1
|
Rohayem J, Alexander EC, Heger S, Nordenström A, Howard SR. Mini-Puberty, Physiological and Disordered: Consequences, and Potential for Therapeutic Replacement. Endocr Rev 2024; 45:460-492. [PMID: 38436980 PMCID: PMC11244267 DOI: 10.1210/endrev/bnae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Indexed: 03/05/2024]
Abstract
There are 3 physiological waves of central hypothalamic-pituitary-gonadal (HPG) axis activity over the lifetime. The first occurs during fetal life, the second-termed "mini-puberty"-in the first months after birth, and the third at puberty. After adolescence, the axis remains active all through adulthood. Congenital hypogonadotropic hypogonadism (CHH) is a rare genetic disorder characterized by a deficiency in hypothalamic gonadotropin-releasing hormone (GnRH) secretion or action. In cases of severe CHH, all 3 waves of GnRH pulsatility are absent. The absence of fetal HPG axis activation manifests in around 50% of male newborns with micropenis and/or undescended testes (cryptorchidism). In these boys, the lack of the mini-puberty phase accentuates testicular immaturity. This is characterized by a low number of Sertoli cells, which are important for future reproductive capacity. Thus, absent mini-puberty will have detrimental effects on later fertility in these males. The diagnosis of CHH is often missed in infants, and even if recognized, there is no consensus on optimal therapeutic management. Here we review physiological mini-puberty and consequences of central HPG axis disorders; provide a diagnostic approach to allow for early identification of these conditions; and review current treatment options for replacement of mini-puberty in male infants with CHH. There is evidence from small case series that replacement with gonadotropins to mimic "mini-puberty" in males could have beneficial outcomes not only regarding testis descent, but also normalization of testis and penile sizes. Moreover, such therapeutic replacement regimens in disordered mini-puberty could address both reproductive and nonreproductive implications.
Collapse
Affiliation(s)
- Julia Rohayem
- Department of Pediatric Endocrinology and Diabetology, Children's Hospital of Eastern Switzerland, 9006 St. Gallen, Switzerland
- University of Muenster, 48149 Muenster, Germany
| | - Emma C Alexander
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Sabine Heger
- Department of Pediatric Endocrinology, Children's Hospital Auf der Bult, 30173 Hannover, Germany
| | - Anna Nordenström
- Pediatric Endocrinology, Karolinska Institutet, Astrid Lindgren Children's Hospital, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Sasha R Howard
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
- Department of Paediatric Endocrinology, Royal London Children's Hospital, Barts Health NHS Trust, London E1 1FR, UK
| |
Collapse
|
2
|
Papadakis GE, de Kalbermatten B, Dormoy A, Salenave S, Trabado S, Vieira-Pinto O, Richa C, Kamenicky P, Chanson P, Maione L, Pitteloud N, Young J. Impact of Cushing's syndrome on the gonadotrope axis and testicular functions in men. Hum Reprod 2023; 38:2350-2361. [PMID: 37742130 DOI: 10.1093/humrep/dead187] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/17/2023] [Indexed: 09/25/2023] Open
Abstract
STUDY QUESTION Does Cushing's syndrome (CS) differently affect the gonadotrope axis and testicular functions (GA/TF) according to the hypercortisolism intensity and underlying etiology? SUMMARY ANSWER Endogenous cortisol excess caused by CS leads to varying degrees of hypogonadotropic hypogonadism (HH) with more severe GA/TF impairment and altered spermatogenesis in men with intense hypercortisolism associated with paraneoplastic/ectopic adrenocorticotrophic hormone (ACTH) secretion (EAS). WHAT IS KNOWN ALREADY CS is very rarely studied in men due to its lower prevalence in men than in women. In a few old reports focusing exclusively on a limited number of men with Cushing's disease (CD), the occurrence of hypogonadism was reported. However, a detailed assessment of the impact of CS on the GA/TF in a significant series of patients has not been performed. Yet, hypogonadism could worsen CS-associated comorbidities such as osteoporosis and myopathy. To date, the full spectrum of GA/TF impairment in men with CS of different etiologies and intensity remains unknown. STUDY DESIGN, SIZE, DURATION In this monocentric study, 89 men with CS diagnosed at a tertiary endocrine university center (Bicêtre, Paris Saclay) between January 1990 and July 2021 were evaluated and compared to 40 normal men of similar age. PARTICIPANTS/MATERIALS, SETTING, METHODS The CS patient cohort of 89 men included 51 with CD, 29 with EAS and 9 with CS of adrenal origin i.e. (ACTH-independent CS (AI-CS)). They all had frank hypercortisolism, with increased 24 h-urinary-free cortisol (24 h-UFC) in two separate samples. A case-control study was performed focusing on pituitary gonadotrope function and testicular sex steroids and peptides. An additional set of six CS men had an evaluation including semen analysis. In a subgroup of 20 men with available data after CS remission, a longitudinal analysis was conducted to assess the reversibility of GA/TF defects. MAIN RESULTS AND THE ROLE OF CHANCE Compared to controls, men with CS had significantly lower total testosterone (TT), bioavailable TT, and free TT (P < 0.0001). Hypogonadism, defined as serum TT levels <3.0 ng/ml, was present in 83% of men with EAS, in 61% of men with CD, and in 33% of men with AI-CS. Low-normal LH concentrations in the included men with hypercortisolism indicated HH. Serum sex hormone-binding globulin levels were moderately decreased in men with CD (P = 0.01 vs controls). Among the CS men, those with EAS had significantly lower TT, LH, and FSH levels than those with CD or AI-CS. When compared to controls, patients with EAS were the only group exhibiting a significant decrease in both serum FSH (P = 0.002) and the testicular peptides inhibin B (P < 0.0001) and anti-Müllerian hormone (P = 0.003). Serum INSL3 levels were significantly lower in men with CD than in the controls (P = 0.03). Of note, 24 h-UFC and ACTH were inversely and significantly associated with the majority of reproductive hormones including LH, FSH, TT, and inhibin B. Following successful curative therapy, reproductive assessment at a mean of 6.0 ± 4.3 years showed a significant increase in serum TT (P < 0.0001) and plasma LH (P = 0.02) levels, indicating a reversal of HH in 75% of the affected males. Among the six patients with available semen analysis, the two EAS cases exhibited a decrease in Sertoli cell peptides associated with a severe oligozoospermia, which completely normalized following removal of the source of hypercortisolism. LIMITATIONS, REASONS FOR CAUTION The potential bias due to the retrospective design is counteracted by the analysis of the largest male CS cohort to date as well as the use of stringent inclusion and exclusion criteria. Due to the low number of patients with semen analysis in this study, further research is needed to unravel the full spectrum of spermatogenesis defects in men with CS. WIDER IMPLICATIONS OF THE FINDINGS This work reveals the variable spectrum of reproductive impact in men with CS. We demonstrate that GA/TF impairment depends on the intensity of hypercortisolism which in turn is related to the underlying etiology. The causal link between hypercortisolism and GA/TF impairment was attested by its reversibility in most patients after CS remission. The wider implications of our findings lie in the potential generalization to a much commoner entity, iatrogenic CS due to chronic exposure to exogenous glucocorticoids. STUDY FUNDING/COMPETING INTEREST(S) Several research grants were attributed to J.Y.: (i) a grant from Programme Hospitalier de Recherche Clinique (PHRC # P081212 HYPOPROTEO); (ii) a grant from the French Association of Patients with Adrenal Diseases ('Association surrénales'); and (iii) independent Investigator Research Grants from HRA Pharma, Novartis and Recordati Pharma. A SICPA Foundation grant (Lausanne, Switzerland) allowed protected research time for G.E.P. The above sponsors were not involved in any part of the study. The authors have no competing or other conflicts of interest to declare. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Georgios E Papadakis
- Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
- Paris-Saclay University; Assistance Publique-Hôpitaux de Paris, Department of Reproductive Endocrinology, Reference Center for Rare Pituitary Diseases HYPO, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Benedicte de Kalbermatten
- Paris-Saclay University; Assistance Publique-Hôpitaux de Paris, Department of Reproductive Endocrinology, Reference Center for Rare Pituitary Diseases HYPO, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Alexandre Dormoy
- Paris-Saclay University; Assistance Publique-Hôpitaux de Paris, Department of Reproductive Endocrinology, Reference Center for Rare Pituitary Diseases HYPO, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Sylvie Salenave
- Paris-Saclay University; Assistance Publique-Hôpitaux de Paris, Department of Reproductive Endocrinology, Reference Center for Rare Pituitary Diseases HYPO, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Severine Trabado
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie, Hôpitaux Universitaires Paris Saclay, Assistance Publique-Hôpitaux de Paris, CHU Bicêtre, L Kremlin Bicêtre, France
| | - Oceana Vieira-Pinto
- Paris-Saclay University; Assistance Publique-Hôpitaux de Paris, Department of Reproductive Endocrinology, Reference Center for Rare Pituitary Diseases HYPO, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Carine Richa
- Paris-Saclay University; Assistance Publique-Hôpitaux de Paris, Department of Reproductive Endocrinology, Reference Center for Rare Pituitary Diseases HYPO, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Peter Kamenicky
- Paris-Saclay University; Assistance Publique-Hôpitaux de Paris, Department of Reproductive Endocrinology, Reference Center for Rare Pituitary Diseases HYPO, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- INSERM UMR_S 1185, Paris-Saclay Medical School, Le Kremlin-Bicêtre, France
- University Paris Saclay, Orsay, France
| | - Philippe Chanson
- Paris-Saclay University; Assistance Publique-Hôpitaux de Paris, Department of Reproductive Endocrinology, Reference Center for Rare Pituitary Diseases HYPO, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- INSERM UMR_S 1185, Paris-Saclay Medical School, Le Kremlin-Bicêtre, France
- University Paris Saclay, Orsay, France
| | - Luigi Maione
- Paris-Saclay University; Assistance Publique-Hôpitaux de Paris, Department of Reproductive Endocrinology, Reference Center for Rare Pituitary Diseases HYPO, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- INSERM UMR_S 1185, Paris-Saclay Medical School, Le Kremlin-Bicêtre, France
- University Paris Saclay, Orsay, France
| | - Nelly Pitteloud
- Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Jacques Young
- Paris-Saclay University; Assistance Publique-Hôpitaux de Paris, Department of Reproductive Endocrinology, Reference Center for Rare Pituitary Diseases HYPO, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- INSERM UMR_S 1185, Paris-Saclay Medical School, Le Kremlin-Bicêtre, France
- University Paris Saclay, Orsay, France
| |
Collapse
|
3
|
Fanis P, Neocleous V, Papapetrou I, Phylactou LA, Skordis N. Gonadotropin-Releasing Hormone Receptor (GnRHR) and Hypogonadotropic Hypogonadism. Int J Mol Sci 2023; 24:15965. [PMID: 37958948 PMCID: PMC10650312 DOI: 10.3390/ijms242115965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Human sexual and reproductive development is regulated by the hypothalamic-pituitary-gonadal (HPG) axis, which is primarily controlled by the gonadotropin-releasing hormone (GnRH) acting on its receptor (GnRHR). Dysregulation of the axis leads to conditions such as congenital hypogonadotropic hypogonadism (CHH) and delayed puberty. The pathophysiology of GnRHR makes it a potential target for treatments in several reproductive diseases and in congenital adrenal hyperplasia. GnRHR belongs to the G protein-coupled receptor family and its GnRH ligand, when bound, activates several complex and tissue-specific signaling pathways. In the pituitary gonadotrope cells, it triggers the G protein subunit dissociation and initiates a cascade of events that lead to the production and secretion of the luteinizing hormone (LH) and follicle-stimulating hormone (FSH) accompanied with the phospholipase C, inositol phosphate production, and protein kinase C activation. Pharmacologically, GnRHR can be modulated by synthetic analogues. Such analogues include the agonists, antagonists, and the pharmacoperones. The agonists stimulate the gonadotropin release and lead to receptor desensitization with prolonged use while the antagonists directly block the GnRHR and rapidly reduce the sex hormone production. Pharmacoperones include the most recent GnRHR therapeutic approaches that directly correct the misfolded GnRHRs, which are caused by genetic mutations and hold serious promise for CHH treatment. Understanding of the GnRHR's genomic and protein structure is crucial for the most appropriate assessing of the mutation impact. Such mutations in the GNRHR are linked to normosmic hypogonadotropic hypogonadism and lead to various clinical symptoms, including delayed puberty, infertility, and impaired sexual development. These mutations vary regarding their mode of inheritance and can be found in the homozygous, compound heterozygous, or in the digenic state. GnRHR expression extends beyond the pituitary gland, and is found in reproductive tissues such as ovaries, uterus, and prostate and non-reproductive tissues such as heart, muscles, liver and melanoma cells. This comprehensive review explores GnRHR's multifaceted role in human reproduction and its clinical implications for reproductive disorders.
Collapse
Affiliation(s)
- Pavlos Fanis
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (P.F.); (V.N.)
| | - Vassos Neocleous
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (P.F.); (V.N.)
| | - Irene Papapetrou
- School of Medicine, University of Nicosia, Nicosia 1678, Cyprus;
| | - Leonidas A. Phylactou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (P.F.); (V.N.)
| | - Nicos Skordis
- School of Medicine, University of Nicosia, Nicosia 1678, Cyprus;
- Division of Paediatric Endocrinology, Paedi Center for Specialized Paediatrics, Nicosia 2024, Cyprus
| |
Collapse
|
4
|
Stuckey BGA, Jones TW, Ward BK, Wilson SG. Digenic Congenital Hypogonadotropic Hypogonadism Due to Heterozygous GNRH1 p.R31C and AMHR2 p.G445_L453del Variants. Genes (Basel) 2023; 14:1204. [PMID: 37372384 DOI: 10.3390/genes14061204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
A 28-year-old man with congenital hypogonadotropic hypogonadism (CHH) was found to be heterozygous for the GNRH1 p.R31C mutation, reported in the literature as pathogenic and dominant. The same mutation was found in his son at birth, but the testing of the infant at 64 days confirmed the hormonal changes associated with minipuberty. This led to further genetic sequencing of the patient and his son, which found a second variant, AMHR2 p.G445_L453del, in the heterozygous form, reported as pathogenic in the patient but not in his son. This suggests a digenic cause of the patient's CHH. Together, these mutations are postulated to contribute to CHH by the lack of anti-Müllerian hormone (AMH) signalling, leading to the impaired migration of gonadotrophin releasing hormone (GnRH) neurons, the lack of the AMH effect on GnRH secretion, and altered GnRH decapeptide with reduced binding to GnRH receptors. This led us to the conclusion that the observed GNRH1 mutation in the heterozygous state is not certain to be dominant or, at least, exhibits incomplete penetrance and variable expressivity. This report also emphasises the opportunity afforded by the time window of minipuberty in assessing the inherited genetic disorders of hypothalamic function.
Collapse
Affiliation(s)
- Bronwyn G A Stuckey
- Keogh Institute for Medical Research, Nedlands, WA 6009, Australia
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia
- Medical School, University of Western Australia, Nedlands, WA 6009, Australia
| | - Timothy W Jones
- Medical School, University of Western Australia, Nedlands, WA 6009, Australia
- Telethon Kids Institute, Nedlands, WA 6009, Australia
- Perth Children's Hospital, Nedlands, WA 6009, Australia
| | - Bryan K Ward
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia
- Harry Perkins Institute for Medical Research and Centre for Medical Research, University of Western Australia, Nedlands, WA 6009, Australia
| | - Scott G Wilson
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA 6009, Australia
| |
Collapse
|
5
|
Suzuki E, Miyado M, Kuroki Y, Fukami M. Genetic variants of G-protein coupled receptors associated with pubertal disorders. Reprod Med Biol 2023; 22:e12515. [PMID: 37122876 PMCID: PMC10134480 DOI: 10.1002/rmb2.12515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/02/2023] [Accepted: 04/11/2023] [Indexed: 05/02/2023] Open
Abstract
Background The human hypothalamic-pituitary-gonadal (HPG) axis is the regulatory center for pubertal development. This axis involves six G-protein coupled receptors (GPCRs) encoded by KISS1R, TACR3, PROKR2, GNRHR, LHCGR, and FSHR. Methods Previous studies have identified several rare variants of the six GPCR genes in patients with pubertal disorders. In vitro assays and animal studies have provided information on the function of wild-type and variant GPCRs. Main Findings Of the six GPCRs, those encoded by KISS1R and TACR3 are likely to reside at the top of the HPG axis. Several loss-of-function variants in the six genes were shown to cause late/absent puberty. In particular, variants in KISS1R, TACR3, PROKR2, and GNRHR lead to hypogonadotropic hypogonadism in autosomal dominant, recessive, and oligogenic manners. Furthermore, a few gain-of-function variants of KISS1R, PROKR2, and LHCGR have been implicated in precocious puberty. The human HPG axis may contain additional GPCRs. Conclusion The six GPCRs in the HPG axis govern pubertal development through fine-tuning of hormone secretion. Rare sequence variants in these genes jointly account for a certain percentage of genetic causes of pubertal disorders. Still, much remains to be clarified about the molecular network involving the six GPCRs.
Collapse
Affiliation(s)
- Erina Suzuki
- Department of Molecular EndocrinologyNational Research Institute for Child Health and DevelopmentTokyoJapan
| | - Mami Miyado
- Department of Molecular EndocrinologyNational Research Institute for Child Health and DevelopmentTokyoJapan
- Department of Food and NutritionBeppu UniversityOitaJapan
| | - Yoko Kuroki
- Department of Genome Medicine, National Center for Child Health and DevelopmentTokyoJapan
- Division of Collaborative Research, National Center for Child Health and DevelopmentTokyoJapan
- Division of Diversity ResearchNational Research Institute for Child Health and DevelopmentTokyoJapan
| | - Maki Fukami
- Department of Molecular EndocrinologyNational Research Institute for Child Health and DevelopmentTokyoJapan
- Division of Diversity ResearchNational Research Institute for Child Health and DevelopmentTokyoJapan
| |
Collapse
|
6
|
Al Sayed Y, Howard SR. Panel testing for the molecular genetic diagnosis of congenital hypogonadotropic hypogonadism – a clinical perspective. Eur J Hum Genet 2022; 31:387-394. [PMID: 36517585 PMCID: PMC10133250 DOI: 10.1038/s41431-022-01261-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/16/2022] Open
Abstract
AbstractCongenital hypogonadotropic hypogonadism (CHH) is a rare endocrine disorder that results in reproductive hormone deficiency and reduced potential for fertility in adult life. Discoveries of the genetic aetiology of CHH have advanced dramatically in the past 30 years, with currently over 40 genes recognised to cause or contribute to the development of this condition. The genetic complexity of CHH is further increased by the observation of di- and oligogenic, as well as classic monogenic, inheritance and incomplete penetrance. Very recently in the UK, a panel of 14 genes has been curated for the genetic diagnosis of CHH within the NHS Genomic Medicine Service programme. The aim of this review is to appraise the advantages and potential pitfalls of the use of a CHH panel in clinical endocrine diagnostics, and to consider the future avenues for developing this panel including the potential of whole exome or whole genome sequencing data analysis in this condition.
Collapse
|
7
|
Constantin S. Targeting KNDy neurons to control GnRH pulses. Curr Opin Pharmacol 2022; 67:102316. [PMID: 36347163 PMCID: PMC9772270 DOI: 10.1016/j.coph.2022.102316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is the final output of the central nervous system that drives fertility. A characteristic of GnRH secretion is its pulsatility, which is driven by a pulse generator. Each GnRH pulse triggers a luteinizing hormone (LH) pulse. However, the puzzle has been to reconcile the synchronicity of GnRH neurons with the scattered hypothalamic distribution of their cell bodies. A leap toward understanding GnRH pulses was the discovery of kisspeptin neurons near the distal processes of GnRH neurons, which secrete kisspeptins, potent excitatory neuropeptides on GnRH neurons, and equipped with dual, but opposite, self-modulatory neuropeptides, neurokinin B and dynorphin. Over the last decade, this cell-to-cell communication has been dissected in animal models. Today the 50-year quest for the basic mechanism of GnRH pulse generation may be over, but questions about its physiological tuning remain. Here is an overview of recent basic research that frames translational research.
Collapse
Affiliation(s)
- Stephanie Constantin
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
8
|
Chachlaki K, Messina A, Delli V, Leysen V, Maurnyi C, Huber C, Ternier G, Skrapits K, Papadakis G, Shruti S, Kapanidou M, Cheng X, Acierno J, Rademaker J, Rasika S, Quinton R, Niedziela M, L'Allemand D, Pignatelli D, Dirlewander M, Lang-Muritano M, Kempf P, Catteau-Jonard S, Niederländer NJ, Ciofi P, Tena-Sempere M, Garthwaite J, Storme L, Avan P, Hrabovszky E, Carleton A, Santoni F, Giacobini P, Pitteloud N, Prevot V. NOS1 mutations cause hypogonadotropic hypogonadism with sensory and cognitive deficits that can be reversed in infantile mice. Sci Transl Med 2022; 14:eabh2369. [PMID: 36197968 PMCID: PMC7613826 DOI: 10.1126/scitranslmed.abh2369] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The nitric oxide (NO) signaling pathway in hypothalamic neurons plays a key role in the regulation of the secretion of gonadotropin-releasing hormone (GnRH), which is crucial for reproduction. We hypothesized that a disruption of neuronal NO synthase (NOS1) activity underlies some forms of hypogonadotropic hypogonadism. Whole-exome sequencing was performed on a cohort of 341 probands with congenital hypogonadotropic hypogonadism to identify ultrarare variants in NOS1. The activity of the identified NOS1 mutant proteins was assessed by their ability to promote nitrite and cGMP production in vitro. In addition, physiological and pharmacological characterization was carried out in a Nos1-deficient mouse model. We identified five heterozygous NOS1 loss-of-function mutations in six probands with congenital hypogonadotropic hypogonadism (2%), who displayed additional phenotypes including anosmia, hearing loss, and intellectual disability. NOS1 was found to be transiently expressed by GnRH neurons in the nose of both humans and mice, and Nos1 deficiency in mice resulted in dose-dependent defects in sexual maturation as well as in olfaction, hearing, and cognition. The pharmacological inhibition of NO production in postnatal mice revealed a critical time window during which Nos1 activity shaped minipuberty and sexual maturation. Inhaled NO treatment at minipuberty rescued both reproductive and behavioral phenotypes in Nos1-deficient mice. In summary, lack of NOS1 activity led to GnRH deficiency associated with sensory and intellectual comorbidities in humans and mice. NO treatment during minipuberty reversed deficits in sexual maturation, olfaction, and cognition in Nos1 mutant mice, suggesting a potential therapy for humans with NO deficiency.
Collapse
Affiliation(s)
- Konstantina Chachlaki
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, Lille F-59000, France.,FHU 1000 Days for Health, School of Medicine, Lille F-59000, France.,Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland.,University Research Institute of Child Health and Precision Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens 115 27, Greece
| | - Andrea Messina
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | - Virginia Delli
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, Lille F-59000, France.,FHU 1000 Days for Health, School of Medicine, Lille F-59000, France
| | - Valerie Leysen
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, Lille F-59000, France.,FHU 1000 Days for Health, School of Medicine, Lille F-59000, France
| | - Csilla Maurnyi
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, 43 Szigony St., Budapest 1083, Hungary
| | - Chieko Huber
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1 rue Michel-Servet, Geneva 1211, Switzerland
| | - Gaëtan Ternier
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, Lille F-59000, France.,FHU 1000 Days for Health, School of Medicine, Lille F-59000, France
| | - Katalin Skrapits
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, 43 Szigony St., Budapest 1083, Hungary
| | - Georgios Papadakis
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | - Sonal Shruti
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, Lille F-59000, France.,FHU 1000 Days for Health, School of Medicine, Lille F-59000, France
| | - Maria Kapanidou
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Xu Cheng
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | - James Acierno
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | - Jesse Rademaker
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | - Sowmyalakshmi Rasika
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, Lille F-59000, France.,FHU 1000 Days for Health, School of Medicine, Lille F-59000, France
| | - Richard Quinton
- Translational and Clinical Research Institute and the Royal Victoria Infirmary, University of Newcastle , Tyne NE1 3BZ, UK
| | - Marek Niedziela
- Department of Paediatric Endocrinology and Rheumatology, Poznan University of Medical Sciences, Poznan 61-701, Poland
| | - Dagmar L'Allemand
- Department of Endocrinology, Children's Hospital of Eastern Switzerland, St. Gallen 9000, Switzerland
| | - Duarte Pignatelli
- Department of Endocrinology, Hospital S João; Department of Biomedicine, Faculty of Medicine of the University of Porto; IPATIMUP Research Institute, Porto 4200-319, Portugal
| | - Mirjam Dirlewander
- Pediatric Endocrine and Diabetes Unit, Children's Hospital, University Hospitals and Faculty of Medicine, Geneva CH1205, Switzerland
| | - Mariarosaria Lang-Muritano
- Division of Pediatric Endocrinology and Diabetology and Children's Research Centre, University Children's Hospital, Zürich 8032, Switzerland
| | - Patrick Kempf
- Department of Diabetes, Endocrinology, Clinical Nutrition and Metabolism, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - Sophie Catteau-Jonard
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, Lille F-59000, France.,FHU 1000 Days for Health, School of Medicine, Lille F-59000, France.,Department of Gynaecology and Obstretic, Jeanne de Flandres Hospital, Centre Hospitalier Universitaire de Lille, Lille F-59000, France
| | - Nicolas J Niederländer
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | - Philippe Ciofi
- Inserm, U1215, Neurocentre Magendie, Université de Bordeaux, Bordeaux F-33077, France
| | - Manuel Tena-Sempere
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba 14004, Spain.,Instituto Maimonides de Investigación Biomédica de Cordoba (IMIBIC/HURS), Cordoba 14004, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba 14004, Spain
| | - John Garthwaite
- Wolfson Institute for Biomedical Research, University College London, London WC1E 6DH, UK
| | - Laurent Storme
- FHU 1000 Days for Health, School of Medicine, Lille F-59000, France.,Department of Neonatology, Hôpital Jeanne de Flandre, CHU of Lille, Lille F-59000, France
| | - Paul Avan
- Université de Clerremont-Ferrand, Clermont-Ferrand F-63000, France
| | - Erik Hrabovszky
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, 43 Szigony St., Budapest 1083, Hungary
| | - Alan Carleton
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1 rue Michel-Servet, Geneva 1211, Switzerland
| | - Federico Santoni
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | - Paolo Giacobini
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, Lille F-59000, France.,FHU 1000 Days for Health, School of Medicine, Lille F-59000, France
| | - Nelly Pitteloud
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne 1005, Switzerland
| | - Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, Lille F-59000, France.,FHU 1000 Days for Health, School of Medicine, Lille F-59000, France
| |
Collapse
|
9
|
Saengkaew T, Howard SR. Genetics of pubertal delay. Clin Endocrinol (Oxf) 2022; 97:473-482. [PMID: 34617615 PMCID: PMC9543006 DOI: 10.1111/cen.14606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 12/23/2022]
Abstract
The timing of pubertal development is strongly influenced by the genetic background, and clinical presentations of delayed puberty are often found within families with clear patterns of inheritance. The discovery of the underlying genetic regulators of such conditions, in recent years through next generation sequencing, has advanced the understanding of the pathogenesis of disorders of pubertal timing and the potential for genetic testing to assist diagnosis for patients with these conditions. This review covers the significant advances in the understanding of the biological mechanisms of delayed puberty that have occurred in the last two decades.
Collapse
Affiliation(s)
- Tansit Saengkaew
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
- Endocrinology Unit, Department of Paediatrics, Faculty of MedicinePrince of Songkla UniversitySongkhlaThailand
| | - Sasha R. Howard
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| |
Collapse
|
10
|
Moeller JS, Bever SR, Finn SL, Phumsatitpong C, Browne MF, Kriegsfeld LJ. Circadian Regulation of Hormonal Timing and the Pathophysiology of Circadian Dysregulation. Compr Physiol 2022; 12:4185-4214. [PMID: 36073751 DOI: 10.1002/cphy.c220018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Circadian rhythms are endogenously generated, daily patterns of behavior and physiology that are essential for optimal health and disease prevention. Disruptions to circadian timing are associated with a host of maladies, including metabolic disease and obesity, diabetes, heart disease, cancer, and mental health disturbances. The circadian timing system is hierarchically organized, with a master circadian clock located in the suprachiasmatic nucleus (SCN) of the anterior hypothalamus and subordinate clocks throughout the CNS and periphery. The SCN receives light information via a direct retinal pathway, synchronizing the master clock to environmental time. At the cellular level, circadian rhythms are ubiquitous, with rhythms generated by interlocking, autoregulatory transcription-translation feedback loops. At the level of the SCN, tight cellular coupling maintains rhythms even in the absence of environmental input. The SCN, in turn, communicates timing information via the autonomic nervous system and hormonal signaling. This signaling couples individual cellular oscillators at the tissue level in extra-SCN brain loci and the periphery and synchronizes subordinate clocks to external time. In the modern world, circadian disruption is widespread due to limited exposure to sunlight during the day, exposure to artificial light at night, and widespread use of light-emitting electronic devices, likely contributing to an increase in the prevalence, and the progression, of a host of disease states. The present overview focuses on the circadian control of endocrine secretions, the significance of rhythms within key endocrine axes for typical, homeostatic functioning, and implications for health and disease when dysregulated. © 2022 American Physiological Society. Compr Physiol 12: 1-30, 2022.
Collapse
Affiliation(s)
- Jacob S Moeller
- Graduate Group in Endocrinology, University of California, Berkeley, California, USA
| | - Savannah R Bever
- Department of Psychology, University of California, Berkeley, California, USA
| | - Samantha L Finn
- Department of Psychology, University of California, Berkeley, California, USA
| | | | - Madison F Browne
- Department of Psychology, University of California, Berkeley, California, USA
| | - Lance J Kriegsfeld
- Graduate Group in Endocrinology, University of California, Berkeley, California, USA.,Department of Psychology, University of California, Berkeley, California, USA.,Department of Integrative Biology, University of California, Berkeley, California, USA.,The Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA
| |
Collapse
|
11
|
Tanaka S, Zmora N, Levavi-Sivan B, Zohar Y. Chemogenetic Depletion of Hypophysiotropic GnRH Neurons Does Not Affect Fertility in Mature Female Zebrafish. Int J Mol Sci 2022; 23:ijms23105596. [PMID: 35628411 PMCID: PMC9143870 DOI: 10.3390/ijms23105596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/12/2022] [Accepted: 05/15/2022] [Indexed: 02/01/2023] Open
Abstract
The hypophysiotropic gonadotropin-releasing hormone (GnRH) and its neurons are crucial for vertebrate reproduction, primarily in regulating luteinizing hormone (LH) secretion and ovulation. However, in zebrafish, which lack GnRH1, and instead possess GnRH3 as the hypophysiotropic form, GnRH3 gene knockout did not affect reproduction. However, early-stage ablation of all GnRH3 neurons causes infertility in females, implicating GnRH3 neurons, rather than GnRH3 peptides in female reproduction. To determine the role of GnRH3 neurons in the reproduction of adult females, a Tg(gnrh3:Gal4ff; UAS:nfsb-mCherry) line was generated to facilitate a chemogenetic conditional ablation of GnRH3 neurons. Following ablation, there was a reduction of preoptic area GnRH3 neurons by an average of 85.3%, which was associated with reduced pituitary projections and gnrh3 mRNA levels. However, plasma LH levels were unaffected, and the ablated females displayed normal reproductive capacity. There was no correlation between the number of remaining GnRH3 neurons and reproductive performance. Though it is possible that the few remaining GnRH3 neurons can still induce an LH surge, our findings are consistent with the idea that GnRH and its neurons are likely dispensable for LH surge in zebrafish. Altogether, our results resurrected questions regarding the functional homology of the hypophysiotropic GnRH1 and GnRH3 in controlling ovulation.
Collapse
Affiliation(s)
- Sakura Tanaka
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD 21202, USA; (S.T.); (N.Z.)
| | - Nilli Zmora
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD 21202, USA; (S.T.); (N.Z.)
| | - Berta Levavi-Sivan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel;
| | - Yonathan Zohar
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD 21202, USA; (S.T.); (N.Z.)
- Correspondence:
| |
Collapse
|
12
|
Seminara SB, Topaloglu AK. Review of human genetic and clinical studies directly relevant to GnRH signalling. J Neuroendocrinol 2022; 34:e13080. [PMID: 34970798 PMCID: PMC9299506 DOI: 10.1111/jne.13080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/28/2021] [Accepted: 12/14/2021] [Indexed: 11/30/2022]
Abstract
GnRH is the pivotal hormone in controlling the hypothalamic-pituitary gonadal (HPG) axis in humans and other mammalian species. GnRH function is influenced by a multitude of known and still unknown environmental and genetic factors. Molecular genetic studies on human families with hypogonadotropic hypogonadism over the past two decades have been instrumental in delineating the kisspeptin and neurokinin B signalling, which integrally modulates GnRH release from the hypothalamus. The identification of kisspeptin and neurokinin B ligand-receptor gene pair mutations in patients with absent puberty have paved the way to a greater understanding of the central regulation of the HPG cascade. In this article, we aim to review the literature on the genetic and clinical aspects of GnRH and its receptor, as well as the two ligand-receptor sets directly pertinent to the function of GnRH hormone signalling, kisspeptin/ kisspeptin receptor and NKB/NK3R.
Collapse
Affiliation(s)
- Stephanie B. Seminara
- Reproductive Endocrine Unit, Endocrine Division, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - A. Kemal Topaloglu
- Division of Pediatric Endocrinology, Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
13
|
Duittoz AH, Forni PE, Giacobini P, Golan M, Mollard P, Negrón AL, Radovick S, Wray S. Development of the gonadotropin-releasing hormone system. J Neuroendocrinol 2022; 34:e13087. [PMID: 35067985 PMCID: PMC9286803 DOI: 10.1111/jne.13087] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/02/2021] [Accepted: 12/22/2021] [Indexed: 11/29/2022]
Abstract
This review summarizes the current understanding of the development of the neuroendocrine gonadotropin-releasing hormone (GnRH) system, including discussion on open questions regarding (1) transcriptional regulation of the Gnrh1 gene; (2) prenatal development of the GnRH1 system in rodents and humans; and (3) paracrine and synaptic communication during migration of the GnRH cells.
Collapse
Affiliation(s)
| | - Paolo E. Forni
- Department of Biological SciencesUniversity at AlbanyAlbanyNYUSA
- The RNA InstituteUniversity at AlbanyAlbanyNYUSA
| | - Paolo Giacobini
- Laboratory of Development and Plasticity of the Postnatal BrainLille Neuroscience & Cognition, UMR‐S1172, Inserm, CHU LilleUniversity of LilleLilleFrance
| | - Matan Golan
- Institute of Animal SciencesAgricultural Research Organization – Volcani CenterRishon LetziyonIsrael
| | - Patrice Mollard
- Institute of Functional GenomicsCNRS, InsermMontpellier UniversityMontpellierFrance
| | - Ariel L. Negrón
- Clinical and Translational ResearchRutgers Robert Wood Johnson Medical SchoolNew BrunswickNJUSA
| | - Sally Radovick
- Clinical and Translational ResearchRutgers Robert Wood Johnson Medical SchoolNew BrunswickNJUSA
| | - Susan Wray
- Cellular and Developmental Neurobiology SectionNational Institute of Neurological Disorders and Stroke/National Institutes of HealthBethesdaMDUSA
| |
Collapse
|
14
|
Clarke IJ, Reed CB, Burke CR, Li Q, Meier S. Kiss1 expression in the hypothalamic arcuate nucleus is lower in dairy cows of reduced fertility. Biol Reprod 2022; 106:802-813. [PMID: 34982141 PMCID: PMC9040656 DOI: 10.1093/biolre/ioab240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/13/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
We tested the hypothesis that divergent genetic merit for fertility of dairy cows is due to aberrant reproductive neuroendocrine function. The kisspeptin status of non-pregnant cows of either positive (POS) or negative (NEG) breeding values (BVs) for fertility was studied in three groups (n = 8), based on their previous post-partum period: POS cows, which had spontaneous ovarian cycles (POS-CYC) and NEG cows, which either cycled (NEG-CYC) or did not cycle (NEG-NONCYC). Ovarian cycles were synchronized, blood samples were taken to define endocrine status, and the animals were slaughtered in an artificial follicular phase. The brains and the pituitary glands were collected for quantitative polymerase chain reaction (qPCR) and in situ hybridization of hypothalamic GNRH1, Kiss1, TAC3, and PDYN and pituitary expression of LHB and FSHB. Gonadotropin releasing hormone (GnRH) and kisspeptin levels were quantified in snap frozen median eminence (ME). GNRH1 expression and GnRH levels in the ME were similar across groups. Kiss1 expression in the preoptic area of the hypothalamus was also similar across groups, but Kiss1 in the arcuate nucleus was almost 2-fold higher in POS-CYC cows than in NEG groups. TAC3 expression was higher in POS-CYC cows. The number of pituitary gonadotropes and the level of expression of LHB and FSHB were similar across groups. We conclude that the lower levels of Kiss1 and TAC3 in NEG cows with low fertility status and may lead to deficient GnRH and gonadotropin secretion.
Collapse
Affiliation(s)
- Iain J Clarke
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Victoria, Australia, 3800
| | | | - Chris R Burke
- DairyNZ Limited, Private Bag 3221, Hamilton 3240, New Zealand
| | - Qun Li
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Victoria, Australia, 3800
| | - Susanne Meier
- DairyNZ Limited, Private Bag 3221, Hamilton 3240, New Zealand
| |
Collapse
|
15
|
Abstract
The diagnostic suspicion of congenital central hypogonadism is based on clinical signs. Biochemical confirmation is challenging, especially after the postnatal activation stage of the hypothalamic-pituitary-testicular axis. Sertoli cell markers, like AMH and inhibin B, have become useful tools for the diagnosis of male central hypogonadism during childhood. Different mechanisms can participate in the aetiopathogenesis of central hypogonadism, leading to a deficiency in the production of gonadotrophins. Advances in genetic studies, mainly next generation sequencing techniques, have allowed the discovery of a large number of genes related to central hypogonadism. However, a causal variant is found in approximately half of the patients. Central hypogonadism has been classically described as a pathology with variable expressivity and incomplete penetrance. Currently, these characteristics are known to be partially explained by the presence of oligogenicity, that is the participation of variants in more than one gene in the aetiology of central hypogonadism in the same patient.
Collapse
Affiliation(s)
- Romina P Grinspon
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de, Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD, Buenos Aires, Argentina.
| |
Collapse
|
16
|
Abstract
Idiopathic hypogonadotropic hypogonadism (IHH) is a group of rare developmental disorders characterized by low gonadotropin levels in the face of low sex steroid hormone concentrations. IHH is practically divided into two major groups according to the olfactory function: normal sense of smell (normosmia) nIHH, and reduced sense of smell (hyposmia/anosmia) Kallmann syndrome (KS). Although mutations in more than 50 genes have been associated with IHH so far, only half of those cases were explained by gene mutations. Various combinations of deleterious variants in different genes as causes of IHH have been increasingly recognized (Oligogenic etiology). In addition to the complexity of inheritance patterns, the spontaneous or sex steroid-induced clinical recovery from IHH, which is seen in approximately 10–20% of cases, blurs further the phenotype/genotype relationship in IHH, and poses challenging steps in new IHH gene discovery. Beyond helping for clinical diagnostics, identification of the genetic mutations in the pathophysiology of IHH is hoped to shed light on the central governance of the hypothalamo-pituitary-gonadal axis through life stages. This review aims to summarize the genetic etiology of IHH and discuss the clinical and physiological ramifications of the gene mutations.
Collapse
|
17
|
Toufaily C, Fortin J, Alonso CA, Lapointe E, Zhou X, Santiago-Andres Y, Lin YF, Cui Y, Wang Y, Devost D, Roelfsema F, Steyn F, Hanyaloglu AC, Hébert TE, Fiordelisio T, Boerboom D, Bernard DJ. Addition of a carboxy terminal tail to the normally tailless gonadotropin-releasing hormone receptor impairs fertility in female mice. eLife 2021; 10:72937. [PMID: 34939930 PMCID: PMC8741216 DOI: 10.7554/elife.72937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) is the primary neuropeptide controlling reproduction in vertebrates. GnRH stimulates follicle-stimulating hormone (FSH) and luteinizing hormone (LH) synthesis via a G-protein-coupled receptor, GnRHR, in the pituitary gland. In mammals, GnRHR lacks a C-terminal cytosolic tail (Ctail) and does not exhibit homologous desensitization. This might be an evolutionary adaptation that enables LH surge generation and ovulation. To test this idea, we fused the chicken GnRHR Ctail to the endogenous murine GnRHR in a transgenic model. The LH surge was blunted, but not blocked in these mice. In contrast, they showed reductions in FSH production, ovarian follicle development, and fertility. Addition of the Ctail altered the nature of agonist-induced calcium signaling required for normal FSH production. The loss of the GnRHR Ctail during mammalian evolution is unlikely to have conferred a selective advantage by enabling the LH surge. The adaptive significance of this specialization remains to be determined.
Collapse
Affiliation(s)
- Chirine Toufaily
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Jérôme Fortin
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Carlos Ai Alonso
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Evelyne Lapointe
- Département de biomédecine vétérinaire, Universite de Montreal, Ste-Hyacinthe, Canada
| | - Xiang Zhou
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Yorgui Santiago-Andres
- Departamento de Ecología y Recursos Naturales, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Yeu-Farn Lin
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Yiming Cui
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Ying Wang
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Dominic Devost
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Ferdinand Roelfsema
- Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Frederik Steyn
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Aylin C Hanyaloglu
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Tatiana Fiordelisio
- 3epartamento de Ecología y Recursos Naturales, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Derek Boerboom
- Département de biomédecine vétérinaire, Universite de Montreal, Ste-Hyacinthe, Canada
| | - Daniel J Bernard
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| |
Collapse
|
18
|
Oleari R, Massa V, Cariboni A, Lettieri A. The Differential Roles for Neurodevelopmental and Neuroendocrine Genes in Shaping GnRH Neuron Physiology and Deficiency. Int J Mol Sci 2021; 22:9425. [PMID: 34502334 PMCID: PMC8431607 DOI: 10.3390/ijms22179425] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 01/19/2023] Open
Abstract
Gonadotropin releasing hormone (GnRH) neurons are hypothalamic neuroendocrine cells that control sexual reproduction. During embryonic development, GnRH neurons migrate from the nose to the hypothalamus, where they receive inputs from several afferent neurons, following the axonal scaffold patterned by nasal nerves. Each step of GnRH neuron development depends on the orchestrated action of several molecules exerting specific biological functions. Mutations in genes encoding for these essential molecules may cause Congenital Hypogonadotropic Hypogonadism (CHH), a rare disorder characterized by GnRH deficiency, delayed puberty and infertility. Depending on their action in the GnRH neuronal system, CHH causative genes can be divided into neurodevelopmental and neuroendocrine genes. The CHH genetic complexity, combined with multiple inheritance patterns, results in an extreme phenotypic variability of CHH patients. In this review, we aim at providing a comprehensive and updated description of the genes thus far associated with CHH, by dissecting their biological relevance in the GnRH system and their functional relevance underlying CHH pathogenesis.
Collapse
Affiliation(s)
- Roberto Oleari
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milano, Italy;
| | - Valentina Massa
- Department of Health Sciences, University of Milan, 20142 Milano, Italy;
- CRC Aldo Ravelli for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, 20142 Milano, Italy
| | - Anna Cariboni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milano, Italy;
| | - Antonella Lettieri
- Department of Health Sciences, University of Milan, 20142 Milano, Italy;
- CRC Aldo Ravelli for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, 20142 Milano, Italy
| |
Collapse
|
19
|
Louden ED, Poch A, Kim HG, Ben-Mahmoud A, Kim SH, Layman LC. Genetics of hypogonadotropic Hypogonadism-Human and mouse genes, inheritance, oligogenicity, and genetic counseling. Mol Cell Endocrinol 2021; 534:111334. [PMID: 34062169 DOI: 10.1016/j.mce.2021.111334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/12/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022]
Abstract
Hypogonadotropic hypogonadism, which may be normosmic (nHH) or anosmic/hyposmic, known as Kallmann syndrome (KS), is due to gonadotropin-releasing hormone deficiency, which results in absent puberty and infertility. Investigation of the genetic basis of nHH/KS over the past 35 years has yielded a substantial increase in our understanding, as variants in 44 genes in OMIM account for ~50% of cases. The first genes for KS (ANOS1) and nHH (GNRHR) were followed by the discovery that FGFR1 variants may cause either nHH or KS. Associated anomalies include midline facial defects, neurologic deficits, cardiac anomalies, and renal agenesis, among others. Mouse models for all but one gene (ANOS1) generally support findings in humans. About half of the known genes implicated in nHH/KS are inherited as autosomal dominant and half are autosomal recessive, whereas only 7% are X-linked recessive. Digenic and oligogenic inheritance has been reported in 2-20% of patients, most commonly with variants in genes that may result in either nHH or KS inherited in an autosomal dominant fashion. In vitro analyses have only been conducted for both gene variants in eight cases and for one gene variant in 20 cases. Rigorous confirmation that two gene variants in the same individual cause the nHH/KS phenotype is lacking for most. Clinical diagnosis is probably best accomplished by targeted next generation sequencing of the known candidate genes with confirmation by Sanger sequencing. Elucidation of the genetic basis of nHH/KS has resulted in an enhanced understanding of this disorder, as well as normal puberty, which makes genetic diagnosis clinically relevant.
Collapse
Affiliation(s)
- Erica D Louden
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology, Department of Neuroscience & Regenerative Medicine, Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Alexandra Poch
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology, Department of Neuroscience & Regenerative Medicine, Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Hyung-Goo Kim
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Afif Ben-Mahmoud
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Soo-Hyun Kim
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, Cranmer Terrace, London, SW17 0RE, United Kingdom
| | - Lawrence C Layman
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology, Department of Neuroscience & Regenerative Medicine, Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
20
|
Turkyilmaz A, Cayir A, Yarali O, Kurnaz E, Kartal Baykan E, Arslan Ates E, Demirbilek H. Clinical characteristics and molecular genetic analysis of a cohort with idiopathic congenital hypogonadism. J Pediatr Endocrinol Metab 2021; 34:771-780. [PMID: 33819414 DOI: 10.1515/jpem-2020-0590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/19/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Hypogonadism is defined as inadequate sex hormone production due to defects in the hypothalamic-pituitary-gonadal axis. In recent years, rare single gene defects have been identified in both hypergonadotropic hypogonadism (Hh), and hypogonadotropic hypogonadism (HH) cases with no chromosomal anomalies. The aim of the present study is to investigate the underlying molecular genetic etiology and the genotype-phenotype relationship of a series of patients with Hh and HH. METHODS In total, 27 HH and six Hh cases were evaluated. Clinical and laboratory features are extracted from patients' hospital files. Whole exome sequencing (WES) analysis was performed. RESULTS A total of 27 HH cases (15 female) (mean age: 15.8 ± 2.7 years) and six Hh patients (six females) (mean age: 14.9 ± 1.2 years) were included. In molecular genetic analysis, a pathogenic/likely pathogenic variant was identified in five (two patients from the same family) of 27 HH cases (two novel) and three of the six Hh. In HH group variants (pathogenic, likely pathogenic and variant of uncertain significance) were identified in KISS1R (n=2), PROK2 (n=1), FGFR1 (n=1), HS6ST1 (n=1), GNRH1 (n=1) genes. In the Hh group, splice-site mutations were detected in DCAF17 (n=1) and MCM9 (n=2) genes. CONCLUSIONS HH and Hh cases are genetically heterogeneous diseases due to oligogenic inheritance, incomplete penetrance, and variable expressivity. We found rare variants in CHH related genes in half of our HH cases, whereas they classified as pathogenic/likely pathogenic according to ACMG criteria in only about 15% of HH cases. Using advanced genetic analysis methods such as whole-genome sequencing and long-read sequencing may increase the mutation detection rate, which should always be associated with and expert genetic counseling to interpret the data.
Collapse
Affiliation(s)
- Ayberk Turkyilmaz
- Clinics of Medical Genetics, Erzurum Regional Training and Research Hospital, Erzurum, Turkey
| | - Atilla Cayir
- Clinics of Paediatric Endocrinology, Erzurum Regional Training and Research Hospital, Erzurum, Turkey
| | - Oguzhan Yarali
- Clinics of Medical Genetics, Erzurum Regional Training and Research Hospital, Erzurum, Turkey
| | - Erdal Kurnaz
- Clinics of Paediatric Endocrinology, Erzurum Regional Training and Research Hospital, Erzurum, Turkey
| | - Emine Kartal Baykan
- Clinics of Endocrinology, Erzurum Regional Training and Research Hospital, Erzurum, Turkey
| | - Esra Arslan Ates
- Department of Medical Genetics, Marmara University Pendik Training and Research Hospital, Istanbul, Turkey
| | - Huseyin Demirbilek
- Department of Paediatric Endocrinology, Faculty of Medicine, Hacettepe University, Sıhhiye/Ankara, Turkey
| |
Collapse
|
21
|
Defects in GnRH Neuron Migration/Development and Hypothalamic-Pituitary Signaling Impact Clinical Variability of Kallmann Syndrome. Genes (Basel) 2021; 12:genes12060868. [PMID: 34198905 PMCID: PMC8229512 DOI: 10.3390/genes12060868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/30/2021] [Accepted: 06/03/2021] [Indexed: 11/16/2022] Open
Abstract
Kallmann syndrome (KS) is a combination of isolated hypogonadotropic hypogonadism (IHH) with olfactory dysfunction, representing a heterogeneous disorder with a broad phenotypic spectrum. The genetic background of KS has not yet been fully established. This study was conducted on 46 Polish KS subjects (41 males, 5 females; average age: 29 years old). The studied KS patients were screened for defects in a 38-gene panel with next-generation sequencing (NGS) technology. The analysis revealed 27 pathogenic and likely pathogenic (P/LP) variants, and 21 variants of uncertain significance (VUS). The P/LP variants were detected in 20 patients (43.5%). The prevalence of oligogenic P/LP defects in selected genes among KS patients was 26% (12/46), whereas the co-occurrence of other variants was detected in 43% (20 probands). The examined KS patients showed substantial genotypic and phenotypic variability. A marked difference in non-reproductive phenotypes, involving defects in genes responsible for GnRH neuron development/migration and genes contributing to pituitary development and signaling, was observed. A comprehensive gene panel for IHH testing enabled the detection of clinically relevant variants in the majority of KS patients, which makes targeted NGS an effective molecular tool. The significance of oligogenicity and the high incidence of alterations in selected genes should be further elucidated.
Collapse
|
22
|
Cham G, O'Brien B, Kimble RM. Idiopathic hypogonadotropic hypogonadism: a rare cause of primary amenorrhoea in adolescence-a review and update on diagnosis, management and advances in genetic understanding. BMJ Case Rep 2021; 14:e239495. [PMID: 33837024 PMCID: PMC8043015 DOI: 10.1136/bcr-2020-239495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2021] [Indexed: 11/04/2022] Open
Abstract
Idiopathic hypogonadotropic hypogonadism (IHH) refers to a family of genetic disorders that affect the production and/or action of gonadotropic-releasing hormone, resulting in reduced serum levels of sex steroids. This condition has a prevalence of 1-10 cases/100 000 births and is characterised by the absence of spontaneous pubertal development. In women, the condition is characterised by the onset of normal adrenarche, with the absence of thelarche and menarche. Pubertal induction for breast development and uterine growth with oestradiol, and sequential maintenance of a normal menstrual cycle and adequate oestrogen for bone health, with an oestrogen and progesterone, is considered first-line treatment. Pregnancy can be achieved in patients who have received and responded to treatment with ovulation induction with exogenous gonadotrophins. Advances in genetic testing have led to increased research and understanding of the underlying genetics of IHH with gene mutations described in up to 50% of all IHH cases.
Collapse
Affiliation(s)
- Grace Cham
- Women's and Newborn Services, Royal Brisbane and Woman's Hospital, Herston, Queensland, Australia
| | - Brooke O'Brien
- Queensland Statewide Paediatric and Adolescent Gynaecology Service, Queensland Children's Hospital, South Brisbane, Queensland, Australia
- Faculty of Medicine, University of Queensland, Herston, Queensland, Australia
| | - Rebecca Mn Kimble
- Women's and Newborn Services, Royal Brisbane and Woman's Hospital, Herston, Queensland, Australia
- Queensland Statewide Paediatric and Adolescent Gynaecology Service, Queensland Children's Hospital, South Brisbane, Queensland, Australia
- Faculty of Medicine, University of Queensland, Herston, Queensland, Australia
| |
Collapse
|
23
|
Spaziani M, Tarantino C, Tahani N, Gianfrilli D, Sbardella E, Lenzi A, Radicioni AF. Hypothalamo-Pituitary axis and puberty. Mol Cell Endocrinol 2021; 520:111094. [PMID: 33271219 DOI: 10.1016/j.mce.2020.111094] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/29/2020] [Accepted: 11/23/2020] [Indexed: 12/20/2022]
Abstract
Puberty is a complex process that culminates in the acquisition of psychophysical maturity and reproductive capacity. This elaborate and fascinating process marks the end of childhood. Behind it lies a complex, genetically mediated neuroendocrine mechanism through which the gonads are activated thanks to the fine balance between central inhibitory and stimulating neuromodulators and hormones with both central and peripheral action. The onset of puberty involves the reactivation of the hypothalamic-pituitary-gonadal (HPG) axis, supported by the initial "kiss" between kisspeptin and the hypothalamic neurons that secrete GnRH (the GnRH "pulse generator"). This pulsatile production of GnRH is followed by a rise in LH and, consequently, in gonadal steroids. The onset of puberty varies naturally between individuals, and especially between males and females, in the latter of whom it is typically earlier. However, pathological variations, namely precocious and delayed puberty, are also possible. This article reviews the scientific literature on the physiological mechanisms of puberty and the main pathophysiological aspects of its onset.
Collapse
Affiliation(s)
- Matteo Spaziani
- Section of Medical Pathophysiology and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, 00161, Italy; Centre for Rare Diseases, Policlinico Umberto I, Rome, Italy.
| | - Chiara Tarantino
- Section of Medical Pathophysiology and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, 00161, Italy; Centre for Rare Diseases, Policlinico Umberto I, Rome, Italy
| | - Natascia Tahani
- Department of Diabetes, Endocrinology and Metabolism, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Birmingham, B15 2TH, UK
| | - Daniele Gianfrilli
- Section of Medical Pathophysiology and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, 00161, Italy
| | - Emilia Sbardella
- Section of Medical Pathophysiology and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, 00161, Italy
| | - Andrea Lenzi
- Section of Medical Pathophysiology and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, 00161, Italy
| | - Antonio F Radicioni
- Section of Medical Pathophysiology and Endocrinology, Department of Experimental Medicine, Sapienza University of Rome, Rome, 00161, Italy; Centre for Rare Diseases, Policlinico Umberto I, Rome, Italy
| |
Collapse
|
24
|
Abstract
Puberty, which in humans is considered to include both gonadarche and adrenarche, is the period of becoming capable of reproducing sexually and is recognized by maturation of the gonads and development of secondary sex characteristics. Gonadarche referring to growth and maturation of the gonads is fundamental to puberty since it encompasses increased gonadal steroid secretion and initiation of gametogenesis resulting from enhanced pituitary gonadotropin secretion, triggered in turn by robust pulsatile GnRH release from the hypothalamus. This chapter reviews the development of GnRH pulsatility from before birth until the onset of puberty. In humans, GnRH pulse generation is restrained during childhood and juvenile development. This prepubertal hiatus in hypothalamic activity is considered to result from a neurobiological brake imposed upon the GnRH pulse generator resident in the infundibular nucleus. Reactivation of the GnRH pulse generator initiates pubertal development. Current understanding of the genetics and physiology of the brake will be discussed, as will hypotheses proposed to account for timing the resurgence in pulsatile GnRH and initiation of puberty. The chapter ends with a discussion of disorders associated with precocious or delayed puberty with a focus on those with etiologies attributed to aberrant GnRH neuron anatomy or function. A pediatric approach to patients with pubertal disorders is provided and contemporary treatments for both precocious and delayed puberty outlined.
Collapse
Affiliation(s)
- Selma Feldman Witchel
- Pediatric Endocrinology, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, United States.
| | - Tony M Plant
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
25
|
Rosenfield RL, Cooke DW, Radovick S. Puberty in the Female and Its Disorders. SPERLING PEDIATRIC ENDOCRINOLOGY 2021:528-626. [DOI: 10.1016/b978-0-323-62520-3.00016-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
26
|
Barraud S, Delemer B, Poirsier-Violle C, Bouligand J, Mérol JC, Grange F, Higel-Chaufour B, Decoudier B, Zalzali M, Dwyer AA, Acierno JS, Pitteloud N, Millar RP, Young J. Congenital Hypogonadotropic Hypogonadism with Anosmia and Gorlin Features Caused by a PTCH1 Mutation Reveals a New Candidate Gene for Kallmann Syndrome. Neuroendocrinology 2021; 111:99-114. [PMID: 32074614 DOI: 10.1159/000506640] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 02/18/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Two loci (CHD7 and SOX10) underlying Kallmann syndrome (KS) were discovered through clinical and genetic analysis of CHARGE and Waardenburg syndromes, conditions that include congenital anosmia caused by olfactory bulb (CA/OBs) defects and congenital hypogonadotropic hypogonadism (CHH). We hypothesized that other candidate genes for KS could be discovered by analyzing rare syndromes presenting with these signs. Study Design, Size, Duration: We first investigated a family with Gorlin-Goltz syndrome (GGS) in which affected members exhibited clinical signs suggesting KS. Participants/Materials, Methods: Proband and family members underwent detailed clinical assessment. The proband received detailed neuroendocrine evaluation. Genetic analyses included sequencing the PTCH1 gene at diagnosis, followed by exome analyses of causative or candidate KS/CHH genes, in order to exclude contribution to the phenotypes of additional mutations. Exome analyses in additional 124 patients with KS/CHH probands with no additional GGS signs. RESULTS The proband exhibited CA, absent OBs on magnetic resonance imaging, and had CHH with unilateral cryptorchidism, consistent with KS. Pulsatile Gonadotropin-releasing hormone (GnRH) therapy normalized serum gonadotropins and increased testosterone levels, supporting GnRH deficiency. Genetic studies revealed 3 affected family members harbor a novel mutation of PTCH1 (c.838G> T; p.Glu280*). This unreported nonsense deleterious mutation results in either a putative truncated Ptch1 protein or in an absence of translated Ptch1 protein related to nonsense mediated messenger RNA decay. This heterozygous mutation cosegregates in the pedigree with GGS and CA with OBs aplasia/hypoplasia and with CHH in the proband suggesting a genetic linkage and an autosomal dominant mode of inheritance. No pathogenic rare variants in other KS/CHH genes cosegregated with these phenotypes. In additional 124 KS/CHH patients, 3 additional heterozygous, rare missense variants were found and predicted in silico to be damaging: p.Ser1203Arg, p.Arg1192Ser, and p.Ile108Met. CONCLUSION This family suggests that the 2 main signs of KS can be included in GGS associated with PTCH1 mutations. Our data combined with mice models suggest that PTCH1 could be a novel candidate gene for KS/CHH and reinforce the role of the Hedgehog signaling pathway in pathophysiology of KS and GnRH neuron migration.
Collapse
Affiliation(s)
- Sara Barraud
- Department of Endocrinology, Reims University Hospital, Reims, France
- University of Reims Champagne-Ardenne, Reims, France
| | - Brigitte Delemer
- Department of Endocrinology, Reims University Hospital, Reims, France
- University of Reims Champagne-Ardenne, Reims, France
| | | | - Jérôme Bouligand
- Department of Molecular Genetics, Pharmacogenomics, and Hormonology, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
- University Paris-Saclay, Le Kremlin-Bicêtre, France
- INSERM U1185, Paris Saclay Medical School, Le Kremlin-Bicêtre, France
| | - Jean-Claude Mérol
- Department of Otolaryngology, Reims University Hospital, Reims, France
| | - Florent Grange
- Department of Dermatology, Reims University Hospital, Reims, France
| | | | | | - Mohamad Zalzali
- Department of Endocrinology, Reims University Hospital, Reims, France
| | - Andrew A Dwyer
- Boston College, William F. Connell School of Nursing, Chestnut Hill, Massachusetts, USA
| | - James S Acierno
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Nelly Pitteloud
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Robert P Millar
- Centre for Neuroendocrinology, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Institute for Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Jacques Young
- University Paris-Saclay, Le Kremlin-Bicêtre, France,
- Department of Reproductive Endocrinology, Assistance Publique-Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin-Bicêtre, France,
- INSERM U1185, Paris Saclay Medical School, Le Kremlin-Bicêtre, France,
| |
Collapse
|
27
|
Zhang J, Tang SY, Zhu XB, Li P, Lu JQ, Cong JS, Wang LB, Zhang F, Li Z. Whole exome sequencing and trio analysis to broaden the variant spectrum of genes in idiopathic hypogonadotropic hypogonadism. Asian J Androl 2021; 23:288-293. [PMID: 33208564 PMCID: PMC8152424 DOI: 10.4103/aja.aja_65_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Dozens of genes are associated with idiopathic hypogonadotropic hypogonadism (IHH) and an oligogenic etiology has been suggested. However, the associated genes may account for only approximately 50% cases. In addition, a genomic systematic pedigree analysis is still lacking. Here, we conducted whole exome sequencing (WES) on 18 unrelated men affected by IHH and their corresponding parents. Notably, one reported and 10 novel variants in eight known IHH causative genes (AXL, CCDC141, CHD7, DMXL2, FGFR1, PNPLA6, POLR3A, and PROKR2), nine variants in nine recently reported candidate genes (DCAF17, DCC, EGF, IGSF10, NOTCH1, PDE3A, RELN, SLIT2, and TRAPPC9), and four variants in four novel candidate genes for IHH (CCDC88C, CDON, GADL1, and SPRED3) were identified in 77.8% (14/18) of IHH cases. Among them, eight (8/18, 44.4%) cases carried more than one variant in IHH-related genes, supporting the oligogenic model. Interestingly, we found that those variants tended to be maternally inherited (maternal with n = 17 vs paternal with n = 7; P = 0.028). Our further retrospective investigation of published reports replicated the maternal bias (maternal with n = 46 vs paternal with n = 28; P = 0.024). Our study extended a variant spectrum for IHH and provided thefirst evidence that women are probably more tolerant to variants of IHH-related genes than men.
Collapse
Affiliation(s)
- Jian Zhang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Life Sciences, Fudan University, Shanghai 200011, China
| | - Shu-Yan Tang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Life Sciences, Fudan University, Shanghai 200011, China
| | - Xiao-Bin Zhu
- Department of Andrology, Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Peng Li
- Department of Andrology, Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Jian-Qi Lu
- Department of Research Institute, Reproduction Medical Center, The first Hospital of Lanzhou University, Lanzhou 730000, China
| | - Jiang-Shan Cong
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Life Sciences, Fudan University, Shanghai 200011, China
| | - Ling-Bo Wang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Life Sciences, Fudan University, Shanghai 200011, China
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Life Sciences, Fudan University, Shanghai 200011, China
| | - Zheng Li
- Department of Andrology, Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, China
| |
Collapse
|
28
|
Wu HM, Chang HM, Leung PCK. Gonadotropin-releasing hormone analogs: Mechanisms of action and clinical applications in female reproduction. Front Neuroendocrinol 2021; 60:100876. [PMID: 33045257 DOI: 10.1016/j.yfrne.2020.100876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/23/2020] [Accepted: 10/04/2020] [Indexed: 12/15/2022]
Abstract
Extra-hypothalamic GnRH and extra-pituitary GnRH receptors exist in multiple human reproductive tissues, including the ovary, endometrium and myometrium. Recently, new analogs (agonists and antagonists) and modes of GnRH have been developed for clinical application during controlled ovarian hyperstimulation for assisted reproductive technology (ART). Additionally, the analogs and upstream regulators of GnRH suppress gonadotropin secretion and regulate the functions of the reproductive axis. GnRH signaling is primarily involved in the direct control of female reproduction. The cellular mechanisms and action of the GnRH/GnRH receptor system have been clinically applied for the treatment of reproductive disorders and have widely been introduced in ART. New GnRH analogs, such as long-acting GnRH analogs and oral nonpeptide GnRH antagonists, are being continuously developed for clinical application. The identification of the upstream regulators of GnRH, such as kisspeptin and neurokinin B, provides promising potential to develop these upstream regulator-related analogs to control the hypothalamus-pituitary-ovarian axis.
Collapse
Affiliation(s)
- Hsien-Ming Wu
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Medical Center, Chang Gung University School of Medicine, Taoyuan 333, Taiwan, ROC
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia V6H 3V5, Canada
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia V6H 3V5, Canada.
| |
Collapse
|
29
|
Shalev D, Melamed P. The role of the hypothalamus and pituitary epigenomes in central activation of the reproductive axis at puberty. Mol Cell Endocrinol 2020; 518:111031. [PMID: 32956708 DOI: 10.1016/j.mce.2020.111031] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/02/2020] [Accepted: 09/08/2020] [Indexed: 12/19/2022]
Abstract
Puberty is programmed through a multifactorial gene network which works to activate the pulsatile secretion of the gonadotropin releasing hormone (GnRH), and subsequently elevate circulating levels of the pituitary gonadotropins that stimulate gonadal activity. Although this developmental transition normally occurs at a limited age-range in individuals of the same genetic background and environment, pubertal onset can occur prematurely or be delayed following changes in ambient conditions, or due to genetic variations or mutations, many of which have remained elusive due to their location in distal regulatory elements. Growing evidence is pointing to a pivotal role for the epigenome in regulating key genes in the reproductive hypothalamus and pituitary at this time, which might mediate some of the plasticity of pubertal timing. This review will address epigenetic mechanisms which have been demonstrated in the KNDy neurons that increase the output of pulsatile GnRH, and those involved in activation of the GnRH gene and its receptor, and describes how GnRH utilizes epigenetic mechanisms to stimulate transcription of the pituitary gonadotropin genes in the context of the chromatin landscape.
Collapse
Affiliation(s)
- Dor Shalev
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Philippa Melamed
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel.
| |
Collapse
|
30
|
Brachet C, Gernay C, Boros E, Soblet J, Vilain C, Heinrichs C. Homozygous p.R31H GNRH1 mutation and normosmic congenital hypogonadotropic hypogonadism in a patient and self-limited delayed puberty in his relatives. J Pediatr Endocrinol Metab 2020; 33:1237-1240. [PMID: 32813678 DOI: 10.1515/jpem-2020-0207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/15/2020] [Indexed: 11/15/2022]
Abstract
Objectives Congenital hypogonadotropic hypogonadism (CHH) is a rare condition resulting from GnRH deficiency. Gonadotropin Releasing Hormone 1 (GNRH1) homozygous mutations are an extremely rare cause of normosmic CHH (nCHH). Most heterozygous individuals are asymptomatic, with the notable exception of individuals heterozygous for a p.R31C GNRH1 mutation. Case presentation The patient is an index case from a consanguineous family, presenting with severe CHH and his parents presenting with late puberty and normal fertility. The index case is homozygous for a p.R31H GNRH1 variant, both parents being heterozygous. The analysis of a panel of genes implicated in CHH does not show any other clinically relevant variant in any other gene tested. Conclusions GNRH1 mutations are a rare cause of nCHH. Five different mutations have been reported so far in homozygous individuals. Most are frameshift in nature but the one reported here causes an amino acid change in the Gonadotropin-releasing hormone (GnRH) decapeptide. Both independently reported patients with the p.R31H mutation are from Turkish origin. The question of the possible role of this mutation in the late puberty of the heterozygous parents needs further documentation. An analogy is made with the heterozygous individuals carrying the p.R31C and displaying partial CHH. No nonreproductive disorder is noted.
Collapse
Affiliation(s)
- Cécile Brachet
- Paediatric Endocrinology Unit, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Caroline Gernay
- Paediatric Endocrinology Unit, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Emese Boros
- Paediatric Endocrinology Unit, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Julie Soblet
- Department of Genetics, Hôpital Universitaire des Enfants Reine Fabiola, ULB Center of Human Genetics, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Catheline Vilain
- Department of Genetics, Hôpital Universitaire des Enfants Reine Fabiola, ULB Center of Human Genetics, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Claudine Heinrichs
- Paediatric Endocrinology Unit, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Bruxelles, Belgium
| |
Collapse
|
31
|
Muñoz-Cueto JA, Zmora N, Paullada-Salmerón JA, Marvel M, Mañanos E, Zohar Y. The gonadotropin-releasing hormones: Lessons from fish. Gen Comp Endocrinol 2020; 291:113422. [PMID: 32032603 DOI: 10.1016/j.ygcen.2020.113422] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/02/2020] [Accepted: 02/03/2020] [Indexed: 12/26/2022]
Abstract
Fish have been of paramount importance to our understanding of vertebrate comparative neuroendocrinology and the mechanisms underlying the physiology and evolution of gonadotropin-releasing hormones (GnRH) and their genes. This review integrates past and recent knowledge on the Gnrh system in the fish model. Multiple Gnrh isoforms (two or three forms) are present in all teleosts, as well as multiple Gnrh receptors (up to five types), which differ in neuroanatomical localization, pattern of projections, ontogeny and functions. The role of the different Gnrh forms in reproduction seems to also differ in teleost models possessing two versus three Gnrh forms, Gnrh3 being the main hypophysiotropic hormone in the former and Gnrh1 in the latter. Functions of the non-hypothalamic Gnrh isoforms are still unclear, although under suboptimal physiological conditions (e.g. fasting), Gnrh2 may increase in the pituitary to ensure the integrity of reproduction under these conditions. Recent developments in transgenesis and mutagenesis in fish models have permitted the generation of fish lines expressing fluorophores in Gnrh neurons and to elucidate the dynamics of the elaborate innervations of the different neuronal populations, thus enabling a more accurate delineation of their reproductive roles and regulations. Moreover, in combination with neuronal electrophysiology, these lines have clarified the Gnrh mode of actions in modulating Lh and Fsh activities. While loss of function and genome editing studies had the premise to elucidate the exact roles of the multiple Gnrhs in reproduction and other processes, they have instead evoked an ongoing debate about these roles and opened new avenues of research that will no doubt lead to new discoveries regarding the not-yet-fully-understood Gnrh system.
Collapse
Affiliation(s)
- José A Muñoz-Cueto
- Department of Biology, Faculty of Marine and Environmental Sciences and INMAR, University of Cádiz, CEIMAR, The European University of the Seas (SEA-EU), Puerto Real (Cádiz), Spain.
| | - Nilli Zmora
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD, USA
| | - José A Paullada-Salmerón
- Department of Biology, Faculty of Marine and Environmental Sciences and INMAR, University of Cádiz, CEIMAR, The European University of the Seas (SEA-EU), Puerto Real (Cádiz), Spain
| | - Miranda Marvel
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Evaristo Mañanos
- Institute of Aquaculture of Torre de la Sal, CSIC, Castellón, Spain
| | - Yonathan Zohar
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD, USA.
| |
Collapse
|
32
|
Li J, Ge W. Zebrafish as a model for studying ovarian development: Recent advances from targeted gene knockout studies. Mol Cell Endocrinol 2020; 507:110778. [PMID: 32142861 DOI: 10.1016/j.mce.2020.110778] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 12/11/2022]
Abstract
Ovarian development is a complex process controlled by precise coordination of multiple factors. The targeted gene knockout technique is a powerful tool to study the functions of these factors. The successful application of this technique in mice in the past three decades has significantly enhanced our understanding on the molecular mechanism of ovarian development. Recently, with the advent of genome editing techniques, targeted gene knockout research can be carried out in many species. Zebrafish has emerged as an excellent model system to study the control of ovarian development. Dozens of genes related to ovarian development have been knocked out in zebrafish in recent years. Much new information and perspectives on the molecular mechanism of ovarian development have been obtained from these mutant zebrafish. Some findings have challenged conventional views. Several genes have been identified for the first time in vertebrates to control ovarian development. Focusing on ovarian development, the purpose of this review is to briefly summarize recent findings using these gene knockout zebrafish models, and compare these findings with mammalian models. These established mutants and rapid development of gene knockout techniques have prompted zebrafish as an ideal animal model for studying ovarian development.
Collapse
Affiliation(s)
- Jianzhen Li
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu, China, 730070.
| | - Wei Ge
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China.
| |
Collapse
|
33
|
Cangiano B, Swee DS, Quinton R, Bonomi M. Genetics of congenital hypogonadotropic hypogonadism: peculiarities and phenotype of an oligogenic disease. Hum Genet 2020; 140:77-111. [PMID: 32200437 DOI: 10.1007/s00439-020-02147-1] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 03/04/2020] [Indexed: 12/30/2022]
Abstract
A genetic basis of congenital isolated hypogonadotropic hypogonadism (CHH) can be defined in almost 50% of cases, albeit not necessarily the complete genetic basis. Next-generation sequencing (NGS) techniques have led to the discovery of a great number of loci, each of which has illuminated our understanding of human gonadotropin-releasing hormone (GnRH) neurons, either in respect of their embryonic development or their neuroendocrine regulation as the "pilot light" of human reproduction. However, because each new gene linked to CHH only seems to underpin another small percentage of total patient cases, we are still far from achieving a comprehensive understanding of the genetic basis of CHH. Patients have generally not benefited from advances in genetics in respect of novel therapies. In most cases, even genetic counselling is limited by issues of apparent variability in expressivity and penetrance that are likely underpinned by oligogenicity in respect of known and unknown genes. Robust genotype-phenotype relationships can generally only be established for individuals who are homozygous, hemizygous or compound heterozygotes for the same gene of variant alleles that are predicted to be deleterious. While certain genes are purely associated with normosmic CHH (nCHH) some purely with the anosmic form (Kallmann syndrome-KS), other genes can be associated with both nCHH and KS-sometimes even within the same kindred. Even though the anticipated genetic overlap between CHH and constitutional delay in growth and puberty (CDGP) has not materialised, previously unanticipated genetic relationships have emerged, comprising conditions of combined (or multiple) pituitary hormone deficiency (CPHD), hypothalamic amenorrhea (HA) and CHARGE syndrome. In this review, we report the current evidence in relation to phenotype and genetic peculiarities regarding 60 genes whose loss-of-function variants can disrupt the central regulation of reproduction at many levels: impairing GnRH neurons migration, differentiation or activation; disrupting neuroendocrine control of GnRH secretion; preventing GnRH neuron migration or function and/or gonadotropin secretion and action.
Collapse
Affiliation(s)
- Biagio Cangiano
- Department of Clinical Sciences and Community Health, University of Milan, 20100, Milan, Italy.,Department of Endocrine and Metabolic Diseases and Laboratory of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, 20149, Milan, Italy
| | - Du Soon Swee
- Department of Endocrinology, Singapore General Hospital, Singapore, Singapore
| | - Richard Quinton
- Endocrine Unit, Royal Victoria Infirmary, Department of Endocrinology, Diabetes and Metabolism, Newcastle-Upon-Tyne Hospitals, Newcastle-Upon-Tyne, NE1 4LP, UK. .,Translational and Clinical Research Institute, University of Newcastle-Upon-Tyne, Newcastle-Upon-Tyne, UK.
| | - Marco Bonomi
- Department of Clinical Sciences and Community Health, University of Milan, 20100, Milan, Italy. .,Department of Endocrine and Metabolic Diseases and Laboratory of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, 20149, Milan, Italy.
| |
Collapse
|
34
|
Sagi SV, Joshi H, Whiles E, Hikmat M, Puthi VR, MacDougall J, Spiden SL, Fuller G, Park SM, Oyibo SO. Normosmic idiopathic hypogonadotropic hypogonadism due to a novel GNRH1 variant in two siblings. Endocrinol Diabetes Metab Case Rep 2020; 2020:EDM190145. [PMID: 32134721 PMCID: PMC7077544 DOI: 10.1530/edm-19-0145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 02/14/2020] [Indexed: 11/08/2022] Open
Abstract
SUMMARY Hypogonadotropic hypogonadism is characterised by insufficient secretion of pituitary gonadotropins resulting in delayed puberty, anovulation and azoospermia. When hypogonadotropic hypogonadism occurs in the absence of structural or functional lesions of the hypothalamic or pituitary gland, the hypogonadism is defined as idiopathic hypogonadotropic hypogonadism (IHH). This is a rare genetic disorder caused by a defect in the secretion of gonadotropin releasing hormone (GNRH) by the hypothalamus or a defect in the action of GNRH on the pituitary gland. Up to 50% of IHH cases have identifiable pathogenic variants in the currently known genes. Pathogenic variants in the GNRHR gene encoding the GNRH receptor are a relatively common cause of normosmic IHH, but reports of pathogenic variants in GNRH1 encoding GNRH are exceedingly rare. We present a case of two siblings born to consanguineous parents who were found to have normosmic idiopathic hypogonadotropic hypogonadism due to homozygosity of a novel loss-of function variant in GNRH1. Case 1 is a male who presented at the age of 17 years with delayed puberty and under-virilised genitalia. Case 2 is a female who presented at the age of 16 years with delayed puberty and primary amenorrhea. LEARNING POINTS IHH is a genetically heterogeneous disorder which can be caused by pathogenic variants affecting proteins involved in the pulsatile gonadotropin-releasing hormone release, action, or both. Currently known genetic defects account for up to 50% of all IHH cases. GNRH1 pathogenic variants are a rare cause of normosmic IHH. IHH is associated with a wide spectrum of clinical manifestations. IHH can be challenging to diagnose, particularly when attempting to differentiate it from constitutional delay of puberty. Early diagnosis and gonadotrophin therapy can prevent negative physical sequelae and mitigate psychological distress with the restoration of puberty and fertility in affected individuals.
Collapse
Affiliation(s)
- Satyanarayana V Sagi
- Department of Diabetes and Endocrinology, Peterborough City Hospital, Peterborough, UK
| | - Hareesh Joshi
- Department of Diabetes and Endocrinology, Peterborough City Hospital, Peterborough, UK
| | - Emily Whiles
- Department of Diabetes and Endocrinology, Peterborough City Hospital, Peterborough, UK
| | - Mondy Hikmat
- Department of Diabetes and Endocrinology, Peterborough City Hospital, Peterborough, UK
| | - Vijith R Puthi
- Department of Paediatrics, Peterborough City Hospital, Peterborough, UK
| | - Jane MacDougall
- Department of Reproductive Medicine, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Sarah L Spiden
- East Midlands and East of England NHS Genomic Laboratory Hub, Cambridge University Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| | - Gavin Fuller
- East Midlands and East of England NHS Genomic Laboratory Hub, Cambridge University Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| | - Soo-Mi Park
- Department of Clinical Genetics Service, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Samson O Oyibo
- Department of Diabetes and Endocrinology, Peterborough City Hospital, Peterborough, UK
| |
Collapse
|
35
|
Feng K, Cui X, Song Y, Tao B, Chen J, Wang J, Liu S, Sun Y, Zhu Z, Trudeau VL, Hu W. Gnrh3 Regulates PGC Proliferation and Sex Differentiation in Developing Zebrafish. Endocrinology 2020; 161:5638064. [PMID: 31758175 DOI: 10.1210/endocr/bqz024] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 11/22/2019] [Indexed: 01/15/2023]
Abstract
Gonadotropin-releasing hormone (Gnrh) plays important roles in reproduction by stimulating luteinizing hormone release, and subsequently ovulation and sperm release, ultimately controlling reproduction in many species. Here we report on a new role for this decapeptide. Surprisingly, Gnrh3-null zebrafish generated by CRISPR/Cas9 exhibited a male-biased sex ratio. After the dome stage, the number of primordial germ cells (PGCs) in gnrh3-/- fish was lower than that in wild-type, an effect that was partially rescued by gnrh3 overexpression. A terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) analysis revealed no detectable apoptosis of PGCs in gnrh3-/- embryos. Proliferating PGCs could be detected in wild-type embryos, while there was no detectable signal in gnrh3-/- embryos. Compared with wild type, the phosphorylation of AKT was not significantly different in gnrh3-/- embryos, but the phosphorylation of ERK1/2 decreased significantly. Treatment with a Gnrh analog (Alarelin) induced ERK1/2 phosphorylation and increased PGC numbers in both wild-type and gnrh3-/- embryos, and this was blocked by the MEK inhibitor PD0325901. The relative expression of sox9a, amh, and cyp11b were significantly upregulated, while cyp19a1a was significantly downregulated at 18 days post-fertilization in gnrh3-/- zebrafish. Taken together, these results indicate that Gnrh3 plays an important role in early sex differentiation by regulating the proliferation of PGCs through a MAPK-dependent path.
Collapse
Affiliation(s)
- Ke Feng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Xuefan Cui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanlong Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Binbin Tao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Ji Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Jing Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
| | - Yonghua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | | | - Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
36
|
Hug P, Kern P, Jagannathan V, Leeb T. A TAC3 Missense Variant in a Domestic Shorthair Cat with Testicular Hypoplasia and Persistent Primary Dentition. Genes (Basel) 2019; 10:genes10100806. [PMID: 31615056 PMCID: PMC6826659 DOI: 10.3390/genes10100806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/10/2019] [Accepted: 10/12/2019] [Indexed: 12/23/2022] Open
Abstract
A single male domestic shorthair cat that did not complete puberty was reported. At four years of age, it still had primary dentition, testicular hypoplasia, and was relatively small for its age. We hypothesized that the phenotype might have been due to an inherited form of hypogonadotropic hypogonadism (HH). We sequenced the genome of the affected cat and compared the data to 38 genomes from control cats. A search for private variants in 40 candidate genes associated with human HH revealed a single protein-changing variant in the affected cat. It was located in the TAC3 gene encoding tachykinin 3, a precursor protein of the signaling molecule neurokinin B, which is known to play a role in sexual development. TAC3 variants have been reported in human patients with HH. The identified feline variant, TAC3:c.220G>A or p.(Val74Met), affects a moderately conserved region of the precursor protein, 11 residues away from the mature neurokinin B sequence. The affected cat was homozygous for the mutant allele. In a cohort of 171 randomly sampled cats, 169 were homozygous for the wildtype allele and 2 were heterozygous. These data tentatively suggest that the identified TAC3 variant might have caused the suppression of puberty in the affected cat.
Collapse
Affiliation(s)
- Petra Hug
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland.
| | - Patricia Kern
- Tierarztpraxis Spiegelberg AG, 4566 Halten, Switzerland.
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland.
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland.
| |
Collapse
|
37
|
Marvel M, Spicer OS, Wong TT, Zmora N, Zohar Y. Knockout of the Gnrh genes in zebrafish: effects on reproduction and potential compensation by reproductive and feeding-related neuropeptides. Biol Reprod 2019; 99:565-577. [PMID: 29635430 DOI: 10.1093/biolre/ioy078] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/03/2018] [Indexed: 11/13/2022] Open
Abstract
Gonadotropin-releasing hormone (GNRH) is known as a pivotal upstream regulator of reproduction in vertebrates. However, reproduction is not compromised in the hypophysiotropic Gnrh3 knockout line in zebrafish (gnrh3-/-). In order to determine if Gnrh2, the only other Gnrh isoform in zebrafish brains, is compensating for the loss of Gnrh3, we generated a double Gnrh knockout zebrafish line. Surprisingly, the loss of both Gnrh isoforms resulted in no major impact on reproduction, indicating that a compensatory response, outside of the Gnrh system, was evoked. A plethora of factors acting along the reproductive hypothalamus-pituitary axis were evaluated as possible compensators based on neuroanatomical and differential gene expression studies. In addition, we also examined the involvement of feeding factors in the brain as potential compensators for Gnrh2, which has known anorexigenic effects. We found that the double knockout fish exhibited upregulation of several genes in the brain, specifically gonadotropin-inhibitory hormone (gnih), secretogranin 2 (scg2), tachykinin 3a (tac3a), and pituitary adenylate cyclase-activating peptide 1 (pacap1), and downregulation of agouti-related peptide 1 (agrp1), indicating the compensation occurs outside of Gnrh cells and therefore is a noncell autonomous response to the loss of Gnrh. While the differential expression of gnih and agrp1 in the double knockout line was confined to the periventricular nucleus and hypothalamus, respectively, the upregulation of scg2 corresponded with a broader neuronal redistribution in the lateral hypothalamus and hindbrain. In conclusion, our results demonstrate the existence of a redundant reproductive regulatory system that comes into play when Gnrh2 and Gnrh3 are lost.
Collapse
Affiliation(s)
- Miranda Marvel
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Olivia Smith Spicer
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Ten-Tsao Wong
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Nilli Zmora
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Yonathan Zohar
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, Maryland, USA
| |
Collapse
|
38
|
Maione L, Fèvre A, Nettore IC, Manilall A, Francou B, Trabado S, Bouligand J, Guiochon-Mantel A, Delemer B, Flanagan CA, Macchia PE, Millar RP, Young J. Similarities and differences in the reproductive phenotypes of women with congenital hypogonadotrophic hypogonadism caused by GNRHR mutations and women with polycystic ovary syndrome. Hum Reprod 2019; 34:137-147. [PMID: 30476149 DOI: 10.1093/humrep/dey339] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 11/17/2018] [Indexed: 12/31/2022] Open
Abstract
STUDY QUESTION Does the phenotype of women with normosmic congenital hypogonadotrophic hypogonadism (nCHH) and pituitary resistance to GnRH caused by biallelic mutations in the GnRH receptor (GNRHR) (nCHH/bi-GNRHR) differ from that of women with polycystic ovary syndrome (PCOS)? SUMMARY ANSWER Women with nCHH/bi-GNRHR have variable pubertal development but nearly all have primary amenorrhea and an exaggerated LH response to GnRH stimulation, similar to that seen in women with PCOS. WHAT IS KNOWN ALREADY Women with nCHH/bi-GNRHR are very rare and their phenotype at diagnosis is not always adequately documented. The results of gonadotrophin stimulation by acute GnRH challenge test and ovarian features have not been directly compared between these patients and women with PCOS. STUDY DESIGN, SIZE, DURATION We describe the phenotypic spectrum at nCHH/bi-GNRHR diagnosis in a series of 12 women. Their reproductive characteristics and acute responses to GnRH were compared to those of 70 women with PCOS. PARTICIPANTS/MATERIALS, SETTING, METHODS Patients and controls (healthy female volunteers aged over 18 years) were enrolled in a single French referral centre. Evaluation included clinical and hormonal studies, pelvic ultrasonography and GnRH challenge test. We also functionally characterized two missense GNRHR mutations found in two new consanguineous families. MAIN RESULTS AND THE ROLE OF CHANCE Breast development was highly variable at nCHH/bi-GNRHR diagnosis, but only one patient had undeveloped breasts. Primary amenorrhea was present in all but two cases. In untreated nCHH/bi-GNRHR patients, uterine height (UH) correlated (P = 0.01) with the circulating estradiol level and was shorter than in 23 nulliparous post-pubertal age-matched controls (P < 0.0001) and than in 15 teenagers with PCOS under 20-years-old (P < 0.0001) in which PCOS was revealed by primary amenorrhea or primary-secondary amenorrhea. Unexpectedly, the stimulated LH peak response in nCHH/bi-GNRHR patients was variable, and often normal or exaggerated. Interestingly, the LH peak response was similar to that seen in the PCOS patients, but the latter women had significantly larger mean ovarian volume (P < 0.001) and uterine length (P < 0.001) and higher mean estradiol (P < 0.001), anti-Müllerian hormone (AMH) (P = 0.02) and inhibin-B (P < 0.001) levels. In the two new consaguineous families, the affected nCHH/bi-GNRHR women carried the T269M or Y290F GNRHR missense mutation in the homozygous state. In vitro analysis of GnRHR showed complete or partial loss-of-function of the T269M and Y290F mutants compared to their wildtype counterpart. LIMITATIONS, REASONS FOR CAUTION The number of nCHH/bi-GNRHR patients reported here is small. As this disorder is very rare, an international study would be necessary to recruit a larger cohort and consolidate the phenotypic spectrum observed here. WIDER IMPLICATIONS OF THE FINDINGS In teenagers and young women with primary amenorrhea, significant breast and uterine development does not rule out CHH caused by biallelic GNRHR mutations. In rare patients with PCOS presenting with primary amenorrhea and a mild phenotype, the similar exaggerated pituitary LH responses to GnRH in PCOS and nCHH/bi-GNRHR patients could lead to diagnostic errors. This challenge test should therefore not be recommended. As indicated by consensus and guidelines, careful analysis of clinical presentation and measurements of testosterone circulating levels remain the basis of PCOS diagnosis. Also, analysis of ovarian volume, UH and of inhibin-B, AMH, estradiol and androgen circulating levels could help to distinguish between mild PCOS and nCHH/bi-GNRHR. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the French National Research Agency (ANR) grant ANR-09-GENO-017 KALGENOPATH, France; and by the Italian Ministry of Education, University and Research (MIUR) grant PRIN 2012227FLF_004, Italy. The authors declare no conflict of interest.
Collapse
Affiliation(s)
- Luigi Maione
- University of Paris-Sud and University Paris-Saclay, Le Kremlin-Bicêtre, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Department of Reproductive Endocrinology, Le Kremlin-Bicêtre, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Department of Molecular Genetics, Pharmacogenomics, and Hormonology, Le Kremlin-Bicêtre, France.,Department of Clinical Medicine and Surgery and Endocrinology, Federico II University, Naples, Italy
| | - Anne Fèvre
- Department of Endocrinology, Hôpital Robert-Debré, Reims, France
| | | | - Ashmeetha Manilall
- Faculty of Health Sciences, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
| | - Bruno Francou
- University of Paris-Sud and University Paris-Saclay, Le Kremlin-Bicêtre, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Department of Molecular Genetics, Pharmacogenomics, and Hormonology, Le Kremlin-Bicêtre, France
| | - Séverine Trabado
- University of Paris-Sud and University Paris-Saclay, Le Kremlin-Bicêtre, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Department of Molecular Genetics, Pharmacogenomics, and Hormonology, Le Kremlin-Bicêtre, France.,Institut National pour la Santé et la Recherche Médicale U1185, Paris-Sud Medical School, Le Kremlin-Bicêtre, France
| | - Jérôme Bouligand
- University of Paris-Sud and University Paris-Saclay, Le Kremlin-Bicêtre, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Department of Molecular Genetics, Pharmacogenomics, and Hormonology, Le Kremlin-Bicêtre, France.,Institut National pour la Santé et la Recherche Médicale U1185, Paris-Sud Medical School, Le Kremlin-Bicêtre, France
| | - Anne Guiochon-Mantel
- University of Paris-Sud and University Paris-Saclay, Le Kremlin-Bicêtre, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Department of Molecular Genetics, Pharmacogenomics, and Hormonology, Le Kremlin-Bicêtre, France.,Institut National pour la Santé et la Recherche Médicale U1185, Paris-Sud Medical School, Le Kremlin-Bicêtre, France
| | - Brigitte Delemer
- Department of Endocrinology, Hôpital Robert-Debré, Reims, France
| | - Colleen A Flanagan
- Faculty of Health Sciences, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
| | - Paolo Emidio Macchia
- Department of Clinical Medicine and Surgery and Endocrinology, Federico II University, Naples, Italy
| | - Robert P Millar
- Departments of Immunology and Physiology, Faculty of Health Sciences, Centre for Neuroendocrinology, University of Pretoria, Pretoria 0084, South Africa and Institute for Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, South Africa
| | - Jacques Young
- University of Paris-Sud and University Paris-Saclay, Le Kremlin-Bicêtre, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Department of Reproductive Endocrinology, Le Kremlin-Bicêtre, France.,Institut National pour la Santé et la Recherche Médicale U1185, Paris-Sud Medical School, Le Kremlin-Bicêtre, France
| |
Collapse
|
39
|
Abstract
The principal role of prolactin in mammals is the regulation of lactation. Prolactin is a hormone that is mainly synthesized and secreted by lactotroph cells in the anterior pituitary gland. Prolactin signalling occurs via a unique transmembrane prolactin receptor (PRL-R). The structure of the PRL-R has now been elucidated and is similar to that of many biologically fundamental receptors of the class 1 haematopoietic cytokine receptor family such as the growth hormone receptor. The PRL-R is expressed in a wide array of tissues, and a growing number of biological processes continue to be attributed to prolactin. In this Review, we focus on the newly discovered roles of prolactin in human health and disease, particularly its involvement in metabolic homeostasis including body weight control, adipose tissue, skin and hair follicles, pancreas, bone, the adrenal response to stress, the control of lactotroph cell homeostasis and maternal behaviour. New data concerning the pathological states of hypoprolactinaemia and hyperprolactinaemia will also be presented and discussed.
Collapse
Affiliation(s)
- Valérie Bernard
- Inserm U1185, Faculté de Médecine Paris Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France
- Hôpital Saint Antoine, Service d'Endocrinologie et des Maladies de la Reproduction, Paris, France
| | - Jacques Young
- Inserm U1185, Faculté de Médecine Paris Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France
- Hôpital Bicêtre, Service d'Endocrinologie et des Maladies de la Reproduction, Paris, France
| | - Nadine Binart
- Inserm U1185, Faculté de Médecine Paris Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France.
| |
Collapse
|
40
|
Young J, Xu C, Papadakis GE, Acierno JS, Maione L, Hietamäki J, Raivio T, Pitteloud N. Clinical Management of Congenital Hypogonadotropic Hypogonadism. Endocr Rev 2019; 40:669-710. [PMID: 30698671 DOI: 10.1210/er.2018-00116] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 10/05/2018] [Indexed: 12/12/2022]
Abstract
The initiation and maintenance of reproductive capacity in humans is dependent on pulsatile secretion of the hypothalamic hormone GnRH. Congenital hypogonadotropic hypogonadism (CHH) is a rare disorder that results from the failure of the normal episodic GnRH secretion, leading to delayed puberty and infertility. CHH can be associated with an absent sense of smell, also termed Kallmann syndrome, or with other anomalies. CHH is characterized by rich genetic heterogeneity, with mutations in >30 genes identified to date acting either alone or in combination. CHH can be challenging to diagnose, particularly in early adolescence where the clinical picture mirrors that of constitutional delay of growth and puberty. Timely diagnosis and treatment will induce puberty, leading to improved sexual, bone, metabolic, and psychological health. In most cases, patients require lifelong treatment, yet a notable portion of male patients (∼10% to 20%) exhibit a spontaneous recovery of their reproductive function. Finally, fertility can be induced with pulsatile GnRH treatment or gonadotropin regimens in most patients. In summary, this review is a comprehensive synthesis of the current literature available regarding the diagnosis, patient management, and genetic foundations of CHH relative to normal reproductive development.
Collapse
Affiliation(s)
- Jacques Young
- University of Paris-Sud, Paris-Sud Medical School, Le Kremlin-Bicêtre, France.,Department of Reproductive Endocrinology, Assistance Publique-Hôpitaux de Paris, Bicêtre Hôpital, Le Kremlin-Bicêtre, France.,INSERM Unité 1185, Le Kremlin-Bicêtre, France
| | - Cheng Xu
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Georgios E Papadakis
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - James S Acierno
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Luigi Maione
- University of Paris-Sud, Paris-Sud Medical School, Le Kremlin-Bicêtre, France.,Department of Reproductive Endocrinology, Assistance Publique-Hôpitaux de Paris, Bicêtre Hôpital, Le Kremlin-Bicêtre, France.,INSERM Unité 1185, Le Kremlin-Bicêtre, France
| | - Johanna Hietamäki
- Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Translational Stem Cell Biology and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Taneli Raivio
- Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Translational Stem Cell Biology and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Nelly Pitteloud
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
41
|
Parivesh A, Barseghyan H, Délot E, Vilain E. Translating genomics to the clinical diagnosis of disorders/differences of sex development. Curr Top Dev Biol 2019; 134:317-375. [PMID: 30999980 PMCID: PMC7382024 DOI: 10.1016/bs.ctdb.2019.01.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The medical and psychosocial challenges faced by patients living with Disorders/Differences of Sex Development (DSD) and their families can be alleviated by a rapid and accurate diagnostic process. Clinical diagnosis of DSD is limited by a lack of standardization of anatomical and endocrine phenotyping and genetic testing, as well as poor genotype/phenotype correlation. Historically, DSD genes have been identified through positional cloning of disease-associated variants segregating in families and validation of candidates in animal and in vitro modeling of variant pathogenicity. Owing to the complexity of conditions grouped under DSD, genome-wide scanning methods are better suited for identifying disease causing gene variant(s) and providing a clinical diagnosis. Here, we review a number of established genomic tools (karyotyping, chromosomal microarrays and exome sequencing) used in clinic for DSD diagnosis, as well as emerging genomic technologies such as whole-genome (short-read) sequencing, long-read sequencing, and optical mapping used for novel DSD gene discovery. These, together with gene expression and epigenetic studies can potentiate the clinical diagnosis of DSD diagnostic rates and enhance the outcomes for patients and families.
Collapse
Affiliation(s)
- Abhinav Parivesh
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, United States
| | - Hayk Barseghyan
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, United States; Department of Genomics and Precision Medicine, The George Washington University, Washington, DC, United States
| | - Emmanuèle Délot
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, United States; Department of Genomics and Precision Medicine, The George Washington University, Washington, DC, United States.
| | - Eric Vilain
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, United States; Department of Genomics and Precision Medicine, The George Washington University, Washington, DC, United States.
| |
Collapse
|
42
|
Alotaibi MF. Physiology of puberty in boys and girls and pathological disorders affecting its onset. J Adolesc 2019; 71:63-71. [PMID: 30639665 DOI: 10.1016/j.adolescence.2018.12.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/26/2018] [Accepted: 12/28/2018] [Indexed: 12/18/2022]
Abstract
Puberty is a physiological event involving the attainment of reproductive capability and complete development of sexual and physical organs. Changing from childhood to adulthood is a complex process and is tightly controlled by interconnection pathways at the level of the hypothalamus which can be influenced by environmental, psychosocial, and endocrine factors. Although various mechanisms underlying the onset of normal puberty have been investigated in humans and animals, the exact molecular mechanisms thereof remain unclear. The aim of this review is to summarize the current state of knowledge and provide a synoptic overview about the physiology of puberty in adolescent boys and girls, and describe pathological disorders affecting its onset.
Collapse
Affiliation(s)
- Mohammed F Alotaibi
- Department of Physiology, College of Medicine, King Saud University and King Khalid University Hospital, P.O Box 2925, Riyadh, 11461, Saudi Arabia.
| |
Collapse
|
43
|
Ghaemi N, Ghahraman M, Noroozi Asl S, Vakili R, Fardi Golyan F, Moghbeli M, Abbaszadegan MR. Novel DNA variation of GPR54 gene in familial central precocious puberty. Ital J Pediatr 2019; 45:10. [PMID: 30635063 PMCID: PMC6329138 DOI: 10.1186/s13052-019-0601-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 01/03/2019] [Indexed: 12/14/2022] Open
Abstract
Background Puberty can be considered the end point of a maturation process which is defined by the dynamic interactions of genes and environmental factors during prenatal and postnatal development. Kisspeptin/G protein-coupled receptor-54, is as an essential gatekeeper and regulator of GnRH neurons, and a key factor in initiation of puberty. Loss and gain of functional mutations in the GPR54 gene are associated with hypogonadotropic hypogonadism and precocious puberty, respectively. This study was designed to evaluate variations of GPR54 in familial precocious puberty. Methods Genomic DNA was extracted from peripheral whole blood of 25 subjects with familial precocious puberty. Coding exons 1–5 of the GPR54 gene were amplified by polymerase chain reaction (PCR) and the PCR products were purified and sequenced. DNA sequences were compared to the human GenBank GPR54 sequence using Sequencher sequence alignment software. Results We detected three different Single Nucleotide Polymorphisms (SNPs) in GPR54: rs10407968 (24A > T) in 13 subjects (52%); rs3050132 (1091 T > A) in 16 subjects (64%), and a novel polymorphism (492C > G) in one subject (4%), while three subjects (12%) had no SNPs. No mutations were found in the GPR54 gene. Conclusions Regarding the presence of SNPs in 88% of the subjects in this study, it is likely a relationship exists between the SNPs of the GPR54 gene and familial precocious puberty. Further research is needed to investigate this possibility, and potential functional effects of these polymorphisms.
Collapse
Affiliation(s)
- Nosrat Ghaemi
- Department of Pediatric Endocrinology and Metabolism, Imam Reza Hospital, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Martha Ghahraman
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Noroozi Asl
- Department of Pediatric, Valiasr Hospital, Birjand University of Medical Sciences, Birjand, Iran
| | - Rahim Vakili
- Department of Pediatric Endocrinology and Metabolism, Imam Reza Hospital, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Fardi Golyan
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
44
|
Binart N, Young J, Chanson P. Prolactin Assays and Regulation of Secretion: Animal and Human Data. PROLACTIN DISORDERS 2019. [DOI: 10.1007/978-3-030-11836-5_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
45
|
Zhao Y, Wu J, Jia H, Wang X, Zheng R, Jiang F, Chen DN, Chen Z, Li JD. PROKR2 mutations in idiopathic hypogonadotropic hypogonadism: selective disruption of the binding to a Gα-protein leads to biased signaling. FASEB J 2018; 33:4538-4546. [PMID: 30576231 DOI: 10.1096/fj.201801575r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Idiopathic hypogonadotropic hypogonadism (IHH) is a rare disorder caused by the deficient production, secretion, or action of gonadotropin-releasing hormone. Prokineticin (PROK) receptor 2 ( PROKR2), a causative gene for IHH, encodes a GPCR PROKR2. When PROKR2 binds to its ligands PROKs, it may activate several signaling pathways, including IP3/Ca2+, MAPK, and cAMP pathways. However, the mutational spectrum of PROKR2 in Chinese patients with IHH has not been established. In the present study, we found that up to 13.3% (18/135) of patients with IHH in China carried mutations in PROKR2. Most of the variants in this study were private; however, a PROKR2 (c.533G > C; p.W178S) mutation was identified in 10 independent patients, implying a possible founder mutation. Functional studies indicated that 6 novel PROKR2 mutations led to decreased signaling to various extents. Two IHH-associated mutations (L218P and R270H) disrupted Gαq-dependent signaling but maintained normal Gαs and ERK1/2 signaling. A glutathione S-transferase pull-down experiment demonstrated that R270H mutation disrupted the interaction of intracellular loop 3 of PROKR2 to Gαq protein but not Gαs protein. Our results indicated that selective disruption of the interaction with a specific Gα-protein might underlie the biased signaling for certain IHH-associated PROKR2 mutations.-Zhao, Y., Wu, J., Jia, H., Wang, X., Zheng, R., Jiang, F., Chen, D.-N., Chen, Z., Li, J.-D. PROKR2 mutations in idiopathic hypogonadotropic hypogonadism: selective disruption of the binding to a Gα-protein leads to biased signaling.
Collapse
Affiliation(s)
- Yaguang Zhao
- School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Jiayu Wu
- School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Hong Jia
- School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Xinying Wang
- School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Ruizhi Zheng
- Department of Endocrinology, the People's Hospital of Henan Province, Zhengzhou, China
| | - Fang Jiang
- School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Dan-Na Chen
- Department of Basic Medical Sciences, Changsha Medical University, Changsha, China; and
| | - Zhiheng Chen
- Department of Pediatrics, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Jia-Da Li
- School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| |
Collapse
|
46
|
Xu C, Messina A, Somm E, Miraoui H, Kinnunen T, Acierno J, Niederländer NJ, Bouilly J, Dwyer AA, Sidis Y, Cassatella D, Sykiotis GP, Quinton R, De Geyter C, Dirlewanger M, Schwitzgebel V, Cole TR, Toogood AA, Kirk JM, Plummer L, Albrecht U, Crowley WF, Mohammadi M, Tena-Sempere M, Prevot V, Pitteloud N. KLB, encoding β-Klotho, is mutated in patients with congenital hypogonadotropic hypogonadism. EMBO Mol Med 2018; 9:1379-1397. [PMID: 28754744 PMCID: PMC5623842 DOI: 10.15252/emmm.201607376] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Congenital hypogonadotropic hypogonadism (CHH) is a rare genetic form of isolated gonadotropin‐releasing hormone (GnRH) deficiency caused by mutations in > 30 genes. Fibroblast growth factor receptor 1 (FGFR1) is the most frequently mutated gene in CHH and is implicated in GnRH neuron development and maintenance. We note that a CHH FGFR1 mutation (p.L342S) decreases signaling of the metabolic regulator FGF21 by impairing the association of FGFR1 with β‐Klotho (KLB), the obligate co‐receptor for FGF21. We thus hypothesized that the metabolic FGF21/KLB/FGFR1 pathway is involved in CHH. Genetic screening of 334 CHH patients identified seven heterozygous loss‐of‐function KLB mutations in 13 patients (4%). Most patients with KLB mutations (9/13) exhibited metabolic defects. In mice, lack of Klb led to delayed puberty, altered estrous cyclicity, and subfertility due to a hypothalamic defect associated with inability of GnRH neurons to release GnRH in response to FGF21. Peripheral FGF21 administration could indeed reach GnRH neurons through circumventricular organs in the hypothalamus. We conclude that FGF21/KLB/FGFR1 signaling plays an essential role in GnRH biology, potentially linking metabolism with reproduction.
Collapse
Affiliation(s)
- Cheng Xu
- Service of Endocrinology, Diabetology & Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Andrea Messina
- Service of Endocrinology, Diabetology & Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Emmanuel Somm
- Service of Endocrinology, Diabetology & Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Hichem Miraoui
- Service of Endocrinology, Diabetology & Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Tarja Kinnunen
- Department of Biology, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - James Acierno
- Service of Endocrinology, Diabetology & Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Nicolas J Niederländer
- Service of Endocrinology, Diabetology & Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Justine Bouilly
- Service of Endocrinology, Diabetology & Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Andrew A Dwyer
- Service of Endocrinology, Diabetology & Metabolism, Lausanne University Hospital, Lausanne, Switzerland.,University of Lausanne Institute of Higher Education and Research in Healthcare, Lausanne, Switzerland
| | - Yisrael Sidis
- Service of Endocrinology, Diabetology & Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Daniele Cassatella
- Service of Endocrinology, Diabetology & Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Gerasimos P Sykiotis
- Service of Endocrinology, Diabetology & Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Richard Quinton
- Institute for Genetic Medicine, University of Newcastle-on-Tyne, Newcastle-on Tyne, UK
| | - Christian De Geyter
- Clinic of Gynecological Endocrinology and Reproductive Medicine, University Hospital, University of Basel, Basel, Switzerland
| | - Mirjam Dirlewanger
- Pediatric Endocrine and Diabetes Unit, Children's Hospital, University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Valérie Schwitzgebel
- Pediatric Endocrine and Diabetes Unit, Children's Hospital, University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Trevor R Cole
- Department of Clinical Genetics, Birmingham Women's Hospital, Birmingham, UK
| | - Andrew A Toogood
- Department of Endocrinology, Queen Elizabeth Hospital, University Hospitals Birmingham, Birmingham, UK
| | - Jeremy Mw Kirk
- Department of Endocrinology, Birmingham Children's Hospital, Birmingham, UK
| | - Lacey Plummer
- National Center for Translational Research in Reproduction and Infertility, Harvard Reproductive Endocrine Sciences Center of the Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Urs Albrecht
- Department of Biology, Biochemistry, Faculty of Science, University of Fribourg, Fribourg, Switzerland
| | - William F Crowley
- National Center for Translational Research in Reproduction and Infertility, Harvard Reproductive Endocrine Sciences Center of the Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Moosa Mohammadi
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Manuel Tena-Sempere
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.,Instituto Maimonides de Investigación Biomédica de Cordoba (IMIBIC/HURS), Cordoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
| | - Vincent Prevot
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, JPARC, Lille, France.,FHU 1000 Days for Health, School of Medicine, University of Lille, Lille, France
| | - Nelly Pitteloud
- Service of Endocrinology, Diabetology & Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
47
|
Maione L, Dwyer AA, Francou B, Guiochon-Mantel A, Binart N, Bouligand J, Young J. GENETICS IN ENDOCRINOLOGY: Genetic counseling for congenital hypogonadotropic hypogonadism and Kallmann syndrome: new challenges in the era of oligogenism and next-generation sequencing. Eur J Endocrinol 2018; 178:R55-R80. [PMID: 29330225 DOI: 10.1530/eje-17-0749] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 01/10/2018] [Indexed: 12/22/2022]
Abstract
Congenital hypogonadotropic hypogonadism (CHH) and Kallmann syndrome (KS) are rare, related diseases that prevent normal pubertal development and cause infertility in affected men and women. However, the infertility carries a good prognosis as increasing numbers of patients with CHH/KS are now able to have children through medically assisted procreation. These are genetic diseases that can be transmitted to patients' offspring. Importantly, patients and their families should be informed of this risk and given genetic counseling. CHH and KS are phenotypically and genetically heterogeneous diseases in which the risk of transmission largely depends on the gene(s) responsible(s). Inheritance may be classically Mendelian yet more complex; oligogenic modes of transmission have also been described. The prevalence of oligogenicity has risen dramatically since the advent of massively parallel next-generation sequencing (NGS) in which tens, hundreds or thousands of genes are sequenced at the same time. NGS is medically and economically more efficient and more rapid than traditional Sanger sequencing and is increasingly being used in medical practice. Thus, it seems plausible that oligogenic forms of CHH/KS will be increasingly identified making genetic counseling even more complex. In this context, the main challenge will be to differentiate true oligogenism from situations when several rare variants that do not have a clear phenotypic effect are identified by chance. This review aims to summarize the genetics of CHH/KS and to discuss the challenges of oligogenic transmission and also its role in incomplete penetrance and variable expressivity in a perspective of genetic counseling.
Collapse
Affiliation(s)
- Luigi Maione
- University of Paris-Sud, Paris-Sud Medical School, Le Kremlin-Bicêtre, France
- Department of Reproductive Endocrinology, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, France
- INSERM U1185, Le Kremlin-Bicêtre, France
| | - Andrew A Dwyer
- Boston College, William F. Connell School of Nursing, Chestnut Hill, Massachusetts, USA
| | - Bruno Francou
- University of Paris-Sud, Paris-Sud Medical School, Le Kremlin-Bicêtre, France
- INSERM U1185, Le Kremlin-Bicêtre, France
- Department of Molecular Genetics, Pharmacogenomics, and Hormonology, Le Kremlin-Bicêtre, France
| | - Anne Guiochon-Mantel
- University of Paris-Sud, Paris-Sud Medical School, Le Kremlin-Bicêtre, France
- INSERM U1185, Le Kremlin-Bicêtre, France
- Department of Molecular Genetics, Pharmacogenomics, and Hormonology, Le Kremlin-Bicêtre, France
| | - Nadine Binart
- University of Paris-Sud, Paris-Sud Medical School, Le Kremlin-Bicêtre, France
- INSERM U1185, Le Kremlin-Bicêtre, France
| | - Jérôme Bouligand
- University of Paris-Sud, Paris-Sud Medical School, Le Kremlin-Bicêtre, France
- INSERM U1185, Le Kremlin-Bicêtre, France
- Department of Molecular Genetics, Pharmacogenomics, and Hormonology, Le Kremlin-Bicêtre, France
| | - Jacques Young
- University of Paris-Sud, Paris-Sud Medical School, Le Kremlin-Bicêtre, France
- Department of Reproductive Endocrinology, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, France
- INSERM U1185, Le Kremlin-Bicêtre, France
| |
Collapse
|
48
|
Abstract
Traditionally, idiopathic hypogonadotropic hypogonadism (IHH) is divided into two major categories: Kallmann syndrome (KS) and normosmic IHH (nIHH). To date, inactivating variants in more than 50 genes have been reported to cause IHH. These mutations are estimated to account for up to 50% of all apparently hereditary cases. Identification of further causative gene mutations is expected to be more feasible with the increasing use of whole exome/genome sequencing. Presence of more than one IHH-associated mutant gene in a given patient/pedigree (oligogenic inheritance) is seen in 10-20% of all IHH cases. It is now well established that about 10-20% of IHH cases recover from IHH either spontaneously or after receiving some sex steroid replacement therapy. Moreover, there may be an overlap or transition between constitutional delay in growth and puberty (CDGP) and IHH. It has been increasingly observed that oligogenic inheritance and clinical recovery complicates the phenotype/genotype relationship in IHH, thus making it challenging to find new IHH-associated genes. In a clinical sense, recognizing those IHH genes and associated phenotypes may improve our diagnostic capabilities by enabling us to prioritize the screening of particular gene(s) such as synkinesia (ANOS1), dental agenesis (FGF8/FGFR1) and hearing loss (CHD7). Also, IHH-associated gene studies may be translated into new therapies such as for polycystic ovary syndrome. In a scientific sense, the most significant contribution of IHH-associated gene studies has been the characterization of the long-sought gonadotropin releasing hormone pulse generator. It appears that genetic studies of IHH will continue to advance our knowledge in both the biological and clinical domains.
Collapse
Affiliation(s)
- A. Kemal Topaloğlu
- University of Mississippi Medical Center, Department of Pediatrics, Division of Pediatric Endocrinology and Department of Neurobiology and Anatomical Sciences, Jackson, Mississippi, USA
,
Çukurova University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Endocrinology, Adana, Turkey
,* Address for Correspondence: University of Mississippi Medical Center, Division of Pediatric Endocrinology, Jackson, Mississippi, USA E-mail:
| |
Collapse
|
49
|
Contrôle de l’axe gonadotrope : nouveaux aspects physiologiques et thérapeutiques. ANNALES D'ENDOCRINOLOGIE 2017; 78 Suppl 1:S31-S40. [DOI: 10.1016/s0003-4266(17)30923-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
50
|
Bouilly J, Beau I, Barraud S, Bernard V, Delemer B, Young J, Binart N. R-spondin2, a novel target of NOBOX: identification of variants in a cohort of women with primary ovarian insufficiency. J Ovarian Res 2017; 10:51. [PMID: 28743298 PMCID: PMC5526297 DOI: 10.1186/s13048-017-0345-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 07/18/2017] [Indexed: 11/20/2022] Open
Abstract
Background R-spondin2 (Rspo2) is a secreted agonist of the canonical Wnt/β-catenin signaling pathway. Rspo2 plays a key role in development of limbs, lungs and hair follicles, and more recently during ovarian follicle development. Rspo2 heterozygous deficient female mice become infertile around 4 months of age mimicking primary ovarian insufficiency (POI). The study aimed to investigate the regulation of RSPO2 and its potential involvement in pathophysiology of POI. Methods We cloned the RSPO2 promoter and performed transcriptional assays to determine if RSPO2 can be regulated by NOBOX, an ovarian transcription factor. Then, we evaluated 100 infertile women after obtaining a detailed history of the disease and follicle-stimulating hormone measurements, besides karyotype determination and fragile-X premutation syndrome investigation. All exons, intron-exon boundaries and untranslated regions of the RSPO2 gene were identified by sequencing, and the results were statistically analyzed. Results We found that RSPO2 can be regulated by NOBOX via the presence of NOBOX Binding Element in its promoter. Among 9 identified variants in POI women, 4 of them were equally homozygous, 4 have never been described (c.-359C > G, c.-190G > A, c.-170 + 13C > T and c.-169-8 T > A), only one c.557 T > C was predicted to alter a single amino acid in the RSPO2 protein (p.Leu186Pro). Conclusions RSPO2 is a novel target gene of the NOBOX key transcription factor, confirming its important role during the follicular growth in ovary. However, RSPO2 mutations are rare or uncommon in women with POI.
Collapse
Affiliation(s)
- Justine Bouilly
- Inserm U1185, Faculté de Médecine Paris Sud 63, Univ Paris Sud, Université Paris-Saclay, rue Gabriel Péri, 94276, Le Kremlin-Bicêtre Cedex, France.
| | - Isabelle Beau
- Inserm U1185, Faculté de Médecine Paris Sud 63, Univ Paris Sud, Université Paris-Saclay, rue Gabriel Péri, 94276, Le Kremlin-Bicêtre Cedex, France
| | - Sara Barraud
- Inserm U1185, Faculté de Médecine Paris Sud 63, Univ Paris Sud, Université Paris-Saclay, rue Gabriel Péri, 94276, Le Kremlin-Bicêtre Cedex, France.,Service d'Endocrinologie-Diabète-Nutrition, CHU de Reims-Hôpital Robert-Debré, 51092, Reims, France
| | - Valérie Bernard
- Inserm U1185, Faculté de Médecine Paris Sud 63, Univ Paris Sud, Université Paris-Saclay, rue Gabriel Péri, 94276, Le Kremlin-Bicêtre Cedex, France
| | - Brigitte Delemer
- Service d'Endocrinologie-Diabète-Nutrition, CHU de Reims-Hôpital Robert-Debré, 51092, Reims, France
| | - Jacques Young
- Inserm U1185, Faculté de Médecine Paris Sud 63, Univ Paris Sud, Université Paris-Saclay, rue Gabriel Péri, 94276, Le Kremlin-Bicêtre Cedex, France.,APHP, Hôpital de Bicêtre, Service d'Endocrinologie et des Maladies de la Reproduction, F-94275, Le Kremlin-Bicêtre, France
| | - Nadine Binart
- Inserm U1185, Faculté de Médecine Paris Sud 63, Univ Paris Sud, Université Paris-Saclay, rue Gabriel Péri, 94276, Le Kremlin-Bicêtre Cedex, France
| |
Collapse
|