1
|
Kakumoto T, Orimo K, Matsukawa T, Mitsui J, Ishihara T, Onodera O, Suzuki Y, Morishita S, Toda T, Tsuji S. Frequency of FGF14 intronic GAA repeat expansion in patients with multiple system atrophy and undiagnosed ataxia in the Japanese population. Eur J Hum Genet 2025; 33:325-333. [PMID: 39604554 PMCID: PMC11893785 DOI: 10.1038/s41431-024-01743-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/25/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
Multiple system atrophy (MSA) is a neurodegenerative disorder characterized by autonomic nervous system dysfunction and cerebellar ataxia or parkinsonism. Recently, expanded GAA repeats (≥250 repeat units) in intron 1 of FGF14 have been shown to be responsible for spinocerebellar ataxia type 27B (SCA27B), a late-onset ataxia with an autosomal dominant inheritance. Patients with SCA27B may also exhibit autonomic nervous system dysfunction, potentially overlapping with the clinical presentations of MSA patients. In this study, to explore the possible involvement of expanded GAA repeats in MSA, we investigated the frequencies of expanded GAA repeats in FGF14 in 548 patients with MSA, 476 patients with undiagnosed ataxia, and 455 healthy individuals. To fully characterize the structures of the expanded GAA repeats, long-range PCR products suggesting the expansion of GAA repeats were further analyzed using a long-read sequencer. Of the 548 Japanese MSA patients, we identified one MSA patient (0.2%) carrying an expanded repeat with (GAA)≥250. Among the 476 individuals with undiagnosed ataxia, (GAA)≥250 was observed in six (1.3%); this frequency was higher than that in healthy individuals (0.2%). The clinical characteristics of the MSA patient with (GAA)≥250 were consistent with those of MSA, but not with SCA27B. Further research is warranted to explore the possibility of the potential association of expanded GAA repeats in FGF14 with MSA.
Collapse
Affiliation(s)
- Toshiyuki Kakumoto
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenta Orimo
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takashi Matsukawa
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jun Mitsui
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Precision Medicine Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomohiko Ishihara
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
- Advanced Treatment of Neurological Diseases Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | - Osamu Onodera
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
- Department of Molecular Neuroscience, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yuta Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Shinichi Morishita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Tatsushi Toda
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shoji Tsuji
- Department of Precision Medicine Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
- Institute of Medical Genomics, International University of Health and Welfare, Chiba, Japan.
| |
Collapse
|
2
|
Cheshire WP, Tipton PW, Koga S, Sekiya H, Uitti RJ, Ross OA, Heckman MG, Sledge HJ, Dickson DW. Occupational histories in neuropathologically confirmed multiple system atrophy. Clin Auton Res 2025:10.1007/s10286-025-01109-9. [PMID: 39847196 DOI: 10.1007/s10286-025-01109-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/10/2025] [Indexed: 01/24/2025]
Abstract
PURPOSE This study examined occupational histories in multiple system atrophy to identify environmental associations of potential relevance to disease causation. METHODS A total of 270 neuropathologically confirmed cases of multiple system atrophy obtained from the Mayo Clinic Brain Bank for neurodegenerative disorders in Jacksonville, Florida, were included in this case-control study. Demographic and disease information was collected from medical records. Information regarding occupational history was collected retrospectively from medical records and published obituaries. Proportions of employment by occupational sector were compared with US census data. RESULTS When comparing patients with US census data, significant differences were identified for education (15.2% versus 2.3%, P < 0.001), administration (14.8% versus 4.1%, P < 0.001), clerical (10.7% versus 5.5%, P = 0.001), petroleum industry (8.9% versus 5.6%, P = 0.024), metal industry (7.8% versus 3.0%, P < 0.001), electrical engineers and electricians (5.6% versus 0.4%, P < 0.001), civil or mechanical engineering (4.4% versus 0.2%, P < 0.001), real estate (4.4% versus 0.7%, P < 0.001), information technology (4.1% versus 1.8%, P = 0.011), woodworking (3.0% versus 0.03%, P < 0.001), writing or publishing (2.6% versus 0.3%, P < 0.001), law (2.2% versus 0.4%, P = 0.001), hairdressing (0.7% versus 0.1%, P = 0.03), and social work (0.7% versus 0.1%, P = 0.03). CONCLUSIONS The listed occupational categories were significantly overrepresented in our series of patients with multiple system atrophy as compared with population data. We hypothesize that these occupational associations may signify environmental exposures, increasing the disease risk in genetically susceptible individuals. We cannot exclude a potential selection bias in patients willing to donate their brains to an academic center to contribute to scientific knowledge.
Collapse
Affiliation(s)
- William P Cheshire
- Division of Autonomic Neurology, Department of Neurology, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, FL, 32224, USA.
| | - Philip W Tipton
- Division of Movement Disorders, Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Hiroaki Sekiya
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Ryan J Uitti
- Division of Movement Disorders, Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Michael G Heckman
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Jacksonville, FL, USA
| | - Hanna J Sledge
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Jacksonville, FL, USA
| | | |
Collapse
|
3
|
Karuntu JS, Almushattat H, Nguyen XTA, Plomp AS, Wanders RJA, Hoyng CB, van Schooneveld MJ, Schalij-Delfos NE, Brands MM, Leroy BP, van Karnebeek CDM, Bergen AA, van Genderen MM, Boon CJF. Syndromic Retinitis Pigmentosa. Prog Retin Eye Res 2024:101324. [PMID: 39733931 DOI: 10.1016/j.preteyeres.2024.101324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/31/2024]
Abstract
Retinitis pigmentosa (RP) is a progressive inherited retinal dystrophy, characterized by the degeneration of photoreceptors, presenting as a rod-cone dystrophy. Approximately 20-30% of patients with RP also exhibit extra-ocular manifestations in the context of a syndrome. This manuscript discusses the broad spectrum of syndromes associated with RP, pathogenic mechanisms, clinical manifestations, differential diagnoses, clinical management approaches, and future perspectives. Given the diverse clinical and genetic landscape of syndromic RP, the diagnosis may be challenging. However, an accurate and timely diagnosis is essential for optimal clinical management, prognostication, and potential treatment. Broadly, the syndromes associated with RP can be categorized into ciliopathies, inherited metabolic disorders, mitochondrial disorders, and miscellaneous syndromes. Among the ciliopathies associated with RP, Usher syndrome and Bardet-Biedl syndrome are the most well-known. Less common ciliopathies include Cohen syndrome, Joubert syndrome, cranioectodermal dysplasia, asphyxiating thoracic dystrophy, Mainzer-Saldino syndrome, and RHYNS syndrome. Several inherited metabolic disorders can present with RP including Zellweger spectrum disorders, adult Refsum disease, α-methylacyl-CoA racemase deficiency, certain mucopolysaccharidoses, ataxia with vitamin E deficiency, abetalipoproteinemia, several neuronal ceroid lipofuscinoses, mevalonic aciduria, PKAN/HARP syndrome, PHARC syndrome, and methylmalonic acidaemia with homocystinuria type cobalamin (cbl) C disease. Due to the mitochondria's essential role in supplying continuous energy to the retina, disruption of mitochondrial function can lead to RP, as seen in Kearns-Sayre syndrome, NARP syndrome, primary coenzyme Q10 deficiency, SSBP1-associated disease, and long chain 3-hydroxyacyl-CoA dehydrogenase deficiency. Lastly, Cockayne syndrome and PERCHING syndrome can present with RP, but they do not fit the abovementioned hierarchy and are thus categorized as 'Miscellaneous'. Several first-in-human clinical trials are underway or in preparation for some of these syndromic forms of RP.
Collapse
Affiliation(s)
- Jessica S Karuntu
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Hind Almushattat
- Department of Ophthalmology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Xuan-Thanh-An Nguyen
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Astrid S Plomp
- Department of Human Genetics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Reproduction & Development Institute, Amsterdam, the Netherlands
| | - Ronald J A Wanders
- Department of Paediatrics, Division of Metabolic Diseases, Amsterdam UMC location University of Amsterdam, Emma Children's Hospital, Amsterdam, The Netherlands; Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Carel B Hoyng
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mary J van Schooneveld
- Department of Ophthalmology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Marion M Brands
- Amsterdam Reproduction & Development Institute, Amsterdam, the Netherlands; Department of Paediatrics, Division of Metabolic Diseases, Amsterdam UMC location University of Amsterdam, Emma Children's Hospital, Amsterdam, The Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Inborn errors of metabolism, Amsterdam, The Netherlands
| | - Bart P Leroy
- Department of Ophthalmology & Center for Medical Genetics, Ghent University, Ghent, Belgium; Department of Head & Skin, Ghent University, Ghent, Belgium
| | - Clara D M van Karnebeek
- Department of Paediatrics, Division of Metabolic Diseases, Amsterdam UMC location University of Amsterdam, Emma Children's Hospital, Amsterdam, The Netherlands; Emma Center for Personalized Medicine, Departments of Pediatrics and Human Genetics, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Arthur A Bergen
- Department of Human Genetics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Emma Center for Personalized Medicine, Departments of Pediatrics and Human Genetics, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Maria M van Genderen
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht, the Netherlands; Diagnostic Center for Complex Visual Disorders, Zeist, the Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands; Department of Ophthalmology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
4
|
Krismer F, Fanciulli A, Meissner WG, Coon EA, Wenning GK. Multiple system atrophy: advances in pathophysiology, diagnosis, and treatment. Lancet Neurol 2024; 23:1252-1266. [PMID: 39577925 DOI: 10.1016/s1474-4422(24)00396-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/25/2024] [Accepted: 09/17/2024] [Indexed: 11/24/2024]
Abstract
Multiple system atrophy is an adult-onset, sporadic, and progressive neurodegenerative disease. People with this disorder report a wide range of motor and non-motor symptoms. Overlap in the clinical presentation of multiple system atrophy with other movement disorders (eg, Parkinson's disease and progressive supranuclear palsy) is a concern for accurate and timely diagnosis. Over the past 5 years, progress has been made in understanding key pathophysiological events in multiple system atrophy, including the seeding of α-synuclein inclusions and the detection of disease-specific α-synuclein strains. Diagnostic criteria were revised in 2022 with the intention to improve the accuracy of a diagnosis of multiple system atrophy, particularly for early disease stages. Early signals of efficacy in clinical trials have indicated the potential for disease-modifying therapies for multiple system atrophy, although no trial has yet provided unequivocal evidence of neuroprotection in this rare disease. The advances in pathophysiology could play a part in biomarker discovery for early diagnosis as well as in the development of disease-modifying therapies.
Collapse
Affiliation(s)
- Florian Krismer
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria.
| | | | - Wassilios G Meissner
- Centre Hospitalier Universitaire Bordeaux, Service de Neurologie des Maladies Neurodégénératives, Institut des Maladies Neurodégénératives Clinique, French Clinical Research Network for Parkinson's Disease and Movement Disorders, Bordeaux, France; Université de Bordeaux, Centre National de la Recherche Scientifique, Institut des Maladies Neurodégénératives, Unité Mixte de Recherche 5293, Bordeaux, France; Department of Medicine, University of Otago, Christchurch, New Zealand; New Zealand Brain Research Institute, Christchurch, New Zealand
| | | | - Gregor K Wenning
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
5
|
Li X, Lai H, Li X, Xu F, Song Y, Wang Z, Li Q, Lin R, Xu Z, Wang C. Genetic profiles of multiple system atrophy revealed by exome sequencing, long-read sequencing and spinocerebellar ataxia repeat expansion analysis. Eur J Neurol 2024; 31:e16441. [PMID: 39152783 PMCID: PMC11555020 DOI: 10.1111/ene.16441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/10/2024] [Accepted: 07/30/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND AND PURPOSE Multiple system atrophy (MSA) is a progressive, adult-onset neurodegenerative disorder clinically characterized by combinations of autonomic failure, parkinsonism, cerebellar ataxia and pyramidal signs. Although a few genetic factors have been reported to contribute to the disease, its mutational profiles have not been systemically studied. METHODS To address the genetic profiles of clinically diagnosed MSA patients, exome sequencing and triplet repeat detection was conducted in 205 MSA patients, including one familial case. The pathogenicity of variants was determined according to the American College of Medical Genetics and Genomics and the Association for Molecular Pathology guidelines. RESULTS In the familial patient, a novel heterozygous COQ2 pathogenic variant (p.Ala351Thr) was identified in the MSA pedigree. In the sporadic patients, 29 pathogenic variants were revealed in 21 genes, and the PARK7 p.Ala104Thr variant was significantly associated with MSA (p = 0.0018). Moreover, burden tests demonstrated that the pathogenic variants were enriched in cerebellar ataxia-related genes in patients. Furthermore, repeat expansion analyses revealed that two patients carried the pathogenic CAG repeat expansion in the CACNA1A gene (SCA6), one patient carried the (ACAGG)exp/(ACAGG)exp expansion in RFC1 and one carried the GAA-pure expansion in FGF14 gene. CONCLUSION In conclusion, a novel COQ2 pathogenic variant was identified in a familial MSA patient, and repeat expansions in CACNA1A, RFC1 and FGF14 gene were detected in four sporadic patients. Moreover, a PARK7 variant and the burden of pathogenic variants in cerebellar ataxia-related genes were associated with MSA.
Collapse
Affiliation(s)
- Xu‐Ying Li
- Department of NeurologyXuanwu Hospital of Capital Medical University, National Clinical Research Centre for Geriatric DiseasesBeijingChina
| | - Hong Lai
- Department of NeurologyXuanwu Hospital of Capital Medical University, National Clinical Research Centre for Geriatric DiseasesBeijingChina
| | - Xian Li
- Department of NeurologyXuanwu Hospital of Capital Medical University, National Clinical Research Centre for Geriatric DiseasesBeijingChina
| | - Fanxi Xu
- Department of NeurologyXuanwu Hospital of Capital Medical University, National Clinical Research Centre for Geriatric DiseasesBeijingChina
| | - Yang Song
- Department of NeurologyXuanwu Hospital of Capital Medical University, National Clinical Research Centre for Geriatric DiseasesBeijingChina
| | - Zhanjun Wang
- Department of NeurologyXuanwu Hospital of Capital Medical University, National Clinical Research Centre for Geriatric DiseasesBeijingChina
| | - Qibin Li
- Shenzhen Clabee Biotechnology IncorporationShenzhenGuangdongChina
| | - Ruichai Lin
- Shenzhen Clabee Biotechnology IncorporationShenzhenGuangdongChina
| | - Zhiheng Xu
- Institute of Genetics and Developmental Biology Chinese Academy of SciencesBeijingChina
| | - Chaodong Wang
- Department of NeurologyXuanwu Hospital of Capital Medical University, National Clinical Research Centre for Geriatric DiseasesBeijingChina
| |
Collapse
|
6
|
Tarisawa M, Matsushima M, Kudo A, Sakushima K, Kanatani Y, Nishimoto N, Sawada J, Matsuoka T, Hisahara S, Uesugi H, Minami N, Sako K, Takei A, Tamakoshi A, Sato N, Sasaki H, Yabe I. The Movement Disorder Society Criteria: Its Clinical Usefulness in Multiple System Atrophy. Intern Med 2024; 63:2903-2912. [PMID: 38494718 PMCID: PMC11604380 DOI: 10.2169/internalmedicine.3275-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/02/2024] [Indexed: 03/19/2024] Open
Abstract
Objective In 2022, Wenning et al. proposed the Movement Disorder Society Criteria (MDS criteria) for the Diagnosis of Multiple System Atrophy (MSA). These criteria were expected to provide useful alternatives to the second consensus statement. We examined trends in these diagnostic criteria. Methods We used patient data registered with the Hokkaido Rare Disease Consortium for Multiple System Atrophy, which has been recruiting patients with MSA through medical facilities in Hokkaido since November 2014. Patients were evaluated according to the MDS criteria based on neurological examinations and imaging findings at three separate times: the first evaluation, the time of enrollment (diagnosis), and the most recent evaluation (final evaluation). Results The MDS criteria were examined in 68 of 244 patients enrolled between November 2014 and July 2022. At the initial evaluation, the classifications were as follows: clinically established (n=27; 39.7%); clinically probable (n=13; 19.1%); possible prodromal (n=12; 17.6%); and negative [did not meet criteria (n=16; 23.5%)]. At the time of diagnosis, the classifications were as follows: clinically established (n=45; 66.2%); clinically probable (n=12; 17.6%); possible prodromal (n=4; 5.9%); and negative (n=7; 10.3%). At the final evaluation, the classifications were as follows: clinically established (n=52; 76.5%); clinically probable (n=9; 13.2%); possible prodromal (n=2; 2.9%); and negative (n=5; 7.4%). Conclusion We were able to clarify the changes in the criteria values and transition of patients due to the clarification of imaging and supportive findings in the MDS criteria.
Collapse
Affiliation(s)
- Monami Tarisawa
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Japan
- Department of Neurology, Obihiro Kosei General Hospital, Japan
| | - Masaaki Matsushima
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Japan
| | - Akihiko Kudo
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Japan
| | - Ken Sakushima
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Japan
| | - Yasuhiro Kanatani
- Department of Clinical Pharmacology, Faculty of Medicine, Tokai University, Japan
| | - Naoki Nishimoto
- Hokkaido University Hospital Clinical Research and Medical Innovation Center, Japan
| | - Jun Sawada
- Department of Cardiology, Nephrology, Pulmonology, and Neurology, Asahikawa Medical University, Japan
| | | | - Shin Hisahara
- Department of Neurology, Sapporo Medical University, Japan
| | | | - Naoya Minami
- Department of Neurology, National Hospital Organization Hokkaido Medical Center, Japan
| | - Kazuya Sako
- Department of Neurology, Nakamura Memorial Hospital, Japan
| | | | - Akiko Tamakoshi
- Department of Public Health, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Japan
| | - Norihiro Sato
- Hokkaido University Hospital Clinical Research and Medical Innovation Center, Japan
| | | | - Ichiro Yabe
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Japan
| |
Collapse
|
7
|
Wang Y, Lilienfeldt N, Hekimi S. Understanding coenzyme Q. Physiol Rev 2024; 104:1533-1610. [PMID: 38722242 PMCID: PMC11495197 DOI: 10.1152/physrev.00040.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/08/2024] [Accepted: 05/01/2024] [Indexed: 08/11/2024] Open
Abstract
Coenzyme Q (CoQ), also known as ubiquinone, comprises a benzoquinone head group and a long isoprenoid side chain. It is thus extremely hydrophobic and resides in membranes. It is best known for its complex function as an electron transporter in the mitochondrial electron transport chain (ETC) but is also required for several other crucial cellular processes. In fact, CoQ appears to be central to the entire redox balance of the cell. Remarkably, its structure and therefore its properties have not changed from bacteria to vertebrates. In metazoans, it is synthesized in all cells and is found in most, and maybe all, biological membranes. CoQ is also known as a nutritional supplement, mostly because of its involvement with antioxidant defenses. However, whether there is any health benefit from oral consumption of CoQ is not well established. Here we review the function of CoQ as a redox-active molecule in the ETC and other enzymatic systems, its role as a prooxidant in reactive oxygen species generation, and its separate involvement in antioxidant mechanisms. We also review CoQ biosynthesis, which is particularly complex because of its extreme hydrophobicity, as well as the biological consequences of primary and secondary CoQ deficiency, including in human patients. Primary CoQ deficiency is a rare inborn condition due to mutation in CoQ biosynthetic genes. Secondary CoQ deficiency is much more common, as it accompanies a variety of pathological conditions, including mitochondrial disorders as well as aging. In this context, we discuss the importance, but also the great difficulty, of alleviating CoQ deficiency by CoQ supplementation.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Noah Lilienfeldt
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Siegfried Hekimi
- Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
8
|
Hotta Y, Torii K, Takayama M. Ocular genetics in the Japanese population. Jpn J Ophthalmol 2024; 68:401-418. [PMID: 39271608 PMCID: PMC11420330 DOI: 10.1007/s10384-024-01109-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/03/2024] [Indexed: 09/15/2024]
Abstract
In today's globalized society, ophthalmologists can examine people of different ethnicities regardless of where they live. The frequency of disease-causing genes varies according to a patient's ethnic background. We explain genetic findings for Japanese patients with inherited eye diseases. Ocular genetics has made great advances over the past 30 years. For example, detecting mutations at nucleotide position 11778 in mitochondrial DNA was useful in the genetic diagnosis of Leber's hereditary optic neuropathy (LHON). I evaluated the genotype-phenotype relationship in cases of corneal dystrophy and inherited retinal dystrophy (IRD). I identified the entire exon sequence of the eyes shut homolog (EYS) gene in patients with autosomal recessive retinitis pigmentosa (RP). EYS gene mutations are the most frequent cause of autosomal recessive RP. RPGRIP1 may be a common causative gene with early-onset severe retinal dystrophy, including Leber congenital amaurosis. However, some genes have complex structures that are difficult to analyze, including the OPN1LW/OPN1MW gene cluster in blue cone monochromacy and the IKBKG/NEMO genes in incontinentia pigmenti. This review will also present two cases with uniparental disomy, a case of IRD with double mutations, and a case with RP complicated with LHON-like neuropathy. Precise understanding of the effects of genetic variants may reveal differences in the clinical characteristics of patients with the same variant. When starting genome medicine, accurately diagnosing the patient, making accurate prediction, determining the genetic pattern, and providing genetic counseling are important. Above all, that both the doctors and patients understand genetic diseases correctly is important.
Collapse
Affiliation(s)
- Yoshihiro Hotta
- Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu city, Shizuoka, 431-3192, Japan.
| | - Kaoruko Torii
- Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu city, Shizuoka, 431-3192, Japan
| | - Masakazu Takayama
- Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu city, Shizuoka, 431-3192, Japan
| |
Collapse
|
9
|
Stankovic I, Kuijpers M, Kaufmann H. An update on multiple system atrophy. Curr Opin Neurol 2024; 37:400-408. [PMID: 38828714 PMCID: PMC11219253 DOI: 10.1097/wco.0000000000001285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
PURPOSE OF REVIEW Multiple system atrophy (MSA) is a rapidly progressive synucleinopathy characterized by autonomic failure, parkinsonism, and cerebellar ataxia. Here, we provide an update on α-synuclein's role in MSA pathophysiology and review the new Movement Disorders Society (MDS) diagnostic criteria and the utility of α-synuclein-based biomarkers. We also highlight ongoing efforts toward clinical trial readiness and review potential disease-modifying therapies undergoing clinical trials. RECENT FINDINGS A role of urinary tract infections in triggering α-synuclein aggregation and contribution of genes implicated in oligodendroglial development have been suggested in the MSA pathophysiology. The clinically probable MSA category of the new diagnostic criteria shows improved accuracy in early disease stages. Predictors of phenoconversion from pure autonomic failure to MSA are now better defined. Alpha-synuclein strains in CSF and serum, phosphorylated α-synuclein deposits in the skin, and brain α-synuclein pathology visualized using PET ligand [18F]ACI-12589 are emerging as valuable diagnostic tools. Clinical trials in MSA investigate drugs targeting α-synuclein aggregation or preventing α-synuclein expression, along with stem cell and gene therapies to halt disease progression. SUMMARY New MSA diagnostic criteria and α-synuclein-based biomarkers may enhance diagnostic accuracy while promising therapies are in development to address disease progression.
Collapse
Affiliation(s)
- Iva Stankovic
- Neurology Clinic, University Clinical Center of Serbia, School of Medicine, University of Belgrade, Serbia
| | - Mechteld Kuijpers
- Dysautonomia Center, Langone Medical Center, New York University School of Medicine, New York, NY, USA
| | - Horacio Kaufmann
- Dysautonomia Center, Langone Medical Center, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
10
|
Chia R, Ray A, Shah Z, Ding J, Ruffo P, Fujita M, Menon V, Saez-Atienzar S, Reho P, Kaivola K, Walton RL, Reynolds RH, Karra R, Sait S, Akcimen F, Diez-Fairen M, Alvarez I, Fanciulli A, Stefanova N, Seppi K, Duerr S, Leys F, Krismer F, Sidoroff V, Zimprich A, Pirker W, Rascol O, Foubert-Samier A, Meissner WG, Tison F, Pavy-Le Traon A, Pellecchia MT, Barone P, Russillo MC, Marín-Lahoz J, Kulisevsky J, Torres S, Mir P, Periñán MT, Proukakis C, Chelban V, Wu L, Goh YY, Parkkinen L, Hu MT, Kobylecki C, Saxon JA, Rollinson S, Garland E, Biaggioni I, Litvan I, Rubio I, Alcalay RN, Kwei KT, Lubbe SJ, Mao Q, Flanagan ME, Castellani RJ, Khurana V, Ndayisaba A, Calvo A, Mora G, Canosa A, Floris G, Bohannan RC, Moore A, Norcliffe-Kaufmann L, Palma JA, Kaufmann H, Kim C, Iba M, Masliah E, Dawson TM, Rosenthal LS, Pantelyat A, Albert MS, Pletnikova O, Troncoso JC, Infante J, Lage C, Sánchez-Juan P, Serrano GE, Beach TG, Pastor P, Morris HR, Albani D, Clarimon J, Wenning GK, Hardy JA, Ryten M, Topol E, Torkamani A, Chiò A, Bennett DA, De Jager PL, Low PA, Singer W, Cheshire WP, Wszolek ZK, Dickson DW, et alChia R, Ray A, Shah Z, Ding J, Ruffo P, Fujita M, Menon V, Saez-Atienzar S, Reho P, Kaivola K, Walton RL, Reynolds RH, Karra R, Sait S, Akcimen F, Diez-Fairen M, Alvarez I, Fanciulli A, Stefanova N, Seppi K, Duerr S, Leys F, Krismer F, Sidoroff V, Zimprich A, Pirker W, Rascol O, Foubert-Samier A, Meissner WG, Tison F, Pavy-Le Traon A, Pellecchia MT, Barone P, Russillo MC, Marín-Lahoz J, Kulisevsky J, Torres S, Mir P, Periñán MT, Proukakis C, Chelban V, Wu L, Goh YY, Parkkinen L, Hu MT, Kobylecki C, Saxon JA, Rollinson S, Garland E, Biaggioni I, Litvan I, Rubio I, Alcalay RN, Kwei KT, Lubbe SJ, Mao Q, Flanagan ME, Castellani RJ, Khurana V, Ndayisaba A, Calvo A, Mora G, Canosa A, Floris G, Bohannan RC, Moore A, Norcliffe-Kaufmann L, Palma JA, Kaufmann H, Kim C, Iba M, Masliah E, Dawson TM, Rosenthal LS, Pantelyat A, Albert MS, Pletnikova O, Troncoso JC, Infante J, Lage C, Sánchez-Juan P, Serrano GE, Beach TG, Pastor P, Morris HR, Albani D, Clarimon J, Wenning GK, Hardy JA, Ryten M, Topol E, Torkamani A, Chiò A, Bennett DA, De Jager PL, Low PA, Singer W, Cheshire WP, Wszolek ZK, Dickson DW, Traynor BJ, Gibbs JR, Dalgard CL, Ross OA, Houlden H, Scholz SW. Genome sequence analyses identify novel risk loci for multiple system atrophy. Neuron 2024; 112:2142-2156.e5. [PMID: 38701790 PMCID: PMC11223971 DOI: 10.1016/j.neuron.2024.04.002] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/28/2024] [Accepted: 04/02/2024] [Indexed: 05/05/2024]
Abstract
Multiple system atrophy (MSA) is an adult-onset, sporadic synucleinopathy characterized by parkinsonism, cerebellar ataxia, and dysautonomia. The genetic architecture of MSA is poorly understood, and treatments are limited to supportive measures. Here, we performed a comprehensive analysis of whole genome sequence data from 888 European-ancestry MSA cases and 7,128 controls to systematically investigate the genetic underpinnings of this understudied neurodegenerative disease. We identified four significantly associated risk loci using a genome-wide association study approach. Transcriptome-wide association analyses prioritized USP38-DT, KCTD7, and lnc-KCTD7-2 as novel susceptibility genes for MSA within these loci, and single-nucleus RNA sequence analysis found that the associated variants acted as cis-expression quantitative trait loci for multiple genes across neuronal and glial cell types. In conclusion, this study highlights the role of genetic determinants in the pathogenesis of MSA, and the publicly available data from this study represent a valuable resource for investigating synucleinopathies.
Collapse
Affiliation(s)
- Ruth Chia
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Anindita Ray
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Zalak Shah
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Jinhui Ding
- Computational Biology Group, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Paola Ruffo
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA; Medical Genetics Laboratory, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Masashi Fujita
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY, USA
| | - Vilas Menon
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY, USA
| | - Sara Saez-Atienzar
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Paolo Reho
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Karri Kaivola
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Ronald L Walton
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Regina H Reynolds
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK; Great Ormond Street Institute of Child Health, Genetics and Genomic Medicine, University College London, London, UK; Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Ramita Karra
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Shaimaa Sait
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Fulya Akcimen
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Monica Diez-Fairen
- Memory and Movement Disorders Units, Department of Neurology, University Hospital Mutua de Terrassa, Barcelona, Spain
| | - Ignacio Alvarez
- Memory and Movement Disorders Units, Department of Neurology, University Hospital Mutua de Terrassa, Barcelona, Spain
| | | | - Nadia Stefanova
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Klaus Seppi
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Susanne Duerr
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Fabian Leys
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Krismer
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Victoria Sidoroff
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Walter Pirker
- Department of Neurology, Klinik Ottakring - Wilhelminenspital, Vienna, Austria
| | - Olivier Rascol
- MSA French Reference Center and CIC-1436, Department of Clinical Pharmacology and Neurosciences, University of Toulouse, Toulouse, France
| | - Alexandra Foubert-Samier
- Service de Neurologie des Maladies Neurodégénératives, French Reference Center for MSA, NS-Park/FCRIN Network, CHU Bordeaux, Bordeaux, France
| | - Wassilios G Meissner
- Service de Neurologie des Maladies Neurodégénératives, French Reference Center for MSA, NS-Park/FCRIN Network, CHU Bordeaux, Bordeaux, France; University of Bordeaux, CNRS, IMN, UMR 5293, Bordeaux, France; Department of Medicine, University of Otago, and the New Zealand Brain Research Institute, Christchurch, New Zealand
| | - François Tison
- Service de Neurologie des Maladies Neurodégénératives, French Reference Center for MSA, NS-Park/FCRIN Network, CHU Bordeaux, Bordeaux, France; University of Bordeaux, CNRS, IMN, UMR 5293, Bordeaux, France
| | - Anne Pavy-Le Traon
- French Reference Center for MSA, Department of Neurosciences, Centre d'Investigation Clinique de Toulouse CIC1436, UMR 1048, Institute of Cardiovascular and Metabolic Diseases (I2MC), University Hospital of Toulouse, INSERM, Toulouse, France
| | - Maria Teresa Pellecchia
- Neuroscience Section, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | - Paolo Barone
- Neuroscience Section, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | - Maria Claudia Russillo
- Neuroscience Section, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | - Juan Marín-Lahoz
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Institut d'Investigacions Biomèdiques Sant Pau (IIB-Sant Pau), Centro de Investigación en Red Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Barcelona, Spain; Servicio de Neurología, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Jaime Kulisevsky
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Institut d'Investigacions Biomèdiques Sant Pau (IIB-Sant Pau), Centro de Investigación en Red Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Soraya Torres
- Institut d'Investigacions Biomèdiques Sant Pau (IIB-Sant Pau), Centro de Investigación en Red Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Pablo Mir
- Unidad de Trastornos del Movimiento Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Seville, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain; Departamento de Medicina Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - Maria Teresa Periñán
- Unidad de Trastornos del Movimiento Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Seville, Spain; Centre for Preventive Neurology, Wolfson Institute of Population Health, Queen Mary University, London, UK
| | - Christos Proukakis
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, UK
| | - Viorica Chelban
- Department of Neuromuscular Diseases, University College London Queen Square Institute of Neurology, London, UK; The National Hospital for Neurology and Neurosurgery, London, UK
| | - Lesley Wu
- Department of Neuromuscular Diseases, University College London Queen Square Institute of Neurology, London, UK
| | - Yee Y Goh
- Department of Neuromuscular Diseases, University College London Queen Square Institute of Neurology, London, UK
| | - Laura Parkkinen
- Nuffield Department of Clinical Neurosciences, Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK
| | - Michele T Hu
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Christopher Kobylecki
- Department of Neurology, Northern Care Alliance NHS Foundation Trust, Manchester Academic Health Sciences Centre, The University of Manchester, Manchester, UK
| | - Jennifer A Saxon
- Cerebral Function Unit, Manchester Centre for Clinical Neurosciences, Salfort, UK; Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Sara Rollinson
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Emily Garland
- Autonomic Dysfunction Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Italo Biaggioni
- Autonomic Dysfunction Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Irene Litvan
- Department of Neurosciences, University of California, San Diego, San Diego, CA, USA
| | - Ileana Rubio
- Department of Neurosciences, University of California, San Diego, San Diego, CA, USA
| | - Roy N Alcalay
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA; Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Kimberly T Kwei
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Steven J Lubbe
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Qinwen Mao
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Margaret E Flanagan
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA; Department of Pathology, UT Health San Antonio, San Antonio, TX, USA
| | - Rudolph J Castellani
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Vikram Khurana
- Ann Romney Center for Neurologic Disease, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Alain Ndayisaba
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria; Ann Romney Center for Neurologic Disease, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Andrea Calvo
- "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy
| | - Gabriele Mora
- Istituti Clinici Scientifici Maugeri, IRCCS, Milan, Italy
| | - Antonio Canosa
- "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy
| | - Gianluca Floris
- Department of Neurology, University Hospital of Cagliari, Cagliari, Italy
| | - Ryan C Bohannan
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Anni Moore
- Computational Biology Group, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | | | - Jose-Alberto Palma
- Department of Neurology, New York University School of Medicine, New York, NY, USA
| | - Horacio Kaufmann
- Department of Neurology, New York University School of Medicine, New York, NY, USA
| | - Changyoun Kim
- Molecular Neuropathology Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Michiyo Iba
- Molecular Neuropathology Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Eliezer Masliah
- Molecular Neuropathology Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Ted M Dawson
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA; Neuroregeneration and Stem Cell Programs, Institute of Cell Engineering, Johns Hopkins University Medical Center, Baltimore, MD, USA; Department of Pharmacology and Molecular Science, Johns Hopkins University Medical Center, Baltimore, MD, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Liana S Rosenthal
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Alexander Pantelyat
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Marilyn S Albert
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Olga Pletnikova
- Department of Pathology (Neuropathology), Johns Hopkins University Medical Center, Baltimore, MD, USA; Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Juan C Troncoso
- Department of Pathology (Neuropathology), Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Jon Infante
- Neurology Service, University Hospital Marqués de Valdecilla-IDIVAL-UC-CIBERNED, Santander, Spain
| | - Carmen Lage
- Neurology Service, University Hospital Marqués de Valdecilla-IDIVAL-UC-CIBERNED, Santander, Spain
| | - Pascual Sánchez-Juan
- Neurology Service, University Hospital Marqués de Valdecilla-IDIVAL-UC-CIBERNED, Santander, Spain; Alzheimer's Centre Reina Sofia-CIEN Foundation-ISCIII, Madrid, Spain
| | - Geidy E Serrano
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Thomas G Beach
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Pau Pastor
- Genomics and Transcriptomics of Synucleinopathies, Neurosciences, The Germans Trias i Pujol Research Institute (IGTP), Badalona, Barcelona, Spain; Unit of Neurodegenerative Diseases, Department of Neurology, University Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Huw R Morris
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Diego Albani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Jordi Clarimon
- Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; The Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Gregor K Wenning
- Autonomic Unit - Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - John A Hardy
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK; UK Dementia Research Institute of UCL, UCL Institute of Neurology, University College London, London, UK; Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, University College London, London, UK; UCL Movement Disorders Centre, University College London, London, UK; Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Mina Ryten
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK; Great Ormond Street Institute of Child Health, Genetics and Genomic Medicine, University College London, London, UK
| | - Eric Topol
- Scripps Research Translational Institute, Scripps Research, La Jolla, CA, USA
| | - Ali Torkamani
- Scripps Research Translational Institute, Scripps Research, La Jolla, CA, USA
| | - Adriano Chiò
- "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy; Institute of Cognitive Sciences and Technologies, C.N.R., Rome, Italy; Azienda Ospedaliero Universitaria Città della Salute e della Scienza, Turin, Italy
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Philip L De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY, USA
| | - Philip A Low
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | - Bryan J Traynor
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA; Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA; RNA Therapeutics Laboratory, Therapeutics Development Branch, National Center for Advancing Translational Sciences, Rockville, MD, USA
| | - J Raphael Gibbs
- Computational Biology Group, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Clifton L Dalgard
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, USA
| | - Henry Houlden
- Department of Neuromuscular Diseases, University College London Queen Square Institute of Neurology, London, UK; The National Hospital for Neurology and Neurosurgery, London, UK
| | - Sonja W Scholz
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA; Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA.
| |
Collapse
|
11
|
Matsushima M, Yaguchi H, Koshimizu E, Kudo A, Shirai S, Matsuoka T, Ura S, Kawashima A, Fukazawa T, Miyatake S, Matsumoto N, Yabe I. FGF14 GAA repeat expansion and ZFHX3 GGC repeat expansion in clinically diagnosed multiple system atrophy patients. J Neurol 2024; 271:3643-3647. [PMID: 38472396 DOI: 10.1007/s00415-024-12308-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024]
Affiliation(s)
- Masaaki Matsushima
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Hiroaki Yaguchi
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Eriko Koshimizu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Akihiko Kudo
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Shinichi Shirai
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-8638, Japan
| | | | - Shigehisa Ura
- Department of Neurology, Japanese Red Cross Asahikawa Hospital, Asahikawa, Japan
| | | | | | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Clinical Genetics, Yokohama City University Hospital, Yokohama, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ichiro Yabe
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-8638, Japan.
| |
Collapse
|
12
|
Corral-Sarasa J, Martínez-Gálvez JM, González-García P, Wendling O, Jiménez-Sánchez L, López-Herrador S, Quinzii CM, Díaz-Casado ME, López LC. 4-Hydroxybenzoic acid rescues multisystemic disease and perinatal lethality in a mouse model of mitochondrial disease. Cell Rep 2024; 43:114148. [PMID: 38697100 DOI: 10.1016/j.celrep.2024.114148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/03/2024] [Accepted: 04/09/2024] [Indexed: 05/04/2024] Open
Abstract
Coenzyme Q (CoQ) deficiency syndrome is conventionally treated with limited efficacy using exogenous CoQ10. Poor outcomes result from low absorption and bioavailability of CoQ10 and the clinical heterogenicity of the disease. Here, we demonstrate that supplementation with 4-hydroxybenzoic acid (4HB), the precursor of the benzoquinone ring in the CoQ biosynthetic pathway, completely rescues multisystemic disease and perinatal lethality in a mouse model of CoQ deficiency. 4HB stimulates endogenous CoQ biosynthesis in tissues of Coq2 mutant mice, normalizing mitochondrial function and rescuing cardiac insufficiency, edema, and neurodevelopmental delay. In contrast, exogenous CoQ10 supplementation falls short in fully restoring the phenotype. The treatment is translatable to human use, as proven by in vitro studies in skin fibroblasts from patients with pathogenic variants in COQ2. The therapeutic approach extends to other disorders characterized by deficiencies in the production of 4HB and early steps of CoQ biosynthesis and instances of secondary CoQ deficiency.
Collapse
Affiliation(s)
- Julia Corral-Sarasa
- Instituto de Investigación Biosanitaria ibs.Granada, 18016 Granada, Spain; Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain
| | - Juan Manuel Martínez-Gálvez
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain; Biofisika Institute (CSIC, UBV-EHU) and Department of Biochemistry and Molecular Biology, University of Basque Country, 48940 Leioa, Spain
| | - Pilar González-García
- Instituto de Investigación Biosanitaria ibs.Granada, 18016 Granada, Spain; Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain; Instituto de Biotecnología, Centro de Investigación Biomédica, Universidad de Granada, 18016 Granada, Spain
| | - Olivia Wendling
- Université de Strasbourg, CNRS, INSERM, CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), 1 rue Laurent Fries, 67404 Illkirch, France
| | | | - Sergio López-Herrador
- Instituto de Investigación Biosanitaria ibs.Granada, 18016 Granada, Spain; Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain; Instituto de Biotecnología, Centro de Investigación Biomédica, Universidad de Granada, 18016 Granada, Spain
| | - Catarina M Quinzii
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
| | - María Elena Díaz-Casado
- Instituto de Investigación Biosanitaria ibs.Granada, 18016 Granada, Spain; Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain; Instituto de Biotecnología, Centro de Investigación Biomédica, Universidad de Granada, 18016 Granada, Spain
| | - Luis C López
- Instituto de Investigación Biosanitaria ibs.Granada, 18016 Granada, Spain; Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain; Instituto de Biotecnología, Centro de Investigación Biomédica, Universidad de Granada, 18016 Granada, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), 18016 Granada, Spain.
| |
Collapse
|
13
|
Liu M, Wang Z, Shang H. Multiple system atrophy: an update and emerging directions of biomarkers and clinical trials. J Neurol 2024; 271:2324-2344. [PMID: 38483626 PMCID: PMC11055738 DOI: 10.1007/s00415-024-12269-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 04/28/2024]
Abstract
Multiple system atrophy is a rare, debilitating, adult-onset neurodegenerative disorder that manifests clinically as a diverse combination of parkinsonism, cerebellar ataxia, and autonomic dysfunction. It is pathologically characterized by oligodendroglial cytoplasmic inclusions containing abnormally aggregated α-synuclein. According to the updated Movement Disorder Society diagnostic criteria for multiple system atrophy, the diagnosis of clinically established multiple system atrophy requires the manifestation of autonomic dysfunction in combination with poorly levo-dopa responsive parkinsonism and/or cerebellar syndrome. Although symptomatic management of multiple system atrophy can substantially improve quality of life, therapeutic benefits are often limited, ephemeral, and they fail to modify the disease progression and eradicate underlying causes. Consequently, effective breakthrough treatments that target the causes of disease are needed. Numerous preclinical and clinical studies are currently focusing on a set of hallmarks of neurodegenerative diseases to slow or halt the progression of multiple system atrophy: pathological protein aggregation, synaptic dysfunction, aberrant proteostasis, neuronal inflammation, and neuronal cell death. Meanwhile, specific biomarkers and measurements with higher specificity and sensitivity are being developed for the diagnosis of multiple system atrophy, particularly for early detection of the disease. More intriguingly, a growing number of new disease-modifying candidates, which can be used to design multi-targeted, personalized treatment in patients, are being investigated, notwithstanding the failure of most previous attempts.
Collapse
Affiliation(s)
- Min Liu
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan, China
| | - Zhiyao Wang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan, China
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Disease Center, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
14
|
Lopriore P, Vista M, Tessa A, Giuntini M, Caldarazzo Ienco E, Mancuso M, Siciliano G, Santorelli FM, Orsucci D. Primary Coenzyme Q10 Deficiency-Related Ataxias. J Clin Med 2024; 13:2391. [PMID: 38673663 PMCID: PMC11050807 DOI: 10.3390/jcm13082391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Cerebellar ataxia is a neurological syndrome characterized by the imbalance (e.g., truncal ataxia, gait ataxia) and incoordination of limbs while executing a task (dysmetria), caused by the dysfunction of the cerebellum or its connections. It is frequently associated with other signs of cerebellar dysfunction, including abnormal eye movements, dysmetria, kinetic tremor, dysarthria, and/or dysphagia. Among the so-termed mitochondrial ataxias, variants in genes encoding steps of the coenzyme Q10 biosynthetic pathway represent a common cause of autosomal recessive primary coenzyme Q10 deficiencies (PCoQD)s. PCoQD is a potentially treatable condition; therefore, a correct and timely diagnosis is essential. After a brief presentation of the illustrative case of an Italian woman with this condition (due to a novel homozygous nonsense mutation in COQ8A), this article will review ataxias due to PCoQD.
Collapse
Affiliation(s)
- Piervito Lopriore
- Unit of Neurology, San Luca Hospital, Via Lippi-Francesconi, 55100 Lucca, Italy; (P.L.); (M.V.); (M.G.); (E.C.I.)
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.M.); (G.S.)
| | - Marco Vista
- Unit of Neurology, San Luca Hospital, Via Lippi-Francesconi, 55100 Lucca, Italy; (P.L.); (M.V.); (M.G.); (E.C.I.)
| | - Alessandra Tessa
- Molecular Medicine, IRCCS Stella Maris Foundation, 56122 Pisa, Italy; (A.T.); (F.M.S.)
| | - Martina Giuntini
- Unit of Neurology, San Luca Hospital, Via Lippi-Francesconi, 55100 Lucca, Italy; (P.L.); (M.V.); (M.G.); (E.C.I.)
| | - Elena Caldarazzo Ienco
- Unit of Neurology, San Luca Hospital, Via Lippi-Francesconi, 55100 Lucca, Italy; (P.L.); (M.V.); (M.G.); (E.C.I.)
| | - Michelangelo Mancuso
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.M.); (G.S.)
| | - Gabriele Siciliano
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.M.); (G.S.)
| | | | - Daniele Orsucci
- Unit of Neurology, San Luca Hospital, Via Lippi-Francesconi, 55100 Lucca, Italy; (P.L.); (M.V.); (M.G.); (E.C.I.)
| |
Collapse
|
15
|
Abdul‐Rahman T, Herrera‐Calderón RE, Ahluwalia A, Wireko AA, Ferreira T, Tan JK, Wolfson M, Ghosh S, Horbas V, Garg V, Perveen A, Papadakis M, Ashraf GM, Alexiou A. The potential of phosphorylated α-synuclein as a biomarker for the diagnosis and monitoring of multiple system atrophy. CNS Neurosci Ther 2024; 30:e14678. [PMID: 38572788 PMCID: PMC10993367 DOI: 10.1111/cns.14678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 04/05/2024] Open
Abstract
INTRODUCTION Multiple system atrophy (MSA) is a rapidly progressive neurodegenerative disorder characterized by the presence of glial cytoplasmic inclusions (GCIs) containing aggregated α-synuclein (α-Syn). Accurate diagnosis and monitoring of MSA present significant challenges, which can lead to potential misdiagnosis and inappropriate treatment. Biomarkers play a crucial role in improving the accuracy of MSA diagnosis, and phosphorylated α-synuclein (p-syn) has emerged as a promising biomarker for aiding in diagnosis and disease monitoring. METHODS A literature search was conducted on PubMed, Scopus, and Google Scholar using specific keywords and MeSH terms without imposing a time limit. Inclusion criteria comprised various study designs including experimental studies, case-control studies, and cohort studies published only in English, while conference abstracts and unpublished sources were excluded. RESULTS Increased levels of p-syn have been observed in various samples from MSA patients, such as red blood cells, cerebrospinal fluid, oral mucosal cells, skin, and colon biopsies, highlighting their diagnostic potential. The α-Syn RT-QuIC assay has shown sensitivity in diagnosing MSA and tracking its progression. Meta-analyses and multicenter investigations have confirmed the diagnostic value of p-syn in cerebrospinal fluid, demonstrating high specificity and sensitivity in distinguishing MSA from other neurodegenerative diseases. Moreover, combining p-syn with other biomarkers has further improved the diagnostic accuracy of MSA. CONCLUSION The p-syn stands out as a promising biomarker for MSA. It is found in oligodendrocytes and shows a correlation with disease severity and progression. However, further research and validation studies are necessary to establish p-syn as a reliable biomarker for MSA. If proven, p-syn could significantly contribute to early diagnosis, disease monitoring, and assessing treatment response.
Collapse
Affiliation(s)
| | | | | | | | - Tomas Ferreira
- Department of Clinical Neurosciences, School of Clinical MedicineUniversity of CambridgeCambridgeUK
| | | | | | - Shankhaneel Ghosh
- Institute of Medical Sciences and SUM Hospital, Siksha 'O' AnusandhanBhubaneswarIndia
| | | | - Vandana Garg
- Department of Pharmaceutical SciencesMaharshi Dayanand UniversityRohtakHaryanaIndia
| | - Asma Perveen
- Glocal School of Life SciencesGlocal UniversitySaharanpurUttar PradeshIndia
- Princess Dr. Najla Bint Saud Al‐Saud Center for Excellence Research in BiotechnologyKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten‐HerdeckeUniversity of Witten‐HerdeckeWuppertalGermany
| | - Ghulam Md Ashraf
- Department of Medical Laboratory SciencesUniversity of Sharjah, College of Health Sciences, and Research Institute for Medical and Health SciencesSharjahUAE
| | - Athanasios Alexiou
- University Centre for Research & DevelopmentChandigarh UniversityMohaliPunjabIndia
- Department of Research & DevelopmentAthensGreece
- Department of Research & DevelopmentAFNP MedWienAustria
- Department of Science and EngineeringNovel Global Community Educational FoundationNew South WalesAustralia
| |
Collapse
|
16
|
Bendetowicz D, Fabbri M, Sirna F, Fernagut PO, Foubert-Samier A, Saulnier T, Le Traon AP, Proust-Lima C, Rascol O, Meissner WG. Recent Advances in Clinical Trials in Multiple System Atrophy. Curr Neurol Neurosci Rep 2024; 24:95-112. [PMID: 38416311 DOI: 10.1007/s11910-024-01335-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2024] [Indexed: 02/29/2024]
Abstract
PURPOSE OF REVIEW This review summarizes previous and ongoing neuroprotection trials in multiple system atrophy (MSA), a rare and fatal neurodegenerative disease characterized by parkinsonism, cerebellar, and autonomic dysfunction. It also describes the preclinical therapeutic pipeline and provides some considerations relevant to successfully conducting clinical trials in MSA, i.e., diagnosis, endpoints, and trial design. RECENT FINDINGS Over 30 compounds have been tested in clinical trials in MSA. While this illustrates a strong treatment pipeline, only two have reached their primary endpoint. Ongoing clinical trials primarily focus on targeting α-synuclein, the neuropathological hallmark of MSA being α-synuclein-bearing glial cytoplasmic inclusions. The mostly negative trial outcomes highlight the importance of better understanding underlying disease mechanisms and improving preclinical models. Together with efforts to refine clinical measurement tools, innovative statistical methods, and developments in biomarker research, this will enhance the design of future neuroprotection trials in MSA and the likelihood of positive outcomes.
Collapse
Affiliation(s)
- David Bendetowicz
- Univ. Bordeaux, CNRS, IMN, UMR5293, Bordeaux, France.
- CHU Bordeaux, Service de Neurologie des Maladies Neurodégénératives, IMNc, CRMR AMS, NS-Park/FCRIN Network, Bordeaux, France.
| | - Margherita Fabbri
- MSA French Reference Center, Univ. Hospital Toulouse, Toulouse, France
- Univ. Toulouse, CIC-1436, Departments of Clinical Pharmacology and Neurosciences, NeuroToul COEN Center, NS-Park/FCRIN Network, Toulouse University Hospital, Inserm, U1048/1214, Toulouse, France
| | - Federico Sirna
- Univ. Bordeaux, INSERM, BPH, U1219, IPSED, Bordeaux, France
| | - Pierre-Olivier Fernagut
- Université de Poitiers, Laboratoire de Neurosciences Expérimentales et Cliniques, INSERM UMR-S 1084, Poitiers, France
| | - Alexandra Foubert-Samier
- Univ. Bordeaux, CNRS, IMN, UMR5293, Bordeaux, France
- CHU Bordeaux, Service de Neurologie des Maladies Neurodégénératives, IMNc, CRMR AMS, NS-Park/FCRIN Network, Bordeaux, France
- Univ. Bordeaux, INSERM, BPH, U1219, IPSED, Bordeaux, France
| | | | - Anne Pavy Le Traon
- MSA French Reference Center, Univ. Hospital Toulouse, Toulouse, France
- Univ. Toulouse, CIC-1436, Departments of Clinical Pharmacology and Neurosciences, NeuroToul COEN Center, NS-Park/FCRIN Network, Toulouse University Hospital, Inserm, U1048/1214, Toulouse, France
| | | | - Olivier Rascol
- MSA French Reference Center, Univ. Hospital Toulouse, Toulouse, France
- Univ. Toulouse, CIC-1436, Departments of Clinical Pharmacology and Neurosciences, NeuroToul COEN Center, NS-Park/FCRIN Network, Toulouse University Hospital, Inserm, U1048/1214, Toulouse, France
| | - Wassilios G Meissner
- Univ. Bordeaux, CNRS, IMN, UMR5293, Bordeaux, France
- CHU Bordeaux, Service de Neurologie des Maladies Neurodégénératives, IMNc, CRMR AMS, NS-Park/FCRIN Network, Bordeaux, France
- Department of Medicine, University of Otago, Christchurch, and New Zealand Brain Research Institute, Christchurch, New Zealand
| |
Collapse
|
17
|
Wirth T, Bonnet C, Delvallée C, Pellerin D, Bogdan T, Clément G, Schalk A, Chanson JB, Fleury MC, Piton A, Calmels N, Namer IJ, Kremer S, Brais B, Tranchant C, Renaud M, Anheim M. Does Spinocerebellar ataxia 27B mimic cerebellar multiple system atrophy? J Neurol 2024; 271:2078-2085. [PMID: 38263489 DOI: 10.1007/s00415-024-12182-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/25/2024]
Abstract
BACKGROUND Whether spinocerebellar ataxia 27B (SCA27B) may present as a cerebellar multiple system atrophy (MSA-C) mimic remains undetermined. OBJECTIVES To assess the prevalence of FGF14 (GAA)≥250 expansions in patients with MSA-C, to compare SCA27B and MSA-C clinical presentation and natural history. METHODS FGF14 expansion screening combined with longitudinal deep-phenotyping in a prospective cohort of 195 patients with sporadic late-onset cerebellar ataxia. RESULTS After a mean disease duration of 6.4 years, 111 patients were not meeting criteria for MSA-C while 24 and 60 patients had a final diagnosis of possible and probable MSA-C, respectively. 16 patients carried an FGF14 (GAA)≥250 expansion in the group not meeting MSA-C criteria (14.4%), 3 patients in the possible MSA-C group (12.5%), but none among probable MSA-C cases. SCA27B patients were evolving more slowly than probable MSA-C patients. CONCLUSIONS FGF14 (GAA)≥250 expansion may account for MSA look-alike cases and should be screened among slow progressors.
Collapse
Affiliation(s)
- Thomas Wirth
- Neurology Department, Strasbourg University Hospital, Strasbourg, France.
- Strasbourg Federation of Translational Medicine, Strasbourg University, Strasbourg, France.
- Institute of Genetics and Cellular and Molecular Biology, INSERM-U964, CNRS-UMR7104, University of Strasbourg, Illkirch-Graffenstaden, France.
| | - Céline Bonnet
- Medical Genetics Laboratory, Nancy Regional University Hospital, Nancy, France
- INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Lorraine Univesity, 54000, Nancy, France
| | - Clarisse Delvallée
- Neurology Department, Strasbourg University Hospital, Strasbourg, France
- Strasbourg Federation of Translational Medicine, Strasbourg University, Strasbourg, France
- Institute of Genetics and Cellular and Molecular Biology, INSERM-U964, CNRS-UMR7104, University of Strasbourg, Illkirch-Graffenstaden, France
| | - David Pellerin
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, Canada
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, University College London, London, UK
| | - Thomas Bogdan
- Neurology Department, Strasbourg University Hospital, Strasbourg, France
| | | | - Audrey Schalk
- Strasbourg Federation of Translational Medicine, Strasbourg University, Strasbourg, France
- Genetic Diagnosis Laboratory, Strasbourg University Hospital, Strasbourg, France
| | - Jean-Baptiste Chanson
- Neurology Department, Strasbourg University Hospital, Strasbourg, France
- Strasbourg Federation of Translational Medicine, Strasbourg University, Strasbourg, France
- Neuromuscular Center Nord/Est/Ile-de-France, Strasbourg University Hospital, Strasbourg, France
| | - Marie-Céline Fleury
- Neurology Department, Strasbourg University Hospital, Strasbourg, France
- Strasbourg Federation of Translational Medicine, Strasbourg University, Strasbourg, France
| | - Amélie Piton
- Strasbourg Federation of Translational Medicine, Strasbourg University, Strasbourg, France
- Institute of Genetics and Cellular and Molecular Biology, INSERM-U964, CNRS-UMR7104, University of Strasbourg, Illkirch-Graffenstaden, France
- Genetic Diagnosis Laboratory, Strasbourg University Hospital, Strasbourg, France
| | - Nadège Calmels
- Strasbourg Federation of Translational Medicine, Strasbourg University, Strasbourg, France
- Genetic Diagnosis Laboratory, Strasbourg University Hospital, Strasbourg, France
| | - Izzie Jacques Namer
- MNMS Platform, Institut de Cancérologie Strasbourg Europe, Strasbourg, France
- ICube, University of Strasbourg/CNRS UMR 7357, Strasbourg, France
- Department of Nuclear Medicine and Molecular Imaging, ICANS, Strasbourg, France
| | - Stéphane Kremer
- ICube, University of Strasbourg/CNRS UMR 7357, Strasbourg, France
- Neuroradiology Department, Strasbourg University Hospital, Strasbourg, France
| | - Bernard Brais
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, Canada
| | - Christine Tranchant
- Neurology Department, Strasbourg University Hospital, Strasbourg, France
- Strasbourg Federation of Translational Medicine, Strasbourg University, Strasbourg, France
- Institute of Genetics and Cellular and Molecular Biology, INSERM-U964, CNRS-UMR7104, University of Strasbourg, Illkirch-Graffenstaden, France
| | - Mathilde Renaud
- INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Lorraine Univesity, 54000, Nancy, France
- Neurology Department, Nancy Regional University Hospital, Nancy, France
- Clinical Genetics Department, Nancy Regional University Hospital, Nancy, France
| | - Mathieu Anheim
- Neurology Department, Strasbourg University Hospital, Strasbourg, France
- Strasbourg Federation of Translational Medicine, Strasbourg University, Strasbourg, France
- Institute of Genetics and Cellular and Molecular Biology, INSERM-U964, CNRS-UMR7104, University of Strasbourg, Illkirch-Graffenstaden, France
| |
Collapse
|
18
|
Ni C, Li D. Ferroptosis and oxidative stress in endometriosis: A systematic review of the literature. Medicine (Baltimore) 2024; 103:e37421. [PMID: 38489713 PMCID: PMC10939684 DOI: 10.1097/md.0000000000037421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/19/2023] [Accepted: 02/07/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Endometriosis (EMT) a common gynecological condition in women, an inflammatory disease characterized by the presence of endometrial tissue on organs and tissues in the pelvis, and is mainly associated with chronic pelvic pain and infertility. As the etiology has not been fully elucidated, current treatment is limited to surgery, hormones and painkillers, with more side effects and difficulty in achieving long-term relief. Oxidative stress manifests itself as an overproduction of reactive oxygen species, which has an integral impact in the pathology of female reproductive disorders. In this review, we evaluate the mechanisms of iron overload-induced oxidative stress and ferroptosis in EMT and their pathophysiological implications. METHODS Because the etiology has not been fully elucidated, current treatments are limited to surgery, hormones, and painkillers, which have many side effects and are difficult to achieve long-term relief. RESULTS We interpreted that antioxidants as well as ferroptosis inducers show promising results in the treatment of EMT, but their application in this population needs to be further investigated. CONCLUSION In combination with the interpretation of previous studies, it was shown that iron overload is present in the peritoneal fluid, endometriotic lesions, peritoneum and macrophages in the abdominal cavity. However, the programmed cellular ferroptosis associated with iron overload is resisted by endometriotic foci, which is critical to the pathophysiology of EMT with local iron overload and inflammation.
Collapse
Affiliation(s)
- Chenghong Ni
- Department of Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Dingheng Li
- Department of Obstetrics and Gynecology, Hangzhou Women’s Hospital, Hangzhou, Zhejiang Province, China
| |
Collapse
|
19
|
Matsukawa T, Porto KJL, Mitsui J, Chikada A, Ishiura H, Takahashi Y, Nakamoto FK, Seki T, Shiio Y, Toda T, Tsuji S. Clinical and Genetic Features of Multiplex Families with Multiple System Atrophy and Parkinson's Disease. CEREBELLUM (LONDON, ENGLAND) 2024; 23:22-30. [PMID: 36097244 DOI: 10.1007/s12311-022-01426-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
While multiple system atrophy (MSA) has been considered a sporadic disease, there were previously reported multiplex families with MSA. Furthermore, several families with multiple patients with MSA and Parkinson's disease (PD) have been reported. As genetic risk factors for MSA, functionally impaired variants in COQ2 and Gaucher-disease-causing GBA variants have been reported. While it has been established that GBA variants are associated with PD, COQ2 may also be associated with PD. In 672 patients with MSA, we identified 12 multiplex families of patients with MSA and PD in first-degree relatives. We conducted a detailed analysis of the clinical presentations of these patients and genetic analyses of GBA and COQ2. In the multiplex families, a patient with MSA with predominant parkinsonism (MSA-P) was observed in nine families, while a patient with MSA cerebellar subtype (MSA-C) was observed in three families. Six families had siblings with MSA and PD, five families had a parent-offspring pair with MSA and PD, and in one family, a sibling and a parent of an MSA patient had PD. In genetic analyses of these patients, GBA variants were identified in one of the 12 MSA patients and two of the seven PD patients. Functionally impaired variants of COQ2 were identified in two of the 12 MSA patients and not identified in the seven PD patients. This study further emphasizes the occurrence of MSA and PD in first-degree relatives, raising the possibility that a common genetic basis underlies MSA and PD. Even though variants of COQ2 and GBA were identified in some patients in multiplex families with MSA and PD, it is necessary to further explore as yet unidentified genetic risk factors shared by MSA and PD.
Collapse
Affiliation(s)
- Takashi Matsukawa
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kristine Joyce L Porto
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jun Mitsui
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ayaka Chikada
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuji Takahashi
- Department of Neurology, National Center of Neurology and Psychiatry, National Center Hospital, Tokyo, Japan
| | | | - Tomonari Seki
- Department of Neurology, Tokyo Teishin Hospital, Tokyo, Japan
| | - Yasushi Shiio
- Department of Neurology, Tokyo Teishin Hospital, Tokyo, Japan
| | - Tatsushi Toda
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shoji Tsuji
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
- Institute of Medical Genomics, International University of Health and Welfare, Chiba, Japan.
| |
Collapse
|
20
|
Ndayisaba A, Pitaro AT, Willett AS, Jones KA, de Gusmao CM, Olsen AL, Kim J, Rissanen E, Woods JK, Srinivasan SR, Nagy A, Nagy A, Mesidor M, Cicero S, Patel V, Oakley DH, Tuncali I, Taglieri-Noble K, Clark EC, Paulson J, Krolewski RC, Ho GP, Hung AY, Wills AM, Hayes MT, Macmore JP, Warren L, Bower PG, Langer CB, Kellerman LR, Humphreys CW, Glanz BI, Dielubanza EJ, Frosch MP, Freeman RL, Gibbons CH, Stefanova N, Chitnis T, Weiner HL, Scherzer CR, Scholz SW, Vuzman D, Cox LM, Wenning G, Schmahmann JD, Gupta AS, Novak P, Young GS, Feany MB, Singhal T, Khurana V. Clinical Trial-Ready Patient Cohorts for Multiple System Atrophy: Coupling Biospecimen and iPSC Banking to Longitudinal Deep-Phenotyping. CEREBELLUM (LONDON, ENGLAND) 2024; 23:31-51. [PMID: 36190676 PMCID: PMC9527378 DOI: 10.1007/s12311-022-01471-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/26/2022] [Indexed: 11/30/2022]
Abstract
Multiple system atrophy (MSA) is a fatal neurodegenerative disease of unknown etiology characterized by widespread aggregation of the protein alpha-synuclein in neurons and glia. Its orphan status, biological relationship to Parkinson's disease (PD), and rapid progression have sparked interest in drug development. One significant obstacle to therapeutics is disease heterogeneity. Here, we share our process of developing a clinical trial-ready cohort of MSA patients (69 patients in 2 years) within an outpatient clinical setting, and recruiting 20 of these patients into a longitudinal "n-of-few" clinical trial paradigm. First, we deeply phenotype our patients with clinical scales (UMSARS, BARS, MoCA, NMSS, and UPSIT) and tests designed to establish early differential diagnosis (including volumetric MRI, FDG-PET, MIBG scan, polysomnography, genetic testing, autonomic function tests, skin biopsy) or disease activity (PBR06-TSPO). Second, we longitudinally collect biospecimens (blood, CSF, stool) and clinical, biometric, and imaging data to generate antecedent disease-progression scores. Third, in our Mass General Brigham SCiN study (stem cells in neurodegeneration), we generate induced pluripotent stem cell (iPSC) models from our patients, matched to biospecimens, including postmortem brain. We present 38 iPSC lines derived from MSA patients and relevant disease controls (spinocerebellar ataxia and PD, including alpha-synuclein triplication cases), 22 matched to whole-genome sequenced postmortem brain. iPSC models may facilitate matching patients to appropriate therapies, particularly in heterogeneous diseases for which patient-specific biology may elude animal models. We anticipate that deeply phenotyped and genotyped patient cohorts matched to cellular models will increase the likelihood of success in clinical trials for MSA.
Collapse
Affiliation(s)
- Alain Ndayisaba
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
- Division of Clinical Neurobiology, Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Ariana T Pitaro
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
| | - Andrew S Willett
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
| | - Kristie A Jones
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
| | - Claudio Melo de Gusmao
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
| | - Abby L Olsen
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
| | - Jisoo Kim
- Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Eero Rissanen
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
| | - Jared K Woods
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Sharan R Srinivasan
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI , 48103, USA
| | - Anna Nagy
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
| | - Amanda Nagy
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
| | - Merlyne Mesidor
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
| | - Steven Cicero
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
| | - Viharkumar Patel
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Derek H Oakley
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Idil Tuncali
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
| | - Katherine Taglieri-Noble
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
| | - Emily C Clark
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
| | - Jordan Paulson
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
| | - Richard C Krolewski
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
| | - Gary P Ho
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
| | - Albert Y Hung
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Anne-Marie Wills
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Michael T Hayes
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
| | - Jason P Macmore
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | | | - Pamela G Bower
- The Multiple System Atrophy Coalition, Inc., 7918 Jones Branch Drive, Suite 300, McLean, VA, 22102, USA
| | - Carol B Langer
- The Multiple System Atrophy Coalition, Inc., 7918 Jones Branch Drive, Suite 300, McLean, VA, 22102, USA
| | - Lawrence R Kellerman
- The Multiple System Atrophy Coalition, Inc., 7918 Jones Branch Drive, Suite 300, McLean, VA, 22102, USA
| | - Christopher W Humphreys
- Department of Pulmonary, Sleep and Critical Care Medicine, Salem Hospital, MassGeneral Brigham, Salem, MA, 01970, USA
| | - Bonnie I Glanz
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
| | - Elodi J Dielubanza
- Department of Urology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Matthew P Frosch
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Roy L Freeman
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02115, USA
| | - Christopher H Gibbons
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02115, USA
| | - Nadia Stefanova
- Division of Clinical Neurobiology, Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Tanuja Chitnis
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
| | - Howard L Weiner
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
| | - Clemens R Scherzer
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
| | - Sonja W Scholz
- Laboratory of Neurogenetics, Disorders and Stroke, National Institute of Neurological, National Institute of Neurological Disorders and Stroke, Bethesda, MD, 20892, USA
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, 21287, USA
| | - Dana Vuzman
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Laura M Cox
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
| | - Gregor Wenning
- Division of Clinical Neurobiology, Department of Neurology, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Jeremy D Schmahmann
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Anoopum S Gupta
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Peter Novak
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
| | - Geoffrey S Young
- Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Mel B Feany
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Tarun Singhal
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA
| | - Vikram Khurana
- Department of Neurology, Building for Transformative Medicine Room 10016L, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, 02115, USA.
| |
Collapse
|
21
|
Elbert A, Dixon K, Shen Y, Hamilton S, Boerkoel CF, Jones SJ, Kanungo AK. Mitofusin 2 Variant Presenting With a Phenotype of Multiple System Atrophy of Cerebellar Subtype. Neurol Genet 2024; 10:e200114. [PMID: 38170145 PMCID: PMC10759145 DOI: 10.1212/nxg.0000000000200114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/01/2023] [Indexed: 01/05/2024]
Abstract
Objectives To investigate the etiology of cerebellar ataxia in an adult male patient. Methods We performed standard neurologic assessment and genome sequencing of a 62-year-old man with rapidly progressive balance and gait abnormalities. Results The propositus exhibited cognitive dysfunction, mild appendicular bradykinesia, prominent appendicular ataxia, dysarthria, and hypomimia with minimal dysautonomic symptoms. Nerve conduction studies showed mild peripheral sensory neuropathy and normal motor nerve conduction velocities. Brain imaging showed progressive cerebellar atrophy and gliosis of the olivopontocerebellar fibers, characterized by T2 hyperintensity within the pons. Genetic testing revealed a likely pathogenic germline variant in MFN2 (NM_014874: c.[838C>T];[=], p.(R280C)) in the GTPase domain (G) interface; pathogenic variants of MFN2 typically cause hereditary sensory and motor neuropathy VI or Charcot-Marie-Tooth disease 2A. The presence of progressive ataxia, "hot cross bun" sign, and dysautonomia has been associated with multiple system atrophy, cerebellar type (MSA-C). Discussion We describe progressive cerebellar ataxia in an individual with a deleterious variant in MFN2. Our findings suggest that pathogenic variants in MFN2 can result in a spectrum of phenotypes including cerebellar ataxia with cerebellar-pontine atrophy in the absence of significant neuropathy and in a manner closely resembling MSA-C.
Collapse
Affiliation(s)
- Adrienne Elbert
- From the Department of Medical Genetics (A.E., K.D., C.F.B., S.J.J.), University of British Columbia; Provincial Medical Genetics Program (A.E., S.H., C.B.), B.C. Women's Hospital and Health Centre; Canada's Michael Smith Genome Sciences Centre (K.D., Y.S., S.J.J.), BC Cancer; Fraser Health Movement Disorders Clinic (A.K.K.), Jim Pattison Outpatient Care and Surgery Centre, Surrey; and Department of Medicine (A.K.K.), Division of Neurology, University of British Columbia, Vancouver, Canada
| | - Katherine Dixon
- From the Department of Medical Genetics (A.E., K.D., C.F.B., S.J.J.), University of British Columbia; Provincial Medical Genetics Program (A.E., S.H., C.B.), B.C. Women's Hospital and Health Centre; Canada's Michael Smith Genome Sciences Centre (K.D., Y.S., S.J.J.), BC Cancer; Fraser Health Movement Disorders Clinic (A.K.K.), Jim Pattison Outpatient Care and Surgery Centre, Surrey; and Department of Medicine (A.K.K.), Division of Neurology, University of British Columbia, Vancouver, Canada
| | - Yaoqing Shen
- From the Department of Medical Genetics (A.E., K.D., C.F.B., S.J.J.), University of British Columbia; Provincial Medical Genetics Program (A.E., S.H., C.B.), B.C. Women's Hospital and Health Centre; Canada's Michael Smith Genome Sciences Centre (K.D., Y.S., S.J.J.), BC Cancer; Fraser Health Movement Disorders Clinic (A.K.K.), Jim Pattison Outpatient Care and Surgery Centre, Surrey; and Department of Medicine (A.K.K.), Division of Neurology, University of British Columbia, Vancouver, Canada
| | - Sara Hamilton
- From the Department of Medical Genetics (A.E., K.D., C.F.B., S.J.J.), University of British Columbia; Provincial Medical Genetics Program (A.E., S.H., C.B.), B.C. Women's Hospital and Health Centre; Canada's Michael Smith Genome Sciences Centre (K.D., Y.S., S.J.J.), BC Cancer; Fraser Health Movement Disorders Clinic (A.K.K.), Jim Pattison Outpatient Care and Surgery Centre, Surrey; and Department of Medicine (A.K.K.), Division of Neurology, University of British Columbia, Vancouver, Canada
| | - Cornelius F Boerkoel
- From the Department of Medical Genetics (A.E., K.D., C.F.B., S.J.J.), University of British Columbia; Provincial Medical Genetics Program (A.E., S.H., C.B.), B.C. Women's Hospital and Health Centre; Canada's Michael Smith Genome Sciences Centre (K.D., Y.S., S.J.J.), BC Cancer; Fraser Health Movement Disorders Clinic (A.K.K.), Jim Pattison Outpatient Care and Surgery Centre, Surrey; and Department of Medicine (A.K.K.), Division of Neurology, University of British Columbia, Vancouver, Canada
| | - Steven J Jones
- From the Department of Medical Genetics (A.E., K.D., C.F.B., S.J.J.), University of British Columbia; Provincial Medical Genetics Program (A.E., S.H., C.B.), B.C. Women's Hospital and Health Centre; Canada's Michael Smith Genome Sciences Centre (K.D., Y.S., S.J.J.), BC Cancer; Fraser Health Movement Disorders Clinic (A.K.K.), Jim Pattison Outpatient Care and Surgery Centre, Surrey; and Department of Medicine (A.K.K.), Division of Neurology, University of British Columbia, Vancouver, Canada
| | - Anish K Kanungo
- From the Department of Medical Genetics (A.E., K.D., C.F.B., S.J.J.), University of British Columbia; Provincial Medical Genetics Program (A.E., S.H., C.B.), B.C. Women's Hospital and Health Centre; Canada's Michael Smith Genome Sciences Centre (K.D., Y.S., S.J.J.), BC Cancer; Fraser Health Movement Disorders Clinic (A.K.K.), Jim Pattison Outpatient Care and Surgery Centre, Surrey; and Department of Medicine (A.K.K.), Division of Neurology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
22
|
Carrer T, Bonato G, Sandre M, Emmi A, Campagnolo M, Musso G, Carecchio M, Parchi P, Antonini A. Rapidly progressive multiple system atrophy in a patient carrying LRRK2 G2019S mutation. Neurol Sci 2024; 45:309-313. [PMID: 37752324 DOI: 10.1007/s10072-023-07056-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/02/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND Multiple system atrophy (MSA) is considered a primarily sporadic neurodegenerative disease, but the role of genetic is poorly understood. CASE We present a female patient of Moroccan origin who developed a rapidly progressive non-levodopa responsive parkinsonism, gait and balance problems, and dysautonomia including severe bulbar symptoms. She was diagnosed with MSA Parkinsonian-type (MSA-P) and suddenly died at night at 58 years of age. Reduced striatal DAT-SPECT, putaminal hyperintensity on T2-MRI, and hypometabolism with FDG-PET were present. Genetic testing documented a G2019S mutation in the LRRK2 gene. A skin biopsy was obtained and used to perform alpha-synuclein RT-QuIC, which was negative, and immunohistochemical analysis, which demonstrated abnormal alpha-synuclein deposits in cutaneous nerves. Elevated blood neurofilament light chain levels were also documented. CONCLUSIONS LRRK2 mutations are the most common cause of monogenic Parkinson's disease (PD) and G2019S is the most frequent variant. Our patient presented with biological, clinical, and radiological features of MSA, but genetic testing revealed a G2019S LRRK2 mutation, which has been previously reported only in one other case of pathologically proven MSA but with mild progression. In our patient, post-mortem confirmation could not be performed, but RT-QuIC and immunohistochemical findings on skin biopsy support the diagnosis of MSA. G2019S LRRK2 may be linked to an increased risk of MSA. Cases of atypical parkinsonism with rapid disease course should be screened for PD-related genes especially in populations with a high prevalence of mutations in known genes.
Collapse
Affiliation(s)
- Tommaso Carrer
- Parkinson and Movement Disorders Unit, Center for Rare Neurological Diseases (ERN-RND), Study Center On Neurodegeneration (CESNE), Department of Neuroscience, University of Padua, Via Giustiniani 2, 35128, Padua, Italy
| | - Giulia Bonato
- Parkinson and Movement Disorders Unit, Center for Rare Neurological Diseases (ERN-RND), Study Center On Neurodegeneration (CESNE), Department of Neuroscience, University of Padua, Via Giustiniani 2, 35128, Padua, Italy
| | - Michele Sandre
- Parkinson and Movement Disorders Unit, Center for Rare Neurological Diseases (ERN-RND), Study Center On Neurodegeneration (CESNE), Department of Neuroscience, University of Padua, Via Giustiniani 2, 35128, Padua, Italy
| | - Aron Emmi
- Parkinson and Movement Disorders Unit, Center for Rare Neurological Diseases (ERN-RND), Study Center On Neurodegeneration (CESNE), Department of Neuroscience, University of Padua, Via Giustiniani 2, 35128, Padua, Italy
| | - Marta Campagnolo
- Parkinson and Movement Disorders Unit, Center for Rare Neurological Diseases (ERN-RND), Study Center On Neurodegeneration (CESNE), Department of Neuroscience, University of Padua, Via Giustiniani 2, 35128, Padua, Italy
| | - Giulia Musso
- Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Miryam Carecchio
- Parkinson and Movement Disorders Unit, Center for Rare Neurological Diseases (ERN-RND), Study Center On Neurodegeneration (CESNE), Department of Neuroscience, University of Padua, Via Giustiniani 2, 35128, Padua, Italy
| | - Piero Parchi
- Department of Biomedical and Neuromotor Sciences (DiBiNeM), University of Bologna, Bologna, Italy
- Programma Neuropatologia Delle Malattie Neurodegenerative, Istituto Delle Scienze Neurologiche Di Bologna, IRCCS, Bologna, Italy
| | - Angelo Antonini
- Parkinson and Movement Disorders Unit, Center for Rare Neurological Diseases (ERN-RND), Study Center On Neurodegeneration (CESNE), Department of Neuroscience, University of Padua, Via Giustiniani 2, 35128, Padua, Italy.
| |
Collapse
|
23
|
Bartošová T, Klempíř J, Hansíková H. Coenzyme Q10: A Biomarker in the Differential Diagnosis of Parkinsonian Syndromes. Antioxidants (Basel) 2023; 12:2104. [PMID: 38136223 PMCID: PMC10740444 DOI: 10.3390/antiox12122104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
Multiple system atrophy (MSA) is generally a sporadic neurodegenerative disease which ranks among atypical Parkinson's syndromes. The main clinical manifestation is a combination of autonomic dysfunction and parkinsonism and/or cerebellar disability. The disease may resemble other Parkinsonian syndromes, such as Parkinson's disease (PD) or progressive supranuclear palsy (PSP), from which MSA could be hardly distinguishable during the first years of progression. Due to the lack of a reliable and easily accessible biomarker, the diagnosis is still based primarily on the clinical picture. Recently, reduced levels of coenzyme Q10 (CoQ10) were described in MSA in various tissues, including the central nervous system. The aim of our study was to verify whether the level of CoQ10 in plasma and lymphocytes could serve as an easily available diagnostic biomarker of MSA. The study reported significantly lower levels of CoQ10 in the lymphocytes of patients with MSA compared to patients with PD and controls. The reduction in CoQ10 levels in lymphocytes correlated with the increasing degree of clinical involvement of patients with MSA. CoQ10 levels in lymphocytes seem to be a potential biomarker of disease progression.
Collapse
Affiliation(s)
- Tereza Bartošová
- Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, 121 08 Prague, Czech Republic; (T.B.); (J.K.)
| | - Jiří Klempíř
- Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, 121 08 Prague, Czech Republic; (T.B.); (J.K.)
| | - Hana Hansíková
- Laboratory for Study of Mitochondrial Disorders, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 08 Prague, Czech Republic
| |
Collapse
|
24
|
Ebrahimi A, Kamyab A, Hosseini S, Ebrahimi S, Ashkani-Esfahani S. Involvement of Coenzyme Q10 in Various Neurodegenerative and Psychiatric Diseases. Biochem Res Int 2023; 2023:5510874. [PMID: 37946741 PMCID: PMC10632062 DOI: 10.1155/2023/5510874] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/06/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
Coenzyme Q10 (CoQ10), commonly known as ubiquinone, is a vitamin-like component generated in mitochondrial inner membranes. This molecule is detected broadly in different parts of the human body in various quantities. This molecule can be absorbed by the digestive system from various nutritional sources as supplements. CoQ10 exists in three states: in a of reduced form (ubiquinol), in a semiquinone radical form, and in oxidized ubiquinone form in different organs of the body, playing a crucial role in electron transportation and contributing to energy metabolism and oxygen utilization, especially in the musculoskeletal and nervous systems. Since the early 1980s, research about CoQ10 has become the interest for two reasons. First, CoQ10 deficiency has been found to have a link with cardiovascular, neurologic, and cancer disorders. Second, this molecule has an antioxidant and free-radical scavenger nature. Since then, several investigations have indicated that the drug may benefit patients with cardiovascular, neuromuscular, and neurodegenerative illnesses. CoQ10 may protect the neurological system from degeneration and degradation due to its antioxidant and energy-regulating activity in mitochondria. This agent has shown its efficacy in preventing and treating neurological diseases such as migraine, Parkinson's disease, Alzheimer's disease, Huntington's disease, amyotrophic lateral sclerosis, and Friedreich's ataxia. This study reviews the literature to highlight this agent's potential therapeutic effects in the mentioned neurological disorders.
Collapse
Affiliation(s)
- Alireza Ebrahimi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Sahar Hosseini
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sedigheh Ebrahimi
- Department of Medical Ethics, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
25
|
Stankovic I, Fanciulli A, Sidoroff V, Wenning GK. A Review on the Clinical Diagnosis of Multiple System Atrophy. CEREBELLUM (LONDON, ENGLAND) 2023; 22:825-839. [PMID: 35986227 PMCID: PMC10485100 DOI: 10.1007/s12311-022-01453-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
Multiple system atrophy (MSA) is a rare, adult-onset, progressive neurodegenerative disorder with major diagnostic challenges. Aiming for a better diagnostic accuracy particularly at early disease stages, novel Movement Disorder Society criteria for the diagnosis of MSA (MDS MSA criteria) have been recently developed. They introduce a neuropathologically established MSA category and three levels of clinical diagnostic certainty including clinically established MSA, clinically probable MSA, and the research category of possible prodromal MSA. The diagnosis of clinically established and clinically probable MSA is based on the presence of cardiovascular or urological autonomic failure, parkinsonism (poorly L-Dopa-responsive for the diagnosis of clinically established MSA), and cerebellar syndrome. These core clinical features need to be associated with supportive motor and non-motor features (MSA red flags) and absence of any exclusion criteria. Characteristic brain MRI markers are required for a diagnosis of clinically established MSA. A research category of possible prodromal MSA is devised to capture patients manifesting with autonomic failure or REM sleep behavior disorder and only mild motor signs at the earliest disease stage. There is a number of promising laboratory markers for MSA that may help increase the overall clinical diagnostic accuracy. In this review, we will discuss the core and supportive clinical features for a diagnosis of MSA in light of the new MDS MSA criteria, which laboratory tools may assist in the clinical diagnosis and which major differential diagnostic challenges should be borne in mind.
Collapse
Affiliation(s)
- Iva Stankovic
- Neurology Clinic, University Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | | | - Victoria Sidoroff
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gregor K Wenning
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
26
|
Stallworth JY, Blair DR, Slavotinek A, Moore AT, Duncan JL, de Alba Campomanes AG. Retinopathy and optic atrophy in a case of COQ2-related primary coenzyme Q 10 deficiency. Ophthalmic Genet 2023; 44:486-490. [PMID: 36420660 PMCID: PMC10205914 DOI: 10.1080/13816810.2022.2141792] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/08/2022] [Accepted: 10/22/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE To describe a case of primary coenzyme Q10 deficiency in a child manifesting as early-onset renal failure, retinal dystrophy, and optic atrophy leading to progressive vision loss. METHODS Clinical presentation and workup including visual fields, electroretinogram, and optical coherence tomography are presented. Genetic testing was performed. RESULTS An eight-year-old female with nephropathy requiring renal transplantation subsequently developed progressive cone-rod dystrophy and optic atrophy. The patient had negative results on a targeted next-generation sequencing retinal dystrophy panel but whole-exome sequencing revealed two variants in COQ2 (likely biallelic), consistent with a diagnosis of primary coenzyme Q10 deficiency. CONCLUSIONS Primary coenzyme Q10 deficiency is a rare disorder with variable systemic and ocular findings; there is also genetic heterogeneity. Genetic testing aids in the diagnosis of this condition, and variants in the COQ2 and PDSS1 genes appear to have the strongest association with ocular manifestations. Oral supplementation of coenzyme Q10 may slow progression of disease. This case highlights the utility of whole-exome sequencing in the diagnosis of a rare syndromic form of ocular disease and reports a novel phenotypic association for this condition.
Collapse
Affiliation(s)
| | - David R Blair
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Anne Slavotinek
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Anthony T Moore
- Department of Ophthalmology, University of California, San Francisco, CA, USA
| | - Jacque L Duncan
- Department of Ophthalmology, University of California, San Francisco, CA, USA
| | | |
Collapse
|
27
|
Wan L, Zhu S, Chen Z, Qiu R, Tang B, Jiang H. Multidimensional biomarkers for multiple system atrophy: an update and future directions. Transl Neurodegener 2023; 12:38. [PMID: 37501056 PMCID: PMC10375766 DOI: 10.1186/s40035-023-00370-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023] Open
Abstract
Multiple system atrophy (MSA) is a fatal progressive neurodegenerative disease. Biomarkers are urgently required for MSA to improve the diagnostic and prognostic accuracy in clinic and facilitate the development and monitoring of disease-modifying therapies. In recent years, significant research efforts have been made in exploring multidimensional biomarkers for MSA. However, currently few biomarkers are available in clinic. In this review, we systematically summarize the latest advances in multidimensional biomarkers for MSA, including biomarkers in fluids, tissues and gut microbiota as well as imaging biomarkers. Future directions for exploration of novel biomarkers and promotion of implementation in clinic are also discussed.
Collapse
Affiliation(s)
- Linlin Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National International Collaborative Research Center for Medical Metabolomics, Central South University, Changsha, 410008, China
| | - Sudan Zhu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhao Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China
| | - Rong Qiu
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China.
- National International Collaborative Research Center for Medical Metabolomics, Central South University, Changsha, 410008, China.
| |
Collapse
|
28
|
Nakahara Y, Mitsui J, Date H, Porto KJ, Hayashi Y, Yamashita A, Kusakabe Y, Matsukawa T, Ishiura H, Yasuda T, Iwata A, Goto J, Ichikawa Y, Momose Y, Takahashi Y, Toda T, Ohta R, Yoshimura J, Morishita S, Gustavsson EK, Christy D, Maczis M, Farrer MJ, Kim HJ, Park SS, Jeon B, Zhang J, Gu W, Scholz SW, Singleton AB, Houlden H, Yabe I, Sasaki H, Matsushima M, Takashima H, Kikuchi A, Aoki M, Hara K, Kakita A, Yamada M, Takahashi H, Onodera O, Nishizawa M, Watanabe H, Ito M, Sobue G, Ishikawa K, Mizusawa H, Kanai K, Kuwabara S, Arai K, Koyano S, Kuroiwa Y, Hasegawa K, Yuasa T, Yasui K, Nakashima K, Ito H, Izumi Y, Kaji R, Kato T, Kusunoki S, Osaki Y, Horiuchi M, Yamamoto K, Shimada M, Miyagawa T, Kawai Y, Nishida N, Tokunaga K, Dürr A, Brice A, Filla A, Klockgether T, Wüllner U, Tanner CM, Kukull WA, Lee VMY, Masliah E, Low PA, Sandroni P, Ozelius L, Foroud T, Tsuji S. Genome-wide association study identifies a new susceptibility locus in PLA2G4C for Multiple System Atrophy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.02.23289328. [PMID: 37425910 PMCID: PMC10327266 DOI: 10.1101/2023.05.02.23289328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
To elucidate the molecular basis of multiple system atrophy (MSA), a neurodegenerative disease, we conducted a genome-wide association study (GWAS) in a Japanese MSA case/control series followed by replication studies in Japanese, Korean, Chinese, European and North American samples. In the GWAS stage rs2303744 on chromosome 19 showed a suggestive association ( P = 6.5 × 10 -7 ) that was replicated in additional Japanese samples ( P = 2.9 × 10 -6 . OR = 1.58; 95% confidence interval, 1.30 to 1.91), and then confirmed as highly significant in a meta-analysis of East Asian population data ( P = 5.0 × 10 -15 . Odds ratio= 1.49; 95% CI 1.35 to 1.72). The association of rs2303744 with MSA remained significant in combined European/North American samples ( P =0.023. Odds ratio=1.14; 95% CI 1.02 to 1.28) despite allele frequencies being quite different between these populations. rs2303744 leads to an amino acid substitution in PLA2G4C that encodes the cPLA2γ lysophospholipase/transacylase. The cPLA2γ-Ile143 isoform encoded by the MSA risk allele has significantly decreased transacylase activity compared with the alternate cPLA2γ-Val143 isoform that may perturb membrane phospholipids and α-synuclein biology.
Collapse
|
29
|
Mitsui J, Matsukawa T, Uemura Y, Kawahara T, Chikada A, Porto KJL, Naruse H, Tanaka M, Ishiura H, Toda T, Kuzuyama H, Hirano M, Wada I, Ga T, Moritoyo T, Takahashi Y, Mizusawa H, Ishikawa K, Yokota T, Kuwabara S, Sawamoto N, Takahashi R, Abe K, Ishihara T, Onodera O, Matsuse D, Yamasaki R, Kira JI, Katsuno M, Hanajima R, Ogata K, Takashima H, Matsushima M, Yabe I, Sasaki H, Tsuji S. High-dose ubiquinol supplementation in multiple-system atrophy: a multicentre, randomised, double-blinded, placebo-controlled phase 2 trial. EClinicalMedicine 2023; 59:101920. [PMID: 37256098 PMCID: PMC10225719 DOI: 10.1016/j.eclinm.2023.101920] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 06/01/2023] Open
Abstract
Background Functionally impaired variants of COQ2, encoding an enzyme in biosynthesis of coenzyme Q10 (CoQ10), were found in familial multiple system atrophy (MSA) and V393A in COQ2 is associated with sporadic MSA. Furthermore, reduced levels of CoQ10 have been demonstrated in MSA patients. Methods This study was a multicentre, randomised, double-blinded, placebo-controlled phase 2 trial. Patients with MSA were randomly assigned (1:1) to either ubiquinol (1500 mg/day) or placebo. The primary efficacy outcome was the change in the unified multiple system atrophy rating scale (UMSARS) part 2 at 48 weeks. Efficacy was assessed in all patients who completed at least one efficacy assessment (full analysis set). Safety analyses included patients who completed at least one dose of investigational drug. This trial is registered with UMIN-CTR (UMIN000031771), where the drug name of MSA-01 was used to designate ubiquinol. Findings Between June 26, 2018, and May 27, 2019, 139 patients were enrolled and randomly assigned to the ubiquinol group (n = 69) or the placebo group (n = 70). A total of 131 patients were included in the full analysis set (63 in the ubiquinol group; 68 in the placebo group). This study met the primary efficacy outcome (least square mean difference in UMSARS part 2 score (-1.7 [95% CI, -3.2 to -0.2]; P = 0.023)). The ubiquinol group also showed better secondary efficacy outcomes (Barthel index, Scale for the Assessment and Rating of Ataxia, and time required to walk 10 m). Rates of adverse events potentially related to the investigational drug were comparable between ubiquinol (n = 15 [23.8%]) and placebo (n = 21 [30.9%]). Interpretation High-dose ubiquinol was well-tolerated and led to a significantly smaller decline of UMSARS part 2 score compared with placebo. Funding Japan Agency for Medical Research and Development.
Collapse
Affiliation(s)
- Jun Mitsui
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takashi Matsukawa
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yukari Uemura
- Department of Data Sciences, Biostatistics Section, National Center for Global Health and Medicine, Tokyo, Japan
| | - Takuya Kawahara
- Clinical Research Promotion Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Ayaka Chikada
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kristine Joyce L. Porto
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroya Naruse
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masaki Tanaka
- Institute of Medical Genomics, International University of Health and Welfare, Narita, Japan
| | - Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tatsushi Toda
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Haruko Kuzuyama
- Clinical Research Promotion Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Mari Hirano
- Clinical Research Promotion Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Ikue Wada
- Clinical Research Promotion Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Toshio Ga
- Clinical Research Promotion Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Takashi Moritoyo
- Clinical Research Promotion Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Yuji Takahashi
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry (NCNP), Kodaira, Japan
| | - Hidehiro Mizusawa
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry (NCNP), Kodaira, Japan
| | - Kinya Ishikawa
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences and Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takanori Yokota
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences and Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Nobukatsu Sawamoto
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Koji Abe
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tomohiko Ishihara
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Osamu Onodera
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Dai Matsuse
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryo Yamasaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jun-Ichi Kira
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ritsuko Hanajima
- Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Katsuhisa Ogata
- Department of Neurology, National Hospital Organization Higashisaitama National Hospital, Hasuda, Japan
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Masaaki Matsushima
- Department of Neurology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Ichiro Yabe
- Department of Neurology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hidenao Sasaki
- Department of Neurology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Shoji Tsuji
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Institute of Medical Genomics, International University of Health and Welfare, Narita, Japan
| |
Collapse
|
30
|
Stefanova N, Wenning GK. Multiple system atrophy: at the crossroads of cellular, molecular and genetic mechanisms. Nat Rev Neurosci 2023; 24:334-346. [PMID: 37085728 DOI: 10.1038/s41583-023-00697-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2023] [Indexed: 04/23/2023]
Abstract
Multiple system atrophy (MSA) is a rare oligodendroglial α-synucleinopathy characterized by neurodegeneration in striatonigral and olivopontocerebellar regions and autonomic brain centres. It causes complex cumulative motor and non-motor disability with fast progression and effective therapy is currently lacking. The difficulties in the diagnosis and treatment of MSA are largely related to the incomplete understanding of the pathogenesis of the disease. The MSA pathogenic landscape is complex, and converging findings from genetic and neuropathological studies as well as studies in experimental models of MSA have indicated the involvement of genetic and epigenetic changes; α-synuclein misfolding, aggregation and spreading; and α-synuclein strain specificity. These studies also indicate the involvement of myelin and iron dyshomeostasis, neuroinflammation, mitochondrial dysfunction and other cell-specific aspects that are relevant to the fast progression of MSA. In this Review, we discuss these findings and emphasize the implications of the complexity of the multifactorial pathogenic cascade for future translational research and its impact on biomarker discovery and treatment target definitions.
Collapse
Affiliation(s)
- Nadia Stefanova
- Division of Neurobiology, Department of Neurology, Medical University Innsbruck, Innsbruck, Austria.
| | - Gregor K Wenning
- Division of Neurobiology, Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
31
|
Genetics of Multiple System Atrophy and Progressive Supranuclear Palsy: A Systemized Review of the Literature. Int J Mol Sci 2023; 24:ijms24065281. [PMID: 36982356 PMCID: PMC10048872 DOI: 10.3390/ijms24065281] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/25/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Multiple system atrophy (MSA) and progressive supranuclear palsy (PSP) are uncommon multifactorial atypical Parkinsonian syndromes, expressed by various clinical features. MSA and PSP are commonly considered sporadic neurodegenerative disorders; however, our understanding is improving of their genetic framework. The purpose of this study was to critically review the genetics of MSA and PSP and their involvement in the pathogenesis. A systemized literature search of PubMed and MEDLINE was performed up to 1 January 2023. Narrative synthesis of the results was undertaken. In total, 43 studies were analyzed. Although familial MSA cases have been reported, the hereditary nature could not be demonstrated. COQ2 mutations were involved in familial and sporadic MSA, without being reproduced in various clinical populations. In terms of the genetics of the cohort, synuclein alpha (SNCA) polymorphisms were correlated with an elevated likelihood of manifesting MSA in Caucasians, but a causal effect relationship could not be demonstrated. Fifteen MAPT mutations were linked with PSP. Leucine-rich repeat kinase 2 (LRRK2) is an infrequent monogenic mutation of PSP. Dynactin subunit 1 (DCTN1) mutations may imitate the PSP phenotype. GWAS have noted many risk loci of PSP (STX6 and EIF2AK3), suggesting pathogenetic mechanisms related to PSP. Despite the limited evidence, it seems that genetics influence the susceptibility to MSA and PSP. MAPT mutations result in the MSA and PSP pathologies. Further studies are crucial to elucidate the pathogeneses of MSA and PSP, which will support efforts to develop novel drug options.
Collapse
|
32
|
Parkinson's Disease, Parkinsonisms, and Mitochondria: the Role of Nuclear and Mitochondrial DNA. Curr Neurol Neurosci Rep 2023; 23:131-147. [PMID: 36881253 DOI: 10.1007/s11910-023-01260-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2023] [Indexed: 03/08/2023]
Abstract
PURPOSE OF REVIEW Overwhelming evidence indicates that mitochondrial dysfunction is a central factor in Parkinson's disease (PD) pathophysiology. This paper aims to review the latest literature published, focusing on genetic defects and expression alterations affecting mitochondria-associated genes, in support of their key role in PD pathogenesis. RECENT FINDINGS Thanks to the use of new omics approaches, a growing number of studies are discovering alterations affecting genes with mitochondrial functions in patients with PD and parkinsonisms. These genetic alterations include pathogenic single-nucleotide variants, polymorphisms acting as risk factors, and transcriptome modifications, affecting both nuclear and mitochondrial genes. We will focus on alterations of mitochondria-associated genes described by studies conducted on patients or on animal/cellular models of PD or parkinsonisms. We will comment how these findings can be taken into consideration for improving the diagnostic procedures or for deepening our knowledge on the role of mitochondrial dysfunctions in PD.
Collapse
|
33
|
Topuzova MP, Ternovykh IK, Shustova TA, Mikheeva AY, Chistyakova AO, Pavlova TA, Dudnikova NE, Pospelova ML, Alekseeva TM. [Multiple system atrophy]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:144-150. [PMID: 36843472 DOI: 10.17116/jnevro2023123021144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
The article presents a progressive neurodegenerative disease - multisystem atrophy, characterized by a combination of autonomic failure and various motor disorders, including parkinsonism and/or cerebellar ataxia; etiopathogenetic factors and variants of the clinical picture are described. We describe own clinical observation of a 59-old patient with cerebellar and bulbar syndromes, parkinsonism, pyramidal insufficiency, cognitive deficits, and autonomic dysfunction. The differential diagnosis included a whole range of neurodegenerative and hereditary diseases: Parkinson's disease, vascular parkinsonism, progressive supranuclear palsy, spinocerebellar ataxia, FXTAS, mitochondrial encephalopathies. The moderate severity of parkinsonism and the significant predominance of cerebellar symptoms and autonomic dysfunction make this clinical case difficult to diagnose. However, based on the life and disease history, clinical picture and research methods, a diagnosis of multiple system atrophy, cerebellar type (cerebellar, autonomic, bulbar syndrome, parkinsonism, pyramidal insufficiency and moderate cognitive impairment) was established. Differential search in such patients is a difficult task and includes a whole range of neurodegenerative and hereditary diseases due to the similarity of individual clinical and neuroimaging features and, unfortunately, the limited availability of molecular genetic diagnostic methods. However, earlier diagnosis is necessary to focus in time on the development of a personalized approach to the management of each such patient, taking into account the rate of symptoms development and steady progression, in order to ensure the longest possible survival time with an acceptable level of quality of life.
Collapse
Affiliation(s)
- M P Topuzova
- Almazov National Medical Research Centre, St Petersburg, Russia
| | - I K Ternovykh
- Almazov National Medical Research Centre, St Petersburg, Russia
| | - T A Shustova
- Almazov National Medical Research Centre, St Petersburg, Russia
| | - A Yu Mikheeva
- Almazov National Medical Research Centre, St Petersburg, Russia
| | - A O Chistyakova
- Almazov National Medical Research Centre, St Petersburg, Russia
| | - T A Pavlova
- Almazov National Medical Research Centre, St Petersburg, Russia
| | - N E Dudnikova
- Almazov National Medical Research Centre, St Petersburg, Russia
| | - M L Pospelova
- Almazov National Medical Research Centre, St Petersburg, Russia
| | - T M Alekseeva
- Almazov National Medical Research Centre, St Petersburg, Russia
| |
Collapse
|
34
|
Role of Oligodendrocyte Lineage Cells in Multiple System Atrophy. Cells 2023; 12:cells12050739. [PMID: 36899876 PMCID: PMC10001068 DOI: 10.3390/cells12050739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Multiple system atrophy (MSA) is a debilitating movement disorder with unknown etiology. Patients present characteristic parkinsonism and/or cerebellar dysfunction in the clinical phase, resulting from progressive deterioration in the nigrostriatal and olivopontocerebellar regions. MSA patients have a prodromal phase subsequent to the insidious onset of neuropathology. Therefore, understanding the early pathological events is important in determining the pathogenesis, which will assist with developing disease-modifying therapy. Although the definite diagnosis of MSA relies on the positive post-mortem finding of oligodendroglial inclusions composed of α-synuclein, only recently has MSA been verified as an oligodendrogliopathy with secondary neuronal degeneration. We review up-to-date knowledge of human oligodendrocyte lineage cells and their association with α-synuclein, and discuss the postulated mechanisms of how oligodendrogliopathy develops, oligodendrocyte progenitor cells as the potential origins of the toxic seeds of α-synuclein, and the possible networks through which oligodendrogliopathy induces neuronal loss. Our insights will shed new light on the research directions for future MSA studies.
Collapse
|
35
|
Tseng FS, Foo JQX, Mai AS, Tan EK. The genetic basis of multiple system atrophy. J Transl Med 2023; 21:104. [PMID: 36765380 PMCID: PMC9912584 DOI: 10.1186/s12967-023-03905-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/19/2023] [Indexed: 02/12/2023] Open
Abstract
Multiple system atrophy (MSA) is a heterogenous, uniformly fatal neurodegenerative ɑ-synucleinopathy. Patients present with varying degrees of dysautonomia, parkinsonism, cerebellar dysfunction, and corticospinal degeneration. The underlying pathophysiology is postulated to arise from aberrant ɑ-synuclein deposition, mitochondrial dysfunction, oxidative stress and neuroinflammation. Although MSA is regarded as a primarily sporadic disease, there is a possible genetic component that is poorly understood. This review summarizes current literature on genetic risk factors and potential pathogenic genes and loci linked to both sporadic and familial MSA, and underlines the biological mechanisms that support the role of genetics in MSA. We discuss a broad range of genes that have been associated with MSA including genes related to Parkinson's disease (PD), oxidative stress, inflammation, and tandem gene repeat expansions, among several others. Furthermore, we highlight various genetic polymorphisms that modulate MSA risk, including complex gene-gene and gene-environment interactions, which influence the disease phenotype and have clinical significance in both presentation and prognosis. Deciphering the exact mechanism of how MSA can result from genetic aberrations in both experimental and clinical models will facilitate the identification of novel pathophysiologic clues, and pave the way for translational research into the development of disease-modifying therapeutic targets.
Collapse
Affiliation(s)
- Fan Shuen Tseng
- grid.163555.10000 0000 9486 5048Division of Medicine, Singapore General Hospital, Singapore, Singapore
| | - Joel Qi Xuan Foo
- grid.276809.20000 0004 0636 696XDepartment of Neurosurgery, National Neuroscience Institute, Singapore, Singapore
| | - Aaron Shengting Mai
- grid.4280.e0000 0001 2180 6431Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore, 169856, Singapore. .,Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
36
|
SNCA Gene Methylation in Parkinson's Disease and Multiple System Atrophy. EPIGENOMES 2023; 7:epigenomes7010005. [PMID: 36810559 PMCID: PMC9944792 DOI: 10.3390/epigenomes7010005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
In recent years, epigenetic mechanisms have been implicated in the development of multifactorial diseases including neurodegenerative disorders. In Parkinson's disease (PD), as a synucleinopathy, most studies focused on DNA methylation of SNCA gene coding alpha-synuclein but obtained results were rather contradictory. In another neurodegenerative synucleinopathy, multiple system atrophy (MSA), very few studies investigated the epigenetic regulation. This study included patients with PD (n = 82), patients with MSA (n = 24), and a control group (n = 50). In three groups, methylation levels of CpG and non-CpG sites in regulatory regions of the SNCA gene were analyzed. We revealed hypomethylation of CpG sites in the SNCA intron 1 in PD and hypermethylation of predominantly non-CpG sites in the SNCA promoter region in MSA. In PD patients, hypomethylation in the intron 1 was associated with earlier age at the disease onset. In MSA patients, hypermethylation in the promotor was associated with shorter disease duration (before examination). These results showed different patterns of the epigenetic regulation in two synucleinopathies-PD and MSA.
Collapse
|
37
|
Nakamura A, Aida Y, Okamoto M, Maeda A, Nagao A, Kitatani K, Takekoshi S, Fujisawa A, Yamamoto Y, Kashiba M. Transferrin, insulin, and progesterone modulate intracellular concentrations of coenzyme Q and cholesterol, products of the mevalonate pathway, in undifferentiated PC12 cells. J Clin Biochem Nutr 2023; 72:199-206. [DOI: 10.3164/jcbn.22-115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/04/2023] [Indexed: 03/19/2023] Open
Affiliation(s)
| | - Yukina Aida
- School of Bionics, Tokyo University of Technology
| | | | - Ayaka Maeda
- School of Bionics, Tokyo University of Technology
| | - Ayaka Nagao
- School of Bionics, Tokyo University of Technology
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
Multiple system atrophy (MSA) is a rare neurodegenerative disorder with unclear etiology, currently difficult and delayed diagnosis, and rapid progression, leading to disability and lethality within 6 to 9 years after symptom onset. The neuropathology of MSA classifies the disease in the group of a-synucleinopathies together with Parkinson's disease and other Lewy body disorders, but features specific oligodendroglial inclusions, which are pathognomonic for MSA. MSA has no efficient therapy to date. Development of experimental models is crucial to elucidate the disease mechanisms in progression and to provide a tool for preclinical screening of putative therapies for MSA. In vitro and in vivo models, based on selective neurotoxicity, a-synuclein oligodendroglial overexpression, and strain-specific propagation of a-synuclein fibrils, have been developed, reflecting various facets of MSA pathology. Over the years, the continuous exchange from bench to bedside and backward has been crucial for the advancing of MSA modelling, elucidating MSA pathogenic pathways, and understanding the existing translational gap to successful clinical trials in MSA. The review discusses specifically advantages and limitations of the PLP-a-syn mouse model of MSA, which recapitulates motor and non-motor features of the human disease with underlying striatonigral degeneration, degeneration of autonomic centers, and sensitized olivopontocerebellar system, strikingly mirroring human MSA pathology.
Collapse
Affiliation(s)
- Nadia Stefanova
- Laboratory for Translational Neurodegeneration Research, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
39
|
Kinoshita C, Kubota N, Aoyama K. Glutathione Depletion and MicroRNA Dysregulation in Multiple System Atrophy: A Review. Int J Mol Sci 2022; 23:15076. [PMID: 36499400 PMCID: PMC9740333 DOI: 10.3390/ijms232315076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022] Open
Abstract
Multiple system atrophy (MSA) is a rare neurodegenerative disease characterized by parkinsonism, cerebellar impairment, and autonomic failure. Although the causes of MSA onset and progression remain uncertain, its pathogenesis may involve oxidative stress via the generation of excess reactive oxygen species and/or destruction of the antioxidant system. One of the most powerful antioxidants is glutathione, which plays essential roles as an antioxidant enzyme cofactor, cysteine-storage molecule, major redox buffer, and neuromodulator, in addition to being a key antioxidant in the central nervous system. Glutathione levels are known to be reduced in neurodegenerative diseases. In addition, genes regulating redox states have been shown to be post-transcriptionally modified by microRNA (miRNA), one of the most important types of non-coding RNA. miRNAs have been reported to be dysregulated in several diseases, including MSA. In this review, we focused on the relation between glutathione deficiency, miRNA dysregulation and oxidative stress and their close relation with MSA pathology.
Collapse
Affiliation(s)
- Chisato Kinoshita
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Noriko Kubota
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
- Teikyo University Support Center for Women Physicians and Researchers, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Koji Aoyama
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| |
Collapse
|
40
|
Fabbri M, Foubert-Samier A, Pavy-le Traon A, Rascol O, Meissner WG. Atrofia multisistemica. Neurologia 2022. [DOI: 10.1016/s1634-7072(22)47094-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
|
41
|
Sriram S, Root K, Chacko K, Patel A, Lucke-Wold B. Surgical Management of Synucleinopathies. Biomedicines 2022; 10:biomedicines10102657. [PMID: 36289920 PMCID: PMC9599076 DOI: 10.3390/biomedicines10102657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 12/03/2022] Open
Abstract
Synucleinopathies represent a diverse set of pathologies with significant morbidity and mortality. In this review, we highlight the surgical management of three synucleinopathies: Parkinson’s disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). After examining underlying molecular mechanisms and the medical management of these diseases, we explore the role of deep brain stimulation (DBS) in the treatment of synuclein pathophysiology. Further, we examine the utility of focused ultrasound (FUS) in the treatment of synucleinopathies such as PD, including its role in blood–brain barrier (BBB) opening for the delivery of novel drug therapeutics and gene therapy vectors. We also discuss other recent advances in the surgical management of MSA and DLB. Together, we give a diverse overview of current techniques in the neurosurgical management of these pathologies.
Collapse
|
42
|
Jurkute N, Cancellieri F, Pohl L, Li CHZ, Heaton RA, Reurink J, Bellingham J, Quinodoz M, Yioti G, Stefaniotou M, Weener M, Zuleger T, Haack TB, Stingl K, Hoyng CB, Mahroo OA, Hargreaves I, Raymond FL, Michaelides M, Rivolta C, Kohl S, Roosing S, Webster AR, Arno G. Biallelic variants in coenzyme Q10 biosynthesis pathway genes cause a retinitis pigmentosa phenotype. NPJ Genom Med 2022; 7:60. [PMID: 36266294 PMCID: PMC9581764 DOI: 10.1038/s41525-022-00330-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/29/2022] [Indexed: 11/21/2022] Open
Abstract
The aim of this study was to investigate coenzyme Q10 (CoQ10) biosynthesis pathway defects in inherited retinal dystrophy. Individuals affected by inherited retinal dystrophy (IRD) underwent exome or genome sequencing for molecular diagnosis of their condition. Following negative IRD gene panel analysis, patients carrying biallelic variants in CoQ10 biosynthesis pathway genes were identified. Clinical data were collected from the medical records. Haplotypes harbouring the same missense variant were characterised from family genome sequencing (GS) data and direct Sanger sequencing. Candidate splice variants were characterised using Oxford Nanopore Technologies single molecule sequencing. The CoQ10 status of the human plasma was determined in some of the study patients. 13 individuals from 12 unrelated families harboured candidate pathogenic genotypes in the genes: PDSS1, COQ2, COQ4 and COQ5. The PDSS1 variant c.589 A > G was identified in three affected individuals from three unrelated families on a possible ancestral haplotype. Three variants (PDSS1 c.468-25 A > G, PDSS1 c.722-2 A > G, COQ5 c.682-7 T > G) were shown to lead to cryptic splicing. 6 affected individuals were diagnosed with non-syndromic retinitis pigmentosa and 7 had additional clinical findings. This study provides evidence of CoQ10 biosynthesis pathway gene defects leading to non-syndromic retinitis pigmentosa in some cases. Intronic variants outside of the canonical splice-sites represent an important cause of disease. RT-PCR nanopore sequencing is effective in characterising these splice defects.
Collapse
Affiliation(s)
- Neringa Jurkute
- Moorfields Eye Hospital NHS Foundation Trust, London, UK.
- Institute of Ophthalmology, University College London, London, UK.
| | - Francesca Cancellieri
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Lisa Pohl
- University Eye Hospital, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Catherina H Z Li
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Robert A Heaton
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores, Liverpool, UK
| | - Janine Reurink
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - James Bellingham
- Institute of Ophthalmology, University College London, London, UK
| | - Mathieu Quinodoz
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Georgia Yioti
- University of Ioannina Medical School, Ioannina, Greece
| | | | | | - Theresia Zuleger
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Katarina Stingl
- University Eye Hospital, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
- Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Carel B Hoyng
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Omar A Mahroo
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Institute of Ophthalmology, University College London, London, UK
| | - Iain Hargreaves
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores, Liverpool, UK
| | - F Lucy Raymond
- NIHR BioResource-Rare Diseases, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Michel Michaelides
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Institute of Ophthalmology, University College London, London, UK
| | - Carlo Rivolta
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Susanne Kohl
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Susanne Roosing
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Andrew R Webster
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Institute of Ophthalmology, University College London, London, UK
| | - Gavin Arno
- Moorfields Eye Hospital NHS Foundation Trust, London, UK.
- Institute of Ophthalmology, University College London, London, UK.
- North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children, London, UK.
| |
Collapse
|
43
|
González-García P, Díaz-Casado ME, Hidalgo-Gutiérrez A, Jiménez-Sánchez L, Bakkali M, Barriocanal-Casado E, Escames G, Chiozzi RZ, Völlmy F, Zaal EA, Berkers CR, Heck AJR, López LC. The Q-junction and the inflammatory response are critical pathological and therapeutic factors in CoQ deficiency. Redox Biol 2022; 55:102403. [PMID: 35863266 PMCID: PMC9301574 DOI: 10.1016/j.redox.2022.102403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/07/2022] [Accepted: 07/10/2022] [Indexed: 11/24/2022] Open
Abstract
Defects in Coenzyme Q (CoQ) metabolism have been associated with primary mitochondrial disorders, neurodegenerative diseases and metabolic conditions. The consequences of CoQ deficiency have not been fully addressed, and effective treatment remains challenging. Here, we use mice with primary CoQ deficiency (Coq9R239X), and we demonstrate that CoQ deficiency profoundly alters the Q-junction, leading to extensive changes in the mitochondrial proteome and metabolism in the kidneys and, to a lesser extent, in the brain. CoQ deficiency also induces reactive gliosis, which mediates a neuroinflammatory response, both of which lead to an encephalopathic phenotype. Importantly, treatment with either vanillic acid (VA) or β-resorcylic acid (β-RA), two analogs of the natural precursor for CoQ biosynthesis, partially restores CoQ metabolism, particularly in the kidneys, and induces profound normalization of the mitochondrial proteome and metabolism, ultimately leading to reductions in gliosis, neuroinflammation and spongiosis and, consequently, reversing the phenotype. Together, these results provide key mechanistic insights into defects in CoQ metabolism and identify potential disease biomarkers. Furthermore, our findings clearly indicate that the use of analogs of the CoQ biosynthetic precursor is a promising alternative therapy for primary CoQ deficiency and has potential for use in the treatment of more common neurodegenerative and metabolic diseases that are associated with secondary CoQ deficiency.
Collapse
Affiliation(s)
- Pilar González-García
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016, Granada, Spain; Instituto de Biotecnología, Centro de Investigación Biomédica, Universidad de Granada, 18016, Granada, Spain
| | - María Elena Díaz-Casado
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016, Granada, Spain; Instituto de Biotecnología, Centro de Investigación Biomédica, Universidad de Granada, 18016, Granada, Spain
| | - Agustín Hidalgo-Gutiérrez
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016, Granada, Spain; Instituto de Biotecnología, Centro de Investigación Biomédica, Universidad de Granada, 18016, Granada, Spain
| | | | - Mohammed Bakkali
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, 18071, Granada, Spain
| | - Eliana Barriocanal-Casado
- GENYO, Centre for Genomics and Oncological Research, Genomic Medicine Department, Pfizer-University of Granada-Andalusian Regional Government, 18016, Granada, Spain
| | - Germaine Escames
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016, Granada, Spain; Instituto de Biotecnología, Centro de Investigación Biomédica, Universidad de Granada, 18016, Granada, Spain
| | - Riccardo Zenezini Chiozzi
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, 3584CH, Utrecht, Netherlands; Netherlands Proteomics Centre, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Franziska Völlmy
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, 3584CH, Utrecht, Netherlands; Netherlands Proteomics Centre, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Esther A Zaal
- Netherlands Proteomics Centre, Padualaan 8, 3584 CH, Utrecht, the Netherlands; Division of Cell Biology, Metabolism & Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3508 TD, Utrecht, the Netherlands
| | - Celia R Berkers
- Netherlands Proteomics Centre, Padualaan 8, 3584 CH, Utrecht, the Netherlands; Division of Cell Biology, Metabolism & Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3508 TD, Utrecht, the Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, 3584CH, Utrecht, Netherlands; Netherlands Proteomics Centre, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Luis C López
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016, Granada, Spain; Instituto de Biotecnología, Centro de Investigación Biomédica, Universidad de Granada, 18016, Granada, Spain.
| |
Collapse
|
44
|
Abstract
Multiple system atrophy (MSA) is a rare neurodegenerative disease that is characterized by neuronal loss and gliosis in multiple areas of the central nervous system including striatonigral, olivopontocerebellar and central autonomic structures. Oligodendroglial cytoplasmic inclusions containing misfolded and aggregated α-synuclein are the histopathological hallmark of MSA. A firm clinical diagnosis requires the presence of autonomic dysfunction in combination with parkinsonism that responds poorly to levodopa and/or cerebellar ataxia. Clinical diagnostic accuracy is suboptimal in early disease because of phenotypic overlaps with Parkinson disease or other types of degenerative parkinsonism as well as with other cerebellar disorders. The symptomatic management of MSA requires a complex multimodal approach to compensate for autonomic failure, alleviate parkinsonism and cerebellar ataxia and associated disabilities. None of the available treatments significantly slows the aggressive course of MSA. Despite several failed trials in the past, a robust pipeline of putative disease-modifying agents, along with progress towards early diagnosis and the development of sensitive diagnostic and progression biomarkers for MSA, offer new hope for patients.
Collapse
|
45
|
Fanciulli A, Leys F, Lehner F, Sidoroff V, Ruf VC, Raccagni C, Mahlknecht P, Kuipers DJS, van IJcken WFJ, Stockner H, Musacchio T, Volkmann J, Monoranu CM, Stankovic I, Breedveld G, Ferraro F, Fevga C, Windl O, Herms J, Kiechl S, Poewe W, Seppi K, Stefanova N, Scholz SW, Bonifati V, Wenning GK. A multiplex pedigree with pathologically confirmed multiple system atrophy and Parkinson's disease with dementia. Brain Commun 2022; 4:fcac175. [PMID: 35855480 PMCID: PMC9291376 DOI: 10.1093/braincomms/fcac175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/12/2022] [Accepted: 07/01/2022] [Indexed: 02/03/2023] Open
Abstract
Multiple system atrophy is considered a sporadic disease, but neuropathologically confirmed cases with a family history of parkinsonism have been occasionally described. Here we report a North-Bavarian (colloquially, Lion’s tail region) six-generation pedigree, including neuropathologically confirmed multiple system atrophy and Parkinson’s disease with dementia. Between 2012 and 2020, we examined all living and consenting family members of age and calculated the risk of prodromal Parkinson’s disease in those without overt parkinsonism. The index case and one paternal cousin with Parkinson’s disease with dementia died at follow-up and underwent neuropathological examination. Genetic analysis was performed in both and another family member with Parkinson’s disease. The index case was a female patient with cerebellar variant multiple system atrophy and a positive maternal and paternal family history for Parkinson’s disease and dementia in multiple generations. The families of the index case and her spouse were genealogically related, and one of the spouse's siblings met the criteria for possible prodromal Parkinson’s disease. Neuropathological examination confirmed multiple system atrophy in the index case and advanced Lewy body disease, as well as tau pathology in her cousin. A comprehensive analysis of genes known to cause hereditary forms of parkinsonism or multiple system atrophy lookalikes was unremarkable in the index case and the other two affected family members. Here, we report an extensive European pedigree with multiple system atrophy and Parkinson`s disease suggesting a complex underlying α-synucleinopathy as confirmed on neuropathological examination. The exclusion of known genetic causes of parkinsonism or multiple system atrophy lookalikes suggests that variants in additional, still unknown genes, linked to α-synucleinopathy lesions underlie such neurodegenerative clustering.
Collapse
Affiliation(s)
| | - Fabian Leys
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Fabienne Lehner
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Victoria Sidoroff
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Viktoria C Ruf
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Cecilia Raccagni
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Philipp Mahlknecht
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Demy J S Kuipers
- Department of Clinical Genetics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | | | - Heike Stockner
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Thomas Musacchio
- Department of Neurology, University of Würzburg, Würzburg, Germany
| | - Jens Volkmann
- Department of Neurology, University of Würzburg, Würzburg, Germany
| | - Camelia Maria Monoranu
- Department of Neuropathology, Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Iva Stankovic
- Neurology Clinic, Clinical Center of Serbia, University of Belgrade, Belgrade, Serbia
| | - Guido Breedveld
- Department of Clinical Genetics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Federico Ferraro
- Department of Clinical Genetics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Christina Fevga
- Department of Clinical Genetics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Otto Windl
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Jochen Herms
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Stefan Kiechl
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Werner Poewe
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Klaus Seppi
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Nadia Stefanova
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sonja W Scholz
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Vincenzo Bonifati
- Department of Clinical Genetics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Gregor K Wenning
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
46
|
Sidoroff V, Bower P, Stefanova N, Fanciulli A, Stankovic I, Poewe W, Seppi K, Wenning GK, Krismer F. Disease-Modifying Therapies for Multiple System Atrophy: Where Are We in 2022? JOURNAL OF PARKINSON'S DISEASE 2022; 12:1369-1387. [PMID: 35491799 PMCID: PMC9398078 DOI: 10.3233/jpd-223183] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multiple system atrophy is a rapidly progressive and fatal neurodegenerative disorder. While numerous preclinical studies suggested efficacy of potentially disease modifying agents, none of those were proven to be effective in large-scale clinical trials. Three major strategies are currently pursued in preclinical and clinical studies attempting to slow down disease progression. These target α-synuclein, neuroinflammation, and restoration of neurotrophic support. This review provides a comprehensive overview on ongoing preclinical and clinical developments of disease modifying therapies. Furthermore, we will focus on potential shortcomings of previous studies that can be avoided to improve data quality in future studies of this rare disease.
Collapse
Affiliation(s)
- Victoria Sidoroff
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Pam Bower
- The Multiple System Atrophy Coalition, Inc., McLean, VA, USA
| | - Nadia Stefanova
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Iva Stankovic
- Neurology Clinic, University Clinical Center of Serbia, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Werner Poewe
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Klaus Seppi
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gregor K Wenning
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Krismer
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
47
|
Kuo MC, Lu YC, Tai CH, Soong BW, Hu FC, Chen ML, Lin CH, Wu RM. COQ2 and SNCA polymorphisms interact with environmental factors to modulate the risk of multiple system atrophy and subtype disposition. Eur J Neurol 2022; 29:2956-2966. [PMID: 35748722 DOI: 10.1111/ene.15475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Multiple system atrophy (MSA) has no definitive genetic or environmental (G-E) risk factors, and the integrated effect of these factors on MSA etiology remains unknown. OBJECTIVE To investigate the integrated effect of G-E factors associated with MSA and its subtypes, MSA-P and MSA-C. METHODS A consecutive case-control study was conducted in two medical centers, and the interactions between genotypes of five previously reported susceptible single nucleotide polymorphisms (SNPs; SNCA_rs3857059, SNCA_rs11931074, COQ2_rs148156462, EDN1_rs16872704, MAPT_rs9303521) and graded exposure (never, ever, current) of four environmental factors (smoking, alcohol, drinking well water, pesticide exposure) were analyzed by a stepwise logistic regression model. RESULTS A total of 207 MSA patients and 136 healthy controls (HCs) were enrolled. In addition to SNP COQ2_rs148156462 (TT), MSA risk was correlated with G-E interactions, including COQ2_rs148156462 (Tc) × pesticide non-exposure, COQ2_rs148156462 (TT) × current smokers, SNCA_rs11931074 (tt) × alcohol non-users, and SNCA_rs11931074 (GG) × well water non-drinkers (all p < 0.01), with an area under the receiver operating characteristic curve (AUC) of 0.804 (95% confidence interval (CI): 0.671-0.847). Modulated risk of MSA-C, with MSA-P as a control, correlated with COQ2_rs148156462 (TT) × alcohol non-drinkers, SNCA_rs11931074 (GG) × well-water ever-drinkers, SNCA_rs11931074 (Gt) × well-water never-drinkers, and SNCA_rs3857059 (gg) × pesticide non-exposure (all p < 0.05), with an AUC of 0.749 (95% CI: 0.683-0.815). CONCLUSIONS Certain COQ2 and SNCA SNPs interact with common environmental factors to modulate MSA etiology and subtype disposition. The mechanisms underlying the observed correlation between G-E interactions and MSA etiopathogenesis warrant further investigation.
Collapse
Affiliation(s)
- Ming-Che Kuo
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ying-Che Lu
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.,Ph.D. Program in Translational Medicine, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Chun-Hwei Tai
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Bing-Wen Soong
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Fu-Chang Hu
- Graduate Institute of Clinical Medicine and School of Nursing, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Meng-Ling Chen
- College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ruey-Meei Wu
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
48
|
Jellinger KA. Heterogeneity of Multiple System Atrophy: An Update. Biomedicines 2022; 10:599. [PMID: 35327402 PMCID: PMC8945102 DOI: 10.3390/biomedicines10030599] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023] Open
Abstract
Multiple system atrophy (MSA) is a fatal, rapidly progressing neurodegenerative disease of uncertain etiology, clinically characterized by various combinations of Levodopa unresponsive parkinsonism, cerebellar, autonomic and motor dysfunctions. The morphological hallmark of this α-synucleinopathy is the deposition of aberrant α-synuclein in both glia, mainly oligodendroglia (glial cytoplasmic inclusions /GCIs/) and neurons, associated with glioneuronal degeneration of the striatonigral, olivopontocerebellar and many other neuronal systems. Typical phenotypes are MSA with predominant parkinsonism (MSA-P) and a cerebellar variant (MSA-C) with olivocerebellar atrophy. However, MSA can present with a wider range of clinical and pathological features than previously thought. In addition to rare combined or "mixed" MSA, there is a broad spectrum of atypical MSA variants, such as those with a different age at onset and disease duration, "minimal change" or prodromal forms, MSA variants with Lewy body disease or severe hippocampal pathology, rare forms with an unusual tau pathology or spinal myoclonus, an increasing number of MSA cases with cognitive impairment/dementia, rare familial forms, and questionable conjugal MSA. These variants that do not fit into the current classification of MSA are a major challenge for the diagnosis of this unique proteinopathy. Although the clinical diagnostic accuracy and differential diagnosis of MSA have improved by using combined biomarkers, its distinction from clinically similar extrapyramidal disorders with other pathologies and etiologies may be difficult. These aspects should be taken into consideration when revising the current diagnostic criteria. This appears important given that disease-modifying treatment strategies for this hitherto incurable disorder are under investigation.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, A-1150 Vienna, Austria
| |
Collapse
|
49
|
Kurata K, Hosono K, Takayama M, Katsuno M, Saitsu H, Ogata T, Hotta Y. Retinitis pigmentosa with optic neuropathy and COQ2 mutations: A case report. Am J Ophthalmol Case Rep 2022; 25:101298. [PMID: 35112026 PMCID: PMC8789597 DOI: 10.1016/j.ajoc.2022.101298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 07/28/2021] [Accepted: 01/17/2022] [Indexed: 10/26/2022] Open
|
50
|
Grigorenko AP, Protasova MS, Lisenkova AA, Reshetov DA, Andreeva TV, Garcias GDL, Martino Roth MDG, Papassotiropoulos A, Rogaev EI. Neurodevelopmental Syndrome with Intellectual Disability, Speech Impairment, and Quadrupedia Is Associated with Glutamate Receptor Delta 2 Gene Defect. Cells 2022; 11:400. [PMID: 35159210 PMCID: PMC8834146 DOI: 10.3390/cells11030400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 02/05/2023] Open
Abstract
Bipedalism, speech, and intellect are the most prominent traits that emerged in the evolution of Homo sapiens. Here, we describe a novel genetic cause of an "involution" phenotype in four patients, who are characterized by quadrupedal locomotion, intellectual impairment, the absence of speech, small stature, and hirsutism, observed in a consanguineous Brazilian family. Using whole-genome sequencing analysis and homozygous genetic mapping, we identified genes bearing homozygous genetic variants and found a homozygous 36.2 kb deletion in the gene of glutamate receptor delta 2 (GRID2) in the patients, resulting in the lack of a coding region from the fifth to the seventh exons. The GRID2 gene is highly expressed in the cerebellum cortex from prenatal development to adulthood, specifically in Purkinje neurons. Deletion in this gene leads to the loss of the alpha chain in the extracellular amino-terminal protein domain (ATD), essential in protein folding and transport from the endoplasmic reticulum (ER) to the cell surface. Then, we studied the evolutionary trajectories of the GRID2 gene. There was no sign of strong selection of the highly conservative GRID2 gene in ancient hominids (Neanderthals and Denisovans) or modern humans; however, according to in silico tests using the Mfold tool, the GRID2 gene possibly gained human-specific mutations that increased the stability of GRID2 mRNA.
Collapse
Affiliation(s)
- Anastasia P. Grigorenko
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354340 Sochi, Russia; (A.P.G.); (T.V.A.)
- Laboratory of Evolutionary Genomics, Department of Genomics and Human Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia; (M.S.P.); (A.A.L.); (D.A.R.)
- Department of Psychiatry, UMass Chan Medical School, Shrewsbury, MA 01545, USA
| | - Maria S. Protasova
- Laboratory of Evolutionary Genomics, Department of Genomics and Human Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia; (M.S.P.); (A.A.L.); (D.A.R.)
| | - Alexandra A. Lisenkova
- Laboratory of Evolutionary Genomics, Department of Genomics and Human Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia; (M.S.P.); (A.A.L.); (D.A.R.)
| | - Denis A. Reshetov
- Laboratory of Evolutionary Genomics, Department of Genomics and Human Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia; (M.S.P.); (A.A.L.); (D.A.R.)
| | - Tatiana V. Andreeva
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354340 Sochi, Russia; (A.P.G.); (T.V.A.)
- Laboratory of Evolutionary Genomics, Department of Genomics and Human Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia; (M.S.P.); (A.A.L.); (D.A.R.)
- Center for Genetics and Genetic Technologies, Department of Genetics, Faculty of Biology, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Gilberto De Lima Garcias
- Catholic University of Pelotas, Pelotas 96015-560, RS, Brazil; (G.D.L.G.); (M.D.G.M.R.)
- Federal University of Pelotas, Pelotas 96010-610, RS, Brazil
| | | | - Andreas Papassotiropoulos
- Transfaculty Research Platform, University of Basel, CH-4055 Basel, Switzerland;
- Psychiatric University Clinics, University of Basel, CH-4055 Basel, Switzerland
| | - Evgeny I. Rogaev
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354340 Sochi, Russia; (A.P.G.); (T.V.A.)
- Laboratory of Evolutionary Genomics, Department of Genomics and Human Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia; (M.S.P.); (A.A.L.); (D.A.R.)
- Department of Psychiatry, UMass Chan Medical School, Shrewsbury, MA 01545, USA
- Center for Genetics and Genetic Technologies, Department of Genetics, Faculty of Biology, Lomonosov Moscow State University, 119192 Moscow, Russia
| |
Collapse
|