1
|
Wang Y, Xue Q, Li Z, Li F. Subphenotypic classification of COVID-19 survivors and response to telerehabilitation: a latent class analysis. J Rehabil Med 2025; 57:jrm42726. [PMID: 40143671 PMCID: PMC11971945 DOI: 10.2340/jrm.v57.42726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
OBJECTIVE Investigating the role of telerehabilitation in aiding recovery and societal reintegration for COVID-19 survivors, this study aims to identify distinct subphenotypes among survivors and assess their responsiveness to telerehabilitation. DESIGN A secondary analysis of a multicentre, parallel-group randomized controlled trial from April 2020 through to follow-up in 2021. SUBJECTS/PATIENTS The study included 377 COVID-19 survivors (47.1% male), with a mean age of 56.4 years. METHODS Data from the Telerehabilitation Programme for COVID-19 (TERECO) were analysed using Latent Class Analysis to identify subphenotypes based on baseline characteristics. Clinical outcomes were compared between subphenotypes and treatment groups. RESULTS Latent Class Analysis identified 2 phenotypes: Phenotype 1 (52.9%) characterized by impaired lung function and Phenotype 2 (47.1%) with better lung function. Among those receiving corticosteroids, only Phenotype 1 showed significant benefits from the TERECO intervention. Discrimination accuracy using forced expiratory volume in 1 s (FEV1) and peak expiratory flow was high (AUC = 0.936). CONCLUSION Two distinct phenotypes were identified in COVID-19 survivors, suggesting potential improvements in clinical trial design and personalized treatment strategies based on initial pulmonary function. This insight can guide more targeted rehabilitation approaches, enhancing recovery outcomes for specific survivor groups.
Collapse
Affiliation(s)
- Yide Wang
- Department of Integrated Pulmonology, The Fourth Clinical Medical College of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Qianqian Xue
- Department of Integrated Pulmonology, The Fourth Clinical Medical College of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Zheng Li
- Department of Integrated Pulmonology, The Fourth Clinical Medical College of Xinjiang Medical University, Urumqi, Xinjiang, China; Xinjiang National Clinical Research Base of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, Xinjiang, China.
| | - Fengsen Li
- Department of Integrated Pulmonology, The Fourth Clinical Medical College of Xinjiang Medical University, Urumqi, Xinjiang, China; Xinjiang National Clinical Research Base of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
2
|
Jin H, Meng X, Feng J. Mechanisms of tumor-associated macrophages in breast cancer and treatment strategy. Front Immunol 2025; 16:1560393. [PMID: 40092996 PMCID: PMC11906463 DOI: 10.3389/fimmu.2025.1560393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 02/13/2025] [Indexed: 03/19/2025] Open
Abstract
Breast cancer (BC) is the most common cancer in women and a leading cause of cancer-related mortality. Despite advances in screening and treatment, outcomes for advanced or recurrent BC remain poor, highlighting the need for new strategies. Recent research emphasizes the tumor microenvironment (TME), particularly tumor-associated macrophages (TAMs), as key drivers of tumor growth, metastasis, and resistance to therapy. The presence of M2-like TAMs in the TME promotes immune evasion and tumor progression across BC subtypes. This review summarizes TAMs classification, their role in BC, and emerging therapies targeting TAMs, including depletion, inhibition of recruitment, and reprogramming from pro-tumoral M2 to anti-tumoral M1 phenotypes. Targeting TAMs offers a promising strategy to improve BC treatment outcomes.
Collapse
Affiliation(s)
- Hong Jin
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xinyue Meng
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jianwei Feng
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
3
|
Nedeljković M, Vuletić A, Mirjačić Martinović K. Divide and Conquer-Targeted Therapy for Triple-Negative Breast Cancer. Int J Mol Sci 2025; 26:1396. [PMID: 40003864 PMCID: PMC11855393 DOI: 10.3390/ijms26041396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive and malignant type of breast cancer with limited treatment options and poor prognosis. One of the most significant impediments in TNBC treatment is the high heterogeneity of this disease, as highlighted by the detection of several molecular subtypes of TNBC. Each subtype is driven by distinct mutations and pathway aberrations, giving rise to specific molecular characteristics closely connected to clinical behavior, outcomes, and drug sensitivity. This review summarizes the knowledge regarding TNBC molecular subtypes and how it can be harnessed to devise tailored treatment strategies instead of blindly using targeted drugs. We provide an overview of novel targeted agents and key insights about new treatment modalities with an emphasis on the androgen receptor signaling pathway, cancer stem cell-associated pathways, phosphatidylinositol 3-kinase (PI3K)/AKT pathway, growth factor signaling, and immunotherapy.
Collapse
Affiliation(s)
- Milica Nedeljković
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, 11000 Belgrade, Serbia; (A.V.); (K.M.M.)
| | | | | |
Collapse
|
4
|
Alizadeh H, Kerachian S, Jabbari K, Soltani BM. Phosphatidic acid as a cofactor of mTORC1 in platinum-based chemoresistance: Mechanisms and therapeutic potential. Eur J Pharmacol 2025; 988:177220. [PMID: 39716566 DOI: 10.1016/j.ejphar.2024.177220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/09/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
Platinum-based chemotherapeutics, such as cisplatin and carboplatin, are widely used to treat various malignancies. However, the development of chemoresistance remains a significant challenge, limiting their efficacy. This review explores the multifaceted mechanisms of platinum-based chemoresistance, with a particular focus on the mammalian target of rapamycin complex 1 (mTORC1) signaling pathway, which plays a critical role in promoting tumor survival and resistance to platinum compounds. Additionally, we examined the role of phosphatidic acid (PA) and its synthesizing enzymes, phospholipase D (PLD) and lysophosphatidic acid acyltransferase (LPAAT), in the regulation of mTORC1 activity. Given the involvement of mTORC1 in chemoresistance, we evaluated the potential of mTOR inhibitors as a therapeutic strategy to overcome platinum resistance. Finally, we discuss combination therapies targeting the mTOR pathway alongside conventional chemotherapy to improve treatment outcomes. This review highlights the potential of targeting mTORC1 and related pathways to improve therapeutic strategies for chemoresistant cancers.
Collapse
Affiliation(s)
- Hadi Alizadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran.
| | - Sana Kerachian
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran.
| | - Keyvan Jabbari
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran.
| | - Bahram Mohammad Soltani
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran.
| |
Collapse
|
5
|
Rugo HS, Campbell M, Yau C, Jo Chien A, Wallace AM, Isaacs C, Boughey JC, Han HS, Buxton M, Clennell JL, Asare SM, Steeg K, Wilson A, Singhrao R, Matthews JB, Perlmutter J, Fraser Symmans W, Hylton NM, DeMichele AM, Yee D, Van't Veer LJ, Berry DA, Esserman LJ. Pexidartinib and standard neoadjuvant therapy in the adaptively randomized I-SPY2 trial for early breast cancer. Breast Cancer Res Treat 2025; 209:487-492. [PMID: 39625569 PMCID: PMC11785665 DOI: 10.1007/s10549-024-07555-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 11/06/2024] [Indexed: 02/02/2025]
Abstract
PURPOSE We investigated the small-molecule receptor tyrosine kinase-inhibitor of colony-stimulating factor-1 receptor pexidartinib in the stage II/III breast cancer in the I-SPY2 platform trial. METHODS I-SPY2 is an adaptive platform trial that features multiple arms of experimental agents administered on a background of standard neoadjuvant therapy with paclitaxel and adriamycin/cyclophosphamide, followed by definitive surgery. The adaptive randomization engine preferentially assigns patients based upon cumulative performance of each agent in a given breast cancer subtype based on hormone receptor and HER2 receptor status. The study endpoint is pathologic complete response. RESULTS A total of 9 participants were randomized to receive pexidartinib with neoadjuvant paclitaxel before enrollment was halted due to a serious adverse event of vanishing bile duct syndrome. No participants received a full course of the study drug. CONCLUSION Although there remains interest in agents targeting CSF-1, hepatic toxicity appears to be a limiting factor for their use in early breast cancer. TRIAL REGISTRATION NCT01042379 ( www. CLINICALTRIALS gov/ct2/show/NCT01042379 ).
Collapse
Affiliation(s)
- Hope S Rugo
- University of California San Francisco, Box 1710, San Francisco, CA, 94143, USA.
| | - Mike Campbell
- University of California San Francisco, Box 1710, San Francisco, CA, 94143, USA
| | - Christina Yau
- University of California San Francisco, Box 1710, San Francisco, CA, 94143, USA
| | - A Jo Chien
- University of California San Francisco, Box 1710, San Francisco, CA, 94143, USA
| | | | | | | | - Hyo S Han
- Moffitt Cancer Center, Tampa, FL, USA
| | - Meredith Buxton
- University of California San Francisco, Box 1710, San Francisco, CA, 94143, USA
| | - Julia L Clennell
- University of California San Francisco, Box 1710, San Francisco, CA, 94143, USA
| | - Smita M Asare
- Quantum Leap Healthcare Collaborative, San Francisco, CA, USA
| | - Katherine Steeg
- University of California San Francisco, Box 1710, San Francisco, CA, 94143, USA
| | - Amy Wilson
- Quantum Leap Healthcare Collaborative, San Francisco, CA, USA
| | - Ruby Singhrao
- University of California San Francisco, Box 1710, San Francisco, CA, 94143, USA
| | - Jeffrey B Matthews
- University of California San Francisco, Box 1710, San Francisco, CA, 94143, USA
| | | | | | - Nola M Hylton
- University of California San Francisco, Box 1710, San Francisco, CA, 94143, USA
| | | | - Douglas Yee
- University of Minnesota, Minneapolis, MN, USA
| | - Laura J Van't Veer
- University of California San Francisco, Box 1710, San Francisco, CA, 94143, USA
| | | | - Laura J Esserman
- University of California San Francisco, Box 1710, San Francisco, CA, 94143, USA
| |
Collapse
|
6
|
Huppert LA, Wolf D, Yau C, Brown-Swigart L, Hirst GL, Isaacs C, Pusztai L, Pohlmann PR, DeMichele A, Shatsky R, Yee D, Thomas A, Nanda R, Perlmutter J, Heditsian D, Hylton N, Symmans F, Van't Veer LJ, Esserman L, Rugo HS. Pathologic complete response (pCR) rates for patients with HR+/HER2- high-risk, early-stage breast cancer (EBC) by clinical and molecular features in the phase II I-SPY2 clinical trial. Ann Oncol 2025; 36:172-184. [PMID: 39477071 DOI: 10.1016/j.annonc.2024.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/26/2024] [Accepted: 10/22/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Hormone receptor-positive (HR+), human epidermal growth factor receptor 2 (HER2)-negative early-stage breast cancer (EBC) is a heterogenous disease. Identification of better clinical and molecular biomarkers is essential to guide optimal therapy for each patient. PATIENTS AND METHODS We analyzed rates of pathologic complete response (pCR) and distant recurrence-free survival (DRFS) for patients with HR+/HER2-negative EBC in eight neoadjuvant arms in the I-SPY2 trial by clinical/molecular features: age, stage, histology, percentage estrogen receptor (ER) positivity, ER/progesterone receptor status, MammaPrint (MP)-High1 (0 to -0.57) versus MP-High2 (<-0.57), BluePrint (BP)-Luminal-type versus BP-Basal-type, and ImPrint immune signature. We quantified the clinical/molecular heterogeneity, assessed overlap among these biomarkers, and evaluated associations with pCR and DRFS. RESULTS Three hundred and seventy-nine patients with HR+/HER2-negative EBC were included in this analysis, with an observed pCR rate of 17% across treatment arms. pCR rates were higher in patients with stage II versus III disease (21% versus 9%, P = 0.0013), ductal versus lobular histology (19% versus 11%, P = 0.049), lower %ER positivity (≤66% versus >66%) (35% versus 9%, P = 3.4E-09), MP-High2 versus MP-High1 disease (31% versus 11%, P = 1.1E-05), BP-Basal-type versus BP-Luminal-type disease (34% versus 10%, P = 1.62E-07), and ImPrint-positive versus -negative disease (38% versus 10%, P = 1.64E-09). Patients with lower %ER were more likely to have MP-High2 and BP-Basal-type disease. At a median follow-up of 4.8 years, patients who achieved pCR had excellent outcomes irrespective of clinical/molecular features. Among patients who did not achieve pCR, DRFS events were more frequent in patients with MP-High2 and BP-Basal-type disease than those with MP-High1 and BP-Luminal-type disease. CONCLUSIONS Among patients with high molecular-risk HR+/HER2-negative EBC, the MP-High2, BP-Basal-type, and ImPrint-positive signatures identified a partially overlapping subset of patients who were more likely to achieve pCR in response to neoadjuvant chemotherapy ± targeted agents or immunotherapy compared to patients with MP-High1, BP-Luminal-type, and ImPrint-negative disease. I-SPY2.2 is incorporating the use of these biomarkers to molecularly define specific patient populations and optimize treatment selection.
Collapse
Affiliation(s)
- L A Huppert
- Department of Medicine, University of California San Francisco, San Francisco, USA.
| | - D Wolf
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, USA
| | - C Yau
- Department of Surgery, University of California San Francisco, San Francisco, USA
| | - L Brown-Swigart
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, USA
| | - G L Hirst
- Department of Surgery, University of California San Francisco, San Francisco, USA
| | - C Isaacs
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, USA
| | - L Pusztai
- Yale School of Medicine, Yale University, New Haven, USA
| | - P R Pohlmann
- Department of Breast Medical Oncology, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, USA
| | - A DeMichele
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - R Shatsky
- Division of Hematology/Oncology, University of California San Diego, San Diego, USA
| | - D Yee
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, USA
| | - A Thomas
- Division of Hematology/Oncology, Duke Cancer Center, Durham, USA
| | - R Nanda
- Section of Hematology/Oncology, University of Chicago, Chicago, USA
| | | | | | - N Hylton
- Department of Radiology, University of California San Francisco, San Francisco, USA
| | - F Symmans
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, USA
| | - L J Van't Veer
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, USA
| | - L Esserman
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, USA. https://twitter.com/DrLauraEsserman
| | - H S Rugo
- Department of Medicine, University of California San Francisco, San Francisco, USA. https://twitter.com/hoperugo
| |
Collapse
|
7
|
Jacob S, Christofferson A, Fisch S, Norwood P, Castillo P, Yu H, Hirst G, Soliman H, Nanda R, Mukhtar RA, Ewing C, Majure M, Melisko M, Rugo HS, Esserman L, Price E, Chien AJ. Regional lymph node changes on breast MRI in patients with early-stage breast cancer receiving neoadjuvant chemo-immunotherapy. Breast Cancer Res Treat 2025; 209:147-159. [PMID: 39305392 PMCID: PMC11785630 DOI: 10.1007/s10549-024-07481-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/28/2024] [Indexed: 02/02/2025]
Abstract
PURPOSE Establishing breast MRI imaging patterns associated with neoadjuvant immunotherapy is needed to monitor response. We analyzed serial breast MRIs in patients receiving neoadjuvant chemo-immunotherapy on the I-SPY2 clinical trial. METHODS Patients with stage 2-3 HER2-negative breast cancer were randomized to weekly paclitaxel (control), weekly paclitaxel and pembrolizumab, or weekly paclitaxel, pembrolizumab and intra-tumoral injection of SD-101, a TLR9 agonist. All patients received AC. Regional lymph nodes were retrospectively evaluated on breast MRI at baseline, 3, 12 and 20 weeks by a single blinded radiologist. MRIs were assessed for development of new regional lymphadenopathy, or increase in the longest diameter or cortical thickness of the largest abnormal regional lymph node. RESULTS Between 12/2015 and 4/2021, a total of 43 patients enrolled in the control (n = 16) and paclitaxel + pembrolizumab ± SD-101 (n = 27) arms. 12 of 27 patients (44.4%) receiving chemo-immunotherapy experienced increased lymphadenopathy within the first 12 weeks compared to 1 of 16 patients (6.3%) in the control group (p = 0.014). Most patients with increased lymphadenopathy were in the SD101/pembro arm (n = 10, p = 0.002). Increased lymphadenopathy was observed despite concomitant decrease in breast tumor size at all time points. 11 of 12 patients with increased lymphadenopathy had pathologically negative nodes at surgery. There was no association between lymphadenopathy and lower residual cancer burden or immune-related toxicity. CONCLUSIONS The combination of neoadjuvant paclitaxel and pembrolizumab ± SD101 intratumoral injection was associated with early increases in regional lymphadenopathy on MRI despite decreased breast tumor size. Increased lymphadenopathy was not associated with node positive disease at surgery.
Collapse
Affiliation(s)
- Saya Jacob
- University of California San Francisco Comprehensive Cancer Center, 1825 4 Street, San Francisco, CA, 94158, USA
| | | | - Samantha Fisch
- University of California San Francisco Comprehensive Cancer Center, 1825 4 Street, San Francisco, CA, 94158, USA
| | - Peter Norwood
- Quantum Leap Healthcare Collaborative, 499 Illinois Ave, Suite 200, San Francisco, CA, 94158, USA
| | - Paolo Castillo
- University of California San Francisco Comprehensive Cancer Center, 1825 4 Street, San Francisco, CA, 94158, USA
| | - Hongmei Yu
- Quantum Leap Healthcare Collaborative, 499 Illinois Ave, Suite 200, San Francisco, CA, 94158, USA
| | - Gillian Hirst
- University of California San Francisco Comprehensive Cancer Center, 1825 4 Street, San Francisco, CA, 94158, USA
| | - Hatem Soliman
- Moffit Cancer Center, 10920 N. McKinley Drive, Tampa, FL, 33612, USA
| | - Rita Nanda
- University of Chicago, 5841 S. Maryland Avenue, Chicago, IL, 60637, USA
| | - Rita A Mukhtar
- University of California San Francisco Comprehensive Cancer Center, 1825 4 Street, San Francisco, CA, 94158, USA
| | - Cheryl Ewing
- University of California San Francisco Comprehensive Cancer Center, 1825 4 Street, San Francisco, CA, 94158, USA
| | - Melanie Majure
- University of California San Francisco Comprehensive Cancer Center, 1825 4 Street, San Francisco, CA, 94158, USA
| | - Michelle Melisko
- University of California San Francisco Comprehensive Cancer Center, 1825 4 Street, San Francisco, CA, 94158, USA
| | - Hope S Rugo
- University of California San Francisco Comprehensive Cancer Center, 1825 4 Street, San Francisco, CA, 94158, USA
| | - Laura Esserman
- University of California San Francisco Comprehensive Cancer Center, 1825 4 Street, San Francisco, CA, 94158, USA
| | - Elissa Price
- University of California San Francisco Comprehensive Cancer Center, 1825 4 Street, San Francisco, CA, 94158, USA
| | - A Jo Chien
- University of California San Francisco Comprehensive Cancer Center, 1825 4 Street, San Francisco, CA, 94158, USA.
| |
Collapse
|
8
|
Young AJ, Pantel AR, Kiani M, Doot RK, Bagheri S, Pryma DA, Farwell MD, Li S, Lee H, Schubert EK, Secreto A, Zuckerman SP, Nayak A, Choi H, Carlin S, DeMichele A, Mankoff DA, Zhou R, Mach RH, McDonald ES. Kinetic Analysis and Metabolism of Poly(Adenosine Diphosphate-Ribose) Polymerase-1-Targeted 18F-Fluorthanatrace PET in Breast Cancer. J Nucl Med 2024; 65:1862-1868. [PMID: 39477499 PMCID: PMC11619586 DOI: 10.2967/jnumed.124.268254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/11/2024] [Indexed: 12/08/2024] Open
Abstract
The poly(adenosine diphosphate-ribose) polymerase inhibitors (PARPi) have demonstrated efficacy in ovarian, breast, and prostate cancers, but current biomarkers do not consistently predict clinical benefit. 18F-fluorthanatrace (18F-FTT) is an analog to rucaparib, a clinically approved PARPi, and is a candidate biomarker for PARPi response. This study intends to characterize 18F-FTT pharmacokinetics in breast cancer and optimize image timing for clinical trials. A secondary aim is to determine whether 18F-FTT uptake in breast cancer correlates with matched frozen surgical specimens as a reference standard for PARP-1 protein. Methods: Thirty prospectively enrolled women with a new diagnosis of breast cancer were injected with 18F-FTT and imaged dynamically 0-60 min after injection over the chest, with an optional static scan over multiple bed positions starting around 70 min. Kinetic analysis of lesion uptake was performed using blood-pool activity with population radiometabolite corrections. Normal breast and normal muscle reference tissue models were compared with PARP-1 protein expression in 10 patients with available tissue. Plasma radiometabolite concentrations and uptake in tumor and normal muscle were investigated in mouse xenografts. Results: Pharmacokinetics of 18F-FTT were well fit by Logan plot reference region models of reversible binding. However, fits of 2-tissue compartment models assuming negligible metabolite uptake were unstable. Rapid metabolism of 18F-FTT was demonstrated in mice, and similar uptake of radiometabolites was found in tumor xenografts and normal muscle. Tumor 18F-FTT distribution volume ratios relative to normal muscle reference tissue correlated with tissue PARP-1 expression (P < 0.02, n = 10). The tumor-to-normal muscle ratio from a 5-min frame between 50 and 60 min after injection, a potential static scan protocol, closely corresponded to the distribution volume ratio relative to normal muscle and correlated to PARP-1 expression (P < 0.02, n = 10). Conclusion: This study of PARPi analog 18F-FTT showed that uptake kinetics in vivo corresponded to expression of PARP-1 and that 18F-FTT quantitation is influenced by radiometabolites that are increasingly present late after injection. Radiometabolites can be controlled by using optimal image acquisition timing or normal muscle reference tissue modeling in dynamic imaging or a tumor-to-normal muscle ratio. Optimal image timing for tumor-to-normal muscle quantification in humans appears to be between 50 and 60 min after injection. Therefore, a clinically practical static imaging protocol commencing 45-55 min after injection may sufficiently balance 18F-FTT uptake with background clearance and radiometabolite interference for quantitative interpretation of PARP-1 expression in vivo.
Collapse
Affiliation(s)
- Anthony J Young
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Austin R Pantel
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mahsa Kiani
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert K Doot
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sina Bagheri
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Daniel A Pryma
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael D Farwell
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Shihong Li
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hsiaoju Lee
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Erin K Schubert
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Anthony Secreto
- Department of Hematology and Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Samantha P Zuckerman
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Anupma Nayak
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hoon Choi
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Angela DeMichele
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David A Mankoff
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Rong Zhou
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert H Mach
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Elizabeth S McDonald
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania;
| |
Collapse
|
9
|
Shatsky RA, Trivedi MS, Yau C, Nanda R, Rugo HS, Davidian M, Tsiatis B, Wallace AM, Chien AJ, Stringer-Reasor E, Boughey JC, Omene C, Rozenblit M, Kalinsky K, Elias AD, Vaklavas C, Beckwith H, Williams N, Arora M, Nangia C, Roussos Torres ET, Thomas B, Albain KS, Clark AS, Falkson C, Hershman DL, Isaacs C, Thomas A, Tseng J, Sanford A, Yeung K, Boles S, Chen YY, Huppert L, Jahan N, Parker C, Giridhar K, Howard FM, Blackwood MM, Sanft T, Li W, Onishi N, Asare AL, Beineke P, Norwood P, Brown-Swigart L, Hirst GL, Matthews JB, Moore B, Symmans WF, Price E, Heditsian D, LeStage B, Perlmutter J, Pohlmann P, DeMichele A, Yee D, van 't Veer LJ, Hylton NM, Esserman LJ. Datopotamab-deruxtecan plus durvalumab in early-stage breast cancer: the sequential multiple assignment randomized I-SPY2.2 phase 2 trial. Nat Med 2024; 30:3737-3747. [PMID: 39277672 DOI: 10.1038/s41591-024-03267-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 08/23/2024] [Indexed: 09/17/2024]
Abstract
Sequential adaptive trial designs can help accomplish the goals of personalized medicine, optimizing outcomes and avoiding unnecessary toxicity. Here we describe the results of incorporating a promising antibody-drug conjugate, datopotamab-deruxtecan (Dato-DXd) in combination with programmed cell death-ligand 1 inhibitor, durvalumab, as the first sequence of therapy in the I-SPY2.2 phase 2 neoadjuvant sequential multiple assignment randomization trial for high-risk stage 2/3 breast cancer. The trial includes three blocks of treatment, with initial randomization to different experimental agent(s) (block A), followed by a taxane-based regimen tailored to tumor subtype (block B), followed by doxorubicin-cyclophosphamide (block C). Subtype-specific algorithms based on magnetic resonance imaging volume change and core biopsy guide treatment redirection after each block, including the option of early surgical resection in patients predicted to have a high likelihood of pathologic complete response, which is the primary endpoint assessed when resection occurs. There are two primary efficacy analyses: after block A and across all blocks for six prespecified HER2-negative subtypes (defined by hormone receptor status and/or response-predictive subtypes). In total, 106 patients were treated with Dato-DXd/durvalumab in block A. In the immune-positive subtype, Dato-DXd/durvalumab exceeded the prespecified threshold for success (graduated) after block A; and across all blocks, pathologic complete response rates were equivalent to the rate expected for the standard of care (79%), but 54% achieved that result after Dato-DXd/durvalumab alone (block A) and 92% without doxorubicin-cyclophosphamide (after blocks A + B). The treatment strategy across all blocks graduated in the hormone-negative/immune-negative subtype. No new toxicities were observed. Stomatitis was the most common side effect in block A. No patients receiving block A treatment alone had adrenal insufficiency. Dato-DXd/durvalumab is a promising therapy combination that can eliminate standard chemotherapy in many patients, particularly the immune-positive subtype.ClinicalTrials.gov registration: NCT01042379 .
Collapse
Affiliation(s)
| | | | - Christina Yau
- University of California San Francisco, San Francisco, CA, USA
| | | | - Hope S Rugo
- University of California San Francisco, San Francisco, CA, USA
| | | | | | | | - A Jo Chien
- University of California San Francisco, San Francisco, CA, USA
| | | | | | - Coral Omene
- Cooperman Barnabas Medical Center, New Brunswick, NJ, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | | | | | | | - Christos Vaklavas
- University of Utah Huntsman Cancer Institute, Salt Lake City, UT, USA
| | | | | | - Mili Arora
- University of California Davis, Davis, CA, USA
| | | | | | | | - Kathy S Albain
- Loyola University Chicago Stritch School of Medicine, Chicago, IL, USA
| | - Amy S Clark
- University of Pennsylvania, Philadelphia, PA, USA
| | - Carla Falkson
- University of Rochester Medical Center, Rochester, NY, USA
| | | | - Claudine Isaacs
- Lombardi Comprehensive Cancer Center Georgetown University, Washington, DC, USA
| | | | - Jennifer Tseng
- City of Hope Orange County Lennar Foundation Cancer Center, Irvine, CA, USA
| | | | - Kay Yeung
- University of California San Diego, San Diego, CA, USA
| | - Sarah Boles
- University of California San Diego, San Diego, CA, USA
| | - Yunni Yi Chen
- University of California San Francisco, San Francisco, CA, USA
| | - Laura Huppert
- University of California San Francisco, San Francisco, CA, USA
| | - Nusrat Jahan
- University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | | | | | | - Wen Li
- University of California San Francisco, San Francisco, CA, USA
| | - Natsuko Onishi
- University of California San Francisco, San Francisco, CA, USA
| | - Adam L Asare
- University of California San Francisco, San Francisco, CA, USA
- Quantum Leap Healthcare Collaborative, San Francisco, CA, USA
| | - Philip Beineke
- Quantum Leap Healthcare Collaborative, San Francisco, CA, USA
| | - Peter Norwood
- Quantum Leap Healthcare Collaborative, San Francisco, CA, USA
| | | | - Gillian L Hirst
- University of California San Francisco, San Francisco, CA, USA
| | | | - Brian Moore
- Wake Forest University, Winston-Salem, NC, USA
| | | | - Elissa Price
- University of California San Francisco, San Francisco, CA, USA
| | - Diane Heditsian
- University of California San Francisco, San Francisco, CA, USA
| | - Barbara LeStage
- University of California San Francisco, San Francisco, CA, USA
| | | | - Paula Pohlmann
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Douglas Yee
- University of Minnesota, Minneapolis, MN, USA
| | | | - Nola M Hylton
- University of California San Francisco, San Francisco, CA, USA
| | | |
Collapse
|
10
|
Khoury K, Meisel JL, Yau C, Rugo HS, Nanda R, Davidian M, Tsiatis B, Chien AJ, Wallace AM, Arora M, Rozenblit M, Hershman DL, Zimmer A, Clark AS, Beckwith H, Elias AD, Stringer-Reasor E, Boughey JC, Nangia C, Vaklavas C, Omene C, Albain KS, Kalinsky KM, Isaacs C, Tseng J, Roussos Torres ET, Thomas B, Thomas A, Sanford A, Balassanian R, Ewing C, Yeung K, Sauder C, Sanft T, Pusztai L, Trivedi MS, Outhaythip A, Li W, Onishi N, Asare AL, Beineke P, Norwood P, Brown-Swigart L, Hirst GL, Matthews JB, Moore B, Fraser Symmans W, Price E, Beedle C, Perlmutter J, Pohlmann P, Shatsky RA, DeMichele A, Yee D, van 't Veer LJ, Hylton NM, Esserman LJ. Datopotamab-deruxtecan in early-stage breast cancer: the sequential multiple assignment randomized I-SPY2.2 phase 2 trial. Nat Med 2024; 30:3728-3736. [PMID: 39277671 DOI: 10.1038/s41591-024-03266-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 08/23/2024] [Indexed: 09/17/2024]
Abstract
Among the goals of patient-centric care are the advancement of effective personalized treatment, while minimizing toxicity. The phase 2 I-SPY2.2 trial uses a neoadjuvant sequential therapy approach in breast cancer to further these goals, testing promising new agents while optimizing individual outcomes. Here we tested datopotamab-deruxtecan (Dato-DXd) in the I-SPY2.2 trial for patients with high-risk stage 2/3 breast cancer. I-SPY2.2 uses a sequential multiple assignment randomization trial design that includes three sequential blocks of biologically targeted neoadjuvant treatment: the experimental agent(s) (block A), a taxane-based regimen tailored to the tumor subtype (block B) and doxorubicin-cyclophosphamide (block C). Patients are randomized into arms consisting of different investigational block A treatments. Algorithms based on magnetic resonance imaging and core biopsy guide treatment redirection after each block, including the option of early surgical resection in patients predicted to have a high likelihood of pathological complete response, the primary endpoint. There are two primary efficacy analyses: after block A and across all blocks for the six prespecified breast cancer subtypes (defined by clinical hormone receptor/human epidermal growth factor receptor 2 (HER2) status and/or the response-predictive subtypes). We report results of 103 patients treated with Dato-DXd. While Dato-DXd did not meet the prespecified threshold for success (graduation) after block A in any subtype, the treatment strategy across all blocks graduated in the hormone receptor-negative HER2-Immune-DNA repair deficiency- subtype with an estimated pathological complete response rate of 41%. No new toxicities were observed, with stomatitis and ocular events occurring at low grades. Dato-DXd was particularly active in the hormone receptor-negative/HER2-Immune-DNA repair deficiency- signature, warranting further investigation, and was safe in other subtypes in patients who followed the treatment strategy. ClinicalTrials.gov registration: NCT01042379 .
Collapse
Affiliation(s)
- Katia Khoury
- University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Christina Yau
- University of California San Francisco, San Francisco, CA, USA
| | - Hope S Rugo
- University of California San Francisco, San Francisco, CA, USA
| | | | | | | | - A Jo Chien
- University of California San Francisco, San Francisco, CA, USA
| | | | - Mili Arora
- University of California Davis, Davis, CA, USA
| | | | | | | | - Amy S Clark
- University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | - Christos Vaklavas
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Coral Omene
- Cooperman Barnabas Medical Center, New Brunswick, NJ, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Kathy S Albain
- Stritch School of Medicine, Loyola University Chicago, Chicago, IL, USA
| | | | - Claudine Isaacs
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC, USA
| | - Jennifer Tseng
- City of Hope Orange County Lennar Foundation Cancer Center, Orange County, CA, USA
| | | | | | | | | | | | - Cheryl Ewing
- University of California San Francisco, San Francisco, CA, USA
| | - Kay Yeung
- University of California San Diego, San Diego, CA, USA
| | | | | | | | | | | | - Wen Li
- University of California San Francisco, San Francisco, CA, USA
| | - Natsuko Onishi
- University of California San Francisco, San Francisco, CA, USA
| | - Adam L Asare
- University of California San Francisco, San Francisco, CA, USA
- Quantum Leap Healthcare Collaborative, San Francisco, CA, USA
| | - Philip Beineke
- Quantum Leap Healthcare Collaborative, San Francisco, CA, USA
| | - Peter Norwood
- Quantum Leap Healthcare Collaborative, San Francisco, CA, USA
| | | | - Gillian L Hirst
- University of California San Francisco, San Francisco, CA, USA
| | | | - Brian Moore
- Wake Forest University, Winston-Salem, NC, USA
| | | | - Elissa Price
- University of California San Francisco, San Francisco, CA, USA
| | - Carolyn Beedle
- University of California San Francisco, San Francisco, CA, USA
| | | | - Paula Pohlmann
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Douglas Yee
- University of Minnesota, Minneapolis, MN, USA
| | | | - Nola M Hylton
- University of California San Francisco, San Francisco, CA, USA
| | | |
Collapse
|
11
|
Campbell MJ, Wolf DM, Yau C, Brown-Swigart L, Wulfkuhle J, Gallagher IR, Zhu Z, Bolen J, Vandenberg S, Hoyt C, Mori H, Borowsky A, Sit L, Perlmutter J, Asare SM, Nanda R, Liu MC, Yee D, DeMichele AM, Hylton NM, Pusztai L, Berry DA, Hirst GL, Petricoin EF, Veer LV, Esserman L. Multi-platform biomarkers of response to an immune checkpoint inhibitor in the neoadjuvant I-SPY 2 trial for early-stage breast cancer. Cell Rep Med 2024; 5:101799. [PMID: 39510069 PMCID: PMC11604542 DOI: 10.1016/j.xcrm.2024.101799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 05/13/2024] [Accepted: 09/29/2024] [Indexed: 11/15/2024]
Abstract
Only a subset of patients with breast cancer responds to immune checkpoint blockade (ICB). To better understand the underlying mechanisms, we analyze pretreatment biopsies from patients in the I-SPY 2 trial who receive neoadjuvant ICB using multiple platforms to profile the tumor microenvironment. A variety of immune cell populations and markers of immune/cytokine signaling associate with pathologic complete response (pCR). Interestingly, these differ by breast cancer receptor subtype. Measures of the spatial distributions of immune cells within the tumor microenvironment, in particular colocalization or close spatial proximity of PD-1+ T cells with PD-L1+ cells (immune and tumor cells), are significantly associated with response in the overall cohort as well as the in the triple negative (TN) and HR+HER2- subtypes. Our findings indicate that biomarkers associated with immune cell signaling, immune cell densities, and spatial metrics are predictive of neoadjuvant ICB efficacy in breast cancer.
Collapse
Affiliation(s)
- Michael J Campbell
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Denise M Wolf
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Christina Yau
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lamorna Brown-Swigart
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Julie Wulfkuhle
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA
| | - Isela R Gallagher
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA
| | - Zelos Zhu
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jennifer Bolen
- Biospecimen Resource Program (BIOS), University of California, San Francisco, San Francisco, CA 94143, USA
| | - Scott Vandenberg
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - Hidetoshi Mori
- Center for Immunology and Infectious Diseases, University of California, Davis, Davis, CA 95616, USA
| | - Alexander Borowsky
- Center for Immunology and Infectious Diseases, University of California, Davis, Davis, CA 95616, USA; Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Laura Sit
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - Smita M Asare
- Quantum Leap Healthcare Collaborative, San Francisco, CA 94118, USA
| | - Rita Nanda
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Minetta C Liu
- Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Douglas Yee
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Angela M DeMichele
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nola M Hylton
- Department of Radiology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lajos Pusztai
- Yale School of Medicine, Yale University, New Haven, CT 06510, USA
| | | | - Gillian L Hirst
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA
| | - Laura Van't Veer
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Laura Esserman
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
12
|
Gao Y, Ventura-Diaz S, Wang X, He M, Xu Z, Weir A, Zhou HY, Zhang T, van Duijnhoven FH, Han L, Li X, D'Angelo A, Longo V, Liu Z, Teuwen J, Kok M, Beets-Tan R, Horlings HM, Tan T, Mann R. An explainable longitudinal multi-modal fusion model for predicting neoadjuvant therapy response in women with breast cancer. Nat Commun 2024; 15:9613. [PMID: 39511143 PMCID: PMC11544255 DOI: 10.1038/s41467-024-53450-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 10/08/2024] [Indexed: 11/15/2024] Open
Abstract
Multi-modal image analysis using deep learning (DL) lays the foundation for neoadjuvant treatment (NAT) response monitoring. However, existing methods prioritize extracting multi-modal features to enhance predictive performance, with limited consideration on real-world clinical applicability, particularly in longitudinal NAT scenarios with multi-modal data. Here, we propose the Multi-modal Response Prediction (MRP) system, designed to mimic real-world physician assessments of NAT responses in breast cancer. To enhance feasibility, MRP integrates cross-modal knowledge mining and temporal information embedding strategy to handle missing modalities and remain less affected by different NAT settings. We validated MRP through multi-center studies and multinational reader studies. MRP exhibited comparable robustness to breast radiologists, outperforming humans in predicting pathological complete response in the Pre-NAT phase (ΔAUROC 14% and 10% on in-house and external datasets, respectively). Furthermore, we assessed MRP's clinical utility impact on treatment decision-making. MRP may have profound implications for enrolment into NAT trials and determining surgery extensiveness.
Collapse
Affiliation(s)
- Yuan Gao
- GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, P. Debyelaan 25, 6202 AZ, Maastricht, The Netherlands
- Department of Radiology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- Department of Medical Imaging, Radboud University Medical Centre, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Sofia Ventura-Diaz
- Department of Radiology, St Joseph's Healthcare Hamilton, 50 Charlton Ave E, Hamilton, ON L8N 4A6, Ontario, Canada
| | - Xin Wang
- GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, P. Debyelaan 25, 6202 AZ, Maastricht, The Netherlands
- Department of Radiology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- Department of Medical Imaging, Radboud University Medical Centre, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Muzhen He
- Department of Radiology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, 350001, China
| | - Zeyan Xu
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Arlene Weir
- Department of Radiology, Cork University Hospital, Wilton, Cork, T12 DC4A, Ireland
| | - Hong-Yu Zhou
- Department of Biomedical Informatics, Harvard Medical School, Boston, USA
| | - Tianyu Zhang
- GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, P. Debyelaan 25, 6202 AZ, Maastricht, The Netherlands
- Department of Radiology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- Department of Medical Imaging, Radboud University Medical Centre, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Frederieke H van Duijnhoven
- Departments of Surgical Oncology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Luyi Han
- Department of Radiology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- Department of Medical Imaging, Radboud University Medical Centre, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Xiaomei Li
- The Second Clinical Medical College of Jinan University, Shenzhen, Guangdong, 518020, China
| | - Anna D'Angelo
- Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Fondazione Policlinico Universitario 'A. Gemelli' IRCCS, Rome, Italy
| | - Valentina Longo
- Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Fondazione Policlinico Universitario 'A. Gemelli' IRCCS, Rome, Italy
| | - Zaiyi Liu
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, 510080, China
| | - Jonas Teuwen
- Department of Radiation Oncology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Marleen Kok
- Department of Tumor Biology and Immunology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- Department of Medical Oncology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Regina Beets-Tan
- GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, P. Debyelaan 25, 6202 AZ, Maastricht, The Netherlands
- Department of Radiology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Hugo M Horlings
- Department of Pathology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Tao Tan
- Faculty of Applied Sciences, Macao Polytechnic University, 999078, Macao, China.
| | - Ritse Mann
- Department of Radiology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- Department of Medical Imaging, Radboud University Medical Centre, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| |
Collapse
|
13
|
Godina C, Pollak MN, Jernström H. Targeting IGF-IR improves neoadjuvant chemotherapy efficacy in breast cancers with low IGFBP7 expression. NPJ Precis Oncol 2024; 8:212. [PMID: 39362991 PMCID: PMC11450189 DOI: 10.1038/s41698-024-00712-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/17/2024] [Indexed: 10/05/2024] Open
Abstract
There has been a long-standing interest in targeting the type 1 insulin-like growth factor receptor (IGF-1R) signaling system in breast cancer due to its key role in neoplastic proliferation and survival. However, no IGF-1R targeting agent has shown substantial clinical benefit in controlled phase 3 trials, and no biomarker has been shown to have clinical utility in the prediction of benefit from an IGF-1R targeting agent. IGFBP7 is an atypical insulin-like growth factor binding protein as it has a higher affinity for the IGF-1R than IGF ligands. We report that low IGFBP7 gene expression identifies a subset of breast cancers for which the addition of ganitumab, an anti-IGF-1R monoclonal antibody, to neoadjuvant chemotherapy, substantially improved the pathological complete response rate compared to neoadjuvant chemotherapy alone. The pCR rate in the chemotherapy plus ganitumab arm was 46.9% in patients in the lowest quartile of IGFBP7 expression, in contrast to only 5.6% in the highest quartile. Furthermore, high IGFBP7 expression predicted increased distant metastasis risk. If our findings are confirmed, decisions to halt the development of IGF-1R targeting drugs, which were based on disappointing results of prior trials that did not use predictive biomarkers, should be reviewed.
Collapse
Affiliation(s)
- Christopher Godina
- Division of Oncology, Department of Clinical Sciences in Lund, Lund University Cancer Center/Kamprad, Lund University and Skåne University Hospital, Barngatan 4, SE-221 85, Lund, Sweden.
| | - Michael N Pollak
- Lady Davis Institute for Medical Research, Jewish General Hospital and Department of Oncology, McGill University, Montreal, QC, Canada
| | - Helena Jernström
- Division of Oncology, Department of Clinical Sciences in Lund, Lund University Cancer Center/Kamprad, Lund University and Skåne University Hospital, Barngatan 4, SE-221 85, Lund, Sweden.
| |
Collapse
|
14
|
Sun W, Li J. Efficacy and safety of veliparib in the treatment of advanced/metastatic breast cancer: a meta-analysis of phase II and III randomized controlled trials. J Chemother 2024; 36:441-448. [PMID: 37975589 DOI: 10.1080/1120009x.2023.2281760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/20/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
We conducted a meta-analysis to evaluate the efficacy and safety of veliparib in the treatment of advanced/metastatic breast cancer. Databases were searched for relevant studies till June 2023. Six RCTs involving 1912 patients were included. The pooled analysis provided evidence that veliparib-containing regimens could significantly improve the PFS (HR: 0.71; 95% CI: 0.61-0.83; p < 0.0001), OS (HR: 0.87; 95% CI: 0.76-0.99; p = 0.03), and ORR (RR: 1.52; 95% CI:1.06-2.18; p = 0.02) than those of controls for treating advanced/metastatic breast cancer. Breast cancer patients with BRCA-mutation tended to have a better PFS than the BRCA-wildtype group, and patients with TNBC tended to associated with a longer PFS than the non-TNBC group. Veliparib could significantly increase the risk of anemia, leukopenia, neutropenia, diarrhea, stomatitis, fatigue, and peripheral neuropathy. Anemia and neutropenia should be well concerned. The veliparib-containing regimen was efficacious in treating advanced/metastatic breast cancer with a controllable safety factor.
Collapse
Affiliation(s)
- Wenxia Sun
- Engineering Research Center for Pharmaceuticals and Equipment of Sichuan Province, Chengdu University, Chengdu, Sichuan, P.R.China
| | - Jing Li
- College of Pharmacy, Southwest Minzu University, Chengdu, Sichuan, P.R.China
| |
Collapse
|
15
|
Nathani A, Khan I, Tanimoto MH, Mejía JAA, DE Miranda AM, Rishi A, Dev S, Bastos JK, Singh M. Antitumor Potential of Guttiferone E Combined With Carboplatin Against Osimertinib-resistant H1975 Lung Cancer Through Apoptosis. Anticancer Res 2024; 44:4175-4188. [PMID: 39348999 PMCID: PMC11863775 DOI: 10.21873/anticanres.17248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/15/2024] [Accepted: 09/04/2024] [Indexed: 10/02/2024]
Abstract
BACKGROUND/AIM Low selectivity and high frequency of side-effects are the major problems of currently used chemotherapeutics. Among natural compounds, the polyprenylated acylphloroglucinol, guttiferone E, isolated from Brazilian red propolis, has attracted attention due to its marked anticancer properties and was evaluated here for its role against osimertinib-resistant H1975 cells (with double mutations of epidermal growth factor receptor: EGFR L858R/T790M). MATERIALS AND METHODS Guttiferone E was obtained from red propolis using established extraction procedures. Guttiferone E was tested using the H1975 cell line in in vitro (2D and 3D) cell cultures and in vivo in BALB/c athymic nude mice. Live/dead assay was also performed to support the results. Tumor tissues obtained from in vivo studies were used for western blotting. Guttiferone E reduced H1975 cell viability in a concentration-dependent manner. The IC50 values in 2D and 3D cell lines were 2.56±0.12 μM and 11.25±0.34 μM. Furthermore, at 10 mg/kg intraperitoneally, guttiferone E significantly reduced the tumor volume in tumor xenografts when used alone and in combination with carboplatin. Guttiferone E and carboplatin displayed synergistic inhibition of H1975 cells and animal tumors. Co-treatment of guttiferone E with carboplatin induced more prominent apoptosis than treatment with either drug alone. Guttiferone E treatment induced cleavage of poly-ADP ribose polymerase and induced apoptosis by significantly reducing levels of mammalian target of rapamycin, sirtuin 1, sirtuin 7, superoxide dismutase, programmed death-ligand 1, and programmed cell death 1 in tumor tissues. CONCLUSION Our results show guttiferone E to be a promising, novel and potent antitumor drug candidate for osimertinib-resistant lung cancer with EGFR L858R/T790M mutations.
Collapse
Affiliation(s)
- Aakash Nathani
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, U.S.A
| | - Islauddin Khan
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, U.S.A
| | - Matheus Hikaru Tanimoto
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Aline Mayrink DE Miranda
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Arun Rishi
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, U.S.A
| | - Satyanarayan Dev
- Biological Systems Engineering, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL, U.S.A
| | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil;
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, U.S.A.;
| |
Collapse
|
16
|
Ha H, Lee HY, Kim JH, Kim DY, An HJ, Bae S, Park HS, Kang JH. Precision Oncology Clinical Trials: A Systematic Review of Phase II Clinical Trials with Biomarker-Driven, Adaptive Design. Cancer Res Treat 2024; 56:991-1013. [PMID: 38726510 PMCID: PMC11491240 DOI: 10.4143/crt.2024.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/29/2024] [Indexed: 08/30/2024] Open
Abstract
Novel clinical trial designs are conducted in the precision medicine era. This study aimed to evaluate biomarker-driven, adaptive phase II trials in precision oncology, focusing on infrastructure, efficacy, and safety. We systematically reviewed and analyzed the target studies. EMBASE and PubMed searches from 2015 to 2023 generated 29 eligible trials. Data extraction included infrastructure, biomarker screening methodologies, efficacy, and safety profiles. Government agencies, cancer hospitals, and academic societies with accumulated experiences led investigator-initiated precision oncology clinical trials (IIPOCTs), which later guided sponsor-initiated precision oncology clinical trials (SIPOCTs). Most SIPOCTs were international studies with basket design. IIPOCTs primarily used the central laboratory for biomarker screening, but SIPOCTs used both central and local laboratories. Most of the studies adapted next-generation sequencing and/or immunohistochemistry for biomarker screening. Fifteen studies included an independent central review committee for outcome investigation. Efficacy assessments predominantly featured objective response rate as the primary endpoint, with varying results. Nine eligible studies contributed to the United States Food and Drug Administration's marketing authorization. Safety monitoring was rigorous, but reporting formats lacked uniformity. Health-related quality of life and patient-reported outcomes were described in some protocols but rarely reported. Our results reveal that precision oncology trials with adaptive design rapidly and efficiently evaluate anticancer drugs' efficacy and safety, particularly in specified biomarker-driven cohorts. The evolution from IIPOCT to SIPOCT has facilitated fast regulatory approval, providing valuable insights into the precision oncology landscape.
Collapse
Affiliation(s)
- Hyerim Ha
- Department of Internal Medicine, Inha University Hospital, Inha University College of Medicine, Incheon, Korea
| | - Hee Yeon Lee
- Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jee Hyun Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Do Yeun Kim
- Department of Internal Medicine, Dongguk University Ilsan Hospital, Goyang, Korea
| | - Ho Jung An
- Division of Oncology, Department of Internal Medicine, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - SeungJin Bae
- College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Hye-sung Park
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jin Hyoung Kang
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
17
|
Li J, Jia Z, Dong L, Cao H, Huang Y, Xu H, Xie Z, Jiang Y, Wang X, Liu J. DNA damage response in breast cancer and its significant role in guiding novel precise therapies. Biomark Res 2024; 12:111. [PMID: 39334297 PMCID: PMC11437670 DOI: 10.1186/s40364-024-00653-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
DNA damage response (DDR) deficiency has been one of the emerging targets in treating breast cancer in recent years. On the one hand, DDR coordinates cell cycle and signal transduction, whose dysfunction may lead to cell apoptosis, genomic instability, and tumor development. Conversely, DDR deficiency is an intrinsic feature of tumors that underlies their response to treatments that inflict DNA damage. In this review, we systematically explore various mechanisms of DDR, the rationale and research advances in DDR-targeted drugs in breast cancer, and discuss the challenges in its clinical applications. Notably, poly (ADP-ribose) polymerase (PARP) inhibitors have demonstrated favorable efficacy and safety in breast cancer with high homogenous recombination deficiency (HRD) status in a series of clinical trials. Moreover, several studies on novel DDR-related molecules are actively exploring to target tumors that become resistant to PARP inhibition. Before further clinical application of new regimens or drugs, novel and standardized biomarkers are needed to develop for accurately characterizing the benefit population and predicting efficacy. Despite the promising efficacy of DDR-related treatments, challenges of off-target toxicity and drug resistance need to be addressed. Strategies to overcome drug resistance await further exploration on DDR mechanisms, and combined targeted drugs or immunotherapy will hopefully provide more precise or combined strategies and expand potential responsive populations.
Collapse
Affiliation(s)
- Jiayi Li
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Ziqi Jia
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lin Dong
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Heng Cao
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yansong Huang
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Hengyi Xu
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhixuan Xie
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Yiwen Jiang
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Xiang Wang
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jiaqi Liu
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
18
|
Graham Linck EJ, Goligher EC, Semler MW, Churpek MM. Toward Precision in Critical Care Research: Methods for Observational and Interventional Studies. Crit Care Med 2024; 52:1439-1450. [PMID: 39145702 PMCID: PMC11328956 DOI: 10.1097/ccm.0000000000006371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Critical care trials evaluate the effect of interventions in patients with diverse personal histories and causes of illness, often under the umbrella of heterogeneous clinical syndromes, such as sepsis or acute respiratory distress syndrome. Given this variation, it is reasonable to expect that the effect of treatment on outcomes may differ for individuals with variable characteristics. However, in randomized controlled trials, efficacy is typically assessed by the average treatment effect (ATE), which quantifies the average effect of the intervention on the outcome in the study population. Importantly, the ATE may hide variations of the treatment's effect on a clinical outcome across levels of patient characteristics, which may erroneously lead to the conclusion that an intervention does not work overall when it may in fact benefit certain patients. In this review, we describe methodological approaches for assessing heterogeneity of treatment effect (HTE), including expert-derived subgrouping, data-driven subgrouping, baseline risk modeling, treatment effect modeling, and individual treatment rule estimation. Next, we outline how insights from HTE analyses can be incorporated into the design of clinical trials. Finally, we propose a research agenda for advancing the field and bringing HTE approaches to the bedside.
Collapse
Affiliation(s)
- Emma J Graham Linck
- Department of Biostatistics and Medical Informatics, UW-Madison, Madison, WI
| | - Ewan C Goligher
- Interdepartmental Division of Critical Care Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Matthew W Semler
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, TN
| | - Matthew M Churpek
- Department of Biostatistics and Medical Informatics, UW-Madison, Madison, WI
- Division of Pulmonary and Critical Care, Department of Medicine, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
19
|
Jin W, Zhang Z, Sun W, Li J, Xiong W. Neurological toxicities with poly (ADP-ribose) polymerase inhibitors in cancer patients: a systematic review and meta-analysis. J Chemother 2024:1-15. [PMID: 39180239 DOI: 10.1080/1120009x.2024.2392463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/18/2024] [Accepted: 08/08/2024] [Indexed: 08/26/2024]
Abstract
We conducted this meta-analysis to investigate neurological toxicities with poly (ADP-ribose) polymerase inhibitors (PARPis) in cancer patients. Databases were searched for randomized controlled trials (RCTs) from 1 January 2000 to 1 November 2023. Forty-six RCTs and 9529 patients were included. PARPis could increase the risk of all-grade headache [risk ratio (RR), 1.22; 95% confidence intervals (CI), 1.14-1.30; P < 0.00001], dizziness (RR, 1.40; 95% CI, 1.28-1.53; P < 0.00001), dysgeusia (RR, 1.93; 95% CI, 1.44-2.60; P < 0.0001) and insomnia (RR, 1.32; 95% CI, 1.09-1.60; P < 0.0001) in cancer patients. Headache was the most common neurological toxicity. Niraparib was associated with a higher risk of headache and insomnia, talazoparib with a higher risk of dizziness and rucaparib with a higher risk of dysgeusia. Breast cancer patients receiving PARPis have a higher risk of dysgeusia, while ovarian cancer patients are at an increased risk of insomnia. PARPis may increase the risk of mild to moderate neurological toxicities, but not severe ones.
Collapse
Affiliation(s)
- Wenfang Jin
- College of Pharmacy, Southwest Minzu University, Chengdu, P.R. China
| | - Zhifeng Zhang
- College of Pharmacy, Southwest Minzu University, Chengdu, P.R. China
| | - Wenxia Sun
- Engineering Research Center For Pharmaceuticals and Equipment of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, P.R. China
| | - Jing Li
- College of Pharmacy, Southwest Minzu University, Chengdu, P.R. China
| | - Wen Xiong
- Chengdu Institute for Food and Drug Control, Chengdu, P.R. China
| |
Collapse
|
20
|
Ajabnoor R, Zhang G, Hu Y, Gao Y, Finkelman BS, Turner BM, Yi S, Dhakal A, Audeh W, Li Z, Li X, Hicks DG, Zhang H. Breast Cancer With HER2 Immunohistochemical Score 2 and Average HER2 Signals/Cell 6 or More and HER2/CEP17 Ratio Less Than 2 ('ISH Group 3'): A Multi-Institutional Cohort Analysis Emphasizing Outcome and Molecular Subtype. Mod Pathol 2024; 37:100530. [PMID: 38810729 DOI: 10.1016/j.modpat.2024.100530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024]
Abstract
Breast cancer (BC) with average human epidermal growth factor receptor 2 (HER2) signals/cell ≥6 and HER2/chromosome enumeration probe 17 (CEP17) ratio <2 (in situ hybridization [ISH] group 3) is very rare, accounting for 0.4% to 3.0% of cases sent for the dual-probe ISH assay. Although such patients are currently eligible for treatment with HER2-targeted therapy, their characteristics and outcomes remain poorly understood. Sixty-two BCs with equivocal HER2 immunohistochemical score (2+) and reflex ISH group 3 results were identified across 4 institutions. Available clinicopathologic characteristics, MammaPrint and BluePrint molecular results, and follow-up information were retrospectively analyzed. Most BCs with HER2 equivocal immunohistochemical and ISH group 3 results were histologic grade 2 or 3 (100%), estrogen receptor (ER) positive (90.3%), with an average HER2 signals/cell of 7.3. Molecular profiles revealed that 80% (16/20) of tumors were luminal subtypes, and HER2 molecular subtype was identified in 10% of tumors (2/20). Twelve (19.4%) out of 62 patients developed local recurrence and/or distant metastasis with a median follow-up of 50 months. One (10%) of 10 patients achieved pathologic complete response after neoadjuvant chemotherapy. Forty-nine (79%) out of 62 patients completed anti-HER2 agents, and exploratory analysis showed no statistically significant difference in disease outcomes between patients who completed anti-HER2 treatment and those who did not. Univariate analysis revealed advanced clinical stage, and ER/progesterone receptor negativity was associated with unfavorable disease outcomes, and exploratory multivariate analysis demonstrated that clinical stage was the most significant factor associated with disease outcomes in the studied population. These findings increase our understanding of this rare, but clinically important HER2 category. Large-scale prospective randomized studies are needed to further evaluate the role of perioperative HER2-targeted therapy in this patient population.
Collapse
Affiliation(s)
- Rana Ajabnoor
- Department of Pathology, University of Rochester Medical Center, Rochester, New York; Department of Pathology, Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Gloria Zhang
- Department of Pathology and Laboratory Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Yan Hu
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Yuan Gao
- Department of Pathology and Laboratory Medicine, Emory University Hospital, Atlanta, Georgia
| | - Brian S Finkelman
- Department of Pathology, University of Rochester Medical Center, Rochester, New York
| | - Bradley M Turner
- Department of Pathology, University of Rochester Medical Center, Rochester, New York
| | - Sha Yi
- Department of Pathology and Laboratory Medicine, Emory University Hospital, Atlanta, Georgia
| | - Ajay Dhakal
- Department of Medicine, University of Rochester Medical Center, Rochester, New York
| | - William Audeh
- Department of Medical Affairs, Agendia Inc, Irvine, California
| | - Zaibo Li
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Xiaoxian Li
- Department of Pathology and Laboratory Medicine, Emory University Hospital, Atlanta, Georgia
| | - David G Hicks
- Department of Pathology, University of Rochester Medical Center, Rochester, New York
| | - Huina Zhang
- Department of Pathology, University of Rochester Medical Center, Rochester, New York.
| |
Collapse
|
21
|
Honap S, Jairath V, Danese S, Peyrin-Biroulet L. Navigating the complexities of drug development for inflammatory bowel disease. Nat Rev Drug Discov 2024; 23:546-562. [PMID: 38778181 DOI: 10.1038/s41573-024-00953-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2024] [Indexed: 05/25/2024]
Abstract
Inflammatory bowel disease (IBD) - consisting of ulcerative colitis and Crohn's disease - is a complex, heterogeneous, immune-mediated inflammatory condition with a multifactorial aetiopathogenesis. Despite therapeutic advances in this arena, a ceiling effect has been reached with both single-agent monoclonal antibodies and advanced small molecules. Therefore, there is a need to identify novel targets, and the development of companion biomarkers to select responders is vital. In this Perspective, we examine how advances in machine learning and tissue engineering could be used at the preclinical stage where attrition rates are high. For novel agents reaching clinical trials, we explore factors decelerating progression, particularly the decline in IBD trial recruitment, and assess how innovative approaches such as reconfiguring trial designs, harmonizing end points and incorporating digital technologies into clinical trials can address this. Harnessing opportunities at each stage of the drug development process may allow for incremental gains towards more effective therapies.
Collapse
Affiliation(s)
- Sailish Honap
- Department of Gastroenterology, St George's University Hospitals NHS Foundation Trust, London, UK.
- School of Immunology and Microbial Sciences, King's College London, London, UK.
- INFINY Institute, Nancy University Hospital, Vandœuvre-lès-Nancy, France.
| | - Vipul Jairath
- Division of Gastroenterology, Department of Medicine, Schulich School of Medicine, Western University, London, Ontario, Canada
- Lawson Health Research Institute, Western University, London, Ontario, Canada
- Department of Epidemiology and Biostatistics, Western University, London, Ontario, Canada
| | - Silvio Danese
- Department of Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, Milan, Italy
| | - Laurent Peyrin-Biroulet
- INFINY Institute, Nancy University Hospital, Vandœuvre-lès-Nancy, France.
- Department of Gastroenterology, Nancy University Hospital, Vandœuvre-lès-Nancy, France.
- INSERM, NGERE, University of Lorraine, Nancy, France.
- FHU-CURE, Nancy University Hospital, Vandœuvre-lès-Nancy, France.
- Groupe Hospitalier privé Ambroise Paré - Hartmann, Paris IBD Center, Neuilly sur Seine, France.
- Division of Gastroenterology and Hepatology, McGill University Health Centre, Montreal, Quebec, Canada.
| |
Collapse
|
22
|
Shergina E, Richter KP, Zhang C, Mussulman L, Nazir N, Gajewski1 BJ. Implementation of statistical features of a Bayesian two-armed responsive adaptive randomization trial with post hoc analysis of time trend drift. J Biopharm Stat 2024:1-15. [PMID: 38847351 PMCID: PMC11624317 DOI: 10.1080/10543406.2024.2359149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 05/12/2024] [Indexed: 12/08/2024]
Abstract
Bayesian adaptive designs with response adaptive randomization (RAR) have the potential to benefit more participants in a clinical trial. While there are many papers that describe RAR designs and results, there is a scarcity of works reporting the details of RAR implementation from a statistical point exclusively. In this paper, we introduce the statistical methodology and implementation of the trial Changing the Default (CTD). CTD is a single-center prospective RAR comparative effectiveness trial to compare opt-in to opt-out tobacco treatment approaches for hospitalized patients. The design assumed an uninformative prior, conservative initial allocation ratio, and a higher threshold for stopping for success to protect results from statistical bias. A particular emerging concern of RAR designs is the possibility that time trends will occur during the implementation of a trial. If there is a time trend and the analytic plan does not prespecify an appropriate model, this could lead to a biased trial. Adjustment for time trend was not pre-specified in CTD, but post hoc time-adjusted analysis showed no presence of influential drift. This trial was an example of a successful two-armed confirmatory trial with a Bayesian adaptive design using response adaptive randomization.
Collapse
Affiliation(s)
- Elena Shergina
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Kimber P. Richter
- Department of Population Health, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Chuanwu Zhang
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Sanofi, 450 Water Street, Cambridge, MA, 02141, USA
| | - Laura Mussulman
- Clinical and Translational Science Unit Fairway, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Niaman Nazir
- Department of Population Health, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Byron J. Gajewski1
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| |
Collapse
|
23
|
Magbanua MJM, Ahmed Z, Sayaman RW, Swigart LB, Hirst GL, Yau C, Wolf DM, Li W, Delson AL, Perlmutter J, Pohlmann P, Symmans WF, Yee D, Hylton NM, Esserman LJ, DeMichele AM, Rugo HS, van ‘t Veer LJ. Cell-free DNA Concentration as a Biomarker of Response and Recurrence in HER2-Negative Breast Cancer Receiving Neoadjuvant Chemotherapy. Clin Cancer Res 2024; 30:2444-2451. [PMID: 38470545 PMCID: PMC11147708 DOI: 10.1158/1078-0432.ccr-23-2928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/08/2023] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
PURPOSE We previously demonstrated the clinical significance of circulating tumor DNA (ctDNA) in patients with HER2-negative breast cancer receiving neoadjuvant chemotherapy (NAC). Here, we compared its predictive and prognostic value with cell-free DNA (cfDNA) concentration measured in the same samples from the same patients. EXPERIMENTAL DESIGN 145 patients with hormone receptor (HR)-positive/HER2-negative and 138 triple-negative breast cancer (TNBC) with ctDNA data from a previous study were included in the analysis. Associations of serial cfDNA concentration with residual cancer burden (RCB) and distant recurrence-free survival (DRFS) were examined. RESULTS In TNBC, we observed a modest negative correlation between cfDNA concentration 3 weeks after treatment initiation and RCB, but none of the other timepoints showed significant correlation. In contrast, ctDNA was significantly positively correlated with RCB at all timepoints (all R > 0.3 and P < 0.05). In the HR-positive/HER2-negative group, cfDNA concentration did not associate with response to NAC, but survival analysis showed that high cfDNA shedders at pretreatment had a significantly worse DRFS than low shedders (hazard ratio, 2.12; P = 0.037). In TNBC, the difference in survival between high versus low cfDNA shedders at all timepoints was not statistically significant. In contrast, as previously reported, ctDNA at all timepoints was significantly correlated with DRFS in both subtypes. CONCLUSIONS In TNBC, cfDNA concentrations during therapy were not strongly correlated with response or prognosis. In the HR-positive/HER2-negative group, pretreatment cfDNA concentration was prognostic for DRFS. Overall, the predictive and prognostic value of cfDNA concentration was more limited than that of ctDNA.
Collapse
Affiliation(s)
- Mark Jesus M. Magbanua
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, USA
| | - Ziad Ahmed
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, USA
| | - Rosalyn W. Sayaman
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, USA
| | - Lamorna Brown Swigart
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, USA
| | - Gill L. Hirst
- Department of Surgery, University of California San Francisco, San Francisco, USA
| | - Christina Yau
- Department of Surgery, University of California San Francisco, San Francisco, USA
| | - Denise M. Wolf
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, USA
| | - Wen Li
- Department of Radiology, University of California San Francisco, San Francisco, USA
| | - Amy L. Delson
- Breast Science Advocacy Core, University of California San Francisco, San Francisco, USA
| | - Jane Perlmutter
- Breast Science Advocacy Core, University of California San Francisco, San Francisco, USA
| | - Paula Pohlmann
- Department of Breast Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, USA
| | - W. Fraser Symmans
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, USA
| | - Douglas Yee
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, USA
| | - Nola M. Hylton
- Department of Radiology, University of California San Francisco, San Francisco, USA
| | - Laura J. Esserman
- Department of Surgery, University of California San Francisco, San Francisco, USA
| | - Angela M. DeMichele
- Division of Hematology/Oncology, University of Pennsylvania, Philadelphia, USA
| | - Hope S. Rugo
- Division of Hematology/Oncology, University of California San Francisco, San Francisco, USA
| | - Laura J. van ‘t Veer
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, USA
| |
Collapse
|
24
|
Mason SR, Willson ML, Egger SJ, Beith J, Dear RF, Goodwin A. Platinum chemotherapy for early triple-negative breast cancer. Breast 2024; 75:103712. [PMID: 38492276 PMCID: PMC10959715 DOI: 10.1016/j.breast.2024.103712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer associated with shorter survival and a higher likelihood of recurrence. In early TNBC, platinum chemotherapy has been shown to improve pathological complete response (pCR); however, its effect on long-term survival outcomes has not been fully elucidated. METHODS Randomised controlled trials examining neoadjuvant or adjuvant platinum chemotherapy for early TNBC were included. Primary outcomes were disease-free survival (DFS) and overall survival (OS). Secondary outcomes were pCR, treatment adherence, grade III or IV toxicity related to chemotherapy, and quality of life. RESULTS From 3972 records, we included 20 published studies. All studies reporting DFS and OS used carboplatin. Inclusion of platinum chemotherapy improved DFS (neoadjuvant: hazard ratio (HR) 0.63, 95% confidence interval (CI) 0.53 to 0.75; adjuvant: HR 0.69, 95% CI 0.54 to 0.88) and OS (neoadjuvant: HR 0.69, 95% CI 0.55 to 0.86; adjuvant: 0.70, 95% CI 0.50 to 0.96). Our analysis confirmed platinum chemotherapy increased pCR rates (risk ratio (RR) 1.44, 95% CI 1.31 to 1.59). There were no differences seen in examined subgroups. Platinum chemotherapy was associated with reduced dose intensity and increased haematological toxicity. CONCLUSIONS Platinum-based chemotherapy using carboplatin in the adjuvant or neoadjuvant setting improves long-term outcomes of DFS and OS in early TNBC, with no evidence of differences by subgroup. This was at the cost of more frequent chemotherapy delays and dose reductions, and greater haematological toxicity. These findings support the use of platinum-based chemotherapy for people with early TNBC.
Collapse
Affiliation(s)
- Sofia Re Mason
- Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, UNSW, Sydney, Australia; Chris O'Brien Lifehouse, Camperdown, Australia; Concord Cancer Centre, Concord Repatriation General Hospital, Concord, Australia.
| | - Melina L Willson
- Evidence Integration, NHMRC Clinical Trials Centre, The University of Sydney, Sydney, Australia
| | - Sam J Egger
- Cancer Research Division, Cancer Council NSW, Sydney, Australia; The Daffodil Centre, The University of Sydney, Sydney, Australia
| | - Jane Beith
- Chris O'Brien Lifehouse, Camperdown, Australia
| | - Rachel F Dear
- Sydney Medical School, The University of Sydney, Sydney, Australia; The Kinghorn Cancer Centre, Darlinghurst, Australia
| | - Annabel Goodwin
- Chris O'Brien Lifehouse, Camperdown, Australia; Concord Cancer Centre, Concord Repatriation General Hospital, Concord, Australia; Sydney Medical School, The University of Sydney, Sydney, Australia
| |
Collapse
|
25
|
Song XQ, Shao ZM. Identification of immune-related prognostic biomarkers in triple-negative breast cancer. Transl Cancer Res 2024; 13:1707-1720. [PMID: 38737702 PMCID: PMC11082668 DOI: 10.21037/tcr-23-1554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/29/2024] [Indexed: 05/14/2024]
Abstract
Background Triple-negative breast cancer (TNBC), a type of breast cancer, lacks immune-related markers that can be used for prognosis or prediction. Therefore, we created a predictive framework for TNBC using a risk assessment. Methods Our previous study group consisted of 360 individuals who were diagnosed with TNBC through pathology using RNA sequencing and had clinical data from Fudan University Shanghai Cancer Center (FUSCC). A risk scoring model was constructed using the Cox regression method with the least absolute shrinkage and selection operator (LASSO). A multivariate Cox regression analysis was utilized to develop the prediction model, which was then assessed using the consistency index and calibration plots. The validation cohort of The Cancer Genome Atlas (TCGA) TNBC confirmed the strength of the signatures' predictive value. Results The prognostic risk score model included 12 genes: TDO2, CHIT1, CARML2, HLA-C, ADIRF, C19orf33, CA8, AHNAK2, RHOV, OPLAH, THEM6, and NEBL. The receiver operator characteristic (ROC) curves for survivability values at 1, 3, and 5 years in the FUSCC TNBC cohort demonstrated area under the curve (AUC) values of 0.78, 0.83, and 0.75, respectively. These results indicated a high level of accuracy in predicting outcomes, which was further confirmed through validation using TCGA database. The patients in the high-risk group showed worse prognoses and lower levels of immune cell infiltration, specifically CD8+ T cells, than those in the low-risk group. Furthermore, the low-risk group exhibited a significant upregulation of genes that encode immune checkpoints, including CD274 and CTLA4, suggesting that immunotherapy may yield enhanced efficacy within this particular group. Conclusions In conclusion, the prognostic signature consisting of 12 genes can assist in the choice of immunotherapy for TNBC.
Collapse
Affiliation(s)
- Xiao-Qing Song
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
26
|
Al-Shamsi HO, Alwbari A, Azribi F, Calaud F, Thuruthel S, Tirmazy SHH, Kullab S, Ostomane S, Abulkhair O. BRCA testing and management of BRCA-mutated early-stage breast cancer: a comprehensive statement by expert group from GCC region. Front Oncol 2024; 14:1358982. [PMID: 38725624 PMCID: PMC11080009 DOI: 10.3389/fonc.2024.1358982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/28/2024] [Indexed: 05/12/2024] Open
Abstract
BReast CAncer (BRCA)1 and BRCA2 gene pathogenic variants account for most hereditary breast cancers (BC). Identification of BRCA mutations can significantly influence both prognosis and treatment outcomes. Furthermore, it enables the identification of individuals who are at heightened risk of developing BC due to inherited genetic mutations. Many developing countries rely on western guidelines for BRCA testing and BC management; however, there exist wide disparities in the prevalence of risk factors, availability of medical resources, and practice patterns. Guidelines tailored to specific regions can help mitigate healthcare variations, promote consistency in treatment, and aid healthcare providers in identifying effective therapies for improving patient outcomes. Hence, oncologists from the Gulf Cooperation Council (GCC) congregated virtually in March 2023 and reviewed existing data on the epidemiology of BC, BRCA mutations, practices and challenges associated with BRCA testing and management of BRCA mutated early-stage BC in the GCC region. They also provided insights on the real-world diagnostic and treatment practices and challenges in the GCC region in the BRCA-mutated early-stage BC domain and suggested some variations to international guidelines to aid their uptake in this region.
Collapse
Affiliation(s)
- Humaid O. Al-Shamsi
- Burjeel Medical City, Burjeel Holding, Abu Dhabi, United Arab Emirates
- Gulf Medical University, Ajman, United Arab Emirates
- Emirates Oncology Society, Dubai, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Gulf Cancer Society, Alsafa, Kuwait
| | - Ahmed Alwbari
- Almoosa Specialist Hospital Cancer Center, Al Ahsa, Saudi Arabia
| | | | | | | | | | - Sharif Kullab
- King Khalid University Hospital, Riyadh, Saudi Arabia
| | | | | |
Collapse
|
27
|
Wang P, Zhao R, Jin X, Zhou X, Xie X. Veliparib‑Induced Toxicity in Cancer Patients: A Systematic Review and Meta‑Analysis. Cancer Invest 2024:1-14. [PMID: 38588003 DOI: 10.1080/07357907.2024.2338128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/29/2024] [Indexed: 04/10/2024]
Abstract
In this study, we investigate the veliparib‑induced toxicity in cancer patients. Databases were searched for RCTs treated with veliparib. We found veliparib could increase the risk of hematologic and gastrointestinal toxicities. Anemia, neutropenia, thrombocytopenia, and nausea were the most common toxicities. Patients diagnosed with gastrointestinal tumors tend to have a higher risk of high-grade neutropenia; patients in the first-line setting tend to have a higher risk of high-grade anemia and neutropenia than those in the ≥ second line setting. Patients receiving higher dosage of veliparib tend to have a higher risk of all-grade anemia. Veliparib could also increase the risk of insomnia, myalgia, pneumonia, dyspnea, hyponatremia, and fatigue.
Collapse
Affiliation(s)
- Peirong Wang
- Internal Medicine of Traditional Chinese Medicine, Chinese Traditional Medicine Hospital of Meishan, China
| | - Ruizhen Zhao
- Internal Medicine of Traditional Chinese Medicine, Chinese Traditional Medicine Hospital of Meishan, China
| | - Xiaohui Jin
- Department of Neurology, Chinese Traditional Medicine Hospital of Meishan, China
| | - Xianhua Zhou
- Internal Medicine of Traditional Chinese Medicine, Chinese Traditional Medicine Hospital of Meishan, China
| | - Xiaolong Xie
- Bone injury of Traditional Chinese Medicine, Chinese Traditional Medicine Hospital of Meishan, Meishan, Sichuan, P.R.China
| |
Collapse
|
28
|
Wang H, Yee D, Potter D, Jewett P, Yau C, Beckwith H, Watson A, O'Grady N, Wilson A, Brain S, Pohlmann P, Blaes A. Impact of body mass index on pathological response after neoadjuvant chemotherapy: results from the I-SPY 2 trial. Breast Cancer Res Treat 2024; 204:589-597. [PMID: 38216819 PMCID: PMC10959799 DOI: 10.1007/s10549-023-07214-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 12/05/2023] [Indexed: 01/14/2024]
Abstract
PURPOSE Increased body mass index (BMI) has been associated with poor outcomes in women with breast cancer. We evaluated the association between BMI and pathological complete response (pCR) in the I-SPY 2 trial. METHODS 978 patients enrolled in the I-SPY 2 trial 3/2010-11/2016 and had a recorded baseline BMI prior to treatment were included in the analysis. Tumor subtypes were defined by hormone receptor and HER2 status. Pretreatment BMI was categorized as obese (BMI ≥ 30 kg/m2), overweight (25 ≤ BMI < 30 kg/m2), and normal/underweight (< 25 kg/m2). pCR was defined as elimination of detectable invasive cancer in the breast and lymph nodes (ypT0/Tis and ypN0) at the time of surgery. Logistic regression analysis was used to determine associations between BMI and pCR. Event-free survival (EFS) and overall survival (OS) between different BMI categories were examined using Cox proportional hazards regression. RESULTS The median age in the study population was 49 years. pCR rates were 32.8% in normal/underweight, 31.4% in overweight, and 32.5% in obese patients. In univariable analysis, there was no significant difference in pCR with BMI. In multivariable analysis adjusted for race/ethnicity, age, menopausal status, breast cancer subtype, and clinical stage, there was no significant difference in pCR after neoadjuvant chemotherapy for obese compared with normal/underweight patients (OR = 1.1, 95% CI 0.68-1.63, P = 0.83), and for overweight compared with normal/underweight (OR = 1, 95% CI 0.64-1.47, P = 0.88). We tested for potential interaction between BMI and breast cancer subtype; however, the interaction was not significant in the multivariable model (P = 0.09). Multivariate Cox regression showed there was no difference in EFS (P = 0.81) or OS (P = 0.52) between obese, overweight, and normal/underweight breast cancer patients with a median follow-up time of 3.8 years. CONCLUSION We found no difference in pCR rates by BMI with actual body weight-based neoadjuvant chemotherapy in this biologically high-risk breast cancer population in the I-SPY2 trial.
Collapse
Affiliation(s)
- Haiyun Wang
- Cancer Care Associates of York, York, PA, USA
| | - Douglas Yee
- Division of Hematology, Oncology and Transplantation, University of Minnesota, 420 Delaware St SE, MMC 480, Minneapolis, MN, 55455, USA
| | - David Potter
- Division of Hematology, Oncology and Transplantation, University of Minnesota, 420 Delaware St SE, MMC 480, Minneapolis, MN, 55455, USA
| | - Patricia Jewett
- Division of Hematology, Oncology and Transplantation, University of Minnesota, 420 Delaware St SE, MMC 480, Minneapolis, MN, 55455, USA
| | - Christina Yau
- University of California San Francisco, San Francisco, USA
| | - Heather Beckwith
- Division of Hematology, Oncology and Transplantation, University of Minnesota, 420 Delaware St SE, MMC 480, Minneapolis, MN, 55455, USA
| | | | | | - Amy Wilson
- Quantum Leap Healthcare Collaborative, San Francisco, USA
| | - Susie Brain
- University of California San Francisco, San Francisco, USA
| | - Paula Pohlmann
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Anne Blaes
- Division of Hematology, Oncology and Transplantation, University of Minnesota, 420 Delaware St SE, MMC 480, Minneapolis, MN, 55455, USA.
| |
Collapse
|
29
|
Weng L, Zhou J, Guo S, Xu N, Ma R. The molecular subtyping and precision medicine in triple-negative breast cancer---based on Fudan TNBC classification. Cancer Cell Int 2024; 24:120. [PMID: 38555429 PMCID: PMC10981301 DOI: 10.1186/s12935-024-03261-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/02/2024] [Indexed: 04/02/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is widely recognized as the most aggressive form of breast cancer, occurring more frequently in younger patients and characterized by high heterogeneity, early distant metastases and poor prognosis. Multiple treatment options have failed to achieve the expected therapeutic effects due to the lack of clear molecular targets. Based on genomics, transcriptomics and metabolomics, the multi-omics analysis further clarifies TNBC subtyping, which provides a greater understanding of tumour heterogeneity and targeted therapy sensitivity. For instance, the luminal androgen receptor subtype (LAR) exhibits responsiveness to anti-AR therapy, and the basal-like immune-suppressed subtype (BLIS) tends to benefit from poly (ADP-ribose) polymerase inhibitors (PARPis) and anti-angiogenic therapy. The efficacy of multi-dimensional combination therapy holds immense importance in guiding personalized and precision medicine for TNBC. This review offers a systematic overview of recent FuDan TNBC molecular subtyping and its role in the instruction of clinical precision therapy.
Collapse
Affiliation(s)
- Lijuan Weng
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
- Department of Radiotherapy and Chemotherapy, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Jianliang Zhou
- Department of Radiotherapy and Chemotherapy, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Shenchao Guo
- Department of Radiotherapy and Chemotherapy, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Nong Xu
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang University, Hangzhou, China.
| | - Ruishuang Ma
- Department of Radiotherapy and Chemotherapy, The First Affiliated Hospital of Ningbo University, Ningbo, China.
| |
Collapse
|
30
|
Kulkarni AA, Jain A, Jewett PI, Desai N, Van 't Veer L, Hirst G, Yee D, Blaes AH. Association of antibiotic exposure with residual cancer burden in HER2-negative early stage breast cancer. NPJ Breast Cancer 2024; 10:24. [PMID: 38531875 PMCID: PMC10966095 DOI: 10.1038/s41523-024-00630-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Antibiotic exposure during immunotherapy (IO) has been shown to negatively affect clinical outcomes in various cancer types. The aim of this study was to evaluate whether antibiotic exposure in patients with high-risk early-stage HER2-negative breast cancer (BC) undergoing treatment with neoadjuvant pembrolizumab impacted residual cancer burden (RCB) and pathologic complete response (pCR) in the pembrolizumab-4 arm of the ISPY-2 clinical trial. Patients received pembrolizumab for four cycles concurrently with weekly paclitaxel for 12 weeks, followed by four cycles of doxorubicin plus cyclophosphamide every 2 or 3 weeks. Patients who received at least one dose of systemic antibiotics concurrently at the time of immunotherapy (IO) were included in the antibiotic exposure group (ATB+). All other participants were included in the control group (ATB-). RCB index and PCR rates were compared between the ATB+ and ATB- groups using t-tests and Chi-squared tests, and linear and logistic regression models, respectively. Sixty-six patients were included in the analysis. 18/66 (27%) patients were in the ATB+ group. Antibiotic use during IO was associated with a higher mean RCB index (1.80 ± 1.43 versus 1.08 ± 1.41) and a lower pCR rate (27.8% versus 52.1%). The association between antibiotic use and the RCB index remained significant in multivariable linear regression analysis (RCB index-coefficient 0.86, 95% CI 0.20-1.53, P = 0.01). Our findings suggest that concurrent antibiotic exposure during neoadjuvant pembrolizumab in HER2-negative early-stage BC is associated with higher RCB. Further validation in larger cohorts is needed to confirm these findings.
Collapse
Affiliation(s)
- Amit A Kulkarni
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN, USA.
| | - Aditya Jain
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Patricia I Jewett
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Nidhi Desai
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Laura Van 't Veer
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Gillian Hirst
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Douglas Yee
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Anne H Blaes
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
31
|
Wang J, Suh JM, Woo BJ, Navickas A, Garcia K, Yin K, Fish L, Cavazos T, Hänisch B, Markett D, Yu S, Hirst G, Brown-Swigart L, Esserman LJ, van ‘t Veer LJ, Goodarzi H. Systematic annotation of orphan RNAs reveals blood-accessible molecular barcodes of cancer identity and cancer-emergent oncogenic drivers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.19.585748. [PMID: 38562907 PMCID: PMC10983903 DOI: 10.1101/2024.03.19.585748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
From extrachromosomal DNA to neo-peptides, the broad reprogramming of the cancer genome leads to the emergence of molecules that are specific to the cancer state. We recently described orphan non-coding RNAs (oncRNAs) as a class of cancer-specific small RNAs with the potential to play functional roles in breast cancer progression1. Here, we report a systematic and comprehensive search to identify, annotate, and characterize cancer-emergent oncRNAs across 32 tumor types. We also leverage large-scale in vivo genetic screens in xenografted mice to functionally identify driver oncRNAs in multiple tumor types. We have not only discovered a large repertoire of oncRNAs, but also found that their presence and absence represent a digital molecular barcode that faithfully captures the types and subtypes of cancer. Importantly, we discovered that this molecular barcode is partially accessible from the cell-free space as some oncRNAs are secreted by cancer cells. In a large retrospective study across 192 breast cancer patients, we showed that oncRNAs can be reliably detected in the blood and that changes in the cell-free oncRNA burden captures both short-term and long-term clinical outcomes upon completion of a neoadjuvant chemotherapy regimen. Together, our findings establish oncRNAs as an emergent class of cancer-specific non-coding RNAs with potential roles in tumor progression and clinical utility in liquid biopsies and disease monitoring.
Collapse
Affiliation(s)
- Jeffrey Wang
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California, USA
- Department of Urology, University of California, San Francisco, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, US Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Present address: School of Medicine, University of California, Davis, CA, US
| | - Jung Min Suh
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California, USA
- Department of Urology, University of California, San Francisco, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, US Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Brian J Woo
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California, USA
- Department of Urology, University of California, San Francisco, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, US Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Albertas Navickas
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California, USA
- Department of Urology, University of California, San Francisco, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, US Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Present address: Institut Curie, CNRS UMR3348, INSERM U1278, Orsay, France
| | - Kristle Garcia
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California, USA
- Department of Urology, University of California, San Francisco, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, US Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Keyi Yin
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California, USA
- Department of Urology, University of California, San Francisco, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, US Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lisa Fish
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California, USA
- Department of Urology, University of California, San Francisco, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, US Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Taylor Cavazos
- Biological and Medical Informatics, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Benjamin Hänisch
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California, USA
- Department of Urology, University of California, San Francisco, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, US Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Daniel Markett
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California, USA
- Department of Urology, University of California, San Francisco, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, US Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Shaorong Yu
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California, USA
- Department of Urology, University of California, San Francisco, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, US Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Gillian Hirst
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lamorna Brown-Swigart
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Laura J. Esserman
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Laura J. van ‘t Veer
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Hani Goodarzi
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California, USA
- Department of Urology, University of California, San Francisco, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, US Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Arc Institute, Palo Alto, CA 94304, USA
| |
Collapse
|
32
|
Duan XP, Qin BD, Jiao XD, Liu K, Wang Z, Zang YS. New clinical trial design in precision medicine: discovery, development and direction. Signal Transduct Target Ther 2024; 9:57. [PMID: 38438349 PMCID: PMC10912713 DOI: 10.1038/s41392-024-01760-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 03/06/2024] Open
Abstract
In the era of precision medicine, it has been increasingly recognized that individuals with a certain disease are complex and different from each other. Due to the underestimation of the significant heterogeneity across participants in traditional "one-size-fits-all" trials, patient-centered trials that could provide optimal therapy customization to individuals with specific biomarkers were developed including the basket, umbrella, and platform trial designs under the master protocol framework. In recent years, the successive FDA approval of indications based on biomarker-guided master protocol designs has demonstrated that these new clinical trials are ushering in tremendous opportunities. Despite the rapid increase in the number of basket, umbrella, and platform trials, the current clinical and research understanding of these new trial designs, as compared with traditional trial designs, remains limited. The majority of the research focuses on methodologies, and there is a lack of in-depth insight concerning the underlying biological logic of these new clinical trial designs. Therefore, we provide this comprehensive review of the discovery and development of basket, umbrella, and platform trials and their underlying logic from the perspective of precision medicine. Meanwhile, we discuss future directions on the potential development of these new clinical design in view of the "Precision Pro", "Dynamic Precision", and "Intelligent Precision". This review would assist trial-related researchers to enhance the innovation and feasibility of clinical trial designs by expounding the underlying logic, which be essential to accelerate the progression of precision medicine.
Collapse
Affiliation(s)
- Xiao-Peng Duan
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Bao-Dong Qin
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xiao-Dong Jiao
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Ke Liu
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Zhan Wang
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yuan-Sheng Zang
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
33
|
Ou Y, Wang M, Xu Q, Sun B, Jia Y. Small molecule agents for triple negative breast cancer: Current status and future prospects. Transl Oncol 2024; 41:101893. [PMID: 38290250 PMCID: PMC10840364 DOI: 10.1016/j.tranon.2024.101893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/01/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer with poor prognosis. The number of cases increased by 2.26 million in 2020, making it the most commonly diagnosed cancer type in the world. TNBCs lack hormone receptor (HR) and human epidermal growth factor 2 (HER2), which limits treatment options. Currently, paclitaxel-based drugs combined with other chemotherapeutics remain the main treatment for TNBC. There is currently no consensus on the best therapeutic regimen for TNBC. However, there have been successful clinical trials exploring large-molecule monoclonal antibodies, small-molecule targeted drugs, and novel antibody-drug conjugate (ADC). Although monoclonal antibodies have produced clinical success, their large molecular weight can limit therapeutic benefits. It is worth noting that in the past 30 years, the FDA has approved small molecule drugs for HER2-positive breast cancers. The lack of effective targets and the occurrence of drug resistance pose significant challenges in the treatment of TNBC. To improve the prognosis of TNBC, it is crucial to search for effective targets and to overcome drug resistance. This review examines the clinical efficacy, adverse effects, resistance mechanisms, and potential solutions of targeted small molecule drugs in both monotherapies and combination therapies. New therapeutic targets, including nuclear export protein 1 (XPO1) and hedgehog (Hh), are emerging as potential options for researchers and become integrated into clinical trials for TNBC. Additionally, there is growing interest in the potential of targeted protein degradation chimeras (PROTACs), degraders of rogue proteins, as a future therapy direction. This review provides potentially valuable insights with clinical implications.
Collapse
Affiliation(s)
- Yan Ou
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Mengchao Wang
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Qian Xu
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Binxu Sun
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yingjie Jia
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| |
Collapse
|
34
|
Albain KS, Yau C, Petricoin EF, Wolf DM, Lang JE, Chien AJ, Haddad T, Forero-Torres A, Wallace AM, Kaplan H, Pusztai L, Euhus D, Nanda R, Elias AD, Clark AS, Godellas C, Boughey JC, Isaacs C, Tripathy D, Lu J, Yung RL, Gallagher RI, Wulfkuhle JD, Brown-Swigart L, Krings G, Chen YY, Potter DA, Stringer-Reasor E, Blair S, Asare SM, Wilson A, Hirst GL, Singhrao R, Buxton M, Clennell JL, Sanil A, Berry S, Asare AL, Matthews JB, DeMichele AM, Hylton NM, Melisko M, Perlmutter J, Rugo HS, Symmans WF, van’t Veer LJ, Yee D, Berry DA, Esserman LJ. Neoadjuvant Trebananib plus Paclitaxel-based Chemotherapy for Stage II/III Breast Cancer in the Adaptively Randomized I-SPY2 Trial-Efficacy and Biomarker Discovery. Clin Cancer Res 2024; 30:729-740. [PMID: 38109213 PMCID: PMC10956403 DOI: 10.1158/1078-0432.ccr-22-2256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 10/11/2023] [Accepted: 12/13/2023] [Indexed: 12/20/2023]
Abstract
PURPOSE The neutralizing peptibody trebananib prevents angiopoietin-1 and angiopoietin-2 from binding with Tie2 receptors, inhibiting angiogenesis and proliferation. Trebananib was combined with paclitaxel±trastuzumab in the I-SPY2 breast cancer trial. PATIENTS AND METHODS I-SPY2, a phase II neoadjuvant trial, adaptively randomizes patients with high-risk, early-stage breast cancer to one of several experimental therapies or control based on receptor subtypes as defined by hormone receptor (HR) and HER2 status and MammaPrint risk (MP1, MP2). The primary endpoint is pathologic complete response (pCR). A therapy "graduates" if/when it achieves 85% Bayesian probability of success in a phase III trial within a given subtype. Patients received weekly paclitaxel (plus trastuzumab if HER2-positive) without (control) or with weekly intravenous trebananib, followed by doxorubicin/cyclophosphamide and surgery. Pathway-specific biomarkers were assessed for response prediction. RESULTS There were 134 participants randomized to trebananib and 133 to control. Although trebananib did not graduate in any signature [phase III probabilities: Hazard ratio (HR)-negative (78%), HR-negative/HER2-positive (74%), HR-negative/HER2-negative (77%), and MP2 (79%)], it demonstrated high probability of superior pCR rates over control (92%-99%) among these subtypes. Trebananib improved 3-year event-free survival (HR 0.67), with no significant increase in adverse events. Activation levels of the Tie2 receptor and downstream signaling partners predicted trebananib response in HER2-positive disease; high expression of a CD8 T-cell gene signature predicted response in HR-negative/HER2-negative disease. CONCLUSIONS The angiopoietin (Ang)/Tie2 axis inhibitor trebananib combined with standard neoadjuvant therapy increased estimated pCR rates across HR-negative and MP2 subtypes, with probabilities of superiority >90%. Further study of Ang/Tie2 receptor axis inhibitors in validated, biomarker-predicted sensitive subtypes is warranted.
Collapse
Affiliation(s)
- Kathy S. Albain
- Loyola University Chicago Stritch School of Medicine, Chicago, IL
| | - Christina Yau
- University of California San Francisco, San Francisco, CA
| | | | - Denise M. Wolf
- University of California San Francisco, San Francisco, CA
| | | | - A. Jo Chien
- University of California San Francisco, San Francisco, CA
| | | | | | | | | | | | | | | | | | | | | | | | | | - Debu Tripathy
- University of Texas MD Anderson Cancer Center, Houston, TX
| | - Janice Lu
- University of Southern California, Los Angeles, CA
| | | | | | | | | | - Gregor Krings
- University of California San Francisco, San Francisco, CA
| | - Yunn Yi Chen
- University of California San Francisco, San Francisco, CA
| | | | | | - Sarah Blair
- University of California San Diego, La Jolla, CA
| | - Smita M. Asare
- Quantum Leap Healthcare Collaborative, San Francisco, CA
| | - Amy Wilson
- Quantum Leap Healthcare Collaborative, San Francisco, CA
| | | | - Ruby Singhrao
- University of California San Francisco, San Francisco, CA
| | | | | | | | | | - Adam L. Asare
- Quantum Leap Healthcare Collaborative, San Francisco, CA
| | | | | | - Nola M. Hylton
- University of California San Francisco, San Francisco, CA
| | | | | | - Hope S. Rugo
- University of California San Francisco, San Francisco, CA
| | | | | | | | | | | |
Collapse
|
35
|
Catalano M, Lapucci A, Nobili S, De Gennaro Aquino I, Vascotto IA, Antonuzzo L, Villari D, Nesi G, Mini E, Roviello G. Platinum-based chemotherapy in metastatic prostate cancer: what possibilities? Cancer Chemother Pharmacol 2024; 93:1-9. [PMID: 37934252 PMCID: PMC10796584 DOI: 10.1007/s00280-023-04604-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/11/2023] [Indexed: 11/08/2023]
Abstract
Metastatic prostate cancer is a major health burden worldwide, necessitating the continuous development of effective treatment strategies. Androgen deprivation therapy remains the cornerstone of prostate cancer treatment, but novel approaches are needed for metastatic castration-resistant prostate cancer (mCRPC). Recent studies have highlighted the prevalence of mutations in DNA repair genes, including BRCA1 and BRCA2, in mCRPC patients, rendering them more susceptible to platinum-based chemotherapy and Poly (ADP-ribose) polymerase (PARP) inhibitors. Platinum-based chemotherapy, particularly in combination with taxanes, has demonstrated encouraging activity in mCRPC, as well as homologous recombination gene alterations have shown increased sensitivity to platinum compounds in these patients. The combination of platinum-based chemotherapy with PARP inhibitors represents a novel and potentially effective therapeutic strategy for this subgroup of patients. However, the optimal sequence of administering these agents and the potential for cross-resistance and cross-toxicities remain areas requiring further investigation. Prospective randomized studies are essential to elucidate the most effective treatment approach for this challenging patient population. This review aims to explore the potential of platinum-based chemotherapy in the context of prostate cancer, and more in detail in homologous recombination repair (HRR) mutated patients. We discuss the synergistic effects of combining platinum compounds with PARP inhibitors and the potential benefits of adopting specific therapeutic sequences.
Collapse
Affiliation(s)
- Martina Catalano
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, 50139, Florence, Italy.
- University of Florence, Viale Pieraccini 6, 50134, Florence, FI, Italy.
| | - Andrea Lapucci
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, 50139, Florence, Italy
| | - Stefania Nobili
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, 50139, Florence, Italy
| | | | | | - Lorenzo Antonuzzo
- Department of Experimental and Clinical Medicine, University of Florence, 50134, Florence, Italy
| | - Donata Villari
- Department of Experimental and Clinical Medicine, University of Florence, 50134, Florence, Italy
| | - Gabriella Nesi
- Department of Health Sciences, Section of Pathological Anatomy, University of Florence, 50139, Florence, Italy
| | - Enrico Mini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, 50139, Florence, Italy
| | - Giandomenico Roviello
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, 50139, Florence, Italy
| |
Collapse
|
36
|
Gallagher RI, Wulfkuhle J, Wolf DM, Brown-Swigart L, Yau C, O'Grady N, Basu A, Lu R, Campbell MJ, Magbanua MJ, Coppé JP, Asare SM, Sit L, Matthews JB, Perlmutter J, Hylton N, Liu MC, Symmans WF, Rugo HS, Isaacs C, DeMichele AM, Yee D, Pohlmann PR, Hirst GL, Esserman LJ, van 't Veer LJ, Petricoin EF. Protein signaling and drug target activation signatures to guide therapy prioritization: Therapeutic resistance and sensitivity in the I-SPY 2 Trial. Cell Rep Med 2023; 4:101312. [PMID: 38086377 PMCID: PMC10772394 DOI: 10.1016/j.xcrm.2023.101312] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 07/03/2023] [Accepted: 11/14/2023] [Indexed: 12/22/2023]
Abstract
Molecular subtyping of breast cancer is based mostly on HR/HER2 and gene expression-based immune, DNA repair deficiency, and luminal signatures. We extend this description via functional protein pathway activation mapping using pre-treatment, quantitative expression data from 139 proteins/phosphoproteins from 736 patients across 8 treatment arms of the I-SPY 2 Trial (ClinicalTrials.gov: NCT01042379). We identify predictive fit-for-purpose, mechanism-of-action-based signatures and individual predictive protein biomarker candidates by evaluating associations with pathologic complete response. Elevated levels of cyclin D1, estrogen receptor alpha, and androgen receptor S650 associate with non-response and are biomarkers for global resistance. We uncover protein/phosphoprotein-based signatures that can be utilized both for molecularly rationalized therapeutic selection and for response prediction. We introduce a dichotomous HER2 activation response predictive signature for stratifying triple-negative breast cancer patients to either HER2 or immune checkpoint therapy response as a model for how protein activation signatures provide a different lens to view the molecular landscape of breast cancer and synergize with transcriptomic-defined signatures.
Collapse
Affiliation(s)
- Rosa I Gallagher
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA.
| | - Julia Wulfkuhle
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA.
| | - Denise M Wolf
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lamorna Brown-Swigart
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Christina Yau
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nicholas O'Grady
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Amrita Basu
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ruixiao Lu
- Quantum Leap Healthcare Collaborative, San Francisco, CA 94118, USA
| | - Michael J Campbell
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mark J Magbanua
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jean-Philippe Coppé
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Smita M Asare
- Quantum Leap Healthcare Collaborative, San Francisco, CA 94118, USA
| | - Laura Sit
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jeffrey B Matthews
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - Nola Hylton
- Department of Radiology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Minetta C Liu
- Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - W Fraser Symmans
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hope S Rugo
- Division of Hematology/Oncology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Claudine Isaacs
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA
| | - Angela M DeMichele
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Douglas Yee
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Paula R Pohlmann
- Department of Breast Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gillian L Hirst
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Laura J Esserman
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Laura J van 't Veer
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA.
| |
Collapse
|
37
|
Jackson H, Bowen S, Jaki T. Using biomarkers to allocate patients in a response-adaptive clinical trial. COMMUN STAT-SIMUL C 2023; 52:5946-5965. [PMID: 38045870 PMCID: PMC7615340 DOI: 10.1080/03610918.2021.2004420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 11/05/2021] [Indexed: 10/19/2022]
Abstract
In this paper, we discuss a response adaptive randomization method, and why it should be used in clinical trials for rare diseases compared to a randomized controlled trial with equal fixed randomization. The developed method uses a patient's biomarkers to alter the allocation probability to each treatment, in order to emphasize the benefit to the trial population. The method starts with an initial burn-in period of a small number of patients, who with equal probability, are allocated to each treatment. We then use a regression method to predict the best outcome of the next patient, using their biomarkers and the information from the previous patients. This estimated best treatment is assigned to the next patient with high probability. A completed clinical trial for the effect of catumaxomab on the survival of cancer patients is used as an example to demonstrate the use of the method and the differences to a controlled trial with equal allocation. Different regression procedures are investigated and compared to a randomized controlled trial, using efficacy and ethical measures.
Collapse
Affiliation(s)
| | | | - T Jaki
- Lancaster University, Lancaster, UK
- University of Cambridge, Cambridge, UK
| |
Collapse
|
38
|
Capuozzo M, Celotto V, Santorsola M, Fabozzi A, Landi L, Ferrara F, Borzacchiello A, Granata V, Sabbatino F, Savarese G, Cascella M, Perri F, Ottaiano A. Emerging treatment approaches for triple-negative breast cancer. Med Oncol 2023; 41:5. [PMID: 38038783 DOI: 10.1007/s12032-023-02257-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023]
Abstract
Approximately, 15% of global breast cancer cases are diagnosed as triple-negative breast cancer (TNBC), identified as the most aggressive subtype due to the simultaneous absence of estrogen receptor, progesterone receptor, and HER2. This characteristic renders TNBC highly aggressive and challenging to treat, as it excludes the use of effective drugs such as hormone therapy and anti-HER2 agents. In this review, we explore standard therapies and recent emerging approaches for TNBC, including PARP inhibitors, immune checkpoint inhibitors, PI3K/AKT pathway inhibitors, and cytotoxin-conjugated antibodies. The mechanism of action of these drugs and their utilization in clinical practice is explained in a pragmatic and prospective manner, contextualized within the current landscape of standard therapies for this pathology. These advancements present a promising frontier for tailored interventions with the potential to significantly improve outcomes for TNBC patients. Interestingly, while TNBC poses a complex challenge, it also serves as a paradigm and an opportunity for translational research and innovative therapies in the field of oncology.
Collapse
Affiliation(s)
- Maurizio Capuozzo
- Pharmaceutical Department, ASL Napoli 3, Ercolano, 80056, Naples, Italy
| | - Venere Celotto
- Pharmaceutical Department, ASL Napoli 3, Ercolano, 80056, Naples, Italy
| | - Mariachiara Santorsola
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", via M. Semmola, 80131, Naples, Italy
| | - Antonio Fabozzi
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", via M. Semmola, 80131, Naples, Italy
| | - Loris Landi
- Sanitary District, Ds. 58 ASL Napoli 3, Pompei, 80045, Naples, Italy
| | - Francesco Ferrara
- Pharmaceutical Department, ASL Napoli 3, Via Dell'amicizia 22, Nola, 80035, Naples, Italy
| | - Assunta Borzacchiello
- Institute of Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples, Italy
| | - Vincenza Granata
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", via M. Semmola, 80131, Naples, Italy
| | - Francesco Sabbatino
- Oncology Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, 84081, Salerno, Italy
| | - Giovanni Savarese
- AMES, Centro Polidiagnostico Strumentale Srl, Via Padre Carmine Fico 24, Casalnuovo Di, 80013, Naples, Italy
| | - Marco Cascella
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", via M. Semmola, 80131, Naples, Italy
| | - Francesco Perri
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", via M. Semmola, 80131, Naples, Italy
| | - Alessandro Ottaiano
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", via M. Semmola, 80131, Naples, Italy.
| |
Collapse
|
39
|
Kyalwazi B, Yau C, Campbell MJ, Yoshimatsu TF, Chien AJ, Wallace AM, Forero-Torres A, Pusztai L, Ellis ED, Albain KS, Blaes AH, Haley BB, Boughey JC, Elias AD, Clark AS, Isaacs CJ, Nanda R, Han HS, Yung RL, Tripathy D, Edmiston KK, Viscusi RK, Northfelt DW, Khan QJ, Asare SM, Wilson A, Hirst GL, Lu R, Symmans WF, Yee D, DeMichele AM, van ’t Veer LJ, Esserman LJ, Olopade OI. Race, Gene Expression Signatures, and Clinical Outcomes of Patients With High-Risk Early Breast Cancer. JAMA Netw Open 2023; 6:e2349646. [PMID: 38153734 PMCID: PMC10755617 DOI: 10.1001/jamanetworkopen.2023.49646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/26/2023] [Indexed: 12/29/2023] Open
Abstract
Importance There has been little consideration of genomic risk of recurrence by breast cancer subtype despite evidence of racial disparities in breast cancer outcomes. Objective To evaluate associations between clinical trial end points, namely pathologic complete response (pCR) and distant recurrence-free survival (DRFS), and race and examine whether gene expression signatures are associated with outcomes by race. Design, Setting, and Participants This retrospective cohort study used data from the Investigation of Serial Studies to Predict Your Therapeutic Response With Imaging and Molecular Analysis 2 (I-SPY 2) multicenter clinical trial of neoadjuvant chemotherapy with novel agents and combinations for patients with previously untreated stage II/III breast cancer. Analyses were conducted of associations between race and short- and long-term outcomes, overall and by receptor subtypes, and their association with 28 expression biomarkers. The trial enrolled 990 female patients between March 30, 2010, and November 5, 2016, with a primary tumor size of 2.5 cm or greater and clinical or molecular high risk based on MammaPrint or hormone receptor (HR)-negative/ERBB2 (formerly HER2 or HER2/neu)-positive subtyping across 9 arms. This data analysis was performed between June 10, 2021, and October 20, 2022. Exposure Race, tumor receptor subtypes, and genomic biomarker expression of early breast cancer. Main Outcomes and Measures The primary outcomes were pCR and DRFS assessed by race, overall, and by tumor subtype using logistic regression and Cox proportional hazards regression models. The interaction between 28 expression biomarkers and race, considering pCR and DRFS overall and within subtypes, was also evaluated. Results The analytic sample included 974 participants (excluding 16 self-reporting as American Indian or Alaska Native, Native Hawaiian or Other Pacific Islander, or multiple races due to small sample sizes), including 68 Asian (7%), 120 Black (12%), and 786 White (81%) patients. Median (range) age at diagnosis was 47 (25-71) years for Asian, 49 (25-77) for Black, and 49 (23-73) years for White patients. The pCR rates were 32% (n = 22) for Asian, 30% for Black (n = 36), and 32% for White (n = 255) patients (P = .87). Black patients with HR-positive/ERBB2-negative tumors not achieving pCR had significantly worse DRFS than their White counterparts (hazard ratio, 2.28; 95% CI, 1.24-4.21; P = .01), with 5-year DRFS rates of 55% (n = 32) and 77% (n = 247), respectively. Black patients with HR-positive/ERBB2-negative tumors, compared with White patients, had higher expression of an interferon signature (mean [SD], 0.39 [0.87] and -0.10 [0.99]; P = .007) and, compared with Asian patients, had a higher mitotic score (mean [SD], 0.07 [1.08] and -0.69 [1.06]; P = .01) and lower estrogen receptor/progesterone receptor signature (mean [SD], 0.31 [0.90] and 1.08 [0.95]; P = .008). A transforming growth factor β signature had a significant association with race relative to pCR and DRFS, with a higher signature associated with lower pCR and worse DRFS outcomes among Black patients only. Conclusions and Relevance The findings show that women with early high-risk breast cancer who achieve pCR have similarly good outcomes regardless of race, but Black women with HR-positive/ERBB2-negative tumors without pCR may have worse DRFS than White women, highlighting the need to develop and test novel biomarker-informed therapies in diverse populations.
Collapse
Affiliation(s)
- Beverly Kyalwazi
- Center for Clinical Cancer Genetics and Global Health, The University of Chicago, Chicago, Illinois
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas
| | - Christina Yau
- Department of Surgery, University of California, San Francisco
| | | | - Toshio F. Yoshimatsu
- Center for Clinical Cancer Genetics and Global Health, The University of Chicago, Chicago, Illinois
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, Illinois
| | - A. Jo Chien
- Department of Hematology Oncology and Surgery, University of California, San Francisco Helen Diller Comprehensive Cancer Center, San Francisco
| | - Anne M. Wallace
- Division of Breast Surgery and the Comprehensive Breast Health Center, University of California San Diego, La Jolla
| | | | - Lajos Pusztai
- Department of Medical Oncology, Yale School of Medicine, Yale University, New Haven, Connecticut
| | | | - Kathy S. Albain
- Division of Hematology-Oncology, Department of Medicine, University of Minnesota, Minneapolis
| | - Anne H. Blaes
- Division of Hematology-Oncology, Department of Medicine, University of Minnesota, Minneapolis
| | - Barbara B. Haley
- Division of Hematology-Oncology, University of Texas Southwestern Medical Center, Dallas
| | | | | | - Amy S. Clark
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia
| | | | - Rita Nanda
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, Illinois
| | - Hyo S. Han
- Department of Breast Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Rachel L. Yung
- Department of Medicine, School of Medicine, University of Washington, Seattle
| | - Debasish Tripathy
- Division of Cancer Medicine, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | | | - Rebecca K. Viscusi
- Department of Surgery, University of Arizona College of Medicine, Tucson
| | | | - Qamar J. Khan
- Division of Medical Oncology, Department of Internal Medicine, University of Kansas Medical Center, Kansas City
| | - Smita M. Asare
- Quantum Leap Healthcare Collaborative, San Francisco, California
| | - Amy Wilson
- Quantum Leap Healthcare Collaborative, San Francisco, California
| | | | - Ruixiao Lu
- Quantum Leap Healthcare Collaborative, San Francisco, California
| | - William Fraser Symmans
- Division of Pathology and Laboratory Medicine, Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston
| | - Douglas Yee
- Division of Hematology-Oncology, Department of Medicine, University of Minnesota, Minneapolis
| | - Angela M. DeMichele
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia
| | - Laura J. van ’t Veer
- Department of Laboratory Medicine, University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco
| | | | - Olufunmilayo I. Olopade
- Center for Clinical Cancer Genetics and Global Health, The University of Chicago, Chicago, Illinois
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, Illinois
| |
Collapse
|
40
|
Thakur A, Rana M, Ritika, Mathew J, Nepali S, Pan CH, Liou JP, Nepali K. Small molecule tractable PARP inhibitors: Scaffold construction approaches, mechanistic insights and structure activity relationship. Bioorg Chem 2023; 141:106893. [PMID: 37783100 DOI: 10.1016/j.bioorg.2023.106893] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
Diverse drug design strategies viz. molecular hybridization, substituent installation, scaffold hopping, isosteric replacement, high-throughput screening, induction and separation of chirality, structure modifications of phytoconstituents and use of structural templates have been exhaustively leveraged in the last decade to load the chemical toolbox of PARP inhibitors. Resultantly, numerous promising scaffolds have been pinpointed that in turn have led to the resuscitation of the credence to PARP inhibitors as cancer therapeutics. This review briefly presents the physiological functions of PARPs, the pharmacokinetics, and pharmacodynamics, and the interaction profiles of FDA-approved PARP inhibitors. Comprehensively covered is the section on the drug design strategies employed by drug discovery enthusiasts for furnishing PARP inhibitors. The impact of structural variations in the template of designed scaffolds on enzymatic and cellular activity (structure-activity relationship studies) has been discussed. The insights gained through the biological evaluation such as profiling of physicochemical properties andin vitroADME properties, PK assessments, and high-dose pharmacology are covered.
Collapse
Affiliation(s)
- Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan
| | - Mandeep Rana
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan
| | - Ritika
- College of Medicine, Taipei Medical University, Taipei 110031, Taiwan
| | - Jacob Mathew
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan
| | - Sanya Nepali
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Chun-Hsu Pan
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan
| | - Jing Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan.
| |
Collapse
|
41
|
Beas-Lozano EL, Verduzco-Aguirre HC, Gonzalez-Salazar R, Chavarri-Guerra Y. Real-world data in patients with BRCA mutated breast cancer treated with poly (ADP-ribose) polymerase inhibitors. Ecancermedicalscience 2023; 17:1633. [PMID: 38414963 PMCID: PMC10898914 DOI: 10.3332/ecancer.2023.1633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Indexed: 02/29/2024] Open
Abstract
Breast cancer is the most common type of cancer globally. Hereditary breast cancer accounts for 10% of new cases and 4%-5% of cases are associated to pathogenic variants in BRCA1 or BRCA2 genes. In recent years, poly-adenosine-diphosphate-ribose polymerase inhibitors (PARPi) olaparib and talazoparib have been approved for patients with BRCA-associated, HER2 -negative breast cancer. These drugs have shown positive results in the early and advanced setting with a favourable toxicity profile based on the OlympiAD, OlympiA and EMBRACA phase 3 trials. However, patients included in these randomised trials are highly selected, making toxicity and efficacy in patients encountered in routine clinical care a concern. Since the approval of olaparib and talazoparib for advanced human epidermal growth factor receptor 2-negative (HER2-negative) breast cancer, several phase IIIb-IV trials, expanded access cohorts, and retrospective cohorts have provided information on the efficacy and tolerability of these treatments in patient subgroups underrepresented in the registration trials, such as older adults, patients with poor performance status, and heavily pretreated patients. The aim of this review is to present a critical review of the information regarding the use of PARPi in real-world breast cancer patients.
Collapse
Affiliation(s)
- Evelyn Lilian Beas-Lozano
- Department of Hematology and Oncology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14630, Mexico
| | - Haydeé Cristina Verduzco-Aguirre
- Department of Hematology and Oncology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14630, Mexico
| | - Roberto Gonzalez-Salazar
- Department of Hematology and Oncology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14630, Mexico
| | - Yanin Chavarri-Guerra
- Department of Hematology and Oncology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14630, Mexico
| |
Collapse
|
42
|
Castellano G, Giugliano F, Curigliano G, Marra A. Clinical utility of genomic signatures for the management of early and metastatic triple-negative breast cancer. Curr Opin Oncol 2023; 35:479-490. [PMID: 37621170 DOI: 10.1097/cco.0000000000000989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
PURPOSE OF REVIEW This comprehensive review aims to provide timely and relevant insights into the current therapeutic landscape for triple-negative breast cancer (TNBC) and the molecular features underlying this subtype. It emphasizes the need for more reliable biomarkers to refine prognostication and optimize therapy, considering the aggressive nature of TNBC and its limited targeted treatment options. RECENT FINDINGS The review explores the multidisciplinary management of early TNBC, which typically involves systemic chemotherapy, surgery, and radiotherapy. It highlights the emergence of immune checkpoint inhibitors (ICIs), poly(ADP-ribose) polymerase (PARP) inhibitors, and antibody-drug conjugates (ADCs) as promising therapeutic strategies for TNBC. Recent clinical trials investigating the use of ICIs in combination with chemotherapy and the approval of pembrolizumab and atezolizumab for PD-L1-positive metastatic TNBC are discussed. The efficacy of PARP inhibitors and ADCs in treating TNBC patients with specific genetic alterations is also highlighted. SUMMARY The findings discussed in this review have significant implications for clinical practice and research in TNBC. The identification of distinct molecular subtypes through gene expression profiling has enabled a better understanding of TNBC heterogeneity and its clinical implications. This knowledge has the potential to guide treatment decisions, as different subtypes display varying responses to neoadjuvant chemotherapy. Furthermore, the review emphasizes the importance of developing reliable genomic and transcriptomic signatures as biomarkers to refine patient prognostication and optimize therapy selection in TNBC. Integrating these signatures into clinical practice may lead to more personalized treatment approaches, improving outcomes for TNBC patients.
Collapse
Affiliation(s)
- Grazia Castellano
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Federica Giugliano
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Antonio Marra
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS
| |
Collapse
|
43
|
Downie ML, Desjarlais A, Verdin N, Woodlock T, Collister D. Precision Medicine in Diabetic Kidney Disease: A Narrative Review Framed by Lived Experience. Can J Kidney Health Dis 2023; 10:20543581231209012. [PMID: 37920777 PMCID: PMC10619345 DOI: 10.1177/20543581231209012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/10/2023] [Indexed: 11/04/2023] Open
Abstract
Purpose of review Diabetic kidney disease (DKD) is a leading cause of chronic kidney disease (CKD) for which many treatments exist that have been shown to prevent CKD progression and kidney failure. However, DKD is a complex and heterogeneous etiology of CKD with a spectrum of phenotypes and disease trajectories. In this narrative review, we discuss precision medicine approaches to DKD, including genomics, metabolomics, proteomics, and their potential role in the management of diabetes mellitus and DKD. A patient and caregivers of patients with lived experience with CKD were involved in this review. Sources of information Original research articles were identified from MEDLINE and Google Scholar using the search terms "diabetes," "diabetic kidney disease," "diabetic nephropathy," "chronic kidney disease," "kidney failure," "dialysis," "nephrology," "genomics," "metabolomics," and "proteomics." Methods A focused review and critical appraisal of existing literature regarding the precision medicine approaches to the diagnosis, prognosis, and treatment of diabetes and DKD framed by a patient partner's/caregiver's lived experience. Key findings Distinguishing diabetic nephropathy from CKD due to other types of DKD and non-DKD is challenging and typically requires a kidney biopsy for a diagnosis. Biomarkers have been identified to assist with the prediction of the onset and progression of DKD, but they have yet to be incorporated and evaluated relative to clinical standard of care CKD and kidney failure risk prediction tools. Genomics has identified multiple causal genetic variants for neonatal diabetes mellitus and monogenic diabetes of the young that can be used for diagnostic purposes and to specify antiglycemic therapy. Genome-wide-associated studies have identified genes implicated in DKD pathophysiology in the setting of type 1 and 2 diabetes but their translational benefits are lagging beyond polygenetic risk scores. Metabolomics and proteomics have been shown to improve diagnostic accuracy in DKD, have been used to identify novel pathways involved in DKD pathogenesis, and can be used to improve the prediction of CKD progression and kidney failure as well as predict response to DKD therapy. Limitations There are a limited number of large, high-quality prospective observational studies and no randomized controlled trials that support the use of precision medicine based approaches to improve clinical outcomes in adults with or at risk of diabetes and DKD. It is unclear which patients may benefit from the clinical use of genomics, metabolomics and proteomics along the spectrum of DKD trajectory. Implications Additional research is needed to evaluate the role of the use of precision medicine for DKD management, including diagnosis, differentiation of diabetic nephropathy from other etiologies of DKD and CKD, short-term and long-term risk prognostication kidney outcomes, and the prediction of response to and safety of disease-modifying therapies.
Collapse
Affiliation(s)
- Mallory L. Downie
- McGill University Health Center Research Institute, Montreal, QC, Canada
| | - Arlene Desjarlais
- Kidney Research Scientist Core Education and National Training Program, Montreal, QC, Canada
| | - Nancy Verdin
- Kidney Research Scientist Core Education and National Training Program, Montreal, QC, Canada
| | - Tania Woodlock
- Kidney Research Scientist Core Education and National Training Program, Montreal, QC, Canada
| | - David Collister
- Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| |
Collapse
|
44
|
Li Z, Guo T, Zhao S, Lin M. The Therapeutic Effects of MUC1-C shRNA@Fe 3O 4 Magnetic Nanoparticles in Alternating Magnetic Fields on Triple-Negative Breast Cancer. Int J Nanomedicine 2023; 18:5651-5670. [PMID: 37822991 PMCID: PMC10563812 DOI: 10.2147/ijn.s426849] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023] Open
Abstract
Purpose Improving the treatment of triple-negative breast cancer (TNBC) is a serious challenge today. The primary objective of this study was to construct MUC1-C shRNA@ Fe3O4 magnetic nanoparticles (MNPs) and investigate their potential therapeutic benefits in alternating magnetic fields (AMF) on TNBC. Methods Firstly, we verified the high expression of MUC1 in TNBC and synthesized specific MUC1-C shRNA plasmids (MUC1-C shRNA). Then, we prepared and characterized MUC1-C shRNA@Fe3O4 MNPs and confirmed their MUC1-C gene silencing effect and magneto-thermal conversion ability in AMF. Moreover, the inhibitory effects on TNBC in vitro and in vivo were observed as well as biosafety. Finally, the protein levels of BCL-2-associated X protein (Bax), cleaved-caspase3, glutathione peroxidase inhibitor 4 (GPX4), nuclear factor erythroid 2-related factor 2 (NRF2), and ferritin heavy chain 1 (FTH1) in TNBC cells and tissues were examined, and it was speculated that apoptosis and ferroptosis were involved in the synergistic treatment. Results MUC1-C shRNA@ Fe3O4 MNPs have a size of ~75 nm, with an encapsulation rate of (29.78±0.63) %, showing excellent gene therapy and magnetic hyperthermia functions. Under a constant AMF (3Kw) and a set concentration (200µg mL-1), the nanoparticles could be rapidly warmed up within 20 minutes and stabilized at about 43 °C. It could be uptaken by TNBC cells through endocytosis and significantly inhibit their proliferation and migration, with a growth inhibition rate of 79.22% for TNBC tumors. After treatment, GPX4, NRF2, and FTH1 expression levels in TNBC cells and tumor tissues were suppressed, while Bax and cleaved-caspase3 were increased. As key therapeutic measures, gene therapy, and magnetic hyperthermia have shown a synergistic effect in this treatment strategy, with a combined index (q index) of 1.23. Conclusion In conclusion, we developed MUC1-C shRNA@Fe3O4 MNPs with magnetic hyperthermia and gene therapy functions, which have shown satisfactory therapeutic effects on TNBC without significant side effects. This study provides a potential option for the precision treatment of TNBC.
Collapse
Affiliation(s)
- Zhifeng Li
- Medical School of Nantong University, Nantong, Jiangsu, People’s Republic of China
- Clinical Laboratory, Taizhou People’s Hospital (Affiliated Hospital 5 of Nantong University), Taizhou, Jiangsu, People’s Republic of China
| | - Ting Guo
- Research Center of Clinical Medicine, Taizhou People’s Hospital (Affiliated Hospital 5 of Nantong University), Taizhou, Jiangsu, People’s Republic of China
| | - Susu Zhao
- Department of Pathology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Mei Lin
- Clinical Laboratory, Taizhou People’s Hospital (Affiliated Hospital 5 of Nantong University), Taizhou, Jiangsu, People’s Republic of China
| |
Collapse
|
45
|
Boughey JC, Yu H, Dugan CL, Piltin MA, Postlewait L, Son JD, Edmiston KK, Godellas CV, Lee MC, Carr MJ, Tonneson JE, Crown A, Lancaster RB, Woriax HE, Ewing CA, Chau HS, Patterson AK, Wong JM, Alvarado MD, Yang RL, Chan TW, Sheade JB, Ahrendt GM, Larson KE, Switalla K, Tuttle TM, Tchou JC, Rao R, Tamirisa N, Singh P, Gould RE, Terando A, Sauder C, Hewitt K, Chiba A, Esserman LJ, Mukhtar RA. Changes in Surgical Management of the Axilla Over 11 Years - Report on More Than 1500 Breast Cancer Patients Treated with Neoadjuvant Chemotherapy on the Prospective I-SPY2 Trial. Ann Surg Oncol 2023; 30:6401-6410. [PMID: 37380911 DOI: 10.1245/s10434-023-13759-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/01/2023] [Indexed: 06/30/2023]
Abstract
BACKGROUND Axillary surgery after neoadjuvant chemotherapy (NAC) is becoming less extensive. We evaluated the evolution of axillary surgery after NAC on the multi-institutional I-SPY2 prospective trial. METHODS We examined annual rates of sentinel lymph node (SLN) surgery with resection of clipped node, if present), axillary lymph node dissection (ALND), and SLN and ALND in patients enrolled in I-SPY2 from January 1, 2011 to December 31, 2021 by clinical N status at diagnosis and pathologic N status at surgery. Cochran-Armitage trend tests were calculated to evaluate patterns over time. RESULTS Of 1578 patients, 973 patients (61.7%) had SLN-only, 136 (8.6%) had SLN and ALND, and 469 (29.7%) had ALND-only. In the cN0 group, ALND-only decreased from 20% in 2011 to 6.25% in 2021 (p = 0.0078) and SLN-only increased from 70.0% to 87.5% (p = 0.0020). This was even more striking in patients with clinically node-positive (cN+) disease at diagnosis, where ALND-only decreased from 70.7% to 29.4% (p < 0.0001) and SLN-only significantly increased from 14.6% to 56.5% (p < 0.0001). This change was significant across subtypes (HR-/HER2-, HR+/HER2-, and HER2+). Among pathologically node-positive (pN+) patients after NAC (n = 525) ALND-only decreased from 69.0% to 39.2% (p < 0.0001) and SLN-only increased from 6.9% to 39.2% (p < 0.0001). CONCLUSIONS Use of ALND after NAC has significantly decreased over the past decade. This is most pronounced in cN+ disease at diagnosis with an increase in the use of SLN surgery after NAC. Additionally, in pN+ disease after NAC, there has been a decrease in use of completion ALND, a practice pattern change that precedes results from clinical trials.
Collapse
Affiliation(s)
- Judy C Boughey
- Division of Breast and Melanoma Surgical Oncology, Department of Surgery, Mayo Clinic, Rochester, MN, USA.
| | - Hongmei Yu
- Quantum Leap Healthcare Collaborative, San Francisco, CA, USA
| | | | - Mara A Piltin
- Division of Breast and Melanoma Surgical Oncology, Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Lauren Postlewait
- Division of Surgical Oncology, Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Jennifer D Son
- Ourisman Breast Center, MedStar Georgetown University, Washington, DC, USA
| | - Kirsten K Edmiston
- Department of Surgery, University of Virginia, Inova Campus, Fairfax, VA, USA
| | | | - Marie C Lee
- Division of Breast Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Michael J Carr
- Department of Breast Surgery, Moffitt Cancer Center, Tampa, FL, USA
| | - Jennifer E Tonneson
- Division of Surgical Oncology, Oregon Health and Science University, Portland, OR, USA
| | - Angelena Crown
- True Family Women's Cancer Center, Swedish Cancer Institute, Seattle, WA, USA
| | - Rachel B Lancaster
- Division of Surgical Oncology, The University of Alabama at Birmingham Medical Center, Birmingham, AL, USA
| | - Hannah E Woriax
- Division of Surgical Oncology, Duke University of School of Medicine, Durham, NC, USA
| | - Cheryl A Ewing
- Division of Surgical Oncology, University of California, San Francisco, CA, USA
| | | | - Anne K Patterson
- Division of Surgical Oncology, Department of Surgery, University of California, San Francisco, CA, USA
| | - Jasmine M Wong
- Division of Surgical Oncology, Department of Surgery, University of California, San Francisco, CA, USA
| | - Michael D Alvarado
- Division of Surgical Oncology, Department of Surgery, University of California, San Francisco, CA, USA
| | - Rachel L Yang
- Department of Surgery, Stanford Hospital and Clinics, Stanford, CA, USA
| | - Theresa W Chan
- Department of Breast Surgical Oncology, Ironwood Cancer and Research Centers, Scottsdale, AZ, USA
| | - Jori B Sheade
- Division of Hematology and Oncology, University of Chicago, Chicago, IL, USA
| | - Gretchen M Ahrendt
- Division of Surgical Oncology, University of Colorado Denver - Anschutz Medical Campus, Boulder, CO, USA
| | - Kelsey E Larson
- Department of Surgery, University of Kansas Cancer Center, Kansas City, KS, USA
| | - Kayla Switalla
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Todd M Tuttle
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Julia C Tchou
- Department of Breast Surgery Research, Penn Medicine at University of Pennsylvania, Philadelphia, PA, USA
| | - Roshni Rao
- Division of Breast Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Nina Tamirisa
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Puneet Singh
- Department of Breast Surgical Oncology, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rebekah E Gould
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alicia Terando
- Division of Surgical Oncology, Department of Surgery, Huntington Cancer Center/Cedars Sinai Cancer, Pasadena, CA, USA
| | - Candice Sauder
- Department of Surgery, UC Davis Health Comprehensive Cancer Center, Sacramento, CA, USA
| | - Kelly Hewitt
- Division of Surgical Oncology and Endocrine Surgery, Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Akiko Chiba
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Laura J Esserman
- Departments of Surgery and Radiology, UCSF, San Francisco, CA, USA
| | | |
Collapse
|
46
|
Mason SR, Willson ML, Egger SJ, Beith J, Dear RF, Goodwin A. Platinum-based chemotherapy for early triple-negative breast cancer. Cochrane Database Syst Rev 2023; 9:CD014805. [PMID: 37681577 PMCID: PMC10486188 DOI: 10.1002/14651858.cd014805.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer associated with shorter survival and a higher likelihood of the cancer returning. In early TNBC, platinum-based chemotherapy has been shown to improve pathological complete response (pCR); however, its effect on long-term survival outcomes has not been fully elucidated and recommendations to include platinum chemotherapy are not consistent in international guidelines. OBJECTIVES To evaluate the benefits and harms of platinum-based chemotherapy as adjuvant and neoadjuvant treatment in people with early triple-negative breast cancer. SEARCH METHODS We used standard, extensive Cochrane search methods. The latest search date was 4 April 2022. SELECTION CRITERIA We included randomised controlled trials examining neoadjuvant or adjuvant platinum chemotherapy for early TNBC. DATA COLLECTION AND ANALYSIS We used standard Cochrane methods. Our primary outcomes were disease-free survival (DFS) and overall survival (OS). Our secondary outcomes were pCR, treatment adherence, grade III or IV toxicity related to chemotherapy, and quality of life. Prespecified subgroups included BRCA mutation status, homologous recombination deficiency (HRD) status, frequency of chemotherapy, type of platinum agent used, and the presence or absence of anthracycline chemotherapy. We assessed risk of bias using Cochrane's RoB 1 tool and certainty of evidence using the GRADE approach. MAIN RESULTS From 3972 records, we included 20 published studies involving 21 treatment comparisons, and 25 ongoing studies. For most domains, risk of bias was low across studies. There were 16 neoadjuvant chemotherapy studies (one of which combined neoadjuvant and adjuvant therapy) and four adjuvant chemotherapy trials. Most studies used carboplatin (17 studies) followed by cisplatin (two), and lobaplatin (one). Eight studies had an anthracycline-free intervention arm, five of which had a carboplatin-taxane intervention compared to an anthracycline-taxane control. All studies reporting DFS and OS used carboplatin. Inclusion of platinum chemotherapy improved DFS in neoadjuvant and adjuvant settings (neoadjuvant: hazard ratio (HR) 0.63, 95% confidence interval (CI) 0.53 to 0.75; 7 studies, 8 treatment comparisons, 1966 participants; high-certainty evidence; adjuvant: HR 0.69, 95% CI 0.54 to 0.88; 4 studies, 1256 participants; high-certainty evidence). Platinum chemotherapy in the regimen improved OS (neoadjuvant: HR 0.69, 95% CI 0.55 to 0.86; 7 studies, 8 treatment comparisons, 1973 participants; high-certainty evidence; adjuvant: 0.70, 95% CI 0.50 to 0.96; 4 studies, 1256 participants; high-certainty evidence). Median follow-up for survival outcomes ranged from 36 to 97.6 months. Our analysis confirmed platinum chemotherapy increased pCR rates (risk ratio (RR) 1.44, 95% CI 1.31 to 1.59; 15 studies, 16 treatment comparisons, 3083 participants; high-certainty evidence). Subgroup analyses showed no evidence of differences in DFS according to BRCA mutation status, HRD status, lymph node status, or whether the intervention arm contained anthracycline chemotherapy or not. Platinum chemotherapy was associated with reduced dose intensity, with participants more likely to require chemotherapy delays (RR 2.23, 95% CI 1.70 to 2.94; 4 studies, 5 treatment comparisons, 1053 participants; moderate-certainty evidence), dose reductions (RR 1.77, 95% CI 1.56 to 2.02; 7 studies, 8 treatment comparisons, 2055 participants; moderate-certainty evidence) and early cessation of treatment (RR 1.20, 95% CI 1.04 to 1.38; 16 studies, 17 treatment comparisons, 4178 participants; moderate-certainty evidence). Increased haematological toxicity occurred in the platinum group who were more likely to experience grade III/IV neutropenia (RR 1.53, 95% CI 1.43 to 1.63; 19 studies, 20 treatment comparisons, 4849 participants; moderate-certainty evidence), anaemia (RR 8.20, 95% CI 5.66 to 11.89; 18 studies, 19 treatment comparisons, 4757 participants; moderate-certainty evidence) and thrombocytopenia (RR 7.59, 95% CI 5.10 to 11.29; 18 studies, 19 treatment comparisons, 4731 participants; moderate-certainty evidence). There was no evidence of a difference between chemotherapy groups in febrile neutropenia (RR 1.16, 95% CI 0.89 to 1.49; 11 studies, 3771 participants; moderate-certainty evidence). Renal impairment was very rare (0.4%, 2 events in 463 participants; note 3 studies reported 0 events in both arms; 4 studies; high-certainty evidence). Treatment-related death was very rare (0.2%, 7 events in 3176 participants and similar across treatment groups; RR 0.58, 95% 0.14 to 2.33; 10 studies, 11 treatment comparisons; note 8 studies reported treatment-related deaths but recorded 0 events in both groups. Thus, the RR and CIs were calculated from 3 studies rather than 11; 3176 participants; high-certainty evidence). Five studies collected quality of life data but did not report them. AUTHORS' CONCLUSIONS Platinum-based chemotherapy using carboplatin in the adjuvant or neoadjuvant setting improves long-term outcomes of DFS and OS in early TNBC, with no evidence of differences by subgroup. This was at the cost of more frequent chemotherapy delays and dose reductions, and greater haematological toxicity, though serious adverse events including neuropathy, febrile neutropenia or treatment-related death were not increased. These findings support the use of platinum-based chemotherapy for people with early TNBC. The optimal dose and regimen are not defined by this analysis, but there is a suggestion that similar relative benefits result from the addition of carboplatin to either anthracycline-free regimens or those containing anthracycline agents.
Collapse
Affiliation(s)
- Sofia Re Mason
- Garvan Institute of Medical Research, Darlinghurst, Australia
- St Vincent's Clinical School, UNSW, Sydney, Australia
- Chris O'Brien Lifehouse, Camperdown, Australia
- Concord Clinical School, The University of Sydney, Concord Repatriation General Hospital, Concord, Australia
| | - Melina L Willson
- Evidence Integration, NHMRC Clinical Trials Centre, The University of Sydney, Sydney, Australia
| | - Sam J Egger
- Cancer Research Division, Cancer Council NSW, Sydney, Australia
- The Daffodil Centre, The University of Sydney, Sydney, Australia
| | - Jane Beith
- Chris O'Brien Lifehouse, Camperdown, Australia
| | - Rachel F Dear
- Sydney Medical School, The University of Sydney, Sydney, Australia
- The Kinghorn Cancer Centre, Darlinghurst, Australia
| | - Annabel Goodwin
- Sydney Medical School, The University of Sydney, Sydney, Australia
- Concord Clinical School, The University of Sydney, Concord Repatriation General Hospital, Concord, Australia
| |
Collapse
|
47
|
Bono A, La Monica G, Alamia F, Mingoia F, Gentile C, Peri D, Lauria A, Martorana A. In Silico Mixed Ligand/Structure-Based Design of New CDK-1/PARP-1 Dual Inhibitors as Anti-Breast Cancer Agents. Int J Mol Sci 2023; 24:13769. [PMID: 37762072 PMCID: PMC10531453 DOI: 10.3390/ijms241813769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
CDK-1 and PARP-1 play crucial roles in breast cancer progression. Compounds acting as CDK-1 and/or PARP-1 inhibitors can induct cell death in breast cancer with a selective synthetic lethality mechanism. A mixed treatment by means of CDK-1 and PARP-1 inhibitors resulted in radical breast cancer cell growth reduction. Inhibitors with a dual target mechanism of action could arrest cancer progression by simultaneously blocking the DNA repair mechanism and cell cycle, resulting in advantageous monotherapy. To this aim, in the present work, we identified compound 645656 with a significant affinity for both CDK-1 and PARP-1 by a mixed ligand- and structure-based virtual screening protocol. The Biotarget Predictor Tool was used at first in a Multitarget mode to filter the large National Cancer Institute (NCI) database. Then, hierarchical docking studies were performed to further screen the compounds and evaluate the ligands binding mode, whose putative dual-target mechanism of action was investigated through the correlation between the antiproliferative activity data and the target proteins' (CDK-1 and PARP-1) expression pattern. Finally, a Molecular Dynamics Simulation confirmed the high stability of the most effective selected compound 645656 in complex with both PARP-1 and CDK-1.
Collapse
Affiliation(s)
- Alessia Bono
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche “STEBICEF”, University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (A.B.); (G.L.M.); (F.A.); (C.G.); (A.M.)
| | - Gabriele La Monica
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche “STEBICEF”, University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (A.B.); (G.L.M.); (F.A.); (C.G.); (A.M.)
| | - Federica Alamia
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche “STEBICEF”, University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (A.B.); (G.L.M.); (F.A.); (C.G.); (A.M.)
| | - Francesco Mingoia
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Consiglio Nazionale delle Ricerche (CNR), 90146 Palermo, Italy;
| | - Carla Gentile
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche “STEBICEF”, University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (A.B.); (G.L.M.); (F.A.); (C.G.); (A.M.)
| | - Daniele Peri
- Dipartimento di Ingegneria dell’Innovazione Industriale e Digitale, Università degli Studi di Palermo, Viale 10 delle Scienze Ed. 6, 90128 Palermo, Italy;
| | - Antonino Lauria
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche “STEBICEF”, University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (A.B.); (G.L.M.); (F.A.); (C.G.); (A.M.)
| | - Annamaria Martorana
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche “STEBICEF”, University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (A.B.); (G.L.M.); (F.A.); (C.G.); (A.M.)
| |
Collapse
|
48
|
Li J, Shen G, Wang M, Huo X, Zhao F, Ren D, Zhao Y, Zhao J. Comparative efficacy and safety of first-line neoadjuvant treatments in triple-negative breast cancer: systematic review and network meta-analysis. Clin Exp Med 2023; 23:1489-1499. [PMID: 36152119 DOI: 10.1007/s10238-022-00894-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022]
Abstract
Neoadjuvant treatment options for triple-negative breast cancer (TNBC) are abundant, but the efficacy of different combinations of treatment options remains unclear. Our network meta-analysis aimed to evaluate the effectiveness and safety of various neoadjuvant treatment options in patients with TNBC. Literature reports published before March 31, 2022, were retrieved from the PubMed, Embase, Cochrane Library, main oncology conference of the European Society of Medical Oncology, American Society of Clinical Oncology, and San Antonio Breast Cancer Symposium databases. Pairwise and Bayesian network meta-analyses were performed to compare direct and indirect evidence, respectively. The primary outcome was pathological complete response (pCR). Comparison of efficiency between different treatment regimens was made by HRs and 95% confidence intervals (CIs). Overall, 26 studies, including 9714 TNBC patients, were assessed in this network meta-analysis. Results indicated that the pCR of immune checkpoint inhibitors plus platinum-containing regimens is better than other joint regimens. PCR rate of neoadjuvant chemotherapy regimens containing bevacizumab, platinum, poly(ADP-ribose) polymerase inhibitors, and immune checkpoint inhibitors was higher than those of standard chemotherapy agents. By performing a conjoint analysis of the pCR rate and safety endpoints, we found that immune checkpoint inhibitors plus platinum-containing regimens were well balanced in terms of efficacy and toxicity. Considering the efficacy and acceptable adverse events, neoadjuvant chemotherapy based on immune checkpoint inhibitors plus platinum may be considered as an option for patients with TNBC.
Collapse
Affiliation(s)
- Jinming Li
- The Center of Breast Disease Diagnosis and Treatment of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Guoshuang Shen
- The Center of Breast Disease Diagnosis and Treatment of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Miaozhou Wang
- The Center of Breast Disease Diagnosis and Treatment of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Xingfa Huo
- The Center of Breast Disease Diagnosis and Treatment of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Fuxing Zhao
- The Center of Breast Disease Diagnosis and Treatment of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Dengfeng Ren
- The Center of Breast Disease Diagnosis and Treatment of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Yi Zhao
- The Center of Breast Disease Diagnosis and Treatment of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China.
| | - Jiuda Zhao
- The Center of Breast Disease Diagnosis and Treatment of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China.
| |
Collapse
|
49
|
Bansal I, Pandey AK, Ruwali M. Small-molecule inhibitors of kinases in breast cancer therapy: recent advances, opportunities, and challenges. Front Pharmacol 2023; 14:1244597. [PMID: 37711177 PMCID: PMC10498465 DOI: 10.3389/fphar.2023.1244597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/21/2023] [Indexed: 09/16/2023] Open
Abstract
Breast cancer is the most common malignancy in women worldwide and despite significant advancements in detection, treatment, and management of cancer, it is still the leading cause of malignancy related deaths in women. Understanding the fundamental biology of breast cancer and creating fresh diagnostic and therapeutic strategies have gained renewed focus in recent studies. In the onset and spread of breast cancer, a group of enzymes known as kinases are extremely important. Small-molecule kinase inhibitors have become a promising class of medications for the treatment of breast cancer owing to their capacity to specifically target kinases involved in the growth and progression of cancer. The creation of targeted treatments that block these kinases and the signalling pathways that they activate has completely changed how breast cancer is treated. Many of these targeted treatments have been approved for the treatment of breast cancer as clinical trials have demonstrated their great efficacy. CDK4/6 inhibitors, like palbociclib, abemaciclib, and ribociclib, EGFR inhibitors such as gefitinib and erlotinib and HER2-targeting small-molecule kinases like neratinib and tucatinib are some examples that have shown potential in treating breast cancer. Yet, there are still difficulties in the development of targeted medicines for breast cancer, such as figuring out which patient subgroups may benefit from these therapies and dealing with drug resistance problems. Notwithstanding these difficulties, kinase-targeted treatments for breast cancer still have a lot of potential. The development of tailored medicines will continue to be fuelled by the identification of novel targets and biomarkers for breast cancer as a result of advancements in genomic and proteomic technology.
Collapse
Affiliation(s)
- Isha Bansal
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram, Haryana, India
| | - Amit Kumar Pandey
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER-Ahmedabad), Gandhinagar, Gujarat, India
| | - Munindra Ruwali
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram, Haryana, India
| |
Collapse
|
50
|
Gandhi S. Novel Biomarkers to Guide Immunotherapy De-Escalation in the Neoadjuvant Setting in Triple-Negative Breast Cancer. J Pers Med 2023; 13:1313. [PMID: 37763081 PMCID: PMC10532861 DOI: 10.3390/jpm13091313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Triple-negative breast cancer (TNBC) has the highest incidence of disease recurrence and distant metastases among breast cancer subtypes, leading to significant rates of morbidity and mortality [...].
Collapse
Affiliation(s)
- Shipra Gandhi
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|