1
|
Häupl B, Wilke AC, Urlaub H, Oellerich T. Phosphoproteomic Analysis of Signaling Pathways in Lymphomas. Methods Mol Biol 2025; 2865:283-294. [PMID: 39424730 DOI: 10.1007/978-1-0716-4188-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Cellular fate is regulated by intricate signal transduction mediated by posttranslational protein modifications like phosphorylation to transmit information. As other cancer types, lymphomas frequently show dysregulation of signaling pathways that contribute to malignant transformation and tumor progression. For example, in diffuse large B-cell lymphoma the B-cell antigen receptor was identified as an oncogenic driver mediating cellular growth and survival signals. Thus, the elucidation of these complex signaling networks is crucial to gain insight into the mechanisms underlying tumorigenesis and to identify target proteins for innovative therapeutic approaches.Here, we describe a mass spectrometry-based phosphoproteomic approach for the global analysis of intracellular signaling events and their dynamics. The workflow combines phosphopeptide enrichment and fractionation with liquid chromatography-coupled mass spectrometry for the amino acid site-specific identification and quantification of thousands of phosphorylation events. Such global signaling analyses have great potential for the elucidation of oncogenic pathomechanisms, diagnostic biomarkers, and drug targets.
Collapse
Affiliation(s)
- Björn Häupl
- Department of Medicine II, Hematology/Oncology, Goethe University, Frankfurt, Germany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt, Germany
| | - Anne Christine Wilke
- Department of Medicine II, Hematology/Oncology, Goethe University, Frankfurt, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Bioanalytics, Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Thomas Oellerich
- Department of Medicine II, Hematology/Oncology, Goethe University, Frankfurt, Germany.
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt, Germany.
| |
Collapse
|
2
|
Fenner RE, Gong C, Hodson DJ. Genetic Manipulation and Extended Culture of Human Germinal Center B Cells to Model Lymphomagenesis. Methods Mol Biol 2025; 2865:395-409. [PMID: 39424734 DOI: 10.1007/978-1-0716-4188-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
The germinal center (GC) is the stage of B cell differentiation that gives rise to a majority of B cell lymphomas. Here, we present an experimental coculture system for the ex vivo expansion and genetic manipulation of human GC B cells purified from discarded tonsil tissue. This system can be used to investigate the impact of defined genetic alterations, either individually or in combination, upon the growth and survival of human GC B cells in vitro. We provide examples of genetic combinations that lead to the immortalized growth of GC B cells in vitro, and others that result in malignant transformation in immunodeficient mice, allowing the creation of genetically bespoke, synthetic, human lymphoma models.
Collapse
Affiliation(s)
- Rachel E Fenner
- Department of Haematology, Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Chun Gong
- Department of Haematology, Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Daniel J Hodson
- Department of Haematology, Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge, UK.
| |
Collapse
|
3
|
Knittel G, Reinhardt HC. Genetic Mouse Models of Lymphomas. Methods Mol Biol 2025; 2865:411-428. [PMID: 39424735 DOI: 10.1007/978-1-0716-4188-0_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Mouse models are an indispensable tool in lymphoma research. Here, we focus on the utilization of genetically engineered mouse models as preclinical avatars in lymphoma research. We describe lymphoma-relevant alleles and allele combinations, as well as general considerations for model selection. We further illustrate concepts of gene targeting and model design and provide guidelines for breeding strategies and colony maintenance.
Collapse
Affiliation(s)
- Gero Knittel
- University Hospital Essen, Department of Hematology and Stem Cell Transplantation, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, University of Duisburg-Essen, Essen, Germany.
| | - Hans Christian Reinhardt
- University Hospital Essen, Department of Hematology and Stem Cell Transplantation, West German Cancer Center, German Cancer Consortium Partner Site Essen, Center for Molecular Biotechnology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
4
|
Weniger MA, Seifert M, Küppers R. B Cell Differentiation and the Origin and Pathogenesis of Human B Cell Lymphomas. Methods Mol Biol 2025; 2865:1-30. [PMID: 39424718 DOI: 10.1007/978-1-0716-4188-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Immunoglobulin (IG) gene remodeling by V(D)J recombination plays a central role in the generation of normal B cells, and somatic hypermutation and class switching of IG genes are key processes during antigen-driven B cell differentiation in the germinal center reaction. However, errors of these processes are involved in the development of B cell lymphomas. IG locus-associated translocations of proto-oncogenes are a hallmark of many B cell malignancies. Additional transforming events include inactivating mutations in various tumor suppressor genes and also latent infection of B cells with viruses, such as Epstein-Barr virus. Most B cell lymphomas require B cell antigen receptor expression, and in several instances chronic antigenic stimulation plays a role in lymphoma development and/or sustaining tumor growth. Often, survival and proliferation signals provided by other cells in the microenvironment are a further critical factor in lymphoma development and pathophysiology. Most B cell malignancies derive from germinal center B cells, most likely due to the high proliferative activity of these B cells and aberrant mutations caused by their naturally active mutagenic processes.
Collapse
Affiliation(s)
- Marc A Weniger
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Essen, Germany
| | - Marc Seifert
- Department of Haematology, Oncology and Clinical Immunology, Heinrich Heine University, Medical School, Düsseldorf, Germany
| | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Essen, Germany.
| |
Collapse
|
5
|
Pirosa MC, Stathis A, Zucca E. Tafasitamab for the treatment of patients with diffuse large B-cell lymphoma. Hum Vaccin Immunother 2024; 20:2309701. [PMID: 38299612 PMCID: PMC10841029 DOI: 10.1080/21645515.2024.2309701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/21/2024] [Indexed: 02/02/2024] Open
Abstract
Patients with relapsed or refractory (R/R) diffuse large B-cell lymphoma (DLBCL) require additional treatments, especially those not eligible or not responding to high dose cytotoxic chemotherapy and stem cell transplantation. Over the last few years, several new treatments have been developed and approved for these patients, among them of particular relevance are those targeting CD19. Tafasitamab is a humanized monoclonal antibody targeting CD19, composed of a modified fragment crystallizable (Fc) region engineered with higher affinity for Fc gamma receptors (FcγR) receptors, leading to increased cytotoxicity through natural killer cells and macrophages (antibody-dependent cellular cytotoxicity and antibody-dependent cell-mediated phagocytosis). In this product review, we will discuss its mechanism of action, safety profile and efficacy results from clinical trials that led to its approval in combination with lenalidomide for patients with R/R DLBCL ineligible for high-dose chemotherapy and autologous transplantation.
Collapse
Affiliation(s)
- Maria Cristina Pirosa
- Clinic of Medical Oncology, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
- Institute of Oncology Research, Bellinzona, Switzerland
- Faculty of Biomedical Science, Universita’ della Svizzera italiana, Lugano, Switzerland
| | - Anastasios Stathis
- Clinic of Medical Oncology, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
- Faculty of Biomedical Science, Universita’ della Svizzera italiana, Lugano, Switzerland
| | - Emanuele Zucca
- Clinic of Medical Oncology, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
- Institute of Oncology Research, Bellinzona, Switzerland
- Faculty of Biomedical Science, Universita’ della Svizzera italiana, Lugano, Switzerland
| |
Collapse
|
6
|
Tan J, Xie J, Huang J, Deng W, Chai H, Yang Y. An interpretable survival model for diffuse large B-cell lymphoma patients using a biologically informed visible neural network. Comput Struct Biotechnol J 2024; 24:523-532. [PMID: 39211335 PMCID: PMC11357880 DOI: 10.1016/j.csbj.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/06/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin lymphoma (NHL) and is characterized by high heterogeneity. Assessment of its prognosis and genetic subtyping hold significant clinical implications. However, existing DLBCL prognostic models are mainly based on transcriptomic profiles, while genetic variation detection is more commonly used in clinical practice. In addition, current clustering-based subtyping methods mostly focus on genes with high mutation frequencies, providing insufficient explanations for the heterogeneity of DLBCL. Here, we proposed VNNSurv (https://bio-web1.nscc-gz.cn/app/VNNSurv), a survival model for DLBCL patients based on a biologically informed visible neural network (VNN). VNNSurv achieved an average C-index of 0.72 on the cross-validation set (HMRN cohort, n = 928), outperforming the baseline methods. The remarkable interpretability of VNNSurv facilitated the identification of the most impactful genes and the underlying pathways through which they act on patient outcomes. When only the 30 highest-impact genes were used as genetic input, the overall performance of VNNSurv improved, and a C-index of 0.70 was achieved on the external TCGA cohort (n = 48). Leveraging these high-impact genes, including 16 genes with low (<5 %) alteration frequencies, we devised a genetic-based prognostic index (GPI) for risk stratification and a subtype identification method. We stratified the patient group according to the International Prognostic Index (IPI) into three risk grades with significant prognostic differences. Furthermore, the defined subtypes exhibited greater prognostic consistency than clustering-based methods. Broadly, VNNSurv is a valuable DLBCL survival model. Its high interpretability has significant value for precision medicine, and its framework is scalable to other diseases.
Collapse
Affiliation(s)
- Jie Tan
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China
- Guangzhou KingMed Center for Clinical Laboratory Co. Ltd., Guangzhou, China
| | - Jiancong Xie
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Jiarong Huang
- School of Mathematics and Big Data, Foshan University, Foshan, China
| | - Weizhen Deng
- School of Mathematics and Big Data, Foshan University, Foshan, China
| | - Hua Chai
- School of Mathematics and Big Data, Foshan University, Foshan, China
| | - Yuedong Yang
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Machine Intelligence and Advanced Computing of MOE, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Zhao X, Bian H, Hao F, Shao S, Wu C, Zhang Q, Wu M, Li Z, Gao C. Clinicopathological characteristics and genomic profiling in patients with transformed lymphoma: a monocentric retrospective study. Ann Med 2024; 56:2419556. [PMID: 39460552 PMCID: PMC11514389 DOI: 10.1080/07853890.2024.2419556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 02/22/2024] [Accepted: 09/10/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Transformed lymphoma occurs when indolent lymphoma transforms into more aggressive lymphoma usually associated with poor prognosis. METHODS In this study, we analysed the immunophenotypes, prognostic factors and outcomes of 35 patients with transformed lymphoma from among 306 marginal zone lymphoma (MZL), 544 follicular lymphoma (FL) and 871 chronic lymphocytic leukaemia/small lymphocytic lymphoma (CLL/SLL) cases. In addition, we performed whole-exome sequencing study of seven transformed MZL (tMZL) cases. RESULTS Our results demonstrate that the median time from indolent lymphoma diagnosis to transformed DLBCL was 35 months (range, 14-53 months). The 5-year overall survival (OS) and progression-free survival (PFS) rates after histological transformation (HT) were 50% and 26%, respectively. Kaplan-Meier survival analysis revealed that asynchronous HT and transformed CLL/SLL (tCLL/SLL) were significant adverse prognostic factors for OS after DLBCL HT. We identified mutations involvement in chromatin remodelling (CREBBP and EP300) and regulators of NF-κB signalling (TNFAIP3, BCL10, MYD88, CD79B and CARD11) were affected in tMZL. CONCLUSION Whole-exome sequencing and copy-number analysis revealed that tMZL derives from the divergent evolution of an ancestral common progenitor clone (CPC). Collectively, this study provides clinicopathological characteristics of three common types of transformed lymphomas and the genetic profile of tMZL with diagnostic and therapeutic implications.
Collapse
MESH Headings
- Humans
- Male
- Female
- Middle Aged
- Aged
- Retrospective Studies
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Adult
- Lymphoma, Follicular/genetics
- Lymphoma, Follicular/pathology
- Lymphoma, Follicular/mortality
- Mutation
- Prognosis
- Lymphoma, B-Cell, Marginal Zone/genetics
- Lymphoma, B-Cell, Marginal Zone/pathology
- Lymphoma, B-Cell, Marginal Zone/mortality
- Exome Sequencing
- Aged, 80 and over
- Cell Transformation, Neoplastic/genetics
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/mortality
- Kaplan-Meier Estimate
Collapse
Affiliation(s)
- Xia Zhao
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong, China
| | - Haiyan Bian
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong, China
| | - Fengyun Hao
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong, China
| | - Shihong Shao
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong, China
| | - Chuanhong Wu
- Laboratory of Medical Biology, Medical Research Center, The Affiliated Hospital of Qingdao University and The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao, Shangdong, China
| | - Qian Zhang
- Laboratory of Medical Biology, Medical Research Center, The Affiliated Hospital of Qingdao University and The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao, Shangdong, China
| | - Mingxuan Wu
- Laboratory of Medical Biology, Medical Research Center, The Affiliated Hospital of Qingdao University and The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao, Shangdong, China
| | - Zhiqiang Li
- Laboratory of Medical Biology, Medical Research Center, The Affiliated Hospital of Qingdao University and The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao, Shangdong, China
| | - Chengwen Gao
- Laboratory of Medical Biology, Medical Research Center, The Affiliated Hospital of Qingdao University and The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao, Shangdong, China
| |
Collapse
|
8
|
Wu W, Miao L, Zhao L, Zhu Y, Mao J, Cai Z, Ji Y, Wang L, Wang Y, Jia T. Prognostic value of lactate dehydrogenase, serum albumin and the lactate dehydrogenase/albumin ratio in patients with diffuse large B-cell lymphoma. Hematology 2024; 29:2293514. [PMID: 38108323 DOI: 10.1080/16078454.2023.2293514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023] Open
Abstract
OBJECTIVE To investigate the prognostic value of lactate dehydrogenase (LDH), serum albumin (ALB) and the lactate dehydrogenase/albumin ratio (LAR) in diffuse large B-cell lymphoma (DLBCL) before primary treatment. METHODS The clinical data of 212 primary adult DLBCL patients admitted to the First People's Hospital of Lianyungang from January 2017 to December 2022 were analyzed retrospectively. The optimal cutoff values of LDH, ALB, and LAR were determined using ROC curves. Survival curves of LDH, ALB, and LAR were plotted and analyzed using the Cox regression model and Kaplan-Meier method with the log-rank test. RESULTS Among the 212 patients admitted, the study derived the optimal cutoff values for ALB, LDH, and LAR as 38, 301, and 6, respectively. The Kaplan-Meier method and log-rank test analysis indicated a significant association between lower ALB levels, elevated LDH levels, elevated LAR levels, and shorter overall survival (OS) and progression-free survival (PFS) (P < 0.05). Additionally, the critical values of ALB and LDH were grouped into three categories. The differences in OS and PFS among these three groups were statistically significant (P < 0.05). Cox multifactorial analysis revealed that the LAR was an independent factor influencing the prognosis of OS and PFS, with a higher prognostic value than LDH and ALB alone. CONCLUSION Decreased ALB levels and elevated LDH and LAR levels at the time of initial diagnosis are indicative of a poor prognosis in DLBCL patients. Furthermore, the study highlighted that the LAR has a higher prognostic value than LDH and ALB alone.
Collapse
Affiliation(s)
- Wenke Wu
- Jinzhou Medical University, Jinzhou, People's Republic of China
- Department of Hematology, Postgraduate Training Base of the Lian Yungang First People's Hospital of Jinzhou Medical University, Lianyungang, People's Republic of China
| | - Lei Miao
- Department of Hematology, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, People's Republic of China
| | - Lidong Zhao
- Department of Hematology, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, People's Republic of China
| | - Yuanxin Zhu
- Department of Hematology, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, People's Republic of China
| | - Jianping Mao
- Department of Hematology, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, People's Republic of China
| | - Zhimei Cai
- Department of Hematology, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, People's Republic of China
| | - Yajun Ji
- Department of Oncology, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, People's Republic of China
| | - Lei Wang
- Department of Oncology, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, People's Republic of China
| | - Ying Wang
- Department of Hematology, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, People's Republic of China
| | - Tao Jia
- Department of Hematology, The First People's Hospital of Lianyungang, The First Affiliated Hospital of Kangda College of Nanjing Medical University, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, People's Republic of China
| |
Collapse
|
9
|
Zhang N, Wen K. The role of lncRNA binding to RNA‑binding proteins to regulate mRNA stability in cancer progression and drug resistance mechanisms (Review). Oncol Rep 2024; 52:142. [PMID: 39219266 PMCID: PMC11378159 DOI: 10.3892/or.2024.8801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Cancer is a disease that poses a serious threat to human health, the occurrence and development of which involves complex molecular mechanisms. Long non‑coding RNAs (lncRNAs) and RNA‑binding proteins (RBPs) are important regulatory molecules within cells, which have garnered extensive attention in cancer research in recent years. The binding of lncRNAs and RBPs plays a crucial role in the post‑transcriptional regulation of mRNA, affecting the synthesis of proteins related to cancer by regulating the stability of mRNA. This, in turn, regulates the malignant biological behaviors of tumor cells, such as proliferation and metastasis, and serves an important role in therapeutic resistance. The present study reviewed the role of lncRNA‑RBP interactions in the regulation of mRNA stability in various malignant tumors, with a focus on the molecular mechanisms underlying this regulatory interaction. The aim of the present review was to gain a deeper understanding of these molecular mechanisms to provide new strategies and insights for the precise treatment of cancer.
Collapse
Affiliation(s)
- Nianjie Zhang
- Department of Gastrointestinal Surgery, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong 523059, P.R. China
| | - Kunming Wen
- Department of Gastrointestinal Surgery, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong 523059, P.R. China
| |
Collapse
|
10
|
Wang SH, Chiang PM, Su YY, Yu YT, Chen YP, Chen TY, Medeiros LJ, Chu CY, Chen PC, Chang KC. Cytoplasmic Lipid Droplets Predict Worse Prognosis in Diffuse Large B-Cell Lymphoma: Next-Generation Sequencing Deciphering Lipogenic Genes. Am J Surg Pathol 2024; 48:1425-1438. [PMID: 38979928 DOI: 10.1097/pas.0000000000002280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Burkitt lymphoma is characterized by high cell turnover and numerous cytoplasmic vacuoles that are demonstrated to be lipid droplets (LDs) decorated by adipophilin. By contrast, cytoplasmic vacuoles are variably observed in diffuse large B-cell lymphoma (DLBCL) and less well characterized. In this study, we first validated in DLBCL that cytoplasmic vacuoles are indeed LDs by Oil-red-O stain, Bodipy fluorescent stain, and electron microscopy. Second, in a cohort of DLBCL patients (n=52) we showed that LDs in effusional lymphoma cells were associated with a poorer prognosis ( P =0.029, log-rank test) and higher International Prognostic Index (IPI) score (94% vs. 66%, P =0.026) than those without. Moreover, using adipophilin as a surrogate marker for LDs, we found in another cohort of biopsy specimen (n=85) that expression of adipophilin by lymphoma cells predicted a poorer prognosis ( P =0.007, log-rank test) and higher IPI score (63% vs. 30%, P =0.005). In addition, whole exome sequencing of effusional DLBCL cells showed LD-positive DLBCL shared genetic features with the MCD ( MYD88 and CD79B mutations) subtype and highlighted OSBPL10 and CUBN as the most frequently mutated genes involved in lipogenesis. Whole transcriptome analysis by comparing effusional DLBCL cells with versus without LDs showed upregulation of EHHADH , SLC1A1 , CD96 , INPP4B , and RNF183 relevant for lymphoma lipogenesis and upregulation of epithelial-mesenchymal transition and KRAS signaling pathways. Higher expression of EHHADH and CD96 were validated in LD-positive clinical samples and LD-rich cell lines than LD-poor cells along with the known lipogenic gene, FASN . Our findings highlight the roles of LDs and adipophilin expression in DLBCL, suggest that these markers may predict prognosis and show that lipogenic genes may be potential therapeutic targets.
Collapse
MESH Headings
- Humans
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/mortality
- Lipid Droplets/metabolism
- Male
- Lipogenesis/genetics
- Female
- Perilipin-2/genetics
- Perilipin-2/analysis
- Perilipin-2/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/analysis
- Middle Aged
- Prognosis
- High-Throughput Nucleotide Sequencing
- Aged
- Adult
- Mutation
- Predictive Value of Tests
- Fatty Acid Synthase, Type I/genetics
- Fatty Acid Synthase, Type I/metabolism
- Fatty Acid Synthase, Type I/analysis
- Aged, 80 and over
Collapse
Affiliation(s)
| | - Po-Min Chiang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University
| | - Yung-Yeh Su
- Oncology
- National Institute of Cancer Research, National Health Research Institutes
| | - Yu-Ting Yu
- Department of Pathology, School of Medicine, Chung Shan Medical University
- Department of Pathology, Chung Shan Medical University Hospital, Taichung
| | - Ya-Ping Chen
- Department of Internal Medicine, Division of Hematology, National Cheng Kung University Hospital
| | - Tsai-Yun Chen
- Department of Internal Medicine, Division of Hematology, National Cheng Kung University Hospital
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Chang-Yao Chu
- Department of Pathology, Chi-Mei Medical Center, Tainan
- School of Medicine, College of Medicine, National Sun Yat-sen University
| | - Peng-Chieh Chen
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University
| | - Kung-Chao Chang
- Departments of Pathology
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
11
|
Zhang Y, Li A, Li Y, Ouyang B, Wang X, Zhang L, Xu H, Gu Y, Lu X, Dong L, Yi H, Wang C. Clinicopathological and Molecular Characteristics of Rare EBV-associated Diffuse Large B-cell Lymphoma With IRF4 Rearrangement. Am J Surg Pathol 2024; 48:1341-1348. [PMID: 39172106 DOI: 10.1097/pas.0000000000002301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Epstein-Barr virus (EBV)-positive diffuse large B-cell lymphoma (DLBCL) is a rare form of aggressive B-cell lymphoma with limited molecular information reported regarding interferon regulatory factor 4 ( IRF4 ) status. Here, we presented 3 EBV-positive DLBCL cases with IRF4 rearrangement (EBV+DLBCL- IRF4 -R) verified by fluorescence in situ hybridization (FISH). Three patients, including 1 male and 2 females (median age: 64 y; range: 45 to 68 y), had normal immune function. During a median follow-up of 12 months (range: 0 to 24 mo), 2 patients succumbed to the disease, and 1 patient achieved complete response. Three tumors were present in the mediastinum, stomach, and thalamus, respectively. All three tumors exhibited DLBCL morphology and were identified as the non-germinal center B-cell subtype, with EBV-encoded small RNA positivity ranging from 70% to 80%. RNA sequencing was able to identify RHOH and IGH as fusion partners of IRF4 in two cases. No MYC and BCL2 rearrangements were detected in 3 cases by FISH and RNA sequencing. Next-generation sequencing revealed a low mutation burden, and only IRF4 was recurrently mutated in two EBV+DLBCL- IRF4 -R cases. Using the LymphGen 2.0 classifier, 1 case was classified as the MCD (including MYD88L265P and CD79B mutations) subtype. We report rare EBV+DLBCL- IRF4 -R that may enhance our understanding of the diverse spectrum of large B-cell lymphoma.
Collapse
MESH Headings
- Humans
- Interferon Regulatory Factors/genetics
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/virology
- Lymphoma, Large B-Cell, Diffuse/pathology
- Male
- Female
- Middle Aged
- Aged
- Epstein-Barr Virus Infections/virology
- Epstein-Barr Virus Infections/genetics
- Epstein-Barr Virus Infections/pathology
- Epstein-Barr Virus Infections/complications
- Gene Rearrangement
- In Situ Hybridization, Fluorescence
- Biomarkers, Tumor/genetics
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/isolation & purification
- Genetic Predisposition to Disease
Collapse
Affiliation(s)
- Yuxiu Zhang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Anqi Li
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yimin Li
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Binshen Ouyang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuan Wang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Zhang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haimin Xu
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yijin Gu
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyuan Lu
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Lei Dong
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongmei Yi
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaofu Wang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Mkhikian H, Zhou RW, Saryan H, Sánchez CD, Balakrishnan A, Dang J, Mortales CL, Demetriou M. N-Glycan Branching Regulates BTLA Opposite to PD-1 to Limit T Cell Hyperactivity Induced by Branching Deficiency. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1329-1337. [PMID: 39269653 DOI: 10.4049/jimmunol.2300568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 08/22/2024] [Indexed: 09/15/2024]
Abstract
N-glycan branching is a potent and multifaceted negative regulator of proinflammatory T cell and B cell function. By promoting multivalent galectin-glycoprotein lattice formation at the cell surface, branching regulates clustering and/or endocytosis of the TCR complex (TCR+CD4/CD8), CD45, CD25, BCR, TLR2 and TLR4 to inhibit T cell and B cell activation/proliferation and proinflammatory TH1 and TH17 over TH2 and induced T regulatory cell responses. In addition, branching promotes cell surface retention of the growth inhibitory receptor CTLA-4. However, the role of N-glycan branching in regulating cell surface levels of other checkpoint receptors such as BTLA (B and T lymphocyte attenuator) and PD-1 (programmed cell death protein 1) is unknown. In this study, we report that whereas branching significantly enhances PD-1 cell surface expression by reducing loss from endocytosis, the opposite occurs with BTLA in both T cells and B cells. T cell hyperactivity induced by branching deficiency was opposed by BTLA ligation proportional to increased BTLA expression. Other members of the BTLA/HVEM (herpesvirus entry mediator) signaling axis in T cells, including HVEM, LIGHT, and CD160, are largely unaltered by branching. Thus, branching-mediated endocytosis of BTLA is opposite of branching-induced inhibition of PD-1 endocytosis. In this manner, branching deficiency-induced upregulation of BTLA appears to serve as a checkpoint to limit extreme T cell hyperactivity and proinflammatory outcomes in T cells with low branching.
Collapse
Affiliation(s)
- Haik Mkhikian
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA
| | - Raymond W Zhou
- Department of Neurology, University of California, Irvine, Irvine, CA
| | - Hayk Saryan
- Department of Neurology, University of California, Irvine, Irvine, CA
| | | | - Aswath Balakrishnan
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA
| | - Justin Dang
- Department of Neurology, University of California, Irvine, Irvine, CA
| | | | - Michael Demetriou
- Department of Neurology, University of California, Irvine, Irvine, CA
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA
| |
Collapse
|
13
|
Karsten IE, Shumilov E, Schmitz N, Lenz G. Sequencing of therapy for patients with diffuse large B-cell lymphoma in the era of novel drugs. Br J Haematol 2024. [PMID: 39466716 DOI: 10.1111/bjh.19860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common aggressive lymphoma, accounting for ~40% of all cases in adults. Whilst approximately two-thirds of DLBCL patients can be cured by first-line therapy, one-third of patients are primary refractory or relapse after an initial response (r/r DLBCL). Recent advances in the treatment of DLBCL have been achieved by a plethora of novel drugs, such as monoclonal antibodies, antibody-drug conjugates (ADC), bi-specific T-cell engagers (BITEs), and CD-19 directed chimeric antigen receptor (CAR)-T-cell therapies. The increasing number of therapeutic options significantly improved the outcome of patients; however, the therapeutic algorithm has become increasingly complex. In this review, we provide an overview of novel therapies for DLBCL patients and potential treatment sequencing from first to second, third, and later lines.
Collapse
Affiliation(s)
- Imke E Karsten
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Evgenii Shumilov
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Norbert Schmitz
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Muenster, Muenster, Germany
| | - Georg Lenz
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Muenster, Muenster, Germany
| |
Collapse
|
14
|
Liu K, Yang Q, Liu P, Zhu K, Zou M, Zhu Q, Yi P, Fang K, Luo Z. CD70 is a potential prognostic marker and significantly regulates cellular function in diffuse large B-cell lymphoma. PLoS One 2024; 19:e0312445. [PMID: 39446784 PMCID: PMC11500843 DOI: 10.1371/journal.pone.0312445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024] Open
Abstract
Extensive research has demonstrated that dysregulation of costimulatory molecule expression plays a pivotal role in cancer biology. However, the impact of intratumoral CD70 on the initiation, progression, and immune response in diffuse large B-cell lymphoma (DLBCL) remains poorly understood. This study aims to elucidate the clinical significance of CD70 in DLBCL diagnosis and prognosis, as well as its relationship with the immune microenvironment. We first analyzed CD70 expression across various cancers, including DLBCL, using multiple online databases (TIMER, GEPIA, GENT2, TNMPlot, GSCA, and GEO). We then evaluated the clinical correlations and prognostic value of CD70 in DLBCL. Additionally, we investigated the functional role of CD70 in DLBCL cells. Genomic alterations of CD70 were analyzed using the cBioPortal online tool. Co-expression network analysis was performed to assess the biological functions associated with CD70. Furthermore, we utilized TIMER2.0 to examine the correlation between CD70 expression and immune cell infiltration. Our results revealed that CD70 expression was significantly upregulated in DLBCL tissues compared to matched normal tissues, and high CD70 expression was associated with poor clinical outcomes in DLBCL patients. In vitro experiments demonstrated that CD70 inhibition promotes apoptosis and induces G1 phase arrest in DLBCL cells. Genomic alteration analysis showed that patients with CD70 alterations exhibited worse overall survival compared to those without such alterations. Co-expression and functional enrichment analyses indicated that CD70 is functionally related to tumor necrosis factor receptor binding and the NF-κB signaling pathway. Moreover, we found that CD70 expression levels were negatively correlated with B cell and NK cell infiltration in DLBCL. In conclusion, this study suggests that CD70 is a potential diagnostic and therapeutic biomarker for DLBCL. Our findings provide valuable insights for the development of novel therapeutic strategies targeting CD70 in DLBCL treatment.
Collapse
MESH Headings
- Humans
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/metabolism
- CD27 Ligand/metabolism
- CD27 Ligand/genetics
- Prognosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Tumor Microenvironment/immunology
- Gene Expression Regulation, Neoplastic
- Cell Line, Tumor
- Apoptosis
- Female
- Male
Collapse
Affiliation(s)
- Kang Liu
- Hematology Laboratory, Central Hospital of Xiangtan, Xiangtan, China
| | - Qiuyue Yang
- Department of Scientific Research Project, Wuhan Kindstar Medical Laboratory Co., Ltd., Wuhan, China
- Kindstar Global Precision Medicine Institute, Wuhan, China
| | - Ping Liu
- Department of Hematology, Central Hospital of Xiangtan, Xiangtan, China
| | - Kaibo Zhu
- Department of Hematology, Central Hospital of Xiangtan, Xiangtan, China
| | - Min Zou
- Hematology Laboratory, Central Hospital of Xiangtan, Xiangtan, China
| | - Qiang Zhu
- Department of Scientific Research Project, Wuhan Kindstar Medical Laboratory Co., Ltd., Wuhan, China
- Kindstar Global Precision Medicine Institute, Wuhan, China
| | - Ping Yi
- Department of Scientific Research Project, Wuhan Kindstar Medical Laboratory Co., Ltd., Wuhan, China
- Kindstar Global Precision Medicine Institute, Wuhan, China
| | - Kun Fang
- Department of Scientific Research Project, Wuhan Kindstar Medical Laboratory Co., Ltd., Wuhan, China
- Kindstar Global Precision Medicine Institute, Wuhan, China
| | - Zimian Luo
- Department of Hematology, Central Hospital of Xiangtan, Xiangtan, China
| |
Collapse
|
15
|
Li Y, Li C, Lv K, Wang S, Li F. Efficacy and Safety of Ibrutinib as Monotherapy or Combination Therapy in Relapsed/Refractory Diffuse Large B-cell Lymphoma (R/R DLBCL): A Systematic Review and Meta-analysis. Am J Ther 2024:00045391-990000000-00226. [PMID: 39413356 DOI: 10.1097/mjt.0000000000001831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
BACKGROUND Diffuse large B-cell lymphoma (DLBCL) is a highly heterogeneous disease group. Ibrutinib's monotherapy or combination therapy is effective in relapsed/refractory (R/R) DLBCL. However, the treatment response in R/R DLBCL varies from 15% to 90% with different regimens, and the tolerance remains controversial. AREAS OF UNCERTAINTY The efficacy and safety of ibrutinib monotherapy or combination therapy in patients with R/R DLBCL remain uncertain. DATA SOURCES The PubMed, CBM, MEDLINE, Cochrane Library, and Embase databases were searched from their inception to July 2021. THERAPEUTIC ADVANCES The total complete remission rate (CRR) and overall response rate in R/R DLBCL patients treated with ibrutinib were 26% and 49%, respectively. The CRR of ibrutinib combination therapy was significantly higher than the ibrutinib monotherapy (45% vs. 19%). Moreover, the CRR of patients was 40% in double expressing lymphoma, 35% in central nervous system lymphoma, and 33% in nongerminal center B-cell-like (non-GCB) DLBCL, which was higher than the 8% in those with the GCB subtype. The pooled median PFS and overall survival were 5.57 and 10.17 months, respectively. GCB-DLBCL had the worst overall survival (5.1 months). Nevertheless, we found that combination regimens had no survival advantage compared with monotherapy (P > 0.05), indicating that combination therapy was only a transitional treatment and bridge for chimeric antigen receptor T cells or other treatments. Moreover, 12% of patients on ibrutinib combination therapy had ≥grade 3 adverse events compared with 9% on ibrutinib monotherapy. CONCLUSIONS Ibrutinib monotherapy or combination therapy was safe and effective in treating R/R DLBCL with tolerable adverse reactions.
Collapse
Affiliation(s)
- Yin Li
- Jiangxi Provincial Key Laboratory of Hematological Diseases, Department of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China; and
- Department of Geriatric, Yangtze River Shipping General Hospital, Wuhan, Hubei, China
| | - Chunfan Li
- Jiangxi Provincial Key Laboratory of Hematological Diseases, Department of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China; and
| | - Kebing Lv
- Jiangxi Provincial Key Laboratory of Hematological Diseases, Department of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China; and
| | - Shixuan Wang
- Jiangxi Provincial Key Laboratory of Hematological Diseases, Department of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China; and
| | - Fei Li
- Jiangxi Provincial Key Laboratory of Hematological Diseases, Department of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China; and
| |
Collapse
|
16
|
Alig SK. FISHing for clarity in double-hit lymphomas. Blood 2024; 144:1550-1552. [PMID: 39388163 DOI: 10.1182/blood.2024026379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024] Open
|
17
|
Jin F, He L, Chen Y, Tian W, Liu L, Ge L, Qian W, Xia L, Yang M. Synergistic effect of venetoclax and ibrutinib on ibrutinib-resistant ABC-type DLBCL cells. Braz J Med Biol Res 2024; 57:e13278. [PMID: 39383379 PMCID: PMC11463907 DOI: 10.1590/1414-431x2024e13278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/07/2024] [Indexed: 10/11/2024] Open
Abstract
Despite the widespread use of R-CHOP therapy in diffuse large B-cell lymphoma (DLBCL), the therapeutic efficacy for this disease remains suboptimal, primarily due to the heterogeneity of refractory and/or relapsed diseases. To address this challenge, optimization of DLBCL treatment regimens has focused on the strategy of combining an additional drug "X" with R-CHOP to enhance efficacy. However, the failure of R-CHOP combined with the BTK inhibitor ibrutinib in treating ABC-type DLBCL patients has raised significant concerns regarding ibrutinib resistance. While some studies suggest that venetoclax may synergize with ibrutinib to kill ibrutinib-resistant cells, the underlying mechanisms remain unclear. Our study aimed to validate the enhanced tumor-suppressive effect of combining ibrutinib with venetoclax against ibrutinib-resistant cells and elucidate its potential mechanisms. Our experimental results demonstrated that ibrutinib-resistant cells exhibited significant cytotoxicity to the combination therapy of ibrutinib and venetoclax, inducing cell apoptosis through activation of the mitochondrial pathway and inhibition of aerobic respiration. Furthermore, we validated the inhibitory effect of this combination therapy on tumor growth in in vivo models. Therefore, our study proposes that the combination therapy of ibrutinib and venetoclax is a promising treatment strategy that can be applied in clinical practice for ABC-type DLBCL, offering a new solution to overcome the urgent challenge of ibrutinib resistance.
Collapse
Affiliation(s)
- Fengbo Jin
- Department of Hematopathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Limei He
- Department of Hematopathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Yingying Chen
- Department of Hematopathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Wanlu Tian
- Department of Hematopathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Lixia Liu
- Department of Hematopathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Ling Ge
- Department of Hematopathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Wei Qian
- Department of Hematopathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Leiming Xia
- Department of Hematopathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Mingzhen Yang
- Department of Hematopathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Public Health Clinical Center, Hefei, Anhui, China
| |
Collapse
|
18
|
Spada F, Rosenwald A, Klapper W, Feller AC, Fend F, Ott G, Fürstberger A, Barth TFE, Möller P. Histomorphologic spectrum of nodal marginal zone lymphoma as defined by its methylome. Am J Clin Pathol 2024:aqae120. [PMID: 39373181 DOI: 10.1093/ajcp/aqae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/16/2024] [Indexed: 10/08/2024] Open
Abstract
OBJECTIVES Primary nodal marginal B-cell lymphoma (NMZL) is rare and histologically very variable. Its large-cell presentation is difficult to distinguish from nodal diffuse large B-cell lymphoma (nDLBCL) due to the absence of specific markers for nodal marginal zone lymphomas in general. METHODS Using a comprehensive cohort of NMZLs and a control cohort of nDLBCLs, we conducted a methylome analysis on subgroups of both. RESULTS The methylomes were strikingly different between the cohorts but unexpectedly homogeneous within the NMZL cohort. This allowed us to describe the morphologic spectrum of NMZL in all its value ranges. The considerable overlap in growth pattern and cytology of NMZL with nDLBCL was explored morphometrically, leading to an operational tool for separating both by a simple measurement of cell size and nuclear size. This was integrated in a hierarchical approach, including a scoring system for the parameter growth pattern, follicular colonization, follicular dendritic network, IgD expression, and Ki-67 rate, and led to a proposal for a classifier that we present here. CONCLUSIONS This methylome-based study extends the morphological spectrum of NMZL towards large cell morphology and offers a conventional way to distinguish it from nDLBCL.
Collapse
Affiliation(s)
| | - Andreas Rosenwald
- Institute of Pathology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Wolfram Klapper
- Department of Pathology, Hematopathology Section and Lymph Node Registry, University Hospital Schleswig-Holstein, University of Kiel, Kiel, Germany
| | - Alfred C Feller
- Department of Pathology, University Hospital of Schleswig-Holstein, Lübeck, Germany
| | - Falko Fend
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, and Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | | | | | - Peter Möller
- Institute of Pathology, Ulm University, Ulm, Germany
| |
Collapse
|
19
|
Portelinha A, Wang S, Parsa S, Jiang M, Gorelick AN, Mohanty S, Sharma S, de Stanchina E, Berishaj M, Zhao C, Heward J, Aryal NK, Tavana O, Wen J, Fitzgibbon J, Dogan A, Younes A, Melnick AM, Wendel HG. SETD1B mutations confer apoptosis resistance and BCL2 independence in B cell lymphoma. J Exp Med 2024; 221:e20231143. [PMID: 39235528 PMCID: PMC11380151 DOI: 10.1084/jem.20231143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 03/05/2024] [Accepted: 08/02/2024] [Indexed: 09/06/2024] Open
Abstract
The translocation t(14;18) activates BCL2 and is considered the initiating genetic lesion in most follicular lymphomas (FL). Surprisingly, FL patients fail to respond to the BCL2 inhibitor, Venetoclax. We show that mutations and deletions affecting the histone lysine methyltransferase SETD1B (KMT2G) occur in 7% of FLs and 16% of diffuse large B cell lymphomas (DLBCL). Deficiency in SETD1B confers striking resistance to Venetoclax and an experimental MCL-1 inhibitor. SETD1B also acts as a tumor suppressor and cooperates with the loss of KMT2D in lymphoma development in vivo. Consistently, loss of SETD1B in human lymphomas typically coincides with loss of KMT2D. Mechanistically, SETD1B is required for the expression of several proapoptotic BCL2 family proteins. Conversely, inhibitors of the KDM5 histone H3K4 demethylases restore BIM and BIK expression and synergize with Venetoclax in SETD1B-deficient lymphomas. These results establish SETD1B as an epigenetic regulator of cell death and reveal a pharmacological strategy to augment Venetoclax sensitivity in lymphoma.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Apoptosis/genetics
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Cell Line, Tumor
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Drug Resistance, Neoplasm/genetics
- Histone-Lysine N-Methyltransferase/genetics
- Histone-Lysine N-Methyltransferase/metabolism
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/pathology
- Lymphoma, B-Cell/metabolism
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Mutation
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Sulfonamides/pharmacology
Collapse
Affiliation(s)
- Ana Portelinha
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center , New York, NY, USA
| | - Shenqiu Wang
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center , New York, NY, USA
| | - Sara Parsa
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center , New York, NY, USA
| | - Man Jiang
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center , New York, NY, USA
| | - Alexander N Gorelick
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center , New York, NY, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Sagarajit Mohanty
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center , New York, NY, USA
| | - Soumya Sharma
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center , New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center , New York, NY, USA
| | - Marjan Berishaj
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center , New York, NY, USA
| | - Chunying Zhao
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center , New York, NY, USA
| | | | - Neeraj K Aryal
- Bioscience, Early Oncology R&D, AstraZeneca , Waltham, MA, USA
| | - Omid Tavana
- Bioscience, Early Oncology R&D, AstraZeneca , Waltham, MA, USA
| | - Jiayu Wen
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, The Australian National University and Australian Research Council Centre of Excellence for the Mathematical Analysis of Cellular Systems, Canberra, Australia
| | | | - Ahmet Dogan
- Departments of Pathology and Laboratory Medicine, Hematopathology Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Anas Younes
- Haematology R&D, AstraZeneca , New York, NY, USA
| | - Ari M Melnick
- Hematology and Oncology Division, Medicine Department, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Hans-Guido Wendel
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center , New York, NY, USA
| |
Collapse
|
20
|
Mato S, Castrejón-de-Anta N, Colmenero A, Carità L, Salmerón-Villalobos J, Ramis-Zaldivar JE, Nadeu F, Garcia N, Wang L, Verdú-Amorós J, Andrés M, Conde N, Celis V, Ortega MJ, Galera A, Astigarraga I, Perez-Alonso V, Quiroga E, Jiang A, Scott DW, Campo E, Balagué O, Salaverria I. MYC-rearranged mature B-cell lymphomas in children and young adults are molecularly Burkitt Lymphoma. Blood Cancer J 2024; 14:171. [PMID: 39375391 PMCID: PMC11458770 DOI: 10.1038/s41408-024-01153-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024] Open
Abstract
Aggressive B-cell non-Hodgkin lymphomas (NHL) in children, adolescents, and young adults (CAYA) include Burkitt lymphoma (BL), diffuse large B-cell lymphoma (DLBCL), and a subset of high-grade tumors with features intermediate between these entities whose genetic and molecular profiles have not been completely elucidated. In this study, we have characterized 37 aggressive B-NHL in CAYA, 33 with high-grade morphology, and 4 DLBCL with MYC rearrangement (MYC-R), using targeted next-generation sequencing and the aggressive lymphoma gene expression germinal center B-cell-like (GCB), activated B-cell-like (ABC), and dark zone signatures (DZsig). Twenty-two tumors had MYC-R without BCL2 breaks, and two MYC-non-R cases had BCL6 translocations. MYC-R cases, including DLBCL, carried BL-related mutations and copy number alterations. Conversely, MYC-non-R lymphomas had alterations in the B-cell receptor signaling/NF-κB pathway (71%). DZsig was expressed in 12/13 of MYC-R tumors but only in 2/10 of MYC-non-R GCB tumors (P < 0.001). The 3-year event-free survival (EFS) of the whole cohort was 79.6%. TP53 and KMT2C mutations conferred inferior outcome (3-year EFS P < 0.05). Overall, MYC-R lymphomas in CAYA have a molecular profile similar to BL regardless of their high-grade or DLBCL morphology, whereas MYC-non-R has more heterogeneous genetic alterations closer to that of DLBCL.
Collapse
Affiliation(s)
- Sara Mato
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona (UB), Barcelona, Spain
| | - Natalia Castrejón-de-Anta
- University of Barcelona (UB), Barcelona, Spain
- Hematopathology Section, Laboratory of Pathology, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Ariadna Colmenero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona (UB), Barcelona, Spain
| | - Lorenzo Carità
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Joan Enric Ramis-Zaldivar
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Ferran Nadeu
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Noelia Garcia
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Luojun Wang
- Hematopathology Section, Laboratory of Pathology, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Jaime Verdú-Amorós
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Pediatric Oncology Department, Hospital Clínico Universitario, Biomedical Research Institute INCLIVA de Valencia, Valencia, Spain
| | - Mara Andrés
- Pediatric Oncology Department, Hospital La Fe, Valencia, Spain
| | - Nuria Conde
- Pediatric Oncology Department, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Verónica Celis
- Pediatric Oncology Department, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Maria José Ortega
- Pediatric Oncology Department, Hospital Virgen de las Nieves, Granada, Spain
| | - Ana Galera
- Pediatric Oncohematology Department, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Itziar Astigarraga
- Pediatric Oncology Unit, Hospital Universitario Cruces Osakidetza, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Vanesa Perez-Alonso
- Pediatric Oncology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Eduardo Quiroga
- Pediatric Oncology Department, Hospital Virgen del Rocio, Sevilla, Spain
| | - Aixiang Jiang
- BC Cancer's Centre for Lymphoid, Vancouver, BC, Canada
| | - David W Scott
- BC Cancer's Centre for Lymphoid, Vancouver, BC, Canada
- Division of Medical Oncology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Elias Campo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona (UB), Barcelona, Spain
- Hematopathology Section, Laboratory of Pathology, Hospital Clinic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Olga Balagué
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- University of Barcelona (UB), Barcelona, Spain.
- Hematopathology Section, Laboratory of Pathology, Hospital Clinic de Barcelona, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| | - Itziar Salaverria
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
21
|
Sarott RC, Gourisankar S, Karim B, Nettles S, Yang H, Dwyer BG, Simanauskaite JM, Tse J, Abuzaid H, Krokhotin A, Zhang T, Hinshaw SM, Green MR, Crabtree GR, Gray NS. Relocalizing transcriptional kinases to activate apoptosis. Science 2024; 386:eadl5361. [PMID: 39361741 DOI: 10.1126/science.adl5361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 08/15/2024] [Indexed: 10/05/2024]
Abstract
Kinases are critical regulators of cellular function that are commonly implicated in the mechanisms underlying disease. Most drugs that target kinases are molecules that inhibit their catalytic activity, but here we used chemically induced proximity to convert kinase inhibitors into activators of therapeutic genes. We synthesized bivalent molecules that link ligands of the transcription factor B cell lymphoma 6 (BCL6) to inhibitors of cyclin-dependent kinases (CDKs). These molecules relocalized CDK9 to BCL6-bound DNA and directed phosphorylation of RNA polymerase II. The resulting expression of pro-apoptotic, BCL6-target genes caused killing of diffuse large B cell lymphoma cells and specific ablation of the BCL6-regulated germinal center response. Genomics and proteomics corroborated a gain-of-function mechanism in which global kinase activity was not inhibited but rather redirected. Thus, kinase inhibitors can be used to context-specifically activate transcription.
Collapse
Affiliation(s)
- Roman C Sarott
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Sai Gourisankar
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Basel Karim
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Sabin Nettles
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Haopeng Yang
- Department of Lymphoma & Myeloma, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Brendan G Dwyer
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | | | - Jason Tse
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Hind Abuzaid
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Andrey Krokhotin
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Tinghu Zhang
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Stephen M Hinshaw
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Michael R Green
- Department of Lymphoma & Myeloma, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gerald R Crabtree
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
22
|
Sherif M, Schäfer H, Scharf S, van Oostendorp V, Sadeghi Shoreh Deli A, Loth AG, Piel M, Hansmann ML, Oellerich T, Fend F, Quintanilla-Martinez L, Hartmann S. EZB-type diffuse large B-cell lymphoma cell lines have superior migration capabilities compared to MCD-type. Br J Haematol 2024. [PMID: 39355919 DOI: 10.1111/bjh.19778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/09/2024] [Indexed: 10/03/2024]
Abstract
Diffuse large B-cell lymphoma (DLBCL) represents the most prevalent aggressive B-cell lymphoma. The group is heterogeneous and the outcome is variable. A variety of approaches have been employed with the objective of improving the stratification of DLBCL patients according to their prognosis, based on the cell of origin. Recently, distinct genetic subtypes of DLBCL have been identified. Given the importance of cell migration in immune cells, the objective of this study was to ascertain whether different genetic subtypes of DLBCL exhibit disparate migration abilities. MCD- and EZB-type DLBCL cell lines were subjected to testing to ascertain their basal velocity in straight microchannels and their ability to overcome tight constrictions of 2 μm. The EZB-type cell lines showed superior basal migration velocity and constriction passage time, and a similar trend was observed in live cell imaging of native human DLBCL tissue. In addition, MCD-type DLBCL exhibited significantly elevated levels of nuclear lamin A/C, which is responsible for the stiffness of the nuclear envelope and could thus explain the disparate migration behaviours observed among these subtypes. Our study suggests that different genetic subtypes of DLBCL may not only influence the outcome after therapy but also the motility of the tumour cells.
Collapse
Affiliation(s)
- Marwa Sherif
- Dr. Senckenberg Institute of Pathology, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Hendrik Schäfer
- Dr. Senckenberg Institute of Pathology, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Sonja Scharf
- Dr. Senckenberg Institute of Pathology, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Vivienne van Oostendorp
- Dr. Senckenberg Institute of Pathology, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Aresu Sadeghi Shoreh Deli
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Andreas G Loth
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Matthieu Piel
- Institut Curie and Institut Pierre Gilles de Gennes, PSL Research University, CNRS, UMR 144, Paris, France
| | | | - Thomas Oellerich
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- University Cancer Center (UCT) Frankfurt, University Hospital, Goethe University, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Falko Fend
- Institute of Pathology and Neuropathology, University Hospital Tuebingen and Comprehensive Cancer Center, Tuebingen, Germany
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, University Hospital Tuebingen and Comprehensive Cancer Center, Tuebingen, Germany
| | - Sylvia Hartmann
- Dr. Senckenberg Institute of Pathology, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
23
|
Han X, Sui J, Nie K, Zhao Y, Lv X, Xie J, Tan L, Au-Yeung RKH, Ma J, Inghirami G, Elemento O, Tam W, Liu Z. Tumor evolution analysis uncovered immune-escape related mutations in relapse of diffuse large B-cell lymphoma. Leukemia 2024; 38:2276-2280. [PMID: 39080353 DOI: 10.1038/s41375-024-02349-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 09/29/2024]
Affiliation(s)
- Xueshuai Han
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingru Sui
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kui Nie
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Yang Zhao
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Xuan Lv
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jindou Xie
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Leonard Tan
- Department of Pathology, Singapore General Hospital, Singapore, Singapore
| | - Rex K H Au-Yeung
- Department of Pathology, the University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - Jiao Ma
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Olivier Elemento
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Wayne Tam
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA.
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| | - Zhaoqi Liu
- China National Center for Bioinformation, Beijing, China.
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
24
|
He MY, Tong KI, Liu T, Whittaker Hawkins R, Shelton V, Zeng Y, Bakhtiari M, Xiao Y, Zheng G, Sakhdari A, Yang L, Xu W, Brooks DG, Laister RC, He HH, Kridel R. GNAS knockout potentiates HDAC3 inhibition through viral mimicry-related interferon responses in lymphoma. Leukemia 2024; 38:2210-2224. [PMID: 39117798 PMCID: PMC11436380 DOI: 10.1038/s41375-024-02325-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 08/10/2024]
Abstract
Despite selective HDAC3 inhibition showing promise in a subset of lymphomas with CREBBP mutations, wild-type tumors generally exhibit resistance. Here, using unbiased genome-wide CRISPR screening, we identify GNAS knockout (KO) as a sensitizer of resistant lymphoma cells to HDAC3 inhibition. Mechanistically, GNAS KO-induced sensitization is independent of the canonical G-protein activities but unexpectedly mediated by viral mimicry-related interferon (IFN) responses, characterized by TBK1 and IRF3 activation, double-stranded RNA formation, and transposable element (TE) expression. GNAS KO additionally synergizes with HDAC3 inhibition to enhance CD8+ T cell-induced cytotoxicity. Moreover, we observe in human lymphoma patients that low GNAS expression is associated with high baseline TE expression and upregulated IFN signaling and shares common disrupted biological activities with GNAS KO in histone modification, mRNA processing, and transcriptional regulation. Collectively, our findings establish an unprecedented link between HDAC3 inhibition and viral mimicry in lymphoma. We suggest low GNAS expression as a potential biomarker that reflects viral mimicry priming for enhanced response to HDAC3 inhibition in the clinical treatment of lymphoma, especially the CREBBP wild-type cases.
Collapse
Affiliation(s)
- Michael Y He
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Kit I Tong
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Ting Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Ryder Whittaker Hawkins
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada
| | - Victoria Shelton
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Yong Zeng
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Mehran Bakhtiari
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Yufeng Xiao
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Guangrong Zheng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Ali Sakhdari
- Laboratory Medicine and Pathobiology, University Health Network, Toronto, ON, Canada
| | - Lin Yang
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Wenxi Xu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - David G Brooks
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Rob C Laister
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Housheng Hansen He
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Robert Kridel
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
25
|
Weng H, Yu L, Chen Z, Huang H, Chen X, Zou L, Guo H, Huang H, Hong H, Lin T. Benefit of consolidative radiation in patients with extranodal limited-stage diffuse large B-cell lymphoma: a multicenter retrospective study in China. Ann Hematol 2024; 103:4231-4237. [PMID: 38922341 DOI: 10.1007/s00277-024-05855-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
Approximately 40% of limited-stage (stage I and II) diffuse large B-cell lymphoma (LS-DLBCL) presents with extranodal disease. Extranodal LS-DLBCL may have significant biological differences and associated with worse outcomes than nodal disease. Although rituximab based chemoimmunotherapy is standard of first-line treatment, the role of consolidative radiotherapy (RT) in this particular subgroup is controversial. In this multicenter retrospective study, we evaluated the survival benefit of consolidative RT in patients diagnosed with extranodal LS-DLBCL and received rituximab-based chemoimmunotherapy with or without consolidative RT. A total of 328 patients were included, 129 patients (39.3%) received chemoimmunotherapy and consolidative RT, and 199 patients (60.7%) received chemoimmunotherapy alone. With a median follow-up of 5.1 years (range, 0.3-14.8 years), 5-year progression-free survival (PFS) and overall survival (OS) for all patients were 75.4% and 83.9%, respectively. In multivariate analyses, the addition of consolidative RT was associated with superior OS (P = 0.004) and PFS (P = 0.005). High stage-modified International Prognosis Index (SM-IPI) risk predicted worse OS (P = 0.001) and PFS (P = 0.005). Also, propensity score-matched analyses showed RT improved both OS (hazard ratio [HR] 0.228, 95% confidence index [CI] 0.111-0.467, P < 0.001) and PFS (HR 0.308, 95% CI 0.167-0.566, P < 0.001). Among patients who achieved CR, 49 patients (16.6%) developed disease relapse, of which 30.6% relapsed at local sites. Consolidative RT significantly reduced relapse risk (P = 0.002). Our results demonstrated that consolidative RT significantly improved outcomes in patients with extranodal LS-DLBCL in the rituximab era.
Collapse
Affiliation(s)
- Huawei Weng
- Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No. 55, Section 4, South Renmin Road, Chengdu, 610041, P.R. China
| | - Le Yu
- Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No. 55, Section 4, South Renmin Road, Chengdu, 610041, P.R. China
| | - Zegeng Chen
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, No. 651, Dongfeng East Road, Yuexiu District, Guangzhou, 510060, P.R. China
| | - Huageng Huang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, No. 651, Dongfeng East Road, Yuexiu District, Guangzhou, 510060, P.R. China
| | - Xinggui Chen
- Department of Medical Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, P.R. China
| | - Liqun Zou
- Division of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Hongqiang Guo
- The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, 450003, P.R. China
| | - He Huang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, No. 651, Dongfeng East Road, Yuexiu District, Guangzhou, 510060, P.R. China
| | - Huangming Hong
- Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No. 55, Section 4, South Renmin Road, Chengdu, 610041, P.R. China.
| | - Tongyu Lin
- Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No. 55, Section 4, South Renmin Road, Chengdu, 610041, P.R. China.
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, No. 651, Dongfeng East Road, Yuexiu District, Guangzhou, 510060, P.R. China.
| |
Collapse
|
26
|
Xiao W, Yu K, Deng X, Zeng Y. Natural killer cell-associated prognosis model characterizes immune landscape and treatment efficacy of diffuse large B cell lymphoma. Cytokine 2024; 182:156726. [PMID: 39111113 DOI: 10.1016/j.cyto.2024.156726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/25/2024]
Abstract
PURPOSE NK cells are essential for the detection, identification and prediction of cancer. However, so far, there is no prognostic risk model based on NK cell-related genes to predict the prognosis and treatment outcome of DLBCL patients. This study aimed to explore a risk assessment model that could accurately predict the prognosis and treatment efficacy of DLBCL. METHODS Bioinformatics analysis of the expression profiles of DLBCL samples in the GEO database was performed. Cox regression and LASSO regression analysis were used to determine NK cell-related genes associated with patient's prognosis. Based on these genes, a risk assessment model was constructed to predict the prognosis of patients and the effectiveness of treatment. Finally, qRT-PCR was used to verify the expression of gene tags in clinical samples. RESULTS We identified seven prognosis-related NK cell-related genes (MAP2K1, PRKCB, TNFRSF10B, IL18, LAMP1, RASGRP1, and SP110), and DLBCL patients were divided into low- and high-risk groups based on these genes. Survival analysis showed that the prognosis of patients with low-risk group was better. Pathway enrichment analysis showed that the differentially expressed genes between the two risk groups were related to immune response pathways. Compared with the high-risk group, the low-risk group had higher infiltration of immune cells in tumor tissues. Besides, compared with high-risk group, low-risk patients by immunotherapy or other commonly used anti-tumor drugs might have better efficacy after treatment. In addition, qRT-PCR showed that the expression of risk genes including TNFRSF10B, IL18 and LAMP1 were significantly increased in most DLBCL samples compared to control samples, while the expression of protective genes including MAP2K1, PRKCB, RASGRP1 and SP110 were significantly decreased. CONCLUSION The NK cell-related gene signatures were proved to be a reliable indicator of the success of immunotherapy in patients with DLBCL, thus providing a unique evaluation method.
Collapse
Affiliation(s)
- Wei Xiao
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, No. 628 Zhenyuan Road, Guangming District, Shenzhen 518107, Guangdong Province, China
| | - Kuai Yu
- Department of Blood Transfusion, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330209, Jiangxi Province, China; Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330209, Jiangxi Province, China
| | - Xuefei Deng
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, No. 628 Zhenyuan Road, Guangming District, Shenzhen 518107, Guangdong Province, China
| | - Yunxin Zeng
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, No. 628 Zhenyuan Road, Guangming District, Shenzhen 518107, Guangdong Province, China.
| |
Collapse
|
27
|
Abu Sailik F, Emerald BS, Ansari SA. Opening and changing: mammalian SWI/SNF complexes in organ development and carcinogenesis. Open Biol 2024; 14:240039. [PMID: 39471843 DOI: 10.1098/rsob.240039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/04/2024] [Accepted: 09/18/2024] [Indexed: 11/01/2024] Open
Abstract
The switch/sucrose non-fermentable (SWI/SNF) subfamily are evolutionarily conserved, ATP-dependent chromatin-remodelling complexes that alter nucleosome position and regulate a spectrum of nuclear processes, including gene expression, DNA replication, DNA damage repair, genome stability and tumour suppression. These complexes, through their ATP-dependent chromatin remodelling, contribute to the dynamic regulation of genetic information and the maintenance of cellular processes essential for normal cellular function and overall genomic integrity. Mutations in SWI/SNF subunits are detected in 25% of human malignancies, indicating that efficient functioning of this complex is required to prevent tumourigenesis in diverse tissues. During development, SWI/SNF subunits help establish and maintain gene expression patterns essential for proper cellular identity and function, including maintenance of lineage-specific enhancers. Moreover, specific molecular signatures associated with SWI/SNF mutations, including disruption of SWI/SNF activity at enhancers, evasion of G0 cell cycle arrest, induction of cellular plasticity through pro-oncogene activation and Polycomb group (PcG) complex antagonism, are linked to the initiation and progression of carcinogenesis. Here, we review the molecular insights into the aetiology of human malignancies driven by disruption of the SWI/SNF complex and correlate these mechanisms to their developmental functions. Finally, we discuss the therapeutic potential of targeting SWI/SNF subunits in cancer.
Collapse
Affiliation(s)
- Fadia Abu Sailik
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
- ASPIRE Precision Medicine Research Institute Abu Dhabi (PMRI-AD), United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Suraiya Anjum Ansari
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
- ASPIRE Precision Medicine Research Institute Abu Dhabi (PMRI-AD), United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| |
Collapse
|
28
|
Frontzek F, Renaud L, Dührsen U, Poeschel V, Bernard S, Chartier L, Ketterer N, Récher C, Fitoussi O, Held G, Casasnovas O, Haioun C, Mounier N, Tilly H, Morschhauser F, Le Gouill S, Karsten IE, Duns G, Steidl C, Scott DW, Klapper W, Rosenwald A, Ott G, Molina T, Lenz G, Ziepert M, Altmann B, Thieblemont C, Schmitz N. Identification, risk factors, and clinical course of CNS relapse in DLBCL patients across 19 prospective phase 2 and 3 trials-a LYSA and GLA/ DSHNHL collaboration. Leukemia 2024; 38:2225-2234. [PMID: 39152324 DOI: 10.1038/s41375-024-02371-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/25/2024] [Accepted: 07/31/2024] [Indexed: 08/19/2024]
Abstract
Progression or relapse in the central nervous system (CNS) remains a rare but mostly fatal event for patients with diffuse large B-cell lymphoma (DLBCL). In a retrospective analysis of 5189 patients treated within 19 prospective German and French phase 2/3 trials, we identified 159 patients experiencing a CNS event (relapse: 62%, progression: 38%). Intracerebral, meningeal, intraspinal, or combined involvement was reported in 44%, 31%, 3%, and 22% of patients, respectively. 62 of 155 evaluable patients (40%) showed concurrent systemic progression/ relapse. 82% of all CNS events occurred within two years after study inclusion or randomization. 87% of patients showed extranodal involvement outside the CNS. Patients generally had poor outcomes with a median overall survival (OS) of 3.4 months (95% CI 2.9-4.2) and a 2-year OS of 15% (10-22%). Outcomes did not differ depending on the site or time point of CNS events. Patients with isolated CNS events demonstrated significantly better OS (p = 0.023). Twenty-five patients were consolidated with autologous or allogeneic stem cell transplantation and achieved a 3-year OS of 36% (20-66%). This large study including more than 5000 DLBCL patients highlights the unmet medical need to improve the outcome of DLBCL patients suffering from CNS relapse.
Collapse
MESH Headings
- Humans
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/mortality
- Lymphoma, Large B-Cell, Diffuse/therapy
- Male
- Central Nervous System Neoplasms/therapy
- Central Nervous System Neoplasms/secondary
- Central Nervous System Neoplasms/mortality
- Central Nervous System Neoplasms/pathology
- Middle Aged
- Female
- Adult
- Aged
- Risk Factors
- Prospective Studies
- Young Adult
- Retrospective Studies
- Neoplasm Recurrence, Local/pathology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Disease Progression
- Aged, 80 and over
- Clinical Trials, Phase III as Topic
- Prognosis
- Recurrence
- Clinical Trials, Phase II as Topic
Collapse
Affiliation(s)
- Fabian Frontzek
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC, Canada.
- Department of Medicine A, Hematology, Oncology, and Pneumonology, University Hospital of Münster, Münster, Germany.
| | - Loïc Renaud
- Université de Paris; Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Hemato-oncologie, Paris, France
| | - Ulrich Dührsen
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Viola Poeschel
- Department of Internal Medicine 1 (Oncology, Hematology, Clinical Immunology and Rheumatology), Saarland University Medical School, Homburg/Saar, Germany
| | - Sophie Bernard
- Université de Paris; Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Hemato-oncologie, Paris, France
| | | | - Nicolas Ketterer
- Centre d'Oncologie-Hématologie, Clinique Bois-Cerf, Lausanne, Switzerland
| | - Christian Récher
- Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Olivier Fitoussi
- Oncologie-Hematologie, Polyclinique Bordeaux Nord Aquitaine, Bordeaux, France
| | - Gerhard Held
- Department for Hematology and Oncology, Westpfalz - Klinikum Kaiserslautern, Kaiserslautern, Germany
| | - Olivier Casasnovas
- Service d'Hématologie Clinique, Centre Hospitalier Universitaire Dijon, Dijon, France
| | - Corinne Haioun
- Lymphoid malignancies unit-APHP, Hopital Henri Mondor, Creteil, France
| | | | - Hervé Tilly
- INSERM U1245, Centre Henri Becquerel, Rouen, France
| | | | | | - Imke E Karsten
- Department of Medicine A, Hematology, Oncology, and Pneumonology, University Hospital of Münster, Münster, Germany
| | - Gerben Duns
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC, Canada
| | - Christian Steidl
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - David W Scott
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC, Canada
- Division of Medical Oncology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Wolfram Klapper
- Department of Pathology, Hematopathology Section and Lymph Node Registry, University Hospital Schleswig-Holstein, University of Kiel, Kiel, Germany
| | | | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus and Dr. Margarete Fischer-Bosch Institute for Clinical Pharmacology, Stuttgart, Germany
| | - Thierry Molina
- Universite de Paris, Assistance Publique-Hôpitaux de Paris, Hopital Necker, Anatomo-pathologie, Paris, France
| | - Georg Lenz
- Department of Medicine A, Hematology, Oncology, and Pneumonology, University Hospital of Münster, Münster, Germany
| | - Marita Ziepert
- Institute for Medical Informatics, Statistics, and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Bettina Altmann
- Institute for Medical Informatics, Statistics, and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Catherine Thieblemont
- Université de Paris; Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Hemato-oncologie, Paris, France
| | - Norbert Schmitz
- Department of Medicine A, Hematology, Oncology, and Pneumonology, University Hospital of Münster, Münster, Germany.
| |
Collapse
|
29
|
Ehinger M, Béné MC. Morphology and multiparameter flow cytometry combined for integrated lymphoma diagnosis on small volume samples: possibilities and limitations. Virchows Arch 2024; 485:591-604. [PMID: 38805049 DOI: 10.1007/s00428-024-03819-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/18/2024] [Accepted: 05/02/2024] [Indexed: 05/29/2024]
Abstract
The diagnosis of lymphoma relies mainly on clinical examination and laboratory explorations. Among the latter, morphological and immunohistochemical analysis of a tissue biopsy are the cornerstones for proper identification and classification of the disease. In lymphoma with blood and/or bone marrow involvement, multiparameter flow cytometry is useful. This technique can also be applied to fresh cells released from a biopsy sample. For full comprehension of lymphomas, surgical biopsies are best and indeed recommended by the hematopathological community. Currently, however, there is a global trend towards less invasive procedures, resulting in smaller samples such as core needle biopsies or fine needle aspirations which can make the diagnosis quite challenging. In this review, the possibilities and limitations to make an accurate lymphoma diagnosis on such small volume material are presented. After recalling the major steps of lymphoma diagnosis, the respective value of histology, cytology, and flow cytometry is discussed, including handling of small specimens. The benefits of an integrated approach are then evoked, followed by discussion about which attitude to adopt in different contexts. Perhaps contrary to the prevailing view among many pathologists, a full diagnosis on small volume material, combined with relevant ancillary techniques, is often possible and indeed supported by recent literature. A glimpse at future evolutions, notably the merit of artificial intelligence tools, is finally provided. All in all, this document aims at providing pathologists with an overview of diagnostic possibilities in lymphoma patients when confronted with small volume material such as core needle biopsies or fine needle aspirations.
Collapse
Affiliation(s)
- Mats Ehinger
- Division of Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden.
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden.
| | - Marie C Béné
- Faculty of Medicine, Nantes University, Nantes, France
| |
Collapse
|
30
|
Chan CY, Ou CW, Chang H, Kuo MC, Lin TL, Hung YS, Wu JH, Shih LY, Kao HW. Primary breast diffuse large B-cell lymphoma characterized by CNS relapse and successful hematopoietic stem cell transplantation salvage therapy. J Formos Med Assoc 2024; 123:1078-1086. [PMID: 38296697 DOI: 10.1016/j.jfma.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/02/2024] [Accepted: 01/20/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Primary breast diffuse large B-cell lymphoma (PB-DLBCL) is rare, with a high incidence of central nervous system (CNS) relapse. This study aims to investigate clinical characteristics, prognostic factors, and outcomes in Taiwanese PB-DLBCL patients and review the literature on PB-DLBCL. METHODS Thirty-one PB-DLBCL patients diagnosed between 2000 and 2021 were retrospectively enrolled for analysis. RESULTS The median age was 49 (range 26-79) years. The complete remission (CR) rate was 90.3%. Nine (90%) of the ten patients who experienced relapse had CNS involvement at the time of relapse. The one-year, two-year, and five-year progression-free survival (PFS) rates were 86.6% (95% confidence interval [CI] 75.2-99.8), 75.8% (95% CI 61.6-93.2), and 45.1% (95% CI 29.5-68.9), respectively. The five-year overall survival (OS) rate was 64.1% (95 % CI 48.4-85.0). A stage-modified International Prognostic Index (mIPI) less than two (five-year PFS rate 52.5% vs. 17.1%, P = 0.02) and the achievement of CR after first-line treatment (two-year PFS rate 80.3% vs. 33.3%, P < 0.001) were significant favorable prognostic factors for PFS. Hematopoietic stem cell transplantation (HSCT) after the first relapse was associated with significantly improved post-relapse OS (five-year OS rate 85.7% vs. 20.0%, P = 0.02) and PFS (five-year PFS rate 85.7% vs. 20.0%, P = 0.02). CONCLUSION Patients with low-risk mIPI scores, CR after first-line treatment, and those who underwent HSCT after the first relapse had significantly better survival. Intrathecal chemotherapy conferred no benefit in preventing CNS relapse. Further research is needed to assess frontline HSCT's effectiveness in improving outcomes and preventing CNS relapses in PB-DLBCL patients.
Collapse
Affiliation(s)
- Chu-Yi Chan
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Che-Wei Ou
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Division of Hematology-Oncology, Department of Internal Medicine, New Taipei Municipal TuCheng Hospital, New Taipei City, Taiwan
| | - Hung Chang
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ming-Chung Kuo
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tung-Liang Lin
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yu-Shin Hung
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Jin-Hou Wu
- Division of Hematology-Oncology, Department of Internal Medicine, New Taipei Municipal TuCheng Hospital, New Taipei City, Taiwan
| | - Lee-Yung Shih
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsiao-Wen Kao
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| |
Collapse
|
31
|
Endo S, Nishimura N, Toyoda K, Komohara Y, Carreras J, Yuki H, Shichijo T, Ueno S, Ueno N, Hirata S, Kawano Y, Nosaka K, Miyaoka M, Nakamura N, Sato A, Ando K, Mitsuya H, Akashi K, Tenen DG, Yasunaga JI, Matsuoka M, Okuno Y, Tatetsu H. Decreased PU.1 expression in mature B cells induces lymphomagenesis. Cancer Sci 2024. [PMID: 39321027 DOI: 10.1111/cas.16344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/13/2024] [Accepted: 09/01/2024] [Indexed: 09/27/2024] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of lymphoma, accounting for 30% of non-Hodgkin lymphomas. Although comprehensive analysis of genetic abnormalities has led to the classification of lymphomas, the exact mechanism of lymphomagenesis remains elusive. The Ets family transcription factor, PU.1, encoded by Spi1, is essential for the development of myeloid and lymphoid cells. Our previous research illustrated the tumor suppressor function of PU.1 in classical Hodgkin lymphoma and myeloma cells. In the current study, we found that patients with DLBCL exhibited notably reduced PU.1 expression in their lymphoma cells, particularly in the non-germinal center B-cell-like (GCB) subtype. This observation suggests that downregulation of PU.1 may be implicated in DLBCL tumor growth. To further assess PU.1's role in mature B cells in vivo, we generated conditional Spi1 knockout mice using Cγ1-Cre mice. Remarkably, 13 of the 23 knockout mice (56%) showed splenomegaly, lymphadenopathy, or masses, with some having histologically confirmed B-cell lymphomas. In contrast, no wild-type mice developed B-cell lymphoma. In addition, RNA-seq analysis of lymphoma cells from Cγ1-Cre Spi1F/F mice showed high frequency of each monoclonal CDR3 sequence, indicating that these lymphoma cells were monoclonal tumor cells. When these B lymphoma cells were transplanted into immunodeficient recipient mice, all mice died within 3 weeks. Lentiviral-transduced Spi1 rescued 60% of the recipient mice, suggesting that PU.1 has a tumor suppressor function in vivo. Collectively, PU.1 is a tumor suppressor in mature B cells, and decreased PU.1 results in mature B-cell lymphoma development.
Collapse
Affiliation(s)
- Shinya Endo
- Department of Hematology, Rheumatology, and Infectious Disease, Kumamoto University Graduate School of Medicine, Kumamoto, Japan
| | - Nao Nishimura
- Department of Hematology, Rheumatology, and Infectious Disease, Kumamoto University Graduate School of Medicine, Kumamoto, Japan
| | - Kosuke Toyoda
- Department of Hematology, Rheumatology, and Infectious Disease, Kumamoto University Graduate School of Medicine, Kumamoto, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Joaquim Carreras
- Department of Pathology, Tokai University School of Medicine, Isehara, Japan
| | - Hiromichi Yuki
- Department of Hematology, Rheumatology, and Infectious Disease, Kumamoto University Graduate School of Medicine, Kumamoto, Japan
| | - Takafumi Shichijo
- Department of Hematology, Rheumatology, and Infectious Disease, Kumamoto University Graduate School of Medicine, Kumamoto, Japan
| | - Shikiko Ueno
- Department of Hematology, Rheumatology, and Infectious Disease, Kumamoto University Graduate School of Medicine, Kumamoto, Japan
| | - Niina Ueno
- Department of Hematology, Rheumatology, and Infectious Disease, Kumamoto University Graduate School of Medicine, Kumamoto, Japan
| | - Shinya Hirata
- Department of Hematology, Rheumatology, and Infectious Disease, Kumamoto University Graduate School of Medicine, Kumamoto, Japan
| | - Yawara Kawano
- Department of Hematology, Rheumatology, and Infectious Disease, Kumamoto University Graduate School of Medicine, Kumamoto, Japan
| | - Kisato Nosaka
- Department of Hematology, Rheumatology, and Infectious Disease, Kumamoto University Graduate School of Medicine, Kumamoto, Japan
| | - Masashi Miyaoka
- Department of Pathology, Tokai University School of Medicine, Isehara, Japan
| | - Naoya Nakamura
- Department of Pathology, Tokai University School of Medicine, Isehara, Japan
| | - Ai Sato
- Department of Hematology-Oncology, Tokai University School of Medicine, Isehara, Japan
| | - Kiyoshi Ando
- Department of Hematology-Oncology, Tokai University School of Medicine, Isehara, Japan
| | - Hiroaki Mitsuya
- Department of Hematology, Rheumatology, and Infectious Disease, Kumamoto University Graduate School of Medicine, Kumamoto, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medicine, Fukuoka, Japan
| | - Daniel G Tenen
- Harvard Medical School, Harvard Stem Cell Institute, Boston, Massachusetts, USA
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Jun-Ichirou Yasunaga
- Department of Hematology, Rheumatology, and Infectious Disease, Kumamoto University Graduate School of Medicine, Kumamoto, Japan
| | - Masao Matsuoka
- Department of Hematology, Rheumatology, and Infectious Disease, Kumamoto University Graduate School of Medicine, Kumamoto, Japan
| | - Yutaka Okuno
- Department of Hematology, Rheumatology, and Infectious Disease, Kumamoto University Graduate School of Medicine, Kumamoto, Japan
| | - Hiro Tatetsu
- Department of Hematology, Rheumatology, and Infectious Disease, Kumamoto University Graduate School of Medicine, Kumamoto, Japan
| |
Collapse
|
32
|
Xu Y, Shi C, Qian J, Yu X, Wang S, Shao L, Yu W. The gut microbiota is altered significantly in primary diffuse large b-cell lymphoma patients and relapse refractory diffuse large b-cell lymphoma patients. Clin Transl Oncol 2024:10.1007/s12094-024-03710-2. [PMID: 39320604 DOI: 10.1007/s12094-024-03710-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/28/2024] [Indexed: 09/26/2024]
Abstract
PURPOSE Studies have shown that the gut microbiota may affect anti-tumor immunity by regulating the host immune system and tumor microenvironment. To date, little is known about whether the gut microbiota underlies the occurrence of diffuse large B-cell lymphoma (DLBCL) and drug resistance. METHODS In the present study, we compared the gut microbiota structure of fecal samples from 26 patients with primary DLBCL, 28 patients with relapsed and refractory (RR) DLBCL, and 30 healthy people. RESULTS Notably, Fusobacteria (from phylum to species) was enriched in the primary group. A decrease of Fusobacterium and an increase of Enterococcus were found in the RR group. PICRUSt analysis found that genes related to cytochrome P450 were upregulated in the RR group compared to the primary group, which likely contributes to the occurrence of DLBCL and the formation of drug resistance. CONCLUSIONS Our study provides further evidence for the relationship between gut microbiota and DLBCL and the formation of drug resistance, highlighting the potential significance of the bacterial variations may be used as new biomarkers of DLBCL.
Collapse
Affiliation(s)
- Yu Xu
- Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China.
| | - Chang Shi
- Zhejiang provincial Key laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, China
| | - Jiejing Qian
- Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Xiao Yu
- Zhejiang Provincial Clinical Research Center for Hematological disorder, Zhejiang University, Hangzhou, China
| | - Shasha Wang
- Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Li Shao
- Zhejiang University Cancer Center, Zhejiang University , Hangzhou, China
| | - Wenjuan Yu
- Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| |
Collapse
|
33
|
Peeters JGC, Silveria S, Ozdemir M, Ramachandran S, DuPage M. Hyperactivating EZH2 to augment H3K27me3 levels in regulatory T cells enhances immune suppression by driving early effector differentiation. Cell Rep 2024; 43:114724. [PMID: 39264807 DOI: 10.1016/j.celrep.2024.114724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/17/2024] [Accepted: 08/21/2024] [Indexed: 09/14/2024] Open
Abstract
The immunosuppressive function of regulatory T (Treg) cells is essential for maintaining immune homeostasis. Enhancer of zeste homolog 2 (EZH2), a histone H3 lysine 27 (H3K27) methyltransferase, plays a key role in maintaining Treg cell function upon CD28 co-stimulation, and Ezh2 deletion in Treg cells causes autoimmunity. Here, we assess whether increasing H3K27me3 levels, by using an Ezh2Y641F gain-of-function mutation, will improve Treg cell function. We find that Treg cells expressing Ezh2Y641F display an effector Treg phenotype, are poised for improved homing to organ tissues, and can accelerate remission from autoimmunity. The H3K27me3 landscape and transcriptome of naive Ezh2Y641F Treg cells exhibit a redistribution of H3K27me3 modifications that recapitulates the gene expression profile of activated Ezh2WT Treg cells after CD28 co-stimulation. Altogether, increased H3K27me3 levels promote the differentiation of effector Treg cells that can better suppress autoimmunity.
Collapse
Affiliation(s)
- Janneke G C Peeters
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Stephanie Silveria
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Merve Ozdemir
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Srinivas Ramachandran
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA; RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | - Michel DuPage
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
34
|
Duffles G, Maués JHDS, Lupinacci F, Pereira LG, Ferreira EN, Freitas L, Niemann F, Takahashi MES, Ramos CD, Chauffaille MDLLF, Lorand-Metze I. Circulating tumor DNA in diffuse large B-cell lymphoma: analysis of response assessment, correlation with PET/CT and clone evolution. Hematol Transfus Cell Ther 2024:S2531-1379(24)00326-2. [PMID: 39317576 DOI: 10.1016/j.htct.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/19/2024] [Accepted: 07/22/2024] [Indexed: 09/26/2024] Open
Abstract
INTRODUCTION Circulating tumor DNA (ctDNA) can be obtained from cell-free DNA (cfDNA) andis a new technique for genotyping, response assessment and prognosis in lymphoma. METHODS Eighteen patients with samples at diagnosis (ctDNA1), after treatment (ctDNA2) and extracted from diagnostic tissue (FFPE) were evaluated. RESULTS In all patients, at least one mutation in cfDNA was detected at diagnosis. CREBBP was the most frequent mutated gene (67 %). In 12 of the 15 patients with complete remission, the mutation attributed to the disease found at diagnosis cleared with treatment. A reduction in the ctDNA was observed after treatment in 14 patients, 12 of whom achieved complete remission. Correlations were found between the ctDNA at diagnosis and total metabolic tumor volume (r = 0.51; p-value = 0.014) and total lesion glycolysis 2.5 (r = 0.47; p-value = 0.024) by PET at diagnosis and between ctDNA at diagnosis and radiomic features of the lesions with the largest standardized uptake value. There was a strong inverse correlation between ΔctDNA1 and ΔSUVmax by PET/CT (r = -0.8788; p-value = 0.002). CONCLUSION Analysis of ctDNA and PET/CT in large B-cell lymphoma are complementary data for evaluating tumor burden and tumor clearance after treatment. Analysis of radiomic data might help to identify tumor characteristics and their changes after treatment.
Collapse
Affiliation(s)
- Guilherme Duffles
- University of Campinas, Hematology and Hemotherapy Centre, Hematology, Unicamp, Campinas 13083-878, SP, Brazil; Rede Dor Sao Luiz, Sao Paulo 01401-002, SP, Brazil.
| | | | | | | | | | - Leandro Freitas
- Department of Pathology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, 13083-888, SP, Brazil
| | - Fernanda Niemann
- University of Campinas, Hematology and Hemotherapy Centre, Hematology, Unicamp, Campinas 13083-878, SP, Brazil
| | | | - Celso Darío Ramos
- Division of Nuclear Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888, SP, Brazil
| | | | - Irene Lorand-Metze
- University of Campinas, Hematology and Hemotherapy Centre, Hematology, Unicamp, Campinas 13083-878, SP, Brazil
| |
Collapse
|
35
|
Zhang J, Zhou S, Jiang S, He F, Tu Y, Hu H. Imatinib mesylate reduces c-MYC expression in double-hit lymphoma cells by suppressing inducible cytidine deaminase. J Cancer Res Clin Oncol 2024; 150:426. [PMID: 39299959 PMCID: PMC11413099 DOI: 10.1007/s00432-024-05939-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 09/03/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Double-hit lymphoma (DHL) with c-MYC gene translocation is highly aggressive and has a poor prognosis. In DHL cells, activation-induced cytidine deaminase (AID) promotes antibody class switch recombination (CSR), ultimately leading to c-MYC gene translocation caused by Myc/IgH DNA double-strand breaks. However, currently there is still no method to suppress the expression of AID. METHODS In this study, we compared the clinical significance of AID expression in DHL, Additionally, two human double-hit lymphoma cell lines were used to analyze the effect of imatinib mesylate on c-MYC in vitro, and the therapeutic effect was also evaluated in xenograft mouse models. RESULTS Imatinib mesylate downregulated the AID and c-MYC proteins in patients with chronic myelogenous leukemia associated with DHL. In addition, imatinib mesylate reduced AID and c-MYC expression in SU-DHL-4 and OCI-Ly18 DHL cells. Imatinib mesylate exerted significant inhibitory effects on the proliferation and metastasis of SU-DHL-4 and OCI-Ly18 cells. Finally, imatinib mesylate reduced not only tumor burden in DHL mouse models, but also AID and c-MYC expression in vivo. CONCLUSION These findings reveal that imatinib mesylate effectively reduces the carcinogenic function of c-MYC in DHL, providing novel strategies for developing therapies targeting c-MYC-driven DHL.
Collapse
MESH Headings
- Imatinib Mesylate/pharmacology
- Animals
- Humans
- Cytidine Deaminase/genetics
- Cytidine Deaminase/metabolism
- Mice
- Proto-Oncogene Proteins c-myc/metabolism
- Proto-Oncogene Proteins c-myc/genetics
- Xenograft Model Antitumor Assays
- Cell Line, Tumor
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Female
- Antineoplastic Agents/pharmacology
- Translocation, Genetic
- Male
- Cell Proliferation/drug effects
- Lymphoma/drug therapy
- Lymphoma/pathology
- Lymphoma/genetics
- Lymphoma/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
Collapse
Affiliation(s)
- JingCheng Zhang
- Department of Hematology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, China
| | - Sheng Zhou
- Department of Hematology, Lanxi People's Hospital, Lanxi, 321100, China
| | - SiSi Jiang
- Department of Internal Medicine, Yongkang Traditional Chinese Medicine Hospital, Yongkang, 321000, China
| | - Fang He
- Department of Hematology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, China
| | - Yan Tu
- Department of Hematology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, China
| | - HuiXian Hu
- Department of Hematology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, China.
| |
Collapse
|
36
|
Li M, Fang B, Gu H, Jiang Y. EQ-5D-5L and SF-6Dv2 health utilities scores of diffuse large B-cell lymphoma patients in China. Health Qual Life Outcomes 2024; 22:80. [PMID: 39300432 DOI: 10.1186/s12955-024-02297-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND This study evaluates the health-related quality of life (HRQoL) of persons with diffuse large B-cell lymphoma (DLBCL) by using EQ-5D-5L and SF-6Dv2 and compares the measurement properties of the two instruments. METHOD DLBCL patients were identified via a patient group and were surveyed using web-based questionnaires. Demographic information, socioeconomic status (SES), clinical characteristics, and EQ-5D-5L and SF-6Dv2 responses were collected and statistically described. The association between the EQ-5D-5L and SF-6Dv2 dimensions were analyzed using the Spearman's correlation coefficient, whereas the correlation of the utility scores was evaluated using Pearson's correlation coefficient. The agreement between the responses of the two instruments were examined using a Bland-Altman (B-A) plot. A one-way analysis of variance (ANOVA) was performed to compare the utility scores across subgroups in different clinical states (a t-test was used if there were two subgroups). In addition, the graded response model (GRM) was used to describe the discrimination ability and difficulty characteristics of the dimensions in the two instruments. RESULTS In total, 582 valid responses were collected, among which 477 respondents were associated with initial-treatment and 105 respondents were relapsed/refractory (RR) patients. The mean (standard deviation [SD]) EQ-5D-5L and SF-6Dv2 utility scores of the DLBCL patients were 0.828 (0.222) and 0.641 (0.220), respectively. The correlation between the EQ-5D-5L and SF-6Dv2 dimensions ranged from 0.299 to 0.680, and the correlation between their utility scores was 0.787. The B-A plot demonstrated an acceptable but not strong agreement between EQ-5D-5L and SF-6Dv2 utility scores. The GRM model results indicated that all dimensions of each instrument were highly discriminating overall, but EQ-5D-5L had suboptimal discriminative power among patients with good health. CONCLUSION Both the EQ-5D-5L and SF-6Dv2 showed valid properties to assess the HRQoL of DLBCL patients. However, utility scores derived from the two instruments had substantial difference, thereby prohibiting the interchangeable use of utilities from the two instruments.
Collapse
Affiliation(s)
- Mincai Li
- School of Public Health (Shenzhen), Sun Yat-Sen University, Room 533, West Wing of Medical Complex #1, Shenzhen, China
| | - Bingxue Fang
- School of Public Health (Shenzhen), Sun Yat-Sen University, Room 533, West Wing of Medical Complex #1, Shenzhen, China
| | - Hongfei Gu
- Hongmian Cancers and Rare Disorders Charity Foundation of Guangzhou, Guangzhou, China
| | - Yawen Jiang
- School of Public Health (Shenzhen), Sun Yat-Sen University, Room 533, West Wing of Medical Complex #1, Shenzhen, China.
| |
Collapse
|
37
|
Soma L, Crisan L, Reid J, Lee W, Song J, Afkhami M, Shouse G, Fei F, Danilova O, Pillai R, Zain J, Querfeld C. Epstein-Barr virus-positive, primary cutaneous marginal zone lymphoma, with transformation: Case report and review of the literature. Am J Clin Pathol 2024:aqae124. [PMID: 39290045 DOI: 10.1093/ajcp/aqae124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024] Open
Abstract
Epstein-Barr Virus (EBV) positive primary cutaneous marginal zone lymphoma (PCMZL) is uncommon and subsequent transformation is rare. METHODS We report a patient with EBV positive PCMZL with subsequent transformation to plasmablastic lymphoma and review the literature for transformed PCMZL to assess clinical and pathologic characteristics. In the case we describe, the patient presented with multifocal PCMZL, developed large B cell transformation with plasmacytic differentiation, followed by plasmablastic transformation (PBL), and ultimately died of disease progression despite multiple lines of therapy. Past history was significant for psoriatic arthritis (multiple prior lines of immunomodulatory therapy). The lymphomas and non-involved bone marrow share the same somatic DNMT3A and TET2 mutations, suggesting clonal relatedness and an association with clonal hematopoiesis (CH). RESULTS Eighteen cases complied the cohort (seventeen cases from the literature and the case reported herein). Nearly half of the eighteen cases of PCMZL with transformation died of progressive disease (44%). Transformed cases were more commonly seen in patients with >2 sites at initial diagnosis. EBV was assessed in 5 patients, 3 were positive (all died of disease). Two patients with NGS studies demonstrated TET2 and DNMT3A mutations. CONCLUSIONS Transformation of EBV positive PCMZL appears to be a poor prognostic indicator, with our reported case being the first well defined case transformed to PBL, suspected to arise from myeloid-CH.
Collapse
Affiliation(s)
- Lori Soma
- Department of Pathology, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, US
| | - Liliana Crisan
- Department of Pathology, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, US
| | - Jack Reid
- Department of Pathology, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, US
| | - Winston Lee
- Department of Pathology, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, US
| | - Joo Song
- Department of Pathology, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, US
| | - Michelle Afkhami
- Department of Pathology, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, US
| | - Geoffrey Shouse
- Department of Hematology and Hematopoietic Cell Transplant, Division of Lymphoma, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, US
| | - Fei Fei
- Department of Pathology, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, US
| | - Olga Danilova
- Department of Pathology, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, US
| | - Raju Pillai
- Department of Pathology, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, US
| | - Jasmin Zain
- Department of Hematology and Hematopoietic Cell Transplant, Division of Lymphoma, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, US
| | - Christiane Querfeld
- Department of Pathology, Division of Dermatology, Department of Hematology and Hematopoietic Cell Transplantation, and Beckman Research Institute, City of Hope Medical Center, Duarte, CA, US
| |
Collapse
|
38
|
Decruyenaere P, Daneels W, Morlion A, Verniers K, Anckaert J, Tavernier J, Offner F, Vandesompele J. Characterizing the Cell-Free Transcriptome in a Humanized Diffuse Large B-Cell Lymphoma Patient-Derived Tumor Xenograft Model for RNA-Based Liquid Biopsy in a Preclinical Setting. Int J Mol Sci 2024; 25:9982. [PMID: 39337470 PMCID: PMC11432451 DOI: 10.3390/ijms25189982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The potential of RNA-based liquid biopsy is increasingly being recognized in diffuse large B-cell lymphoma (DLBCL), the most common subtype of non-Hodgkin's lymphoma. This study explores the cell-free transcriptome in a humanized DLBCL patient-derived tumor xenograft (PDTX) model. Blood plasma samples (n = 171) derived from a DLBCL PDTX model, including 27 humanized (HIS) PDTX, 8 HIS non-PDTX, and 21 non-HIS PDTX non-obese diabetic (NOD)-scid IL2Rgnull (NSG) mice were collected during humanization, xenografting, treatment, and sacrifice. The mice were treated with either rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP), CD20-targeted human IFNα2-based AcTaferon combined with CHOP (huCD20-Fc-AFN-CHOP), or phosphate-buffered saline (PBS). RNA was extracted using the miRNeasy serum/plasma kit and sequenced on the NovaSeq 6000 platform. RNA sequencing data of the formalin-fixed paraffin-embedded (FFPE) tissue and blood plasma samples of the original patient were included. Flow cytometry was performed on immune cells isolated from whole blood, spleen, and bone marrow. Bulk deconvolution was performed using the Tabula Sapiens v1 basis matrix. Both R-CHOP and huCD20-Fc-AFN-CHOP were able to control tumor growth in most mice. Xenograft tumor volume was strongly associated with circulating tumor RNA (ctRNA) concentration (p < 0.001, R = 0.89), as well as with the number of detected human genes (p < 0.001, R = 0.79). Abundance analysis identified tumor-specific biomarkers that were dynamically tracked during tumor growth or treatment. An 8-gene signature demonstrated high accuracy for assessing therapy response (AUC 0.92). The tumoral gene detectability in the ctRNA of the PDTX-derived plasma was associated with RNA abundance levels in the patient's tumor tissue and blood plasma (p < 0.001), confirming that tumoral gene abundance contributes to the cell-free RNA (cfRNA) profile. Decomposing the transcriptome, however, revealed high inter- and intra-mouse variability, which was lower in the HIS PDTX mice, indicating an impact of human engraftment on the stability and profile of cfRNA. Immunochemotherapy resulted in B cell depletion, and tumor clearance was reflected by a decrease in the fraction of human CD45+ cells. Lastly, bulk deconvolution provided complementary biological insights into the composition of the tumor and circulating immune system. In conclusion, the blood plasma-derived transcriptome serves as a biomarker source in a preclinical PDTX model, enables the assessment of biological pathways, and enhances the understanding of cfRNA dynamics.
Collapse
Affiliation(s)
- Philippe Decruyenaere
- Department of Hematology, Ghent University Hospital, 9000 Ghent, Belgium
- OncoRNALab, Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
| | - Willem Daneels
- Department of Hematology, Ghent University Hospital, 9000 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, 9052 Ghent, Belgium
| | - Annelien Morlion
- OncoRNALab, Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
| | - Kimberly Verniers
- OncoRNALab, Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
| | - Jasper Anckaert
- OncoRNALab, Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
| | - Jan Tavernier
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, 9052 Ghent, Belgium
- Orionis Biosciences B.V., 9052 Zwijnaarde, Belgium
| | - Fritz Offner
- Department of Hematology, Ghent University Hospital, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
| | - Jo Vandesompele
- OncoRNALab, Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
39
|
Weng H, Hu H, Zhao Y, Xu Y, Chen P, Huang P. Clinical diagnostic model for predicting indolent or aggressive lymphoma based on clinical information and ultrasound features of superficial lymph nodes. Eur J Radiol 2024; 181:111738. [PMID: 39293239 DOI: 10.1016/j.ejrad.2024.111738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/17/2024] [Accepted: 09/14/2024] [Indexed: 09/20/2024]
Abstract
PURPOSE The aim of this study was to develop a diagnostic model for predicting indolent lymphoma or aggressive lymphoma using clinical information and ultrasound characteristics of superficial lymph nodes. METHOD Patients with confirmed pathological lymphoma subtypes who had undergone ultrasound and contrast-enhanced ultrasound examinations were enrolled. Clinical and ultrasound imaging features were retrospectively analysed and compared to the pathological results, which were considered the gold standard for diagnosis. Two diagnostic models were developed: a clinical model (Model-C) using clinical data only, and a combined model (Model-US) integrating ultrasound features into the clinical model. The efficacy of these models in differentiating between indolent and aggressive lymphoma was compared. RESULTS In total, 236 consecutive patients were enrolled, including 78 patients with indolent lymphomas and 158 patients with aggressive lymphomas. Receiver operating characteristic (ROC) curve analysis revealed that the areas under the curves of Model-C and Model-US were 0.78 (95 % confidence interval: 0.72-0.84) and 0.87 (95 % confidence interval: 0.82-0.92), respectively (p < 0.001). Model-US was further evaluated for calibration and is presented as a nomogram. CONCLUSIONS The diagnostic model incorporated clinical and ultrasound characteristics and offered a noninvasive method for assessing lymphoma with good discrimination and calibration.
Collapse
Affiliation(s)
- Huifang Weng
- Department of Ultrasound in Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Huisen Hu
- Department of Ultrasound in Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; Department of Ultrasound in Medicine, Lanxi People's Hospital, Jinhua, Zhejiang 321100, China
| | - Yanan Zhao
- Department of Ultrasound in Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yongyuan Xu
- Department of Ultrasound in Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Panpan Chen
- Department of Haematology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Pintong Huang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou 310053, China.
| |
Collapse
|
40
|
Lin Y, Jiang X, Zhao M, Li Y, Jin L, Xiang S, Pei R, Lu Y, Jiang L. Wogonin induces mitochondrial apoptosis and synergizes with venetoclax in diffuse large B-cell lymphoma. Toxicol Appl Pharmacol 2024; 492:117103. [PMID: 39278550 DOI: 10.1016/j.taap.2024.117103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/24/2024] [Accepted: 09/09/2024] [Indexed: 09/18/2024]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is among the most aggressive hematological malignancies and patients are commonly treated with combinatorial immunochemotherapies such as R-CHOP. Till now, the prognoses are still variable and unsatisfactory, depending on the molecular subtype and the treatment response. Developing effective and tolerable new agents is always urgently needed, and compounds from a natural source have gained increasing attentions. Wogonin is an active flavonoid extracted from the traditional Chinese herbal medicine Scutellaria baicalensis Georgi and has shown extensive antitumor potentials. However, the therapeutic effect of wogonin on DLBCL remains unknown. Here, we found that treatment with wogonin dose- and time-dependently reduced the viability in a panel of established DLBCL cell lines. The cytotoxicity of wogonin was mediated through apoptosis induction, along with the loss of mitochondrial membrane potential and the downregulation of BCL-2, MCL-1, and BCL-xL. In terms of the mechanism, wogonin inhibited the PI3K and MAPK pathways, as evidenced by the clear decline in the phosphorylation of AKT, GSK3β, S6, ERK, and P38. Furthermore, the combination of wogonin and the BCL-2 inhibitor venetoclax elicited synergistically enhanced killing effect on DLBCL cells regardless of their molecular subtypes. Finally, administration of wogonin significantly impeded the progression of the DLBCL tumor in a xenograft animal model without obvious side effects. Taken together, the present study suggests a promising potential of wogonin in the treatment of DLBCL patients either as monotherapy or an adjuvant for venetoclax-based combinations.
Collapse
Affiliation(s)
- Ye Lin
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China; Department of Pathology, and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Xia Jiang
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China; Department of Pathology, and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China; Institute of Hematology, Ningbo University, Ningbo, China
| | - Mengting Zhao
- Department of Pathology, and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Youhong Li
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China; Department of Pathology, and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China; Institute of Hematology, Ningbo University, Ningbo, China
| | - Lili Jin
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China; Department of Pathology, and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China; Institute of Hematology, Ningbo University, Ningbo, China
| | - Sumeng Xiang
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China; Department of Pathology, and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China; Institute of Hematology, Ningbo University, Ningbo, China
| | - Renzhi Pei
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China; Institute of Hematology, Ningbo University, Ningbo, China
| | - Ying Lu
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China; Institute of Hematology, Ningbo University, Ningbo, China.
| | - Lei Jiang
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China; Department of Pathology, and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China.
| |
Collapse
|
41
|
Lusci Gemignani A, Papotti R, Bomben R, Gattei V, Pozzi S, Donati V, Bettelli S, Forti E, Mansueto G, Di Napoli A, Cox MC, Flenghi L, Rossi P, Volpe G, Dardanis D, Bono C, Guerrini F, Morganti R, Sacchi S, Galimberti S. A new digital droplet PCR method for looking at epigenetics in diffuse large B-cell lymphomas: The role of BMI1, EZH2, and USP22 genes. Int J Lab Hematol 2024. [PMID: 39255961 DOI: 10.1111/ijlh.14363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 07/17/2024] [Indexed: 09/12/2024]
Abstract
INTRODUCTION Epigenetics has been shown to be relevant in oncology: BMI1 overexpression has been reported in leukemias, EZH2 mutations have been found in follicular lymphoma, and USP22 seems to stabilize BMI1 protein. In this study, we measured the expression of BMI1, EZH2, and USP22 in lymph nodes from 56 diffuse large B-cell lymphoma (DLBCL) patients. METHODS A new multiplex digital droplet PCR (ddPCR) has been set up to measure the expression of 4 genes (BMI1, EZH2, USP22, and GAPDH) in the same reaction on RNA extracted from paraffin-embedded tissues. RESULTS The specificity of ddPCR was confirmed by a 100% alignment on the BLAST platform and its repeatability demonstrated by duplicates. A strict correlation between expression of BMI1 and EZH2 and BMI1 and USP22 has been found, and high expression of these genes was correlated with extra-nodal lymphomas. Progression-free survival (PFS) and overall survival (OS) were conditioned by IPI, bone marrow infiltration, and the complete response achievement. High levels of BMI1 and USP22 did not condition the response to therapy, but impaired the PFS, especially for patients defined at "high risk" based on the cell of origin (no germinal center [GCB]), high BCL2 expression, and IPI 3-5. In this subgroup, the probability of relapse/progression was twice higher than that of patients carrying low BMI1 and USP22 levels. CONCLUSION High expression of BMI1 and of USP22 might be a poor prognostic factor in DLBCL, and might represent the target for novel inhibitors.
Collapse
Affiliation(s)
| | - Robel Papotti
- International PhD School in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Riccardo Bomben
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Valter Gattei
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Samantha Pozzi
- Dipartimento di Scienze Mediche e Chirurgiche Materno-Infantili e dell'Adulto, Università di Modena e Reggio Emilia, Modena, Italy
| | - Valentina Donati
- Pathology II, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Stefania Bettelli
- Patologia Molecolare e Medicina Predittiva, AOU Modena, Dipartimento di Scienze Mediche e Chirurgiche Materno-Infantili e dell'Adulto, Università di Modena e Reggio Emilia, Modena, Italy
| | - Elisa Forti
- Patologia Molecolare e Medicina Predittiva, AOU Modena, Dipartimento di Scienze Mediche e Chirurgiche Materno-Infantili e dell'Adulto, Università di Modena e Reggio Emilia, Modena, Italy
| | - Giovanna Mansueto
- IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Arianna Di Napoli
- Department of Clinical and Molecular Medicine, Sapienza University, Sant'Andrea University Hospital, Rome, Italy
| | - Maria Christina Cox
- Haematology Department, King's College Hospital NHS Trust and UOC Ematologia, AOU Sant'Andrea, Roma, Italy
| | - Leonardo Flenghi
- Department of Emergency and Organ Transplantation, Azienda Ospedaliera di Perugia, Italy
| | - Pietro Rossi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Guido Volpe
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Dimitri Dardanis
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Clara Bono
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Francesca Guerrini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Riccardo Morganti
- SOD supporto statistico agli studi clinici, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - Stefano Sacchi
- Dipartimento di Scienze Mediche e Chirurgiche Materno-Infantili e dell'Adulto, Università di Modena e Reggio Emilia, Modena, Italy
| | - Sara Galimberti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
42
|
Schneider M, Nasta SD, Barta SK, Chong EA, Svoboda J, Schuster SJ, Landsburg DJ. Analysis of Histologic, Immunohistochemical and Genomic Features of Large B Cell Lymphoma Tumors May Predict Response to Polatuzumab Vedotin Based Therapy in Patients With Relapsed/Refractory Disease. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2024:S2152-2650(24)01803-2. [PMID: 39353813 DOI: 10.1016/j.clml.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Large B cell lymphoma (LBCL) is the most common form of lymphoma. Polatuzumab vedotin (polatuzumab) is an effective therapy for patients diagnosed with LBCL; however, only limited information regarding pathologic features detected by clinical laboratory assays is available to determine which patients are most likely to benefit from polatuzumab based therapies. PATIENTS AND METHODS We collected data from real world patients with relapsed or refractory LBCL whose tumors underwent next generation sequencing and were treated with polatuzumab based therapy at a single large academic cancer center. Tumor and patient characteristics were analyzed to look for factors that predict response to polatuzumab based therapies. RESULTS We identified high grade B cell lymphoma (HGBL) -NOS or MYC/BCL2 histology and presence of MYC rearrangement as factors that predict inferior response to polatuzumab based therapy. Patients with germinal center B cell of origin (GCB COO) LBCL without these factors had a high response rate (73%) to polatuzumab based therapy. CONCLUSION In a single center real world retrospective analysis of R/R LBCL patients with available genomic data, polatuzumab based therapy may be less effective in patients with HGBL-NOS or MYC/BCL2 histology and MYC rearrangements, but not in patients with GCB COO LBCL without these features. Routine performance of more comprehensive pathologic analysis of tumors may inform the use of polatuzumab based therapy in patients with LBCL.
Collapse
Affiliation(s)
- Michael Schneider
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Sunita D Nasta
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Stefan K Barta
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Elise A Chong
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jakub Svoboda
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Stephen J Schuster
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Daniel J Landsburg
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.
| |
Collapse
|
43
|
Corcoran SR, Phelan JD, Choi J, Shevchenko G, Fenner RE, Yu X, Scheich S, Hsiao T, Morris VM, Papachristou EK, Kishore K, D'Santos CS, Ji Y, Pittaluga S, Wright GW, Urlaub H, Pan KT, Oellerich T, Muppidi J, Hodson DJ, Staudt LM. Molecular Determinants of Sensitivity to Polatuzumab Vedotin in Diffuse Large B-Cell Lymphoma. Cancer Discov 2024; 14:1653-1674. [PMID: 38683128 DOI: 10.1158/2159-8290.cd-23-0802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 03/12/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Polatuzumab vedotin (Pola-V) is an antibody-drug conjugate directed to the CD79B subunit of the B-cell receptor (BCR). When combined with conventional immunochemotherapy, Pola-V improves outcomes in diffuse large B-cell lymphoma (DLBCL). To identify determinants of Pola-V sensitivity, we used CRISPR-Cas9 screening for genes that modulated Pola-V toxicity for lymphomas or the surface expression of its target, CD79B. Our results reveal the striking impact of CD79B glycosylation on Pola-V epitope availability on the lymphoma cell surface and on Pola-V toxicity. Genetic, pharmacological, and enzymatic approaches that remove sialic acid from N-linked glycans enhanced lymphoma killing by Pola-V. Pola-V toxicity was also modulated by KLHL6, an E3 ubiquitin ligase that is recurrently inactivated in germinal center derived lymphomas. We reveal how KLHL6 targets CD79B for degradation in normal and malignant germinal center B cells, thereby determining expression of the surface BCR complex. Our findings suggest precision medicine strategies to optimize Pola-V as a lymphoma therapeutic. Significance: These findings unravel the molecular basis of response heterogeneity to Pola-V and identify approaches that might be deployed therapeutically to enhance the efficacy of CD79B-specific tumor killing. In addition, they reveal a novel post-translational mechanism used by normal and malignant germinal center B cells to regulate expression of the BCR. See related commentary by Leveille, p. 1577 See related article by Meriranta et al.
Collapse
Affiliation(s)
- Sean R Corcoran
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
| | - James D Phelan
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Jaewoo Choi
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Galina Shevchenko
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Rachel E Fenner
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Xin Yu
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Sebastian Scheich
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Tony Hsiao
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Vivian M Morris
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
- Department of Biology, Johns Hopkins University, Baltimore, Maryland
| | | | - Kamal Kishore
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Clive S D'Santos
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Yanlong Ji
- Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Stefania Pittaluga
- Laboratory of Pathology, National Cancer Institute, NIH, Bethesda, Maryland
| | - George W Wright
- Biometrics Research Program, National Cancer Institute, NIH, Bethesda, Maryland
| | - Henning Urlaub
- Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Kuan-Ting Pan
- University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Thomas Oellerich
- University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Jagan Muppidi
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Daniel J Hodson
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Louis M Staudt
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
| |
Collapse
|
44
|
Rey-Búa B, Grande C, Sánchez Blanco JJ, Abrisqueta P, Gutiérrez A, Ramírez Páyer Á, Giné E, Zeberio Etxetxipia I, Terol MJ, de la Cruz Vicente F, Andreu R, Ramirez MJ, de la Fuente A, Viguria MC, Peñarrubia MJ, Jiménez-Ubieto A, Montes-Moreno S, López-Guillermo A, Caballero MD, Martín García-Sancho A. Ibrutinib in Combination with R-GemOx in Patients with Relapsed or Refractory Diffuse Large B-cell Lymphoma of Nongerminal Center B-cell-like Type: Phase II Clinical Trial of the Spanish GELTAMO Group. Clin Cancer Res 2024; 30:3704-3714. [PMID: 38900037 DOI: 10.1158/1078-0432.ccr-24-0183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/05/2024] [Accepted: 06/17/2024] [Indexed: 06/21/2024]
Abstract
PURPOSE This phase II clinical trial evaluated the combination of ibrutinib with rituximab, gemcitabine, and oxaliplatin (R-GemOx) in patients with nongerminal center B-cell-like (non-GCB) diffuse large B-cell lymphoma (DLBCL). PATIENTS AND METHODS The IBDCL trial (NCT02692248) included patients with histologic diagnosis of non-GCB DLBCL with relapsed or refractory disease and non-candidates for stem-cell transplantation. Patients received an induction treatment consisting of six or eight cycles of R-GemOx at standard doses every 2 weeks, in combination with ibrutinib (560 mg daily), followed by a maintenance treatment with ibrutinib for a maximum of 2 years. The primary objective was to evaluate the overall response rate after four cycles. RESULTS Sixty-four patients were included, 72% of them refractory to the last regimen. The overall response rate and complete remission rate after the fourth cycle were 53% [95% confidence interval (CI), 41-65] and 34% (95% CI, 24-46), respectively. Twenty-four (37%) patients started maintenance, and 7 (11%) completed the planned 2 years. After a median follow-up of 29.7 months (range: 0.4-48.6), the estimated 2-year progression-free survival and overall survival were 18% (95% CI, 8-28) and 26% (95% CI, 14-37), respectively. The most common grade ≥3 treatment-related adverse events were thrombocytopenia (44%), neutropenia (30%), and anemia (14%). Grade ≥3 infectious and cardiovascular treatment-related adverse events were reported in 6 (9%) and 1 (2%) patient, respectively. CONCLUSIONS Ibrutinib in combination with R-GemOx, followed by ibrutinib maintenance, demonstrated encouraging antitumor activity with durable responses and a manageable toxicity in patients with non-GCB DLBCL.
Collapse
MESH Headings
- Humans
- Adenine/analogs & derivatives
- Adenine/administration & dosage
- Male
- Female
- Piperidines/administration & dosage
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/mortality
- Aged
- Middle Aged
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Adult
- Aged, 80 and over
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/administration & dosage
- Deoxycytidine/adverse effects
- Gemcitabine
- Neoplasm Recurrence, Local/drug therapy
- Neoplasm Recurrence, Local/pathology
- Drug Resistance, Neoplasm
- Rituximab/administration & dosage
- Rituximab/adverse effects
- Oxaliplatin/administration & dosage
- Oxaliplatin/adverse effects
- Treatment Outcome
- Spain/epidemiology
- Pyrimidines/administration & dosage
- Pyrimidines/adverse effects
- Pyrimidines/therapeutic use
Collapse
Affiliation(s)
- Beatriz Rey-Búa
- Hematology Department, Hospital Clínico Universitario de Salamanca, IBSAL, CIBERONC, Salamanca, Spain
| | - Carlos Grande
- Hematology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - José J Sánchez Blanco
- Hematology Department, Hospital General Universitario Morales Meseguer, Murcia, Spain
| | - Pau Abrisqueta
- Hematology Department, Hospital Universitario Vall d'Hebron, Barcelona, Spain
| | - Antonio Gutiérrez
- Hematology Department, Hospital Universitario Son Espases, IdISBa, Palma de Mallorca, Spain
| | - Ángel Ramírez Páyer
- Hematology Department, Hospital Universitario Central de Asturias, Asturias, Spain
| | - Eva Giné
- Hematology Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | | | - Maria J Terol
- Hematology Department, Hospital Clínico Valencia, INCLIVA, University of Valencia, Valencia, Spain
| | - Fátima de la Cruz Vicente
- Hematology Department, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS)/CSIC/Universidad de Sevilla, Spain
| | - Rafel Andreu
- Hematology Department, Hospital Universitario y Politécnico la Fe, Valencia, Spain
| | - Maria J Ramirez
- Hematology Department, Hospital Especialidades Jerez de la Frontera, Jerez, Spain
| | | | - Maria C Viguria
- Hematology Department, Complejo Hospitalario de Navarra, Spain
| | - María J Peñarrubia
- Hematology Department, Hospital Clínico de Valladolid, Valladolid, Spain
| | - Ana Jiménez-Ubieto
- Hematology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Santiago Montes-Moreno
- Anatomic Pathology Department, Translational Hematopathology Lab, IDIVAL/UNICAN, Santander, Spain
| | | | - María D Caballero
- Hematology Department, Hospital Clínico Universitario de Salamanca, IBSAL, CIBERONC, Salamanca, Spain
- Medicine Department, University of Salamanca, Salamanca, Spain
| | - Alejandro Martín García-Sancho
- Hematology Department, Hospital Clínico Universitario de Salamanca, IBSAL, CIBERONC, Salamanca, Spain
- Medicine Department, University of Salamanca, Salamanca, Spain
| |
Collapse
|
45
|
Meriranta L, Sorri S, Huse K, Liu X, Spasevska I, Zafar S, Chowdhury I, Dufva O, Sahlberg E, Tandarić L, Karjalainen-Lindsberg ML, Hyytiäinen M, Varjosalo M, Myklebust JH, Leppä S. Disruption of KLHL6 Fuels Oncogenic Antigen Receptor Signaling in B-Cell Lymphoma. Blood Cancer Discov 2024; 5:331-352. [PMID: 38630892 PMCID: PMC11369598 DOI: 10.1158/2643-3230.bcd-23-0182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/31/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
Pathomechanisms that activate oncogenic B-cell receptor (BCR) signaling in diffuse large B-cell lymphoma (DLBCL) are largely unknown. Kelch-like family member 6 (KLHL6) encoding a substrate-adapter for Cullin-3-RING E3 ubiquitin ligase with poorly established targets is recurrently mutated in DLBCL. By applying high-throughput protein interactome screens and functional characterization, we discovered that KLHL6 regulates BCR by targeting its signaling subunits CD79A and CD79B. Loss of physiologic KLHL6 expression pattern was frequent among the MCD/C5-like activated B-cell DLBCLs and was associated with higher CD79B levels and dismal outcome. Mutations in the bric-a-brac tramtrack broad domain of KLHL6 disrupted its localization and heterodimerization and increased surface BCR levels and signaling, whereas Kelch domain mutants had the opposite effect. Malfunctions of KLHL6 mutants extended beyond proximal BCR signaling with distinct phenotypes from KLHL6 silencing. Collectively, our findings uncover how recurrent mutations in KLHL6 alter BCR signaling and induce actionable phenotypic characteristics in DLBCL. Significance: Oncogenic BCR signaling sustains DLBCL cells. We discovered that Cullin-3-RING E3 ubiquitin ligase substrate-adapter KLHL6 targets BCR heterodimer (CD79A/CD79B) for ubiquitin-mediated degradation. Recurrent somatic mutations in the KLHL6 gene cause corrupt BCR signaling by disrupting surface BCR homeostasis. Loss of KLHL6 expression and mutant-induced phenotypes associate with targetable disease characteristics in B-cell lymphoma. See related commentary by Leveille et al. See related commentary by Corcoran et al.
Collapse
MESH Headings
- Humans
- Signal Transduction
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, B-Cell/genetics
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- CD79 Antigens/genetics
- CD79 Antigens/metabolism
- Microfilament Proteins/genetics
- Microfilament Proteins/metabolism
- Mutation
- Cell Line, Tumor
- Carrier Proteins
Collapse
Affiliation(s)
- Leo Meriranta
- Research Programs Unit, Applied Tumor Genomics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Department of Oncology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland.
| | - Selma Sorri
- Research Programs Unit, Applied Tumor Genomics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Department of Oncology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland.
| | - Kanutte Huse
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
- KG Jebsen Centre for B-cell malignancies and Precision Immunotherapy Alliance, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Xiaonan Liu
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
| | - Ivana Spasevska
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
- KG Jebsen Centre for B-cell malignancies and Precision Immunotherapy Alliance, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Sadia Zafar
- Research Programs Unit, Applied Tumor Genomics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Iftekhar Chowdhury
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
| | - Olli Dufva
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.
| | - Eerika Sahlberg
- Research Programs Unit, Applied Tumor Genomics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Luka Tandarić
- Research Programs Unit, Applied Tumor Genomics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | | | - Marko Hyytiäinen
- Research Programs Unit, Applied Tumor Genomics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Markku Varjosalo
- Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
| | - June H. Myklebust
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
- KG Jebsen Centre for B-cell malignancies and Precision Immunotherapy Alliance, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Sirpa Leppä
- Research Programs Unit, Applied Tumor Genomics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Department of Oncology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland.
| |
Collapse
|
46
|
Shi Y, Xu Y, Shen H, Jin J, Tong H, Xie W. Advances in biology, diagnosis and treatment of DLBCL. Ann Hematol 2024; 103:3315-3334. [PMID: 39017945 PMCID: PMC11358236 DOI: 10.1007/s00277-024-05880-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 07/03/2024] [Indexed: 07/18/2024]
Abstract
Diffuse large B-cell lymphoma (DLBCL), with approximately 150,000 new cases worldwide each year, represent nearly 30% of all cases of non-Hodgkin lymphoma (NHL) and are phenotypically and genetically heterogeneous. A gene-expression profile (GEP) has identified at least three major subtypes of DLBCL, each of which has distinct clinical, biological, and genetic features: activated B-cell (ABC)-like DLBCL, germinal-center B-cell (GCB)-like DLBCL, and unclassified. Different origins are associated with different responses to chemotherapy and targeted agents. Despite DLBCL being a highly heterogeneous disease, more than 60% of patients with DLBCL can be cured after using rituximab combined with cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) to inhibit the growth of cancer cells while targeting the CD20 receptor. In recent decades, the improvement of diagnostic levels has led to a refinement classification of DLBCL and the development of new therapeutic approaches. The objective of this review was to summarize the latest studies examining genetic lesions and therapies for DLBCL.
Collapse
Affiliation(s)
- Yuanfei Shi
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Yi Xu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Huafei Shen
- International Health Care Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Hongyan Tong
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Wanzhuo Xie
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
47
|
Wight J, Blombery P, Lickiss J, Burgess M, Gould C, Minson A, Swain F, Sabdia MB, Gandhi MK, Birchley A, Keane C, Hawkes EA. Systemic diffuse large B-cell lymphoma involving the central nervous system has high rates of defective antigen presentation and immune surveillance. Haematologica 2024; 109:3013-3018. [PMID: 38511272 PMCID: PMC11367239 DOI: 10.3324/haematol.2023.284600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/13/2024] [Indexed: 03/22/2024] Open
Abstract
Not available.
Collapse
Affiliation(s)
- Joel Wight
- Austin Health, Heidelberg, Australia; Olivia Newton John Cancer Research Institute, Victoria, Australia; The University of Melbourne, Melbourne, Australia; Townsville University Hospital, Townsville.
| | - Piers Blombery
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia. 7. Princess Alexandra Hospital, Brisbane
| | - Jennifer Lickiss
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria
| | | | - Clare Gould
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria
| | - Adrian Minson
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia. 7. Princess Alexandra Hospital, Brisbane
| | | | | | - Maher K Gandhi
- Princess Alexandra Hospital, Brisbane, Australia; Mater Research Institute, The University of Queensland, Brisbane, Australia; University of Queensland, Brisbane
| | | | - Colm Keane
- Princess Alexandra Hospital, Brisbane, Australia; University of Queensland, Brisbane
| | - Eliza A Hawkes
- Austin Health, Heidelberg, Australia; Olivia Newton John Cancer Research Institute, Victoria, Australia; The University of Melbourne, Melbourne, Australia; La Trobe University, Melbourne
| |
Collapse
|
48
|
Alencar AJ, Alderuccio JP. Not all central nervous system lymphomas are created equal. Haematologica 2024; 109:2769-2771. [PMID: 38634145 PMCID: PMC11367198 DOI: 10.3324/haematol.2024.285388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 04/12/2024] [Indexed: 04/19/2024] Open
Abstract
Not available.
Collapse
Affiliation(s)
| | - Juan Pablo Alderuccio
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
49
|
Winkler M, Albrecht JD, Sauer C, Kordaß T, Guenova E, Livingstone E, Wobser M, Mitteldorf C, Géraud C, Nicolay JP. Spontaneous regression of primary cutaneous diffuse large B-cell lymphoma, leg type: A case series and review of the literature. J Dermatol 2024; 51:1233-1239. [PMID: 39031169 PMCID: PMC11483968 DOI: 10.1111/1346-8138.17339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 07/22/2024]
Abstract
Primary cutaneous diffuse large B-cell lymphoma, leg type (PCDLBCL, LT) is a subtype of cutaneous B-cell lymphoma with unfavorable prognosis usually requiring aggressive polychemotherapy for disease control. Only single cases of spontaneous regression of PCDLBCL, LT are reported in the literature, peaking 3 months post-biopsy following a clinical history of no longer than 1 year. Here, we report the first case of a spontaneously relapsing and remitting PCDLBCL, LT with complete regression after a clinical history of more than 9 years and thus an atypically indolent clinical course. The female patient presented with recurrent erythematous, non-ulcerated, non-raised plaques of the right lower leg for 6 years. Pathological workup and exclusion of a systemic disease confirmed the diagnosis of PCDLBCL, LT. Due to the history of repeated spontaneous remission, no therapy was initiated. Nine years after first occurrence the patient presented with complete clinical remission lasting for 64 months. We retrospectively identified four additional PCDLBCL, LT patients with spontaneous remission lasting up to 53 months. Our data provide evidence for a distinct PCDLBCL, LT patient subgroup that clinicians should be aware of and warrants a watch-and-wait treatment regime.
Collapse
Affiliation(s)
- Manuel Winkler
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - Jana Dorothea Albrecht
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Clinical Cooperation Unit Dermato‐OncologyGerman Cancer Research CenterHeidelbergGermany
- Section of Clinical and Experimental Dermatology, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - Christian Sauer
- Institute of Pathology, University Medical Center and Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - Theresa Kordaß
- Institute of Pathology, University Medical Center and Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - Emmanuella Guenova
- Department of Dermatology, Lausanne University Hospital, Faculty of Biology and MedicineUniversity of LausanneLausanneSwitzerland
| | - Elisabeth Livingstone
- Department of Dermatology, Venereology, and AllergologyUniversity Hospital EssenEssenGermany
| | - Marion Wobser
- Department of Dermatology, Venereology, and AllergologyUniversity Hospital WürzburgWürzburgGermany
| | - Christina Mitteldorf
- Department of Dermatology, Venereology and AllergologyUniversity Medical Center GöttingenGöttingenGermany
| | - Cyrill Géraud
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Section of Clinical and Molecular Dermatology, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- European Center for Angioscience, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - Jan Peter Nicolay
- Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Clinical Cooperation Unit Dermato‐OncologyGerman Cancer Research CenterHeidelbergGermany
- Section of Clinical and Experimental Dermatology, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| |
Collapse
|
50
|
Nguyen HT, Li M, Vadakath R, Henke KA, Tran TC, Li H, Yamadi M, Darbha S, Yang Y, Kabat J, Albright AR, Centeno EG, Phelan JD, Roulland S, Huang DW, Kelly MC, Young RM, Pittaluga S, Difilippantonio S, Muppidi JR. Gα13 restricts nutrient driven proliferation in mucosal germinal centers. Nat Immunol 2024; 25:1718-1730. [PMID: 39025963 PMCID: PMC11362015 DOI: 10.1038/s41590-024-01910-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024]
Abstract
Germinal centers (GCs) that form in mucosal sites are exposed to gut-derived factors that have the potential to influence homeostasis independent of antigen receptor-driven selective processes. The G-protein Gα13 confines B cells to the GC and limits the development of GC-derived lymphoma. We discovered that Gα13-deficiency fuels the GC reaction via increased mTORC1 signaling and Myc protein expression specifically in the mesenteric lymph node (mLN). The competitive advantage of Gα13-deficient GC B cells (GCBs) in mLN was not dependent on T cell help or gut microbiota. Instead, Gα13-deficient GCBs were selectively dependent on dietary nutrients likely due to greater access to gut lymphatics. Specifically, we found that diet-derived glutamine supported proliferation and Myc expression in Gα13-deficient GCBs in the mLN. Thus, GC confinement limits the effects of dietary glutamine on GC dynamics in mucosal tissues. Gα13 pathway mutations coopt these processes to promote the gut tropism of aggressive lymphoma.
Collapse
Affiliation(s)
- Hang T Nguyen
- Lymphoid Malignancies Branch, Center for Cancer Research, NCI NIH, Bethesda, MD, USA
| | - Moyi Li
- Lymphoid Malignancies Branch, Center for Cancer Research, NCI NIH, Bethesda, MD, USA
| | - Rahul Vadakath
- Lymphoid Malignancies Branch, Center for Cancer Research, NCI NIH, Bethesda, MD, USA
| | - Keirstin A Henke
- Gnotobiotics Facility, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD, USA
| | - Tam C Tran
- Precision Health Informatics Section, NHGRI NIH, Bethesda, MD, USA
| | - Huifang Li
- Lymphoid Malignancies Branch, Center for Cancer Research, NCI NIH, Bethesda, MD, USA
| | - Maryam Yamadi
- Lymphoid Malignancies Branch, Center for Cancer Research, NCI NIH, Bethesda, MD, USA
| | - Sriranjani Darbha
- Lymphoid Malignancies Branch, Center for Cancer Research, NCI NIH, Bethesda, MD, USA
| | - Yandan Yang
- Lymphoid Malignancies Branch, Center for Cancer Research, NCI NIH, Bethesda, MD, USA
| | - Juraj Kabat
- Research Technologies Branch, NIAID NIH, Bethesda, MD, USA
| | - Anne R Albright
- Lymphoid Malignancies Branch, Center for Cancer Research, NCI NIH, Bethesda, MD, USA
| | - Enoc Granados Centeno
- Lymphoid Malignancies Branch, Center for Cancer Research, NCI NIH, Bethesda, MD, USA
| | - James D Phelan
- Lymphoid Malignancies Branch, Center for Cancer Research, NCI NIH, Bethesda, MD, USA
| | - Sandrine Roulland
- Lymphoid Malignancies Branch, Center for Cancer Research, NCI NIH, Bethesda, MD, USA
| | - Da Wei Huang
- Lymphoid Malignancies Branch, Center for Cancer Research, NCI NIH, Bethesda, MD, USA
| | - Michael C Kelly
- Single Cell Analysis Facility, Center for Cancer Research, NCI NIH, Bethesda, MD, USA
| | - Ryan M Young
- Lymphoid Malignancies Branch, Center for Cancer Research, NCI NIH, Bethesda, MD, USA
| | - Stefania Pittaluga
- Laboratory of Pathology, Center for Cancer Research, NCI NIH, Bethesda, MD, USA
| | - Simone Difilippantonio
- Gnotobiotics Facility, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD, USA
| | - Jagan R Muppidi
- Lymphoid Malignancies Branch, Center for Cancer Research, NCI NIH, Bethesda, MD, USA.
| |
Collapse
|