyperinflammatory manifestations in twelve of them (80%). CONCLUSION We reinforce the notion that different clinical phenotype can be found in patients with identical mutations even within the same family. Infections may influence genotype-phenotype correlation and function as trigger for immune dysregulation or autoimmune manifestations. Severe and early autoimmune refractory cytopenia is frequent and could be the first symptom of onset. Prompt recognition of RAG deficiency in patients with early onset of autoimmune/hyperinflammatory manifestations could contribute to the choice of a timely and specific treatment preventing the onset of other complications.
Collapse
Affiliation(s)
- Cristina Cifaldi
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy.
| | - Beatrice Rivalta
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy
| | - Donato Amodio
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Algeri Mattia
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, Scientific Institute for Research and Healthcare, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Lucia Pacillo
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy
| | - Silvia Di Cesare
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy
| | - Maria Chiriaco
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy
| | - Giorgiana Madalina Ursu
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy
| | - Nicola Cotugno
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Carmela Giancotta
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Emma C Manno
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Veronica Santilli
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Paola Zangari
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Galaverna Federica
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, Scientific Institute for Research and Healthcare, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Giuseppe Palumbo
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, Scientific Institute for Research and Healthcare, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Pietro Merli
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, Scientific Institute for Research and Healthcare, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Paolo Palma
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Paolo Rossi
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Gigliola Di Matteo
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, Scientific Institute for Research and Healthcare, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
- Department of Pediatrics, Sapienza, University of Rome, Rome, Italy
| | - Andrea Finocchi
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy
| | - Caterina Cancrini
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy.
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy.
| |
Collapse
|
29
|
Wilkins BJ, Kelsen JR, Conrad MA. A Pattern-based Pathology Approach to Very Early-onset Inflammatory Bowel Disease: Thinking Beyond Crohn Disease and Ulcerative Colitis. Adv Anat Pathol 2022; 29:62-70. [PMID: 34813528 PMCID: PMC8665089 DOI: 10.1097/pap.0000000000000327] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Very early-onset inflammatory bowel disease (VEO-IBD), IBD diagnosed in children younger than 6 years old, is phenotypically and genetically distinct from older onset IBD. Monogenic and digenic causative defects, particularly in primary immunodeficiency and intestinal epithelial barrier genes, have been identified in a subset of patients with VEO-IBD allowing for targeted therapies and improved outcomes. However, these findings are the minority, thus strategies to correctly diagnose patients, including identification of specific histopathologic findings with correlating clinical and laboratory features may provide critical and necessary insight into mechanisms of disease pathogenesis and subsequent therapeutic options. In this article, we review the pathologic findings seen in patients with VEO-IBD and outline a pattern-based approach to diagnosis using examples from primary immunodeficiencies with gastrointestinal manifestations.
Collapse
Affiliation(s)
- Benjamin J. Wilkins
- Division of Anatomic Pathology, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 USA
| | - Judith R. Kelsen
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 USA
| | - Maire A. Conrad
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 USA
| |
Collapse
|
30
|
Min Q, Meng X, Zhou Q, Wang Y, Li Y, Lai N, Xiong E, Wang W, Yasuda S, Yu M, Zhang H, Sun J, Wang X, Wang JY. RAG1 splicing mutation causes enhanced B cell differentiation and autoantibody production. JCI Insight 2021; 6:e148887. [PMID: 34622798 PMCID: PMC8525647 DOI: 10.1172/jci.insight.148887] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 08/26/2021] [Indexed: 11/30/2022] Open
Abstract
Hypomorphic RAG1 or RAG2 mutations cause primary immunodeficiencies and can lead to autoimmunity, but the underlying mechanisms are elusive. We report here a patient carrying a c.116+2T>G homozygous splice site mutation in the first intron of RAG1, which led to aberrant splicing and greatly reduced RAG1 protein expression. B cell development was blocked at both the pro-B to pre-B transition and the pre-B to immature B cell differentiation step. The patient B cells had reduced B cell receptor repertoire diversity and decreased complementarity determining region 3 lengths. Despite B cell lymphopenia, the patient had abundant plasma cells in the BM and produced large quantities of IgM and IgG Abs, including autoantibodies. The proportion of naive B cells was reduced while the frequency of IgD-CD27- double-negative (DN) B cells, which quickly differentiated into Ab-secreting plasma cells upon stimulation, was greatly increased. Immune phenotype analysis of 52 patients with primary immunodeficiency revealed a strong association of the increased proportion of DN B and memory B cells with decreased number and proportion of naive B cells. These results suggest that the lymphopenic environment triggered naive B cell differentiation into DN B and memory B cells, leading to increased Ab production.
Collapse
Affiliation(s)
- Qing Min
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xin Meng
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qinhua Zhou
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Ying Wang
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Yaxuan Li
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Nannan Lai
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ermeng Xiong
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wenjie Wang
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Shoya Yasuda
- School of Computing, Tokyo Institute of Technology, Yokohama, Japan
| | - Meiping Yu
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Hai Zhang
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Jinqiao Sun
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Xiaochuan Wang
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Ji-Yang Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Department of Microbiology and Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
31
|
Delmonte OM, Bergerson JRE, Kawai T, Kuehn HS, McDermott DH, Cortese I, Zimmermann MT, Dobbs AK, Bosticardo M, Fink D, Majumdar S, Palterer B, Pala F, Dsouza NR, Pouzolles M, Taylor N, Calvo KR, Daley SR, Velez D, Agharahimi A, Myint-Hpu K, Dropulic LK, Lyons JJ, Holland SM, Freeman AF, Ghosh R, Similuk MB, Niemela JE, Stoddard J, Kuhns DB, Urrutia R, Rosenzweig SD, Walkiewicz MA, Murphy PM, Notarangelo LD. SASH3 variants cause a novel form of X-linked combined immunodeficiency with immune dysregulation. Blood 2021; 138:1019-1033. [PMID: 33876203 PMCID: PMC8462359 DOI: 10.1182/blood.2020008629] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sterile alpha motif (SAM) and Src homology-3 (SH3) domain-containing 3 (SASH3), also called SH3-containing lymphocyte protein (SLY1), is a putative adaptor protein that is postulated to play an important role in the organization of signaling complexes and propagation of signal transduction cascades in lymphocytes. The SASH3 gene is located on the X-chromosome. Here, we identified 3 novel SASH3 deleterious variants in 4 unrelated male patients with a history of combined immunodeficiency and immune dysregulation that manifested as recurrent sinopulmonary, cutaneous, and mucosal infections and refractory autoimmune cytopenias. Patients exhibited CD4+ T-cell lymphopenia, decreased T-cell proliferation, cell cycle progression, and increased T-cell apoptosis in response to mitogens. In vitro T-cell differentiation of CD34+ cells and molecular signatures of rearrangements at the T-cell receptor α (TRA) locus were indicative of impaired thymocyte survival. These patients also manifested neutropenia and B-cell and natural killer (NK)-cell lymphopenia. Lentivirus-mediated transfer of the SASH3 complementary DNA-corrected protein expression, in vitro proliferation, and signaling in SASH3-deficient Jurkat and patient-derived T cells. These findings define a new type of X-linked combined immunodeficiency in humans that recapitulates many of the abnormalities reported in mice with Sly1-/- and Sly1Δ/Δ mutations, highlighting an important role of SASH3 in human lymphocyte function and survival.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/immunology
- Child, Preschool
- Chromosomes, Human, X/genetics
- Chromosomes, Human, X/immunology
- Genetic Loci
- Humans
- Jurkat Cells
- Killer Cells, Natural/immunology
- Lymphopenia/genetics
- Lymphopenia/immunology
- Male
- Mice
- Mice, Knockout
- Mutation
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- X-Linked Combined Immunodeficiency Diseases/genetics
- X-Linked Combined Immunodeficiency Diseases/immunology
Collapse
Affiliation(s)
- Ottavia M Delmonte
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Jenna R E Bergerson
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Tomoki Kawai
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Hye Sun Kuehn
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - David H McDermott
- Molecular Signaling Section, Laboratory of Molecular Immunology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Irene Cortese
- Neuroimmunology Clinic, Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Michael T Zimmermann
- Division of Research, Genomics Sciences & Precision Medicine Center, Milwaukee, WI
- Clinical and Translational Sciences Institute, Medical College of Wisconsin, Milwaukee, WI
| | - A Kerry Dobbs
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Danielle Fink
- Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Shamik Majumdar
- Molecular Signaling Section, Laboratory of Molecular Immunology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Boaz Palterer
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Francesca Pala
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Nikita R Dsouza
- Division of Research, Genomics Sciences & Precision Medicine Center, Milwaukee, WI
| | - Marie Pouzolles
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Naomi Taylor
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Institut de Genetique Moleculaire de Montpellier, Centre National de la Recherche Scientifique Unité Mixte de Recherche (UMR) 5535, Universite de Montpellier, Montpellier, France
| | - Katherine R Calvo
- Hematology Section, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Stephen R Daley
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Daniel Velez
- Molecular Signaling Section, Laboratory of Molecular Immunology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Anahita Agharahimi
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Katherine Myint-Hpu
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | | | - Jonathan J Lyons
- Division of Intramural Research, Laboratory of Allergic Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD and
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Rajarshi Ghosh
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Morgan B Similuk
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Julie E Niemela
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Jennifer Stoddard
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Douglas B Kuhns
- Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Raul Urrutia
- Division of Research, Genomics Sciences & Precision Medicine Center, Milwaukee, WI
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI
| | - Sergio D Rosenzweig
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Magdalena A Walkiewicz
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Philip M Murphy
- Molecular Signaling Section, Laboratory of Molecular Immunology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
32
|
Naik B, Ahmed SMQ, Laha S, Das SP. Genetic Susceptibility to Fungal Infections and Links to Human Ancestry. Front Genet 2021; 12:709315. [PMID: 34490039 PMCID: PMC8417537 DOI: 10.3389/fgene.2021.709315] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/13/2021] [Indexed: 12/25/2022] Open
Abstract
Over the ages, fungi have associated with different parts of the human body and established symbiotic associations with their host. They are mostly commensal unless there are certain not so well-defined factors that trigger the conversion to a pathogenic state. Some of the factors that induce such transition can be dependent on the fungal species, environment, immunological status of the individual, and most importantly host genetics. In this review, we discuss the different aspects of how host genetics play a role in fungal infection since mutations in several genes make hosts susceptible to such infections. We evaluate how mutations modulate the key recognition between the pathogen associated molecular patterns (PAMP) and the host pattern recognition receptor (PRR) molecules. We discuss the polymorphisms in the genes of the immune system, the way it contributes toward some common fungal infections, and highlight how the immunological status of the host determines fungal recognition and cross-reactivity of some fungal antigens against human proteins that mimic them. We highlight the importance of single nucleotide polymorphisms (SNPs) that are associated with several of the receptor coding genes and discuss how it affects the signaling cascade post-infection, immune evasion, and autoimmune disorders. As part of personalized medicine, we need the application of next-generation techniques as a feasible option to incorporate an individual’s susceptibility toward invasive fungal infections based on predisposing factors. Finally, we discuss the importance of studying genomic ancestry and reveal how genetic differences between the human race are linked to variation in fungal disease susceptibility.
Collapse
Affiliation(s)
- Bharati Naik
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Sumayyah M Q Ahmed
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Suparna Laha
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Shankar Prasad Das
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| |
Collapse
|
33
|
Costagliola G, Consolini R. Lymphadenopathy at the crossroad between immunodeficiency and autoinflammation: An intriguing challenge. Clin Exp Immunol 2021; 205:288-305. [PMID: 34008169 PMCID: PMC8374228 DOI: 10.1111/cei.13620] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/11/2022] Open
Abstract
Lymphadenopathies can be part of the clinical spectrum of several primary immunodeficiencies, including diseases with immune dysregulation and autoinflammatory disorders, as the clinical expression of benign polyclonal lymphoproliferation, granulomatous disease or lymphoid malignancy. Lymphadenopathy poses a significant diagnostic dilemma when it represents the first sign of a disorder of the immune system, leading to a consequently delayed diagnosis. Additionally, the finding of lymphadenopathy in a patient with diagnosed immunodeficiency raises the question of the differential diagnosis between benign lymphoproliferation and malignancies. Lymphadenopathies are evidenced in 15–20% of the patients with common variable immunodeficiency, while in other antibody deficiencies the prevalence is lower. They are also evidenced in different combined immunodeficiency disorders, including Omenn syndrome, which presents in the first months of life. Interestingly, in the activated phosphoinositide 3‐kinase delta syndrome, autoimmune lymphoproliferative syndrome, Epstein–Barr virus (EBV)‐related lymphoproliferative disorders and regulatory T cell disorders, lymphadenopathy is one of the leading signs of the entire clinical picture. Among autoinflammatory diseases, the highest prevalence of lymphadenopathies is observed in patients with periodic fever, aphthous stomatitis, pharyngitis, and cervical adenitis (PFAPA) and hyper‐immunoglobulin (Ig)D syndrome. The mechanisms underlying lymphoproliferation in the different disorders of the immune system are multiple and not completely elucidated. The advances in genetic techniques provide the opportunity of identifying new monogenic disorders, allowing genotype–phenotype correlations to be made and to provide adequate follow‐up and treatment in the single diseases. In this work, we provide an overview of the most relevant immune disorders associated with lymphadenopathy, focusing on their diagnostic and prognostic implications.
Collapse
Affiliation(s)
- Giorgio Costagliola
- Section of Clinical and Laboratory Immunology, Division of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Rita Consolini
- Section of Clinical and Laboratory Immunology, Division of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
34
|
Lugo-Reyes SO, Pastor N, González-Serrano E, Yamazaki-Nakashimada MA, Scheffler-Mendoza S, Berron-Ruiz L, Wakida G, Nuñez-Nuñez ME, Macias-Robles AP, Staines-Boone AT, Venegas-Montoya E, Alaez-Verson C, Molina-Garay C, Flores-Lagunes LL, Carrillo-Sanchez K, Niemela J, Rosenzweig SD, Gaytan P, Yañez JA, Martinez-Duncker I, Notarangelo LD, Espinosa-Padilla S, Cruz-Munoz ME. Clinical Manifestations, Mutational Analysis, and Immunological Phenotype in Patients with RAG1/2 Mutations: First Cases Series from Mexico and Description of Two Novel Mutations. J Clin Immunol 2021; 41:1291-1302. [PMID: 33954879 DOI: 10.1007/s10875-021-01052-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/20/2021] [Indexed: 11/25/2022]
Abstract
Mutations in recombinase activating genes 1 and 2 (RAG1/2) result in human severe combined immunodeficiency (SCID). The products of these genes are essential for V(D)J rearrangement of the antigen receptors during lymphocyte development. Mutations resulting in null-recombination activity in RAG1 or RAG2 are associated with the most severe clinical and immunological phenotypes, whereas patients with hypomorphic mutations may develop leaky SCID, including Omenn syndrome (OS). A group of previously unrecognized clinical phenotypes associated with granulomata and/or autoimmunity have been described as a consequence of hypomorphic mutations. Here, we present six patients from unrelated families with missense variants in RAG1 or RAG2. Phenotypes observed in these patients ranged from OS to severe mycobacterial infections and granulomatous disease. Moreover, we report the first evidence of two variants that had not been associated with immunodeficiency. This study represents the first case series of RAG1- or RAG2-deficient patients from Mexico and Latin America.
Collapse
Affiliation(s)
| | - Nina Pastor
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | | | | | | | - Laura Berron-Ruiz
- Laboratorio de Inmunodeficiencias, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Guillermo Wakida
- Laboratorio de Inmunodeficiencias, Instituto Nacional de Pediatría, Mexico City, Mexico
| | | | | | | | - Edna Venegas-Montoya
- Unidad Médica de Alta Especialidad 25, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | | | | | | | | | - Julie Niemela
- Laboratory of Clinical Immunology and Microbiology, National Institute of Health, Mexico City, Mexico
| | - Sergio D Rosenzweig
- Laboratory of Clinical Immunology and Microbiology, National Institute of Health, Mexico City, Mexico
| | - Paul Gaytan
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jorge A Yañez
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ivan Martinez-Duncker
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Health, Mexico City, Mexico
| | - Sara Espinosa-Padilla
- Laboratorio de Inmunodeficiencias, Instituto Nacional de Pediatría, Mexico City, Mexico.
| | | |
Collapse
|
35
|
Bosticardo M, Pala F, Notarangelo LD. RAG deficiencies: Recent advances in disease pathogenesis and novel therapeutic approaches. Eur J Immunol 2021; 51:1028-1038. [PMID: 33682138 PMCID: PMC8325549 DOI: 10.1002/eji.202048880] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/13/2021] [Accepted: 03/03/2021] [Indexed: 12/26/2022]
Abstract
The RAG1 and RAG2 proteins initiate the process of V(D)J recombination and therefore play an essential role in adaptive immunity. While null mutations in the RAG genes cause severe combined immune deficiency with lack of T and B cells (T- B- SCID) and susceptibility to life-threatening, early-onset infections, studies in humans and mice have demonstrated that hypomorphic RAG mutations are associated with defects of central and peripheral tolerance resulting in immune dysregulation. In this review, we provide an overview of the extended spectrum of RAG deficiencies and their associated clinical and immunological phenotypes in humans. We discuss recent advances in the mechanisms that control RAG expression and function, the effects of perturbed RAG activity on lymphoid development and immune homeostasis, and propose novel approaches to correct this group of disorders.
Collapse
Affiliation(s)
- Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Francesca Pala
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
36
|
Bode SFN, Rohr J, Müller Quernheim J, Seidl M, Speckmann C, Heinzmann A. Pulmonary granulomatosis of genetic origin. Eur Respir Rev 2021; 30:30/160/200152. [PMID: 33927005 PMCID: PMC9488645 DOI: 10.1183/16000617.0152-2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/27/2020] [Indexed: 11/30/2022] Open
Abstract
Granulomatous inflammation of the lung can be a manifestation of different conditions and can be caused by endogenous inflammation or external triggers. A multitude of different genetic mutations can either predispose patients to infections with granuloma-forming pathogens or cause autoinflammatory disorders, both leading to the phenotype of pulmonary granulomatosis. Based on a detailed patient history, physical examination and a diagnostic approach including laboratory workup, pulmonary function tests (PFTs), computed tomography (CT) scans, bronchoscopy with bronchoalveolar lavage (BAL), lung biopsies and specialised microbiological and immunological diagnostics, a correct diagnosis of an underlying cause of pulmonary granulomatosis of genetic origin can be made and appropriate therapy can be initiated. Depending on the underlying disorder, treatment approaches can include antimicrobial therapy, immunosuppression and even haematopoietic stem cell transplantation (HSCT). Patients with immunodeficiencies and autoinflammatory conditions are at the highest risk of developing pulmonary granulomatosis of genetic origin. Here we provide a review on these disorders and discuss pathogenesis, clinical presentation, diagnostic approach and treatment. Pulmonary granulomatosis of genetic origin mostly occurs in immunodeficiency disorders and autoinflammatory conditions. In addition to specific approaches in this regard, the diagnostic workup needs to cover environmental and occupational aspects.https://bit.ly/31SqdHW
Collapse
Affiliation(s)
- Sebastian F N Bode
- Dept of General Paediatrics, Adolescent Medicine and Neonatology, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jan Rohr
- Dept of General Paediatrics, Adolescent Medicine and Neonatology, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Joachim Müller Quernheim
- Dept of Pneumology, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maximilan Seidl
- Institute for Surgical Pathology, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute of Pathology, Heinrich-Heine University and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Carsten Speckmann
- Centre for Paediatrics and Adolescent Medicine, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute for Immunodeficiency, Centre for Chronic Immunodeficiency (CCI), Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andrea Heinzmann
- Dept of General Paediatrics, Adolescent Medicine and Neonatology, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
37
|
Vignesh P, Rawat A, Kumrah R, Singh A, Gummadi A, Sharma M, Kaur A, Nameirakpam J, Jindal A, Suri D, Gupta A, Khadwal A, Saikia B, Minz RW, Sharma K, Desai M, Taur P, Gowri V, Pandrowala A, Dalvi A, Jodhawat N, Kambli P, Madkaikar MR, Bhattad S, Ramprakash S, CP R, Jayaram A, Sivasankaran M, Munirathnam D, Balaji S, Rajendran A, Aggarwal A, Singh K, Na F, George B, Mehta A, Lashkari HP, Uppuluri R, Raj R, Bartakke S, Gupta K, Sreedharanunni S, Ogura Y, Kato T, Imai K, Chan KW, Leung D, Ohara O, Nonoyama S, Hershfield M, Lau YL, Singh S. Clinical, Immunological, and Molecular Features of Severe Combined Immune Deficiency: A Multi-Institutional Experience From India. Front Immunol 2021; 11:619146. [PMID: 33628209 PMCID: PMC7897653 DOI: 10.3389/fimmu.2020.619146] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/17/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Severe Combined Immune Deficiency (SCID) is an inherited defect in lymphocyte development and function that results in life-threatening opportunistic infections in early infancy. Data on SCID from developing countries are scarce. OBJECTIVE To describe clinical and laboratory features of SCID diagnosed at immunology centers across India. METHODS A detailed case proforma in an Excel format was prepared by one of the authors (PV) and was sent to centers in India that care for patients with primary immunodeficiency diseases. We collated clinical, laboratory, and molecular details of patients with clinical profile suggestive of SCID and their outcomes. Twelve (12) centers provided necessary details which were then compiled and analyzed. Diagnosis of SCID/combined immune deficiency (CID) was based on 2018 European Society for Immunodeficiencies working definition for SCID. RESULTS We obtained data on 277 children; 254 were categorized as SCID and 23 as CID. Male-female ratio was 196:81. Median (inter-quartile range) age of onset of clinical symptoms and diagnosis was 2.5 months (1, 5) and 5 months (3.5, 8), respectively. Molecular diagnosis was obtained in 162 patients - IL2RG (36), RAG1 (26), ADA (19), RAG2 (17), JAK3 (15), DCLRE1C (13), IL7RA (9), PNP (3), RFXAP (3), CIITA (2), RFXANK (2), NHEJ1 (2), CD3E (2), CD3D (2), RFX5 (2), ZAP70 (2), STK4 (1), CORO1A (1), STIM1 (1), PRKDC (1), AK2 (1), DOCK2 (1), and SP100 (1). Only 23 children (8.3%) received hematopoietic stem cell transplantation (HSCT). Of these, 11 are doing well post-HSCT. Mortality was recorded in 210 children (75.8%). CONCLUSION We document an exponential rise in number of cases diagnosed to have SCID over the last 10 years, probably as a result of increasing awareness and improvement in diagnostic facilities at various centers in India. We suspect that these numbers are just the tip of the iceberg. Majority of patients with SCID in India are probably not being recognized and diagnosed at present. Newborn screening for SCID is the need of the hour. Easy access to pediatric HSCT services would ensure that these patients are offered HSCT at an early age.
Collapse
Affiliation(s)
- Pandiarajan Vignesh
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Amit Rawat
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Rajni Kumrah
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ankita Singh
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Anjani Gummadi
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Madhubala Sharma
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Anit Kaur
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Johnson Nameirakpam
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ankur Jindal
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Deepti Suri
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Anju Gupta
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Alka Khadwal
- Bone Marrow Transplantation Unit, Department of Internal Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Biman Saikia
- Department of Immunopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ranjana Walker Minz
- Department of Immunopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Kaushal Sharma
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Mukesh Desai
- Department of Immunology, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Prasad Taur
- Department of Immunology, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Vijaya Gowri
- Department of Immunology, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Ambreen Pandrowala
- Bone Marrow Transplantation Unit, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Aparna Dalvi
- ICMR-National Institute of Immunohematology, Mumbai, India
| | - Neha Jodhawat
- ICMR-National Institute of Immunohematology, Mumbai, India
| | | | | | - Sagar Bhattad
- Pediatric Immunology and Rheumatology, Aster CMI hospital, Bengaluru, India
| | - Stalin Ramprakash
- Pediatric Hemat-oncology and BMT Unit, Aster CMI Hospital, Bengaluru, India
| | - Raghuram CP
- Pediatric Hemat-oncology and BMT Unit, Aster CMI Hospital, Bengaluru, India
| | | | | | | | - Sarath Balaji
- Institute of Child Health, Madras Medical College, Chennai, India
| | - Aruna Rajendran
- Institute of Child Health, Madras Medical College, Chennai, India
| | - Amita Aggarwal
- Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Komal Singh
- Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Fouzia Na
- Christian Medical College, Vellore, India
| | | | | | | | | | | | | | - Kirti Gupta
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Sreejesh Sreedharanunni
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Yumi Ogura
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | - Tamaki Kato
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | - Kohsuke Imai
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
- Department of Community Pediatrics, Perinatal and Maternal Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Koon Wing Chan
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Daniel Leung
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | | | - Shigeaki Nonoyama
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | | | - Yu-Lung Lau
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Surjit Singh
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
38
|
Severe Combined Immunodeficiency Disorder due to a Novel Mutation in Recombination Activation Gene 2: About 2 Cases. Case Reports Immunol 2021; 2021:8819368. [PMID: 33505738 PMCID: PMC7808801 DOI: 10.1155/2021/8819368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 12/07/2020] [Accepted: 12/26/2020] [Indexed: 11/26/2022] Open
Abstract
Severe combined immunodeficiency (SCID) comprises a heterogeneous group of inherited immunologic disorders with profound defects in cellular and humoral immunity. SCID is the most severe PID and constitutes a pediatric emergency. Affected children are highly susceptible to bacterial, viral, fungal, and opportunistic infections with life-threatening in the absence of hematopoietic stem cell transplantation. We report here two cases of SCID. The first case is a girl diagnosed with SCID at birth based on her family history and lymphocyte subpopulation typing. The second case is a 4-month-old boy with a history of recurrent opportunistic infections, BCGitis, and failure to thrive, and the immunology workup confirms a SCID phenotype. The genetic study in the two cases revealed a novel mutation in the RAG2 gene, c.826G > A (p.Gly276Ser), in a homozygous state. The novel mutation in the RAG2 gene identified in our study may help the early diagnosis of SCID.
Collapse
|
39
|
Evans' Syndrome: From Diagnosis to Treatment. J Clin Med 2020; 9:jcm9123851. [PMID: 33260979 PMCID: PMC7759819 DOI: 10.3390/jcm9123851] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/21/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022] Open
Abstract
Evans' syndrome (ES) is defined as the concomitant or sequential association of warm auto-immune haemolytic anaemia (AIHA) with immune thrombocytopenia (ITP), and less frequently autoimmune neutropenia. ES is a rare situation that represents up to 7% of AIHA and around 2% of ITP. When AIHA and ITP occurred concomitantly, the diagnosis procedure must rule out differential diagnoses such as thrombotic microangiopathies, anaemia due to bleedings complicating ITP, vitamin deficiencies, myelodysplastic syndromes, paroxysmal nocturnal haemoglobinuria, or specific conditions like HELLP when occurring during pregnancy. As for isolated auto-immune cytopenia (AIC), the determination of the primary or secondary nature of ES is important. Indeed, the association of ES with other diseases such as haematological malignancies, systemic lupus erythematosus, infections, or primary immune deficiencies can interfere with its management or alter its prognosis. Due to the rarity of the disease, the treatment of ES is mostly extrapolated from what is recommended for isolated AIC and mostly relies on corticosteroids, rituximab, splenectomy, and supportive therapies. The place for thrombopoietin receptor agonists, erythropoietin, immunosuppressants, haematopoietic cell transplantation, and thromboprophylaxis is also discussed in this review. Despite continuous progress in the management of AIC and a gradual increase in ES survival, the mortality due to ES remains higher than the ones of isolated AIC, supporting the need for an improvement in ES management.
Collapse
|
40
|
Villa A, Capo V, Castiello MC. Innovative Cell-Based Therapies and Conditioning to Cure RAG Deficiency. Front Immunol 2020; 11:607926. [PMID: 33329604 PMCID: PMC7711106 DOI: 10.3389/fimmu.2020.607926] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
Genetic defects in recombination activating genes (RAG) 1 and 2 cause a broad spectrum of severe immune defects ranging from early severe and repeated infections to inflammation and autoimmune manifestations. A correlation between in vitro recombination activity and immune phenotype has been described. Hematopoietic cell transplantation is the treatment of care; however, the availability of next generation sequencing and whole genome sequencing has allowed the identification of novel genetic RAG variants in immunodeficient patients at various ages, raising therapeutic questions. This review addresses the recent advances of novel therapeutic approaches for RAG deficiency. As conventional myeloablative conditioning regimens are associated with acute toxicities and transplanted-related mortality, innovative minimal conditioning regimens based on the use of monoclonal antibodies are now emerging and show promising results. To overcome shortage of compatible donors, gene therapy has been developed in various RAG preclinical models. Overall, the transplantation of autologous gene corrected hematopoietic precursors and the use of non-genotoxic conditioning will open a new era, offering a cure to an increasing number of RAG patients regardless of donor availability and severity of clinical conditions.
Collapse
Affiliation(s)
- Anna Villa
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.,Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (IRGB-CNR), Milan, Italy
| | - Valentina Capo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.,Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (IRGB-CNR), Milan, Italy
| | - Maria Carmina Castiello
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.,Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (IRGB-CNR), Milan, Italy
| |
Collapse
|
41
|
Cutaneous and systemic granulomatosis in ataxia-telangiectasia: a clinico-pathological study. Postepy Dermatol Alergol 2020; 37:760-765. [PMID: 33240017 PMCID: PMC7675092 DOI: 10.5114/ada.2020.100485] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/25/2019] [Indexed: 12/14/2022] Open
Abstract
Introduction The development of granulomas is a well-recognized manifestation of immunodeficiency in ataxia-telangiectasia (A-T), resulting from lymphocyte developmental abnormalities, impaired immunosurveillance, and inappropriate innate immune response-driven inflammation. Aim To better understand pathological and immunological phenomena involved in development of cutaneous and visceral granulomatosis observable in patients with ataxia-telangiectasia. Material and methods We retrospectively reviewed medical records of eight A-T children, aged from 2 to 13 years, with regard to clinical, immunological and histopathological features of cutaneous and visceral granulomatosis. Results In four out of eight A-T patients studied, cutaneous granulomas clinically presented as skin nodules and ulcerated erythematous plaques disseminated on the face, and on trauma-prone areas of upper and lower extremities. Visceral granulomatosis had a severe clinical course and involved the lungs, the spleen, the liver and the larynx. Histologically, cutaneous and laryngeal granulomas showed extensive cellular infiltrations containing T lymphocytes with predominating CD8+ phenotype and with CD68+ histiocytes. The immunological profile with the hyper-IgM phenotype, markedly reduced numbers of B and naive CD4+ and CD8+ T cells with predominating IgM-only memory B cells and skewed repertoire of a T cell receptor was observable in patients with skin and visceral granulomatosis. Conclusions In the setting of combined immunodeficiency in A-T, cutaneous and systemic granulomatosis reflects a granulomatous reaction pattern, as a result of inappropriate immune regulation.
Collapse
|
42
|
Geier CB, Farmer JR, Foldvari Z, Ujhazi B, Steininger J, Sleasman JW, Parikh S, Dilley MA, Pai SY, Henderson L, Hazen M, Neven B, Moshous D, Sharapova SO, Mihailova S, Yankova P, Naumova E, Özen S, Byram K, Fernandez J, Wolf HM, Eibl MM, Notarangelo LD, Calabrese LH, Walter JE. Vasculitis as a Major Morbidity Factor in Patients With Partial RAG Deficiency. Front Immunol 2020; 11:574738. [PMID: 33193364 PMCID: PMC7609967 DOI: 10.3389/fimmu.2020.574738] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 08/31/2020] [Indexed: 12/30/2022] Open
Abstract
Vasculitis can be a life-threatening complication associated with high mortality and morbidity among patients with primary immunodeficiencies (PIDs), including variants of severe and combined immunodeficiencies ((S)CID). Our understanding of vasculitis in partial defects in recombination activating gene (RAG) deficiency, a prototype of (S)CIDs, is limited with no published systematic evaluation of diagnostic and therapeutic modalities. In this report, we sought to establish the clinical, laboratory features, and treatment outcome of patients with vasculitis due to partial RAG deficiency. Vasculitis was a major complication in eight (13%) of 62 patients in our cohort with partial RAG deficiency with features of infections and immune dysregulation. Vasculitis occurred early in life, often as first sign of disease (50%) and was complicated by significant end organ damage. Viral infections often preceded the onset of predominately non-granulomatous-small vessel vasculitis. Autoantibodies against cytokines (IFN-α, -ω, and IL-12) were detected in a large fraction of the cases tested (80%), whereas the majority of patients were anti-neutrophil cytoplasmic antibodies (ANCA) negative (>80%). Genetic diagnosis of RAG deficiency was delayed up to 2 years from the onset of vasculitis. Clinical cases with sole skin manifestation responded well to first-line steroid treatment, whereas systemic vasculitis with severe end-organ complications required second-line immunosuppression and/or hematopoietic stem cell transplantation (HSCT) for definitive management. In conclusion, our data suggest that vasculitis in partial RAG deficiency is prevalent among patients with partial RAG deficiency and is associated with high morbidity. Therefore, partial RAG deficiency should be included in the differential diagnosis of patients with early-onset systemic vasculitis. Diagnostic serology may be misleading with ANCA negative findings, and search for conventional autoantibodies should be extended to include those targeting cytokines.
Collapse
Affiliation(s)
| | - Jocelyn R Farmer
- Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Zsofia Foldvari
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Radiumhospitalet, Oslo, Norway
| | - Boglarka Ujhazi
- University of South Florida and Johns Hopkins All Children's Hospital, Saint Petersburg, FL, United States
| | | | - John W Sleasman
- Division of Allergy, Immunology and Pulmonary Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Suhag Parikh
- Emory University School of Medicine, Atlanta, GA, United States
| | - Meredith A Dilley
- Department of Immunology, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Sung-Yun Pai
- Division of Hematology-Oncology, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Lauren Henderson
- Division of Immunology, Department of Rheumatology, Boston Children's Hospital, Boston, MA, United States
| | - Melissa Hazen
- Division of Immunology, Department of Rheumatology, Boston Children's Hospital, Boston, MA, United States
| | - Benedicte Neven
- Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, Paris, France.,Pediatric Hematology-Immunology and Rheumatology Unit, Necker-Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.,Laboratory "Immunogenetics of Pediatric autoimmune diseases", INSERM UMR1163, Institut Imagine, Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | - Despina Moshous
- Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, Paris, France.,Pediatric Hematology-Immunology and Rheumatology Unit, Necker-Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.,Laboratory of Genome Dynamics in The Immune System, Paris, France
| | - Svetlana O Sharapova
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Snezhina Mihailova
- Department of Clinical Immunology Medical University of Sofia, Sofia, Bulgaria
| | - Petya Yankova
- Department of Clinical Immunology Medical University of Sofia, Sofia, Bulgaria
| | - Elisaveta Naumova
- Department of Clinical Immunology Medical University of Sofia, Sofia, Bulgaria
| | - Seza Özen
- Division of Rheumatology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Kevin Byram
- Cleveland Clinic Center for Vasculitis Care and Research, Cleveland, OH, United States
| | - James Fernandez
- Cleveland Clinic Center for Vasculitis Care and Research, Cleveland, OH, United States
| | - Hermann M Wolf
- Immunology Outpatient Clinic, Vienna, Austria.,Sigmund Freud Private University- Medical School, Vienna, Austria
| | - Martha M Eibl
- Immunology Outpatient Clinic, Vienna, Austria.,Biomedizinische Forschungs GmbH, Vienna, Austria
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, NIAID, National Institutes of Health, Bethesda, MD, United States
| | - Leonard H Calabrese
- Cleveland Clinic Center for Vasculitis Care and Research, Cleveland, OH, United States
| | - Jolan E Walter
- University of South Florida at Johns Hopkins All Children's Hospital, Saint Petersburg, FL, United States.,Division of Allergy and Immunology, Massachusetts General Hospital for Children, Boston, MA, United States
| |
Collapse
|
43
|
Essadssi S, Benhsaien I, Bakhchane A, Charoute H, Abdelghaffar H, Bousfiha AA, Barakat A. A Homozygous RAG1 Gene Mutation in a Case of Combined Immunodeficiency: Clinical, Molecular, and Computational Analysis. Hum Hered 2020; 84:272-278. [PMID: 33075768 DOI: 10.1159/000510062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 07/09/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The recombination-activating gene 1 and 2 (RAG1/RAG2) proteins are essential to initiate the V(D)J recombination process, the result is a diverse repertoire of antigen receptor genes and the establishment of the adaptive immunity. RAG1 mutations can lead to multiple forms of combined immunodeficiency. METHODS In this report, whole exome sequencing was performed in a Moroccan child suffering from combined immunodeficiency, with T and B lymphopenia, autoimmune hemolytic anemia, and cytomegalovirus (CMV) infection. RESULTS After filtering data and Sanger sequencing validation, one homozygous mutation c.2446G>A (p.Gly816Arg) was identified in the RAG1 gene. CONCLUSION This finding expands the spectrum of immunological and genetic profiles linked to RAG1 mutation, it also illustrates the necessity to consider RAG1 immunodeficiency in the presence of autoimmune hemolytic anemia and CMV infection, even assuming the immunological phenotype appears more or less normal.
Collapse
Affiliation(s)
- Soukaina Essadssi
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca, Morocco.,Laboratory of Biosciences, Integrated and Molecular Functional Exploration (LBEFIM), Faculty of Science and Technology of Mohammedia, Hassan II University of Casablanca, Casablanca, Morocco
| | - Ibtihal Benhsaien
- Clinical Immunology Unit, Ibn Rochd Hospital, King Hassan II University-AinChok, Casablanca, Morocco
| | - Amina Bakhchane
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Hicham Charoute
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Houria Abdelghaffar
- Laboratory of Biosciences, Integrated and Molecular Functional Exploration (LBEFIM), Faculty of Science and Technology of Mohammedia, Hassan II University of Casablanca, Casablanca, Morocco
| | - Ahmed Aziz Bousfiha
- Clinical Immunology Unit, Ibn Rochd Hospital, King Hassan II University-AinChok, Casablanca, Morocco
| | - Abdelhamid Barakat
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca, Morocco,
| |
Collapse
|
44
|
Chitty-Lopez M, Westermann-Clark E, Dawson I, Ujhazi B, Csomos K, Dobbs K, Le K, Yamazaki Y, Sadighi Akha AA, Chellapandian D, Oshrine B, Notarangelo LD, Sunkersett G, Leiding JW, Walter JE. Asymptomatic Infant With Atypical SCID and Novel Hypomorphic RAG Variant Identified by Newborn Screening: A Diagnostic and Treatment Dilemma. Front Immunol 2020; 11:1954. [PMID: 33117328 PMCID: PMC7552884 DOI: 10.3389/fimmu.2020.01954] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022] Open
Abstract
The T-cell receptor excision circle (TREC) assay detects T-cell lymphopenia (TCL) in newborns and is especially important to identify severe combined immunodeficiency (SCID). A spectrum of SCID variants and non-SCID conditions that present with TCL are being discovered with increasing frequency by newborn screening (NBS). Recombination-activating gene (RAG) deficiency is one the most common causes of classical and atypical SCID and other conditions with immune dysregulation. We present the case of an asymptomatic male with undetectable TRECs on NBS at 1 week of age. The asymptomatic newborn was found to have severe TCL, but normal B cell quantities and lymphocyte proliferation upon mitogen stimulation. Next generation sequencing revealed compound heterozygous hypomorphic RAG variants, one of which was novel. The moderately decreased recombinase activity of the RAG variants (16 and 40%) resulted in abnormal T and B-cell receptor repertoires, decreased fraction of CD3+ TCRVα7.2+ T cells and an immune phenotype consistent with the RAG hypomorphic variants. The patient underwent successful treatment with hematopoietic stem cell transplantation (HSCT) at 5 months of age. This case illustrates how after identification of a novel RAG variant, in vitro studies are important to confirm the pathogenicity of the variant. This confirmation allows the clinician to expedite definitive treatment with HSCT in an asymptomatic phase, mitigating the risk of serious infectious and non-infectious complications.
Collapse
Affiliation(s)
- Maria Chitty-Lopez
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States
| | - Emma Westermann-Clark
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States
| | - Irina Dawson
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States
| | - Boglarka Ujhazi
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States
| | - Krisztian Csomos
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States
| | - Kerry Dobbs
- Laboratory of Clinical Immunology and Microbiology, NIAID, National Institutes of Health, Bethesda, MD, United States
| | - Khuong Le
- Laboratory of Clinical Immunology and Microbiology, NIAID, National Institutes of Health, Bethesda, MD, United States
| | - Yasuhiro Yamazaki
- Laboratory of Clinical Immunology and Microbiology, NIAID, National Institutes of Health, Bethesda, MD, United States
| | - Amir A Sadighi Akha
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Deepak Chellapandian
- Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States
| | - Ben Oshrine
- Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, NIAID, National Institutes of Health, Bethesda, MD, United States
| | - Gauri Sunkersett
- Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States
| | - Jennifer W Leiding
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States
| | - Jolan E Walter
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States.,Division of Pediatric Allergy and Immunology, Massachusetts General Hospital for Children, Boston, MA, United States
| |
Collapse
|
45
|
Immune dysregulation in patients with RAG deficiency and other forms of combined immune deficiency. Blood 2020; 135:610-619. [PMID: 31942628 DOI: 10.1182/blood.2019000923] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/25/2019] [Indexed: 12/12/2022] Open
Abstract
Traditionally, primary immune deficiencies have been defined based on increased susceptibility to recurrent and/or severe infections. However, immune dysregulation, manifesting with autoimmunity or hyperinflammatory disease, has emerged as a common feature. This is especially true in patients affected by combined immune deficiency (CID), a group of disorders caused by genetic defects that impair, but do not completely abolish, T-cell function. Hypomorphic mutations in the recombination activating genes RAG1 and RAG2 represent the prototype of the broad spectrum of clinical and immunological phenotypes associated with CID. The study of patients with RAG deficiency and with other forms of CID has revealed distinct abnormalities in central and peripheral T- and B-cell tolerance as the key mechanisms involved in immune dysregulation. Understanding the pathophysiology of autoimmunity and hyperinflammation in these disorders may also permit more targeted therapeutic interventions.
Collapse
|
46
|
|
47
|
Nilavar NM, Paranjape AM, Raghavan SC. Biochemical activity of RAGs is impeded by Dolutegravir, an HIV integrase inhibitor. Cell Death Discov 2020; 6:50. [PMID: 32566255 PMCID: PMC7293277 DOI: 10.1038/s41420-020-0281-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/26/2020] [Accepted: 04/22/2020] [Indexed: 02/03/2023] Open
Abstract
HIV is a retrovirus that infects CD4+ T lymphocytes in human beings and causes immunodeficiency. In the recent years, various therapies have been developed against HIV, including targeting the HIV specific protein, integrase, responsible for integration of HIV cDNA into host DNA. Although, integrase is specific to HIV, it has functional and structural similarity with RAG1, one of the partner proteins associated with V(D)J recombination, a process by which immune diversity is generated in humans. Currently, there are three HIV integrase inhibitors: Elvitegravir, Dolutegravir, and Raltegravir, in the market which have been approved by the FDA (USA). All three drugs are used in anti-retroviral therapy (ART). Previously, we showed that amongst the HIV inhibitors, Elvitegravir could significantly decrease B cell maturation in vivo and inhibit the physiological activities of RAGs in vitro, unlike Raltegravir. In the present study, we address the effect of second-generation integrase inhibitor, Dolutegravir on RAG activities. Binding and nicking studies showed that, Dolutegravir could decrease the binding efficiency of RAG1 domains and cleavage on DNA substrates, but not as considerably as Elvitegravir. Thus, we show that although the integrase inhibitors such as Elvitegravir show an affinity towards RAG1, the newer molecules may have lesser side-effects.
Collapse
Affiliation(s)
- Namrata M. Nilavar
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012 India
| | - Amita M. Paranjape
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012 India
| | - Sathees C. Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012 India
| |
Collapse
|
48
|
Sharapova SO, Skomska-Pawliszak M, Rodina YA, Wolska-Kuśnierz B, Dabrowska-Leonik N, Mikołuć B, Pashchenko OE, Pasic S, Freiberger T, Milota T, Formánková R, Szaflarska A, Siedlar M, Avčin T, Markelj G, Ciznar P, Kalwak K, Kołtan S, Jackowska T, Drabko K, Gagro A, Pac M, Naumova E, Kandilarova S, Babol-Pokora K, Varabyou DS, Barendregt BH, Raykina EV, Varlamova TV, Pavlova AV, Grombirikova H, Debeljak M, Mersiyanova IV, Bondarenko AV, Chernyshova LI, Kostyuchenko LV, Guseva MN, Rascon J, Muleviciene A, Preiksaitiene E, Geier CB, Leiss-Piller A, Yamazaki Y, Kawai T, Walter JE, Kondratenko IV, Šedivá A, van der Burg M, Kuzmenko NB, Notarangelo LD, Bernatowska E, Aleinikova OV. The Clinical and Genetic Spectrum of 82 Patients With RAG Deficiency Including a c.256_257delAA Founder Variant in Slavic Countries. Front Immunol 2020; 11:900. [PMID: 32655540 PMCID: PMC7325958 DOI: 10.3389/fimmu.2020.00900] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/20/2020] [Indexed: 11/13/2022] Open
Abstract
Background: Variants in recombination-activating genes (RAG) are common genetic causes of autosomal recessive forms of combined immunodeficiencies (CID) ranging from severe combined immunodeficiency (SCID), Omenn syndrome (OS), leaky SCID, and CID with granulomas and/or autoimmunity (CID-G/AI), and even milder presentation with antibody deficiency. Objective: We aim to estimate the incidence, clinical presentation, genetic variability, and treatment outcome with geographic distribution of patients with the RAG defects in populations inhabiting South, West, and East Slavic countries. Methods: Demographic, clinical, and laboratory data were collected from RAG-deficient patients of Slavic origin via chart review, retrospectively. Recombinase activity was determined in vitro by flow cytometry-based assay. Results: Based on the clinical and immunologic phenotype, our cohort of 82 patients from 68 families represented a wide spectrum of RAG deficiencies, including SCID (n = 20), OS (n = 37), and LS/CID (n = 25) phenotypes. Sixty-seven (81.7%) patients carried RAG1 and 15 patients (18.3%) carried RAG2 biallelic variants. We estimate that the minimal annual incidence of RAG deficiency in Slavic countries varies between 1 in 180,000 and 1 in 300,000 live births, and it may vary secondary to health care disparities in these regions. In our cohort, 70% (n = 47) of patients with RAG1 variants carried p.K86Vfs*33 (c.256_257delAA) allele, either in homozygous (n = 18, 27%) or in compound heterozygous (n = 29, 43%) form. The majority (77%) of patients with homozygous RAG1 p.K86Vfs*33 variant originated from Vistula watershed area in Central and Eastern Poland, and compound heterozygote cases were distributed among all Slavic countries except Bulgaria. Clinical and immunological presentation of homozygous RAG1 p.K86Vfs*33 cases was highly diverse (SCID, OS, and AS/CID) suggestive of strong influence of additional genetic and/or epigenetic factors in shaping the final phenotype. Conclusion: We propose that RAG1 p.K86Vfs*33 is a founder variant originating from the Vistula watershed region in Poland, which may explain a high proportion of homozygous cases from Central and Eastern Poland and the presence of the variant in all Slavs. Our studies in this cohort of RAG1 founder variants confirm that clinical and immunological phenotypes only partially depend on the underlying genetic defect. As access to HSCT is improving among RAG-deficient patients in Eastern Europe, we anticipate improvements in survival.
Collapse
Affiliation(s)
- Svetlana O. Sharapova
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk Region, Belarus
| | | | - Yulia A. Rodina
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | | | | | - Bozena Mikołuć
- Department of Pediatrics, Rheumatology, Immunology and Metabolic Bone Diseases, Medical University of Bialystok, Bialystok, Poland
| | - Olga E. Pashchenko
- Immunology Department, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Srdjan Pasic
- Pediatric Immunology, Medical Faculty, Mother and Child Health Institute, University of Belgrade, Belgrade, Serbia
| | - Tomáš Freiberger
- Centre for Cardiovascular Surgery and Transplantation, Brno, Czechia
- Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Tomáš Milota
- Department of Immunology, University Hospital Motol, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Renata Formánková
- Department of Pediatric Hematology and Oncology, University Hospital Motol, Prague, Czechia
- Faculty of Medicine, Charles University, Prague, Czechia
| | - Anna Szaflarska
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Maciej Siedlar
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
- Department of Clinical Immunology, University Children's Hospital, Krakow, Poland
| | - Tadej Avčin
- University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Gašper Markelj
- University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Peter Ciznar
- Pediatric Department, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Krzysztof Kalwak
- Department of Pediatric Hematology/Oncology and BMT, Wroclaw Medical University, Wroclaw, Poland
| | - Sylwia Kołtan
- Department of Pediatrics, Hematology and Oncology Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
- Nicolaus Copernicus University in Torun, Torun, Poland
| | - Teresa Jackowska
- Department of Pediatrics, Medical Center of Postgraduate Education, Warsaw, Poland
| | - Katarzyna Drabko
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, Lublin, Poland
| | - Alenka Gagro
- Department of Pediatrics, School of Medicine, Zagreb Children's Hospital, University of Zagreb, Zagreb, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Małgorzata Pac
- Department of Immunology, Children's Memorial Health Institute, Warsaw, Poland
| | - Elissaveta Naumova
- Department of Clinical Immunology, University Hospital Alexandrovska, Sofia, Bulgaria
| | - Snezhina Kandilarova
- Department of Clinical Immunology, University Hospital Alexandrovska, Sofia, Bulgaria
| | - Katarzyna Babol-Pokora
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Dzmitry S. Varabyou
- Department of Geographical Ecology, Belarusian State University, Minsk, Belarus
| | - Barbara H. Barendregt
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Elena V. Raykina
- Laboratory of Molecular Biology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Tatiana V. Varlamova
- Laboratory of Molecular Biology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Anna V. Pavlova
- Laboratory of Molecular Biology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Hana Grombirikova
- Centre for Cardiovascular Surgery and Transplantation, Brno, Czechia
- Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Maruša Debeljak
- University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Irina V. Mersiyanova
- Laboratory of Molecular Biology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Anastasiia V. Bondarenko
- Department of Pediatric Infectious Diseases and Pediatric Immunology, Shupyk National Medical Academy for Postgraduate Education, Kiev, Ukraine
| | - Liudmyla I. Chernyshova
- Department of Pediatric Infectious Diseases and Pediatric Immunology, Shupyk National Medical Academy for Postgraduate Education, Kiev, Ukraine
| | - Larysa V. Kostyuchenko
- Pediatric Department, West-Ukrainian Specialized Children's Medical Center, Lviv, Ukraine
| | - Marina N. Guseva
- Consulting Center of Pediatric Medical Academy, St. Petersburg, Russia
| | - Jelena Rascon
- Center for Pediatric Oncology and Hematology, Vilnius University, Vilnius, Lithuania
| | - Audrone Muleviciene
- Center for Pediatric Oncology and Hematology, Vilnius University, Vilnius, Lithuania
| | - Egle Preiksaitiene
- Hematology, Oncology and Transfusion Medicine Center, Vilnius University, Vilnius, Lithuania
| | | | | | - Yasuhiro Yamazaki
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Tomoki Kawai
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jolan E. Walter
- University of South Florida at Johns Hopkins All Children's Hospital, Saint Petersburg, FL, United States
- Massachusetts General Hospital for Children, Boston, MA, United States
| | - Irina V. Kondratenko
- Department of Clinical Immunology, Russian Clinical Children's Hospital by Pirogov Russian National Research Medical University, Moscow, Russia
| | - Anna Šedivá
- Department of Immunology, University Hospital Motol, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Mirjam van der Burg
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Pediatric, Laboratory for Pediatric Immunology, Willem Alexander Children's Hospital, LUMC, Leiden, Netherlands
| | - Natalia B. Kuzmenko
- Department of Epidemiology and Monitoring of Primary Immunodeficiencies, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Ewa Bernatowska
- Department of Immunology, Children's Memorial Health Institute, Warsaw, Poland
| | - Olga V. Aleinikova
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk Region, Belarus
| |
Collapse
|
49
|
Castiello MC, Bosticardo M, Sacchetti N, Calzoni E, Fontana E, Yamazaki Y, Draghici E, Corsino C, Bortolomai I, Sereni L, Yu HH, Uva P, Palchaudhuri R, Scadden DT, Villa A, Notarangelo LD. Efficacy and safety of anti-CD45-saporin as conditioning agent for RAG deficiency. J Allergy Clin Immunol 2020; 147:309-320.e6. [PMID: 32387109 PMCID: PMC8322962 DOI: 10.1016/j.jaci.2020.04.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 11/30/2022]
Abstract
Background: Mutations in the recombinase-activating genes cause severe immunodeficiency, with a spectrum of phenotypes ranging from severe combined immunodeficiency to immune dysregulation. Hematopoietic stem cell transplantation is the only curative option, but a high risk of graft failure and poor immune reconstitution have been observed in the absence of myeloablation. Objectives: Our aim was to improve multilineage engraftment; we tested nongenotoxic conditioning with anti-CD45 mAbs conjugated with saporin CD45 (CD45-SAP). Methods: Rag1-KO and Rag1-F971L mice, which represent models of severe combined immune deficiency and combined immune deficiency with immune dysregulation, respectively, were conditioned with CD45-SAP, CD45-SAP plus 2 Gy of total body irradiation (TBI), 2 Gy of TBI, 8 Gy of TBI, or no conditioning and treated by using transplantation with lineage-negative bone marrow cells from wild-type mice. Flow cytometry and immunohistochemistry were used to assess engraftment and immune reconstitution. Antibody responses to 2,4,6-trinitrophenyl–conjugated keyhole limpet hemocyanin were measured by ELISA, and presence of autoantibody was detected by microarray. Results: Conditioning with CD45-SAP enabled high levels of multilineage engraftment in both Rag1 mutant models, allowed overcoming of B- and T-cell differentiation blocks and thymic epithelial cell defects, and induced robust cellular and humoral immunity in the periphery. Conclusions: Conditioning with CD45-SAP allows multilineage engraftment and robust immune reconstitution in mice with either null or hypomorphic Rag mutations while preserving thymic epithelial cell homeostasis.
Collapse
Affiliation(s)
- Maria Carmina Castiello
- San Raffaele Telethon Institute for Gene Therapy SR-Tiget, IRCCS San Raffaele Scientific Institute, Milan, Cagliari, Italy; Institute of Genetic and Biomedical Research Milan Unit, National Research Council, Milan, Cagliari, Italy
| | - Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Nicolò Sacchetti
- San Raffaele Telethon Institute for Gene Therapy SR-Tiget, IRCCS San Raffaele Scientific Institute, Milan, Cagliari, Italy
| | - Enrica Calzoni
- San Raffaele Telethon Institute for Gene Therapy SR-Tiget, IRCCS San Raffaele Scientific Institute, Milan, Cagliari, Italy; Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Elena Fontana
- Institute of Genetic and Biomedical Research Milan Unit, National Research Council, Milan, Cagliari, Italy; Human Genome Lab, Humanitas Clinical and Research Center, Milan, Cagliari, Italy
| | - Yasuhiro Yamazaki
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Elena Draghici
- San Raffaele Telethon Institute for Gene Therapy SR-Tiget, IRCCS San Raffaele Scientific Institute, Milan, Cagliari, Italy
| | - Cristina Corsino
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Ileana Bortolomai
- San Raffaele Telethon Institute for Gene Therapy SR-Tiget, IRCCS San Raffaele Scientific Institute, Milan, Cagliari, Italy
| | - Lucia Sereni
- San Raffaele Telethon Institute for Gene Therapy SR-Tiget, IRCCS San Raffaele Scientific Institute, Milan, Cagliari, Italy
| | - Hsin-Hui Yu
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Paolo Uva
- CRS4, Science and Technology Park Polaris, Pula, Cagliari, Italy
| | - Rahul Palchaudhuri
- Department of Stem Cell and Regenerative Biology, Harvard University, Harvard Stem Cell Institute, Cambridge, Mass; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Mass; Magenta Therapeutics, Cambridge, Mass
| | - David T Scadden
- Department of Stem Cell and Regenerative Biology, Harvard University, Harvard Stem Cell Institute, Cambridge, Mass; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Mass
| | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy SR-Tiget, IRCCS San Raffaele Scientific Institute, Milan, Cagliari, Italy; Institute of Genetic and Biomedical Research Milan Unit, National Research Council, Milan, Cagliari, Italy.
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| |
Collapse
|
50
|
Magnadóttir B, Uysal-Onganer P, Kraev I, Svansson V, Skírnisson K, Lange S. Deiminated proteins and extracellular vesicles as novel biomarkers in pinnipeds: Grey seal (Halichoerus gryptus) and harbour seal (Phoca vitulina). Biochimie 2020; 171-172:79-90. [PMID: 32105816 DOI: 10.1016/j.biochi.2020.02.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/21/2020] [Indexed: 12/16/2022]
Abstract
Peptidylarginine deiminases (PADs) are phylogenetically conserved calcium-dependent enzymes which post-translationally convert arginine into citrulline in target proteins in an irreversible manner, leading to functional and structural changes in target proteins. Protein deimination can cause the generation of neo-epitopes, affect gene regulation and also allow for protein moonlighting and therefore facilitate multifaceted functions of the same protein. PADs are furthermore a key regulator of cellular release of extracellular vesicle (EVs), which are found in most body fluids and participate in cellular communication via transfer of cargo proteins and genetic material. In this study, post-translationally deiminated proteins and EVs were assessed in sera of two seal species, grey seal and harbour seal. We report a poly-dispersed population of serum-EVs, which were positive for phylogenetically conserved EV-specific markers and characterised by transmission electron microscopy. A number of deiminated proteins critical for immune and metabolic functions were identified in the seal sera and varied somewhat between the two species under study, while some targets were in common. EV profiles of the seal sera further revealed that key microRNAs for inflammation, immunity and hypoxia also vary between the two species. Protein deimination and EVs profiles may be useful biomarkers for assessing health status of sea mammals, which face environmental challenges, including opportunistic infection, pollution and shifting habitat due to global warming.
Collapse
Affiliation(s)
- Bergljót Magnadóttir
- Institute for Experimental Pathology, University of Iceland, Keldur V. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Pinar Uysal-Onganer
- Cancer Research Group, School of Life Sciences, University of Westminster, London, W1W 6UW, UK.
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes, MK7 6AA, UK.
| | - Vilhjálmur Svansson
- Institute for Experimental Pathology, University of Iceland, Keldur V. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Karl Skírnisson
- Institute for Experimental Pathology, University of Iceland, Keldur V. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London, W1W 6UW, UK.
| |
Collapse
|