1
|
Zhang Z, Deng J, Sun W, Wang Z. Cerebral Cavernous Malformation: From Genetics to Pharmacotherapy. Brain Behav 2025; 15:e70223. [PMID: 39740786 DOI: 10.1002/brb3.70223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2025] Open
Abstract
INTRODUCTION Cerebral cavernous malformation (CCM) is a type of cerebrovascular abnormality in the central nervous system linked to both germline and somatic genetic mutations. Recent preclinical and clinical studies have shown that various drugs can effectively reduce the burden of CCM lesions. Despite significant progress, the mechanisms driving CCM remain incompletely understood, and to date, no drugs have been developed that can cure or prevent CCM. This review aims to explore the genetic mutations, molecular mechanisms, and pharmacological interventions related to CCM. METHODS Literatures on the genetic mechanisms and pharmacological treatments of CCM can be searched in PubMed and Web of Science. RESULTS Germline and somatic mutations mediate the onset and development of CCM through several molecular pathways. Medications such as statins, fasudil, rapamycin, and propranolol can alleviate CCM symptoms or hinder its progression by specifically modulating the corresponding targets. CONCLUSIONS Understanding the molecular mechanisms underlying CCM offers potential for targeted therapies. Further research into novel mutations and treatment strategies is essential for improving patient outcomes.
Collapse
Affiliation(s)
- Zhuangzhuang Zhang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Jianwen Deng
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Weiping Sun
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
| |
Collapse
|
2
|
Aw WY, Sawhney A, Rathod M, Whitworth CP, Doherty EL, Madden E, Lu J, Westphal K, Stack R, Polacheck WJ. Dysfunctional mechanotransduction regulates the progression of PIK3CA-driven vascular malformations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.22.609165. [PMID: 39229154 PMCID: PMC11370454 DOI: 10.1101/2024.08.22.609165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Somatic activating mutations in PIK3CA are common drivers of vascular and lymphatic malformations. Despite common biophysical signatures of tissues susceptible to lesion formation, including compliant extracellular matrix and low rates of perfusion, lesions vary in clinical presentation from localized cystic dilatation to diffuse and infiltrative vascular dysplasia. The mechanisms driving the differences in disease severity and variability in clinical presentation and the role of the biophysical microenvironment in potentiating progression are poorly understood. Here, we investigate the role of hemodynamic forces and the biophysical microenvironment in the pathophysiology of vascular malformations, and we identify hemodynamic shear stress and defective endothelial cell mechanotransduction as key regulators of lesion progression. We found that constitutive PI3K activation impaired flow-mediated endothelial cell alignment and barrier function. We show that defective shear stress sensing in PIK3CA E542K endothelial cells is associated with reduced myosin light chain phosphorylation, junctional instability, and defective recruitment of vinculin to cell-cell junctions. Using 3D microfluidic models of the vasculature, we demonstrate that PIK3CA E542K microvessels apply reduced traction forces and are unaffected by flow interruption. We further found that draining transmural flow resulted in increased sprouting and invasion responses in PIK3CA E542K microvessels. Mechanistically, constitutive PI3K activation decreased cellular and nuclear elasticity resulting in defective cellular tensional homeostasis in endothelial cells which may underlie vascular dilation, tissue hyperplasia, and hypersprouting in PIK3CA-driven venous and lymphatic malformations. Together, these results suggest that defective nuclear mechanics, impaired cellular mechanotransduction, and maladaptive hemodynamic responses contribute to the development and progression of PIK3CA-driven vascular malformations.
Collapse
Affiliation(s)
- Wen Yih Aw
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC and Raleigh, NC, USA
| | - Aanya Sawhney
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC and Raleigh, NC, USA
| | - Mitesh Rathod
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC and Raleigh, NC, USA
| | - Chloe P. Whitworth
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC and Raleigh, NC, USA
- Department of Genetics and Molecular Biology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Elizabeth L. Doherty
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC and Raleigh, NC, USA
| | - Ethan Madden
- Department of Genetics and Molecular Biology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Jingming Lu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC and Raleigh, NC, USA
| | - Kaden Westphal
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC and Raleigh, NC, USA
| | - Ryan Stack
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC and Raleigh, NC, USA
| | - William J. Polacheck
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC and Raleigh, NC, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
3
|
Onyeogaziri FC, Smith R, Arce M, Huang H, Erzar I, Rorsman C, Malinverno M, Orsenigo F, Sundell V, Fernando D, Daniel G, Niemelä M, Laakso A, Jahromi BR, Olsson AK, Magnusson PU. Pharmacological blocking of neutrophil extracellular traps attenuates immunothrombosis and neuroinflammation in cerebral cavernous malformation. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1549-1567. [PMID: 39632986 PMCID: PMC11634782 DOI: 10.1038/s44161-024-00577-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024]
Abstract
Cerebral cavernous malformation (CCM) is a neurovascular disease with symptoms such as strokes, hemorrhages and neurological deficits. With surgery being the only treatment strategy, understanding the molecular mechanisms of CCM is crucial in finding alternative therapeutic options for CCM. Neutrophil extracellular traps (NETs) were recently reported in CCM, and NETs were shown to have positive or negative effects in different disease contexts. In this study, we investigated the roles of NETs in CCM by pharmacologically inhibiting NET formation using Cl-amidine (a peptidyl arginine deiminase inhibitor). We show here that Cl-amidine treatment reduced lesion burden, coagulation and endothelial-to-mesenchymal transition. Furthermore, NETs promoted the activation of microglia and fibroblasts, leading to increased neuroinflammation and a chronic wound microenvironment in CCM. The inhibition of NET formation caused endothelial quiescence and promoted a healthier microenvironment. Our study suggests the inhibition of NETs as a potential therapeutic strategy in CCM.
Collapse
Affiliation(s)
- Favour C Onyeogaziri
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Ross Smith
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Maximiliano Arce
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Hua Huang
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Iza Erzar
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Charlotte Rorsman
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Matteo Malinverno
- Vascular Biology Unit, The FIRC Institute of Molecular Oncology Foundation, Milan, Italy
| | - Fabrizio Orsenigo
- Vascular Biology Unit, The FIRC Institute of Molecular Oncology Foundation, Milan, Italy
| | - Veronica Sundell
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Dinesh Fernando
- Department of Biomaterials and Technology/Wood Science, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Geoffrey Daniel
- Department of Biomaterials and Technology/Wood Science, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Mika Niemelä
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Aki Laakso
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Behnam Rezai Jahromi
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anna-Karin Olsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Peetra U Magnusson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
4
|
He Q, Huo R, Sun Y, Zheng Z, Xu H, Zhao S, Ni Y, Yu Q, Jiao Y, Zhang W, Zhao J, Cao Y. Cerebral vascular malformations: pathogenesis and therapy. MedComm (Beijing) 2024; 5:e70027. [PMID: 39654683 PMCID: PMC11625509 DOI: 10.1002/mco2.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/30/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024] Open
Abstract
Cerebral vascular malformations (CVMs), particularly cerebral cavernous malformations and cerebral arteriovenous malformations, pose significant neurological challenges due to their complex etiologies and clinical implications. Traditionally viewed as congenital conditions with structural abnormalities, CVMs have been treated primarily through resection, embolization, and stereotactic radiosurgery. While these approaches offer some efficacy, they often pose risks to neurological integrity due to their invasive nature. Advances in next-generation sequencing, particularly high-depth whole-exome sequencing and bioinformatics, have facilitated the identification of gene variants from neurosurgically resected CVMs samples. These advancements have deepened our understanding of CVM pathogenesis. Somatic mutations in key mechanistic pathways have been identified as causative factors, leading to a paradigm shift in CVM treatment. Additionally, recent progress in noninvasive and minimally invasive techniques, including gene imaging genomics, liquid biopsy, or endovascular biopsies (endovascular sampling of blood vessel lumens), has enabled the identification of gene variants associated with CVMs. These methods, in conjunction with clinical data, offer potential for early detection, dynamic monitoring, and targeted therapies that could be used as monotherapy or adjuncts to surgery. This review highlights advancements in CVM pathogenesis and precision therapies, outlining the future potential of precision medicine in CVM management.
Collapse
Affiliation(s)
- Qiheng He
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Ran Huo
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Yingfan Sun
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Zhiyao Zheng
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Research Unit of Accurate DiagnosisTreatment, and Translational Medicine of Brain Tumors Chinese Academy of Medical Sciences and Peking Union Medical College Beijing ChinaBeijingChina
- Department of Neurosurgery Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical College Beijing ChinaBeijingChina
| | - Hongyuan Xu
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Shaozhi Zhao
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Yang Ni
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Qifeng Yu
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Yuming Jiao
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Wenqian Zhang
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Jizong Zhao
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Yong Cao
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
- Collaborative Innovation CenterBeijing Institute of Brain DisordersBeijingChina
| |
Collapse
|
5
|
Karim S, Jain S, Martinez ML, Chen K. Intracranial Vascular Malformations in Children. Neuroimaging Clin N Am 2024; 34:545-565. [PMID: 39461764 DOI: 10.1016/j.nic.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Intracranial vascular malformations (IVMs) represent a significant challenge in pediatric medicine due to their diagnostic and therapeutic complexity. Despite their rarity, the severity of potential neurologic outcomes necessitates a comprehensive understanding and approach to management. This article aims to provide an overview of pediatric IVMs, specifically nidal arteriovenous malformations, cavernous malformations, capillary telangiectasias, and developmental venous anomalies, and highlight the importance of advanced diagnostic imaging and therapeutic strategies in improving outcomes. Vein of Galen malformations, pial arteriovenous fistulas, dural sinus malformations, and intracranial venous malformations will be addressed in other articles. Following a discussion of imaging and clinical considerations within the field, novel imaging techniques will be discussed.
Collapse
Affiliation(s)
- Sulaiman Karim
- Texas Tech University Health Science Center School of Medicine, 3601 4th Street, Lubbock, TX 79430, USA; Edward B. Singleton Department of Radiology, Texas Children's Hospital, 6701 Fannin Street, Suite 470, Houston, TX 77030, USA
| | - Samagra Jain
- Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Mesha L Martinez
- Department of Radiology, Texas Children's Hospital, 9835 North Lake Creek Parkway, Suite PA120, Austin, TX 78717, USA; Department of Radiology, Baylor College of Medicine, Houston, TX, USA
| | - Karen Chen
- Edward B. Singleton Department of Radiology, Texas Children's Hospital, 6701 Fannin Street, Suite 470, Houston, TX 77030, USA; Department of Radiology, Baylor College of Medicine, Houston, TX, USA; Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
6
|
Pham VC, Rödel CJ, Valentino M, Malinverno M, Paolini A, Münch J, Pasquier C, Onyeogaziri FC, Lazovic B, Girard R, Koskimäki J, Hußmann M, Keith B, Jachimowicz D, Kohl F, Hagelkruys A, Penninger JM, Schulte-Merker S, Awad IA, Hicks R, Magnusson PU, Faurobert E, Pagani M, Abdelilah-Seyfried S. Epigenetic regulation by polycomb repressive complex 1 promotes cerebral cavernous malformations. EMBO Mol Med 2024; 16:2827-2855. [PMID: 39402138 PMCID: PMC11555420 DOI: 10.1038/s44321-024-00152-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 09/19/2024] [Accepted: 09/27/2024] [Indexed: 11/13/2024] Open
Abstract
Cerebral cavernous malformations (CCMs) are anomalies of the cerebral vasculature. Loss of the CCM proteins CCM1/KRIT1, CCM2, or CCM3/PDCD10 trigger a MAPK-Krüppel-like factor 2 (KLF2) signaling cascade, which induces a pathophysiological pattern of gene expression. The downstream target genes that are activated by KLF2 are mostly unknown. Here we show that Chromobox Protein Homolog 7 (CBX7), component of the Polycomb Repressive Complex 1, contributes to pathophysiological KLF2 signaling during zebrafish cardiovascular development. CBX7/cbx7a mRNA is strongly upregulated in lesions of CCM patients, and in human, mouse, and zebrafish CCM-deficient endothelial cells. The silencing or pharmacological inhibition of CBX7/Cbx7a suppresses pathological CCM phenotypes in ccm2 zebrafish, CCM2-deficient HUVECs, and in a pre-clinical murine CCM3 disease model. Whole-transcriptome datasets from zebrafish cardiovascular tissues and human endothelial cells reveal a role of CBX7/Cbx7a in the activation of KLF2 target genes including TEK, ANGPT1, WNT9, and endoMT-associated genes. Our findings uncover an intricate interplay in the regulation of Klf2-dependent biomechanical signaling by CBX7 in CCM. This work also provides insights for therapeutic strategies in the pathogenesis of CCM.
Collapse
Affiliation(s)
- Van-Cuong Pham
- Institute of Biochemistry and Biology, Potsdam University, D-14476, Potsdam, Germany
| | - Claudia Jasmin Rödel
- Institute of Biochemistry and Biology, Potsdam University, D-14476, Potsdam, Germany
| | | | - Matteo Malinverno
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, 20139, Italy
| | - Alessio Paolini
- Institute of Biochemistry and Biology, Potsdam University, D-14476, Potsdam, Germany
| | - Juliane Münch
- Institute of Biochemistry and Biology, Potsdam University, D-14476, Potsdam, Germany
| | - Candice Pasquier
- University Grenoble Alpes UGA, CNRS 5309 INSERM 1209, Grenoble, France
| | - Favour C Onyeogaziri
- Department of Immunology, Genetics and Pathology, Uppsala University, 75185, Uppsala, Sweden
| | - Bojana Lazovic
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, 43183, Mölndal, Gothenburg, Sweden
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220, Oulu, Finland
- BioPharmaceuticals R&D Cell Therapy, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 43183, Mölndal, Gothenburg, Sweden
| | - Romuald Girard
- Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL, 60637, USA
| | - Janne Koskimäki
- Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL, 60637, USA
| | - Melina Hußmann
- Institute for Cardiovascular Organogenesis and Regeneration, Medical Faculty, WU Münster, D-48149, Münster, Germany
| | - Benjamin Keith
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, 43183, Mölndal, Gothenburg, Sweden
| | - Daniel Jachimowicz
- Data Sciences and Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, 43183, Mölndal, Gothenburg, Sweden
| | - Franziska Kohl
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, 43183, Mölndal, Gothenburg, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17165, Solna, Stockholm, Sweden
| | - Astrid Hagelkruys
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, 1030, Vienna, Austria
| | - Josef M Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, 1030, Vienna, Austria
- Helmholtz-Centre for Infection Research, D-38124, Braunschweig, Germany
| | - Stefan Schulte-Merker
- Institute for Cardiovascular Organogenesis and Regeneration, Medical Faculty, WU Münster, D-48149, Münster, Germany
| | - Issam A Awad
- Department of Neurological Surgery, University of Chicago Medicine and Biological Sciences, Chicago, IL, 60637, USA
| | - Ryan Hicks
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, 43183, Mölndal, Gothenburg, Sweden
- School of Cardiovascular and Metabolic Medicine and Sciences, King's College London, WC2R 2LS, London, United Kingdom
| | - Peetra U Magnusson
- Department of Immunology, Genetics and Pathology, Uppsala University, 75185, Uppsala, Sweden
| | - Eva Faurobert
- University Grenoble Alpes UGA, CNRS 5309 INSERM 1209, Grenoble, France
| | - Massimiliano Pagani
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, 20139, Italy.
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20133, Milan, Italy.
| | | |
Collapse
|
7
|
Wedemeyer MA, Ding T, Garfinkle EAR, Westfall JJ, Navarro JB, Hernandez Gonzalez ME, Varga EA, Witman P, Mardis ER, Cottrell CE, Miller AR, Miller KE. Defining the transcriptome of PIK3CA-altered cells in a human capillary malformation using single cell long-read sequencing. Sci Rep 2024; 14:25440. [PMID: 39455600 PMCID: PMC11512043 DOI: 10.1038/s41598-024-72167-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 09/04/2024] [Indexed: 10/28/2024] Open
Abstract
PIK3CA-related overgrowth spectrum (PROS) disorders are caused by somatic mosaic variants that result in constitutive activation of the phosphatidylinositol-3-kinase/AKT/mTOR pathway. Promising responses to molecularly targeted therapy have been reported, although identification of an appropriate agent can be hampered by the mosaic nature and corresponding low variant allele frequency of the causal variant. Moreover, our understanding of the molecular consequences of these variants-for example how they affect gene expression profiles-remains limited. Here we describe in vitro expansion of a human capillary malformation followed by molecular characterization using exome sequencing, single cell gene expression, and targeted long-read single cell RNA-sequencing in a patient with clinical features consistent with Megalencephaly-Capillary Malformation Syndrome (MCAP, a PROS condition). These approaches identified a targetable PIK3CA variant with expression restricted to PAX3+ fibroblast and undifferentiated keratinocyte populations. This study highlights the innovative combination of next-generation single cell sequencing methods to better understand unique transcriptomic profiles and cell types associated with MCAP, revealing molecular intricacies of this genetic syndrome.
Collapse
Affiliation(s)
- Michelle A Wedemeyer
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
- Department of Neurosurgery, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Neurosurgery, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Tianli Ding
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Elizabeth A R Garfinkle
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Jesse J Westfall
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Jaye B Navarro
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Maria Elena Hernandez Gonzalez
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Elizabeth A Varga
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Patricia Witman
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
- Division of Dermatology, Nationwide Children's Hospital, Columbus, OH, USA
| | - Elaine R Mardis
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
- Department of Neurosurgery, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Catherine E Cottrell
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
- Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Anthony R Miller
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Katherine E Miller
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
8
|
Hou X, Liang F, Li J, Yang Y, Wang C, Qi T, Sheng W. Mapping cell diversity in human sporadic cerebral cavernous malformations. Gene 2024; 924:148605. [PMID: 38788816 DOI: 10.1016/j.gene.2024.148605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/12/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Cerebral cavernous malformation (CCM) is a low-flow, bleeding-prone vascular disease that can cause cerebral hemorrhage, seizure and neurological deficits. Its inheritance mode includes sporadic or autosomal dominant inheritance with incomplete penetrance, namely sporadic CCM (SCCM) and familial CCM. SCCM is featured by single lesion and single affection in a family. Among CCM patients especially SCCM, the pathogenesis of the corresponding phenotypes and pathological features or candidate genes have not been fully elucidated yet. METHODS Here, we performed in-depth single-cell RNA sequencing (scRNA-Seq) and bulk assay for transposase-accessible chromatin sequencing (ATAC-Seq) in SCCM and control patients. Further validation was conducted for the gene of interest using qPCR and RNA in situ hybridization (RNA FISH) techniques to provide further atlas and evidence for SCCM generative process. RESULTS We identified six cell types in the SCCM and control vessels and found that the expression of NEK1, RNPC3, FBRSL1, IQGAP2, MCUB, AP3B1, ESCO1, MYO9B and PVT1 were up-regulated in SCCM tissues. Among the six cell types, we found that compared with control conditions, PVT1 showed a rising peak which followed the pseudo-time axis in endothelial cell clusters of SCCM samples, while showed an increasing trend in smooth muscle cell clusters of SCCM samples. Further experiments indicated that, compared with the control vessels, PVT1 exhibited significantly elevated expression in SCCM samples. CONCLUSION In SCCM conditions, We found that in the process of development from control to lesion conditions, PVT1 showed a rising peak in endothelial cells and showed an increasing trend in smooth muscle cells at the same time. Overall, there was a significantly elevated expression of NEK1, RNPC3, FBRSL1, IQGAP2, MCUB, AP3B1, ESCO1, MYO9B and PVT1 in SCCM specimens compared to control samples.
Collapse
Affiliation(s)
- Xiaocan Hou
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Feng Liang
- Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Jiaoxing Li
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Yibing Yang
- Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Chuhuai Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou, 510080, China.
| | - Tiewei Qi
- Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou, 510080, China.
| | - Wenli Sheng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China.
| |
Collapse
|
9
|
Wang JZ, Landry AP, Raleigh DR, Sahm F, Walsh KM, Goldbrunner R, Yefet LS, Tonn JC, Gui C, Ostrom QT, Barnholtz-Sloan J, Perry A, Ellenbogen Y, Hanemann CO, Jungwirth G, Jenkinson MD, Tabatabai G, Mathiesen TI, McDermott MW, Tatagiba M, la Fougère C, Maas SLN, Galldiks N, Albert NL, Brastianos PK, Ehret F, Minniti G, Lamszus K, Ricklefs FL, Schittenhelm J, Drummond KJ, Dunn IF, Pathmanaban ON, Cohen-Gadol AA, Sulman EP, Tabouret E, Le Rhun E, Mawrin C, Moliterno J, Weller M, Bi W(L, Gao A, Yip S, Niyazi M, Aldape K, Wen PY, Short S, Preusser M, Nassiri F, Zadeh G. Meningioma: International Consortium on Meningiomas consensus review on scientific advances and treatment paradigms for clinicians, researchers, and patients. Neuro Oncol 2024; 26:1742-1780. [PMID: 38695575 PMCID: PMC11449035 DOI: 10.1093/neuonc/noae082] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
Meningiomas are the most common primary intracranial tumors in adults and are increasing in incidence due to the aging population and increased access to neuroimaging. While most exhibit nonmalignant behavior, a subset of meningiomas are biologically aggressive and are associated with treatment resistance, resulting in significant neurologic morbidity and even mortality. In recent years, meaningful advances in our understanding of the biology of these tumors have led to the incorporation of molecular biomarkers into their grading and prognostication. However, unlike other central nervous system (CNS) tumors, a unified molecular taxonomy for meningiomas has not yet been established and remains an overarching goal of the Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy-Not Official World Health Organization (cIMPACT-NOW) working group. Additionally, clinical equipoise still remains on how specific meningioma cases and patient populations should be optimally managed. To address these existing gaps, members of the International Consortium on Meningiomas including field-leading experts, have prepared this comprehensive consensus narrative review directed toward clinicians, researchers, and patients. Included in this manuscript are detailed overviews of proposed molecular classifications, novel biomarkers, contemporary treatment strategies, trials on systemic therapies, health-related quality-of-life studies, and management strategies for unique meningioma patient populations. In each section, we discuss the current state of knowledge as well as ongoing clinical and research challenges to road map future directions for further investigation.
Collapse
Affiliation(s)
- Justin Z Wang
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Alexander P Landry
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - David R Raleigh
- Department of Radiation Oncology, Neurological Surgery, and Pathology, University of California San Francisco, San Francisco, California, USA
| | - Felix Sahm
- Department of Neuropathology, University Hospital Heidelberg and German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kyle M Walsh
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
| | - Roland Goldbrunner
- Center of Neurosurgery, Department of General Neurosurgery, University of Cologne, Cologne, Germany
| | - Leeor S Yefet
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Jörg C Tonn
- Department of Neurosurgery, University Hospital Munich LMU, Munich, Germany
| | - Chloe Gui
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Quinn T Ostrom
- Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Central Brain Tumor Registry of the United States, Hinsdale, Illinois, USA
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
| | - Jill Barnholtz-Sloan
- Center for Biomedical Informatics & Information Technology (CBIIT), National Cancer Institute, Bethesda, Maryland, USA
- Trans Divisional Research Program (TDRP), Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute, Bethesda, Maryland, USA
- Central Brain Tumor Registry of the United States, Hinsdale, Illinois, USA
| | - Arie Perry
- Department of Pathology, University of California San Francisco, San Francisco, California, USA
| | - Yosef Ellenbogen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - C Oliver Hanemann
- Peninsula Schools of Medicine, University of Plymouth University, Plymouth, UK
| | - Gerhard Jungwirth
- Division of Experimental Neurosurgery, Department of Neurosurgery, Heidelberg University, Heidelberg, Germany
| | - Michael D Jenkinson
- Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, UK
- Institute of Translational Medicine, University of Liverpool, UK
| | - Ghazaleh Tabatabai
- Department of Neurology and Interdisciplinary Neuro-Oncology, University Hospital Tübingen, Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, Tübingen, Germany
- Cluster of Excellence (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies,” Eberhard Karls University Tübingen, Tübingen, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
| | - Tiit I Mathiesen
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Michael W McDermott
- Division of Neuroscience, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
- Miami Neuroscience Institute, Baptist Health of South Florida, Miami, Florida, USA
| | - Marcos Tatagiba
- Department of Neurosurgery, University of Tübingen, Tübingen, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
| | - Christian la Fougère
- Nuclear Medicine and Clinical Molecular Imaging, University Hospital Tübingen, Germany
- Cluster of Excellence (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies,” Eberhard Karls University Tübingen, Tübingen, Germany
| | - Sybren L N Maas
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Norbert Galldiks
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Neuroscience and Medicine (IMN-3), Research Center Juelich, Juelich, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, Ludwig Maximilians-University of Munich, Munich, Germany
| | - Priscilla K Brastianos
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Felix Ehret
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Giuseppe Minniti
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Rome, Italy
| | - Katrin Lamszus
- Laboratory for Brain Tumor Biology, University Hospital Eppendorf, Hamburg, Germany
| | - Franz L Ricklefs
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jens Schittenhelm
- Department of Neuropathology, University Hospital Tübingen, Eberhard-Karls-University Tübingen, Tübingen, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
| | - Katharine J Drummond
- Department of Neurosurgery, The Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Ian F Dunn
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Omar N Pathmanaban
- Division of Neuroscience and Experimental Psychology, Manchester Centre for Clinical Neurosciences, Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester, UK
| | - Aaron A Cohen-Gadol
- Department of Neurological Surgery, Indiana University, Indianapolis, Indiana, USA
| | - Erik P Sulman
- Department of Radiation Oncology, NYU Grossman School of Medicine, New York, New York, USA
| | - Emeline Tabouret
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille University, Marseille, France
| | - Emelie Le Rhun
- Department of Neurology & Brain Tumor Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Christian Mawrin
- Department of Neuropathology, University Hospital Magdeburg, Magdeburg, Germany
| | - Jennifer Moliterno
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Michael Weller
- Department of Neurology and Brain Tumor Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Wenya (Linda) Bi
- Department of Neurosurgery, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew Gao
- Department of Laboratory Medicine and Pathobiology, University Health Network, Toronto, Ontario, Canada
| | - Stephen Yip
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Radiation Oncology, University Hospital, Munich, Germany
- German Cancer Consortium (DKTK), Munich, Germany
| | - Maximilian Niyazi
- Bavarian Cancer Research Center (BZKF), Munich, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
| | | | - Kenneth Aldape
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Patrick Y Wen
- Dana-Farber Cancer Institute, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Susan Short
- Leeds Institute of Medical Research, St James’s University Hospital, Leeds, UK
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Farshad Nassiri
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Gelareh Zadeh
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Eaton CD, Avalos L, Liu SJ, Chen Z, Zakimi N, Casey-Clyde T, Bisignano P, Lucas CHG, Stevenson E, Choudhury A, Vasudevan HN, Magill ST, Young JS, Krogan NJ, Villanueva-Meyer JE, Swaney DL, Raleigh DR. Merlin S13 phosphorylation regulates meningioma Wnt signaling and magnetic resonance imaging features. Nat Commun 2024; 15:7873. [PMID: 39251601 PMCID: PMC11383945 DOI: 10.1038/s41467-024-52284-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/23/2024] [Indexed: 09/11/2024] Open
Abstract
Meningiomas are associated with inactivation of NF2/Merlin, but approximately one-third of meningiomas with favorable clinical outcomes retain Merlin expression. Biochemical mechanisms underlying Merlin-intact meningioma growth are incompletely understood, and non-invasive biomarkers that may be used to guide treatment de-escalation or imaging surveillance are lacking. Here, we use single-cell RNA sequencing, proximity-labeling proteomic mass spectrometry, mechanistic and functional approaches, and magnetic resonance imaging (MRI) across meningioma xenografts and patients to define biochemical mechanisms and an imaging biomarker that underlie Merlin-intact meningiomas. We find Merlin serine 13 (S13) dephosphorylation drives meningioma Wnt signaling and tumor growth by attenuating inhibitory interactions with β-catenin and activating the Wnt pathway. MRI analyses show Merlin-intact meningiomas with S13 phosphorylation and favorable clinical outcomes are associated with high apparent diffusion coefficient (ADC). These results define mechanisms underlying a potential imaging biomarker that could be used to guide treatment de-escalation or imaging surveillance for patients with Merlin-intact meningiomas.
Collapse
Affiliation(s)
- Charlotte D Eaton
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Lauro Avalos
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - S John Liu
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Zhenhong Chen
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Naomi Zakimi
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Tim Casey-Clyde
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Paola Bisignano
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | | | - Erica Stevenson
- J. David Gladstone Institutes, California Institute for Quantitative Biosciences, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Abrar Choudhury
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Harish N Vasudevan
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Stephen T Magill
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
| | - Jacob S Young
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Nevan J Krogan
- J. David Gladstone Institutes, California Institute for Quantitative Biosciences, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Javier E Villanueva-Meyer
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Danielle L Swaney
- J. David Gladstone Institutes, California Institute for Quantitative Biosciences, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - David R Raleigh
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA.
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
11
|
Morin GM, Zerbib L, Kaltenbach S, Fraissenon A, Balducci E, Asnafi V, Canaud G. PIK3CA-Related Disorders: From Disease Mechanism to Evidence-Based Treatments. Annu Rev Genomics Hum Genet 2024; 25:211-237. [PMID: 38316164 DOI: 10.1146/annurev-genom-121222-114518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Recent advances in genetic sequencing are transforming our approach to rare-disease care. Initially identified in cancer, gain-of-function mutations of the PIK3CA gene are also detected in malformation mosaic diseases categorized as PIK3CA-related disorders (PRDs). Over the past decade, new approaches have enabled researchers to elucidate the pathophysiology of PRDs and uncover novel therapeutic options. In just a few years, owing to vigorous global research efforts, PRDs have been transformed from incurable diseases to chronic disorders accessible to targeted therapy. However, new challenges for both medical practitioners and researchers have emerged. Areas of uncertainty remain in our comprehension of PRDs, especially regarding the relationship between genotype and phenotype, the mechanisms underlying mosaicism, and the processes involved in intercellular communication. As the clinical and biological landscape of PRDs is constantly evolving, this review aims to summarize current knowledge regarding PIK3CA and its role in nonmalignant human disease, from molecular mechanisms to evidence-based treatments.
Collapse
Affiliation(s)
- Gabriel M Morin
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France;
- UFR de Médecine, Site Necker, Université Paris Cité, Paris, France
- Unité de Médecine Translationnelle et Thérapies Ciblées, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Lola Zerbib
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France;
- UFR de Médecine, Site Necker, Université Paris Cité, Paris, France
- Unité de Médecine Translationnelle et Thérapies Ciblées, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Sophie Kaltenbach
- Laboratoire d'Oncohématologie, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Antoine Fraissenon
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France;
- CREATIS, CNRS UMR 5220, Villeurbanne, France
- Service de Radiologie Mère-Enfant, Hôpital Nord, Saint Etienne, France
- Service d'Imagerie Pédiatrique, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
| | - Estelle Balducci
- Laboratoire d'Oncohématologie, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Vahid Asnafi
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France;
- UFR de Médecine, Site Necker, Université Paris Cité, Paris, France
- Laboratoire d'Oncohématologie, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Guillaume Canaud
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France;
- UFR de Médecine, Site Necker, Université Paris Cité, Paris, France
- Unité de Médecine Translationnelle et Thérapies Ciblées, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
12
|
Ren J, Cui Z, Jiang C, Wang L, Guan Y, Ren Y, Zhang S, Tu T, Yu J, Li Y, Duan W, Guan J, Wang K, Zhang H, Xing D, Kahn ML, Zhang H, Hong T. GNA14 and GNAQ somatic mutations cause spinal and intracranial extra-axial cavernous hemangiomas. Am J Hum Genet 2024; 111:1370-1382. [PMID: 38917801 PMCID: PMC11267519 DOI: 10.1016/j.ajhg.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
Extra-axial cavernous hemangiomas (ECHs) are complex vascular lesions mainly found in the spine and cavernous sinus. Their removal poses significant risk due to their vascularity and diffuse nature, and their genetic underpinnings remain incompletely understood. Our approach involved genetic analyses on 31 tissue samples of ECHs employing whole-exome sequencing and targeted deep sequencing. We explored downstream signaling pathways, gene expression changes, and resultant phenotypic shifts induced by these mutations, both in vitro and in vivo. In our cohort, 77.4% of samples had somatic missense variants in GNA14, GNAQ, or GJA4. Transcriptomic analysis highlighted significant pathway upregulation, with the GNAQ c.626A>G (p.Gln209Arg) mutation elevating PI3K-AKT-mTOR and angiogenesis-related pathways, while GNA14 c.614A>T (p.Gln205Leu) mutation led to MAPK and angiogenesis-related pathway upregulation. Using a mouse xenograft model, we observed enlarged vessels from these mutations. Additionally, we initiated rapamycin treatment in a 14-year-old individual harboring the GNAQ c.626A>G (p.Gln209Arg) variant, resulting in gradual regression of cutaneous cavernous hemangiomas and improved motor strength, with minimal side effects. Understanding these mutations and their pathways provides a foundation for developing therapies for ECHs resistant to current therapies. Indeed, the administration of rapamycin in an individual within this study highlights the promise of targeted treatments in treating these complex lesions.
Collapse
Affiliation(s)
- Jian Ren
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, China International Neuroscience Institute, National Center for Neurological Disorders, Beijing, China
| | - Ziwei Cui
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, China International Neuroscience Institute, National Center for Neurological Disorders, Beijing, China
| | - Chendan Jiang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, China International Neuroscience Institute, National Center for Neurological Disorders, Beijing, China
| | - Leiming Wang
- Department of Pathology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yunqian Guan
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Yeqing Ren
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, China International Neuroscience Institute, National Center for Neurological Disorders, Beijing, China
| | - Shikun Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, China International Neuroscience Institute, National Center for Neurological Disorders, Beijing, China
| | - Tianqi Tu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, China International Neuroscience Institute, National Center for Neurological Disorders, Beijing, China
| | - Jiaxing Yu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, China International Neuroscience Institute, National Center for Neurological Disorders, Beijing, China
| | - Ye Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, China International Neuroscience Institute, National Center for Neurological Disorders, Beijing, China
| | - Wanru Duan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, China International Neuroscience Institute, National Center for Neurological Disorders, Beijing, China
| | - Jian Guan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, China International Neuroscience Institute, National Center for Neurological Disorders, Beijing, China
| | - Kai Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, China International Neuroscience Institute, National Center for Neurological Disorders, Beijing, China
| | - Hongdian Zhang
- Department of Neurosurgery, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Dong Xing
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China; Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China
| | - Mark L Kahn
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Hongqi Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, China International Neuroscience Institute, National Center for Neurological Disorders, Beijing, China.
| | - Tao Hong
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, China International Neuroscience Institute, National Center for Neurological Disorders, Beijing, China; Department of Neurosurgery, Xiongan Xuanwu Hospital, Xiong'an New Area, China.
| |
Collapse
|
13
|
Dulamea AO, Lupescu IC. Cerebral cavernous malformations - An overview on genetics, clinical aspects and therapeutic strategies. J Neurol Sci 2024; 461:123044. [PMID: 38749279 DOI: 10.1016/j.jns.2024.123044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/28/2024] [Accepted: 05/08/2024] [Indexed: 06/13/2024]
Abstract
Cerebral cavernous malformations (CCMs) are abnormally packed blood vessels lined with endothelial cells, that do not exhibit intervening tight junctions, lack muscular and elastic layers and are usually surrounded by hemosiderin and gliosis. CCMs may be sporadic or familial autosomal dominant (FCCMs) caused by loss of function mutations in CCM1 (KRIT1), CCM2 (MGC4607), and CCM3 (PDCD10) genes. In the FCCMs, patients have multiple CCMs, different family members are affected, and developmental venous anomalies are absent. CCMs may be asymptomatic or may manifest with focal neurological deficits with or without associated hemorrhage andseizures. Recent studies identify a digenic "triple-hit" mechanism involving the aquisition of three distinct genetic mutations that culminate in phosphatidylinositol-3-kinase (PIK3CA) gain of function, as the basis for rapidly growing and clinically symptomatic CCMs. The pathophysiology of CCMs involves signaling aberrations in the neurovascular unit, including proliferative dysangiogenesis, blood-brain barrier hyperpermeability, inflammation and immune mediated processes, anticoagulant vascular domain, and gut microbiome-driven mechanisms. Clinical trials are investigating potential therapies, magnetic resonance imaging and plasma biomarkers for hemorrhage and CCMs-related epilepsy, as well as different techniques of neuronavigation and neurosonology to guide surgery in order to minimize post-operatory morbidity and mortality. This review addresses the recent data about the natural history, genetics, neuroimaging and therapeutic approaches for CCMs.
Collapse
Affiliation(s)
- Adriana Octaviana Dulamea
- Carol Davila University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania; Fundeni Clinical Institute, Department of Neurology, 258 Fundeni Street, 022328 Bucharest, Romania.
| | - Ioan Cristian Lupescu
- Carol Davila University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania; Fundeni Clinical Institute, Department of Neurology, 258 Fundeni Street, 022328 Bucharest, Romania
| |
Collapse
|
14
|
Jauhiainen S, Onyeogaziri FC, Lazzaroni F, Conze LL, Laakkonen JP, Laham-Karam N, Laakso A, Niemelä M, Rezai Jahromi B, Magnusson PU. Proteomics on human cerebral cavernous malformations reveals novel biomarkers in neurovascular dysfunction for the disease pathology. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167139. [PMID: 38537685 DOI: 10.1016/j.bbadis.2024.167139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND Cerebral cavernous malformation (CCM) is a disease associated with an elevated risk of focal neurological deficits, seizures, and hemorrhagic stroke. The disease has an inflammatory profile and improved knowledge of CCM pathology mechanisms and exploration of candidate biomarkers will enable new non-invasive treatments. METHODS We analyzed protein signatures in human CCM tissue samples by using a highly specific and sensitive multiplexing technique, proximity extension assay. FINDINGS Data analysis revealed CCM specific proteins involved in endothelial dysfunction/inflammation/activation, leukocyte infiltration/chemotaxis, hemostasis, extracellular matrix dysfunction, astrocyte and microglial cell activation. Biomarker expression profiles matched bleeding status, especially with higher levels of inflammatory markers and activated astrocytes in ruptured than non-ruptured samples, some of these biomarkers are secreted into blood or urine. Furthermore, analysis was also done in a spatially resolving manner by separating the lesion area from the surrounding brain tissue. Our spatial studies revealed that although appearing histologically normal, the CCM border areas were pathological when compared to control brain tissues. Moreover, the functional relevance of CD93, ICAM-1 and MMP9, markers related to endothelial cell activation and extracellular matrix was validated by a murine pre-clinical CCM model. INTERPRETATION Here we present a novel strategy for proteomics analysis on human CCMs, offering a possibility for high-throughput protein screening acquiring data on the local environment in the brain. Our data presented here describe CCM relevant brain proteins and specifically those which are secreted can serve the need of circulating CCM biomarkers to predict cavernoma's risk of bleeding.
Collapse
Affiliation(s)
- Suvi Jauhiainen
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Favour C Onyeogaziri
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Francesca Lazzaroni
- Hematology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Lei Liu Conze
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Johanna P Laakkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Nihay Laham-Karam
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Aki Laakso
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mika Niemelä
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Behnam Rezai Jahromi
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Peetra U Magnusson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
15
|
Frias-Anaya E, Gallego-Gutierrez H, Gongol B, Weinsheimer S, Lai CC, Orecchioni M, Sriram A, Bui CM, Nelsen B, Hale P, Pham A, Shenkar R, DeBiasse D, Lightle R, Girard R, Li Y, Srinath A, Daneman R, Nudleman E, Sun H, Guma M, Dubrac A, Mesarwi OA, Ley K, Kim H, Awad IA, Ginsberg MH, Lopez-Ramirez MA. Mild Hypoxia Accelerates Cerebral Cavernous Malformation Disease Through CX3CR1-CX3CL1 Signaling. Arterioscler Thromb Vasc Biol 2024; 44:1246-1264. [PMID: 38660801 PMCID: PMC11111348 DOI: 10.1161/atvbaha.123.320367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/05/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Heterogeneity in the severity of cerebral cavernous malformations (CCMs) disease, including brain bleedings and thrombosis that cause neurological disabilities in patients, suggests that environmental, genetic, or biological factors act as disease modifiers. Still, the underlying mechanisms are not entirely understood. Here, we report that mild hypoxia accelerates CCM disease by promoting angiogenesis, neuroinflammation, and vascular thrombosis in the brains of CCM mouse models. METHODS We used genetic studies, RNA sequencing, spatial transcriptome, micro-computed tomography, fluorescence-activated cell sorting, multiplex immunofluorescence, coculture studies, and imaging techniques to reveal that sustained mild hypoxia via the CX3CR1-CX3CL1 (CX3C motif chemokine receptor 1/chemokine [CX3C motif] ligand 1) signaling pathway influences cell-specific neuroinflammatory interactions, contributing to heterogeneity in CCM severity. RESULTS Histological and expression profiles of CCM neurovascular lesions (Slco1c1-iCreERT2;Pdcd10fl/fl; Pdcd10BECKO) in male and female mice found that sustained mild hypoxia (12% O2, 7 days) accelerates CCM disease. Our findings indicate that a small reduction in oxygen levels can significantly increase angiogenesis, neuroinflammation, and thrombosis in CCM disease by enhancing the interactions between endothelium, astrocytes, and immune cells. Our study indicates that the interactions between CX3CR1 and CX3CL1 are crucial in the maturation of CCM lesions and propensity to CCM immunothrombosis. In particular, this pathway regulates the recruitment and activation of microglia and other immune cells in CCM lesions, which leads to lesion growth and thrombosis. We found that human CX3CR1 variants are linked to lower lesion burden in familial CCMs, proving it is a genetic modifier in human disease and a potential marker for aggressiveness. Moreover, monoclonal blocking antibody against CX3CL1 or reducing 1 copy of the Cx3cr1 gene significantly reduces hypoxia-induced CCM immunothrombosis. CONCLUSIONS Our study reveals that interactions between CX3CR1 and CX3CL1 can modify CCM neuropathology when lesions are accelerated by environmental hypoxia. Moreover, a hypoxic environment or hypoxia signaling caused by CCM disease influences the balance between neuroinflammation and neuroprotection mediated by CX3CR1-CX3CL1 signaling. These results establish CX3CR1 as a genetic marker for patient stratification and a potential predictor of CCM aggressiveness.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Male
- Mice
- Chemokine CX3CL1/metabolism
- Chemokine CX3CL1/genetics
- CX3C Chemokine Receptor 1/genetics
- CX3C Chemokine Receptor 1/metabolism
- Disease Models, Animal
- Hemangioma, Cavernous, Central Nervous System/genetics
- Hemangioma, Cavernous, Central Nervous System/metabolism
- Hemangioma, Cavernous, Central Nervous System/pathology
- Hypoxia/metabolism
- Hypoxia/complications
- Mice, Inbred C57BL
- Mice, Knockout
- Neovascularization, Pathologic/metabolism
- Neuroinflammatory Diseases/metabolism
- Neuroinflammatory Diseases/pathology
- Neuroinflammatory Diseases/genetics
- Signal Transduction
Collapse
Affiliation(s)
- Eduardo Frias-Anaya
- Department of Medicine (E.F.-A., H.G.-G., C.C.L., C.M.B., B.N., P.H., A.P., H.S., M.G., O.A.M., M.H.G., M.A.L.-R.), University of California San Diego, La Jolla
| | - Helios Gallego-Gutierrez
- Department of Medicine (E.F.-A., H.G.-G., C.C.L., C.M.B., B.N., P.H., A.P., H.S., M.G., O.A.M., M.H.G., M.A.L.-R.), University of California San Diego, La Jolla
| | - Brendan Gongol
- Department of Health Sciences, Victor Valley College, Victorville, CA (B.G.)
- Institute for Integrative Genome Biology, 1207F Genomics Building, University of California, Riverside (B.G.)
| | - Shantel Weinsheimer
- Department of Anesthesia and Perioperative Care, Institute for Human Genetics, University of California, San Francisco (S.W., A.S., H.K.)
| | - Catherine Chinhchu Lai
- Department of Medicine (E.F.-A., H.G.-G., C.C.L., C.M.B., B.N., P.H., A.P., H.S., M.G., O.A.M., M.H.G., M.A.L.-R.), University of California San Diego, La Jolla
| | - Marco Orecchioni
- Division of Inflammation Biology, La Jolla Institute for Immunology, CA (M.O., K.L.)
| | - Aditya Sriram
- Department of Anesthesia and Perioperative Care, Institute for Human Genetics, University of California, San Francisco (S.W., A.S., H.K.)
| | - Cassandra M Bui
- Department of Medicine (E.F.-A., H.G.-G., C.C.L., C.M.B., B.N., P.H., A.P., H.S., M.G., O.A.M., M.H.G., M.A.L.-R.), University of California San Diego, La Jolla
| | - Bliss Nelsen
- Department of Medicine (E.F.-A., H.G.-G., C.C.L., C.M.B., B.N., P.H., A.P., H.S., M.G., O.A.M., M.H.G., M.A.L.-R.), University of California San Diego, La Jolla
| | - Preston Hale
- Department of Medicine (E.F.-A., H.G.-G., C.C.L., C.M.B., B.N., P.H., A.P., H.S., M.G., O.A.M., M.H.G., M.A.L.-R.), University of California San Diego, La Jolla
| | - Angela Pham
- Department of Medicine (E.F.-A., H.G.-G., C.C.L., C.M.B., B.N., P.H., A.P., H.S., M.G., O.A.M., M.H.G., M.A.L.-R.), University of California San Diego, La Jolla
| | - Robert Shenkar
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago Medicine and Biological Sciences, IL (R.S., D.D., R.L., R.G., Y.L., A.S., I.A.A.)
| | - Dorothy DeBiasse
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago Medicine and Biological Sciences, IL (R.S., D.D., R.L., R.G., Y.L., A.S., I.A.A.)
| | - Rhonda Lightle
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago Medicine and Biological Sciences, IL (R.S., D.D., R.L., R.G., Y.L., A.S., I.A.A.)
| | - Romuald Girard
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago Medicine and Biological Sciences, IL (R.S., D.D., R.L., R.G., Y.L., A.S., I.A.A.)
| | - Ying Li
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago Medicine and Biological Sciences, IL (R.S., D.D., R.L., R.G., Y.L., A.S., I.A.A.)
| | - Abhinav Srinath
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago Medicine and Biological Sciences, IL (R.S., D.D., R.L., R.G., Y.L., A.S., I.A.A.)
| | - Richard Daneman
- Department of Pharmacology (R.D., M.A.L.-R.), University of California San Diego, La Jolla
| | - Eric Nudleman
- Department of Ophthalmology (E.N.), University of California San Diego, La Jolla
| | - Hao Sun
- Department of Medicine (E.F.-A., H.G.-G., C.C.L., C.M.B., B.N., P.H., A.P., H.S., M.G., O.A.M., M.H.G., M.A.L.-R.), University of California San Diego, La Jolla
| | - Monica Guma
- Department of Medicine (E.F.-A., H.G.-G., C.C.L., C.M.B., B.N., P.H., A.P., H.S., M.G., O.A.M., M.H.G., M.A.L.-R.), University of California San Diego, La Jolla
| | - Alexandre Dubrac
- Centre de Recherche, CHU St. Justine, Montréal, Quebec, Canada. Département de Pathologie et Biologie Cellulaire, Université de Montréal, Quebec, Canada (A.D.)
| | - Omar A Mesarwi
- Department of Medicine (E.F.-A., H.G.-G., C.C.L., C.M.B., B.N., P.H., A.P., H.S., M.G., O.A.M., M.H.G., M.A.L.-R.), University of California San Diego, La Jolla
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Immunology, CA (M.O., K.L.)
| | - Helen Kim
- Department of Anesthesia and Perioperative Care, Institute for Human Genetics, University of California, San Francisco (S.W., A.S., H.K.)
| | - Issam A Awad
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago Medicine and Biological Sciences, IL (R.S., D.D., R.L., R.G., Y.L., A.S., I.A.A.)
| | - Mark H Ginsberg
- Department of Medicine (E.F.-A., H.G.-G., C.C.L., C.M.B., B.N., P.H., A.P., H.S., M.G., O.A.M., M.H.G., M.A.L.-R.), University of California San Diego, La Jolla
| | - Miguel Alejandro Lopez-Ramirez
- Department of Medicine (E.F.-A., H.G.-G., C.C.L., C.M.B., B.N., P.H., A.P., H.S., M.G., O.A.M., M.H.G., M.A.L.-R.), University of California San Diego, La Jolla
- Department of Pharmacology (R.D., M.A.L.-R.), University of California San Diego, La Jolla
| |
Collapse
|
16
|
Abdelilah-Seyfried S, Ola R. Shear stress and pathophysiological PI3K involvement in vascular malformations. J Clin Invest 2024; 134:e172843. [PMID: 38747293 PMCID: PMC11093608 DOI: 10.1172/jci172843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024] Open
Abstract
Molecular characterization of vascular anomalies has revealed that affected endothelial cells (ECs) harbor gain-of-function (GOF) mutations in the gene encoding the catalytic α subunit of PI3Kα (PIK3CA). These PIK3CA mutations are known to cause solid cancers when occurring in other tissues. PIK3CA-related vascular anomalies, or "PIKopathies," range from simple, i.e., restricted to a particular form of malformation, to complex, i.e., presenting with a range of hyperplasia phenotypes, including the PIK3CA-related overgrowth spectrum. Interestingly, development of PIKopathies is affected by fluid shear stress (FSS), a physiological stimulus caused by blood or lymph flow. These findings implicate PI3K in mediating physiological EC responses to FSS conditions characteristic of lymphatic and capillary vessel beds. Consistent with this hypothesis, increased PI3K signaling also contributes to cerebral cavernous malformations, a vascular disorder that affects low-perfused brain venous capillaries. Because the GOF activity of PI3K and its signaling partners are excellent drug targets, understanding PIK3CA's role in the development of vascular anomalies may inform therapeutic strategies to normalize EC responses in the diseased state. This Review focuses on PIK3CA's role in mediating EC responses to FSS and discusses current understanding of PIK3CA dysregulation in a range of vascular anomalies that particularly affect low-perfused regions of the vasculature. We also discuss recent surprising findings linking increased PI3K signaling to fast-flow arteriovenous malformations in hereditary hemorrhagic telangiectasias.
Collapse
Affiliation(s)
| | - Roxana Ola
- Experimental Pharmacology Mannheim, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
17
|
Croft J, Grajeda B, Aguirre LA, Abou-Fadel JS, Ellis CC, Estevao I, Almeida IC, Zhang J. Circulating Blood Prognostic Biomarker Signatures for Hemorrhagic Cerebral Cavernous Malformations (CCMs). Int J Mol Sci 2024; 25:4740. [PMID: 38731959 PMCID: PMC11084792 DOI: 10.3390/ijms25094740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Cerebral cavernous malformations (CCMs) are a neurological disorder characterized by enlarged intracranial capillaries in the brain, increasing the susceptibility to hemorrhagic strokes, a major cause of death and disability worldwide. The limited treatment options for CCMs underscore the importance of prognostic biomarkers to predict the likelihood of hemorrhagic events, aiding in treatment decisions and identifying potential pharmacological targets. This study aimed to identify blood biomarkers capable of diagnosing and predicting the risk of hemorrhage in CCM1 patients, establishing an initial set of circulating biomarker signatures. By analyzing proteomic profiles from both human and mouse CCM models and conducting pathway enrichment analyses, we compared groups to identify potential blood biomarkers with statistical significance. Specific candidate biomarkers primarily associated with metabolism and blood clotting pathways were identified. These biomarkers show promise as prognostic indicators for CCM1 deficiency and the risk of hemorrhagic stroke, strongly correlating with the likelihood of hemorrhagic cerebral cavernous malformations (CCMs). This lays the groundwork for further investigation into blood biomarkers to assess the risk of hemorrhagic CCMs.
Collapse
Affiliation(s)
- Jacob Croft
- Department of Molecular and Translational Medicine, Texas Tech University Health Science Center El Paso (TTUHSCEP), El Paso, TX 79905, USA (J.S.A.-F.)
| | - Brian Grajeda
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79902, USA; (B.G.); (I.E.)
| | - Luis A. Aguirre
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79902, USA; (B.G.); (I.E.)
| | - Johnathan S. Abou-Fadel
- Department of Molecular and Translational Medicine, Texas Tech University Health Science Center El Paso (TTUHSCEP), El Paso, TX 79905, USA (J.S.A.-F.)
| | - Cameron C. Ellis
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79902, USA; (B.G.); (I.E.)
| | - Igor Estevao
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79902, USA; (B.G.); (I.E.)
| | - Igor C. Almeida
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79902, USA; (B.G.); (I.E.)
| | - Jun Zhang
- Department of Molecular and Translational Medicine, Texas Tech University Health Science Center El Paso (TTUHSCEP), El Paso, TX 79905, USA (J.S.A.-F.)
| |
Collapse
|
18
|
Gooley S, Perucca P, Tubb C, Hildebrand MS, Berkovic SF. Somatic mosaicism in focal epilepsies. Curr Opin Neurol 2024; 37:105-114. [PMID: 38235675 DOI: 10.1097/wco.0000000000001244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
PURPOSE OF REVIEW Over the past decade, it has become clear that brain somatic mosaicism is an important contributor to many focal epilepsies. The number of cases and the range of underlying pathologies with somatic mosaicism are rapidly increasing. This growth in somatic variant discovery is revealing dysfunction in distinct molecular pathways in different focal epilepsies. RECENT FINDINGS We briefly summarize the current diagnostic yield of pathogenic somatic variants across all types of focal epilepsy where somatic mosaicism has been implicated and outline the specific molecular pathways affected by these variants. We will highlight the recent findings that have increased diagnostic yields such as the discovery of pathogenic somatic variants in novel genes, and new techniques that allow the discovery of somatic variants at much lower variant allele fractions. SUMMARY A major focus will be on the emerging evidence that somatic mosaicism may contribute to some of the more common focal epilepsies such as temporal lobe epilepsy with hippocampal sclerosis, which could lead to it being re-conceptualized as a genetic disorder.
Collapse
Affiliation(s)
- Samuel Gooley
- Epilepsy Research Centre, Department of Medicine, University of Melbourne
- Bladin-Berkovic Comprehensive Epilepsy Program, Department of Neurology, Austin Health, Heidelberg
| | - Piero Perucca
- Epilepsy Research Centre, Department of Medicine, University of Melbourne
- Bladin-Berkovic Comprehensive Epilepsy Program, Department of Neurology, Austin Health, Heidelberg
- Department of Neuroscience, Central Clinical School, Monash University
- Department of Neurology, Alfred Health, Melbourne
- Department of Neurology, The Royal Melbourne Hospital
| | - Caitlin Tubb
- Epilepsy Research Centre, Department of Medicine, University of Melbourne
| | - Michael S Hildebrand
- Epilepsy Research Centre, Department of Medicine, University of Melbourne
- Neuroscience Group, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Samuel F Berkovic
- Epilepsy Research Centre, Department of Medicine, University of Melbourne
- Bladin-Berkovic Comprehensive Epilepsy Program, Department of Neurology, Austin Health, Heidelberg
| |
Collapse
|
19
|
Lin PK, Sun Z, Davis GE. Defining the Functional Influence of Endothelial Cell-Expressed Oncogenic Activating Mutations on Vascular Morphogenesis and Capillary Assembly. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:574-598. [PMID: 37838010 PMCID: PMC10988768 DOI: 10.1016/j.ajpath.2023.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/02/2023] [Accepted: 08/15/2023] [Indexed: 10/16/2023]
Abstract
This study sought to define key molecules and signals controlling major steps in vascular morphogenesis, and how these signals regulate pericyte recruitment and pericyte-induced basement membrane deposition. The morphogenic impact of endothelial cell (EC) expression of activating mutants of Kirsten rat sarcoma virus (kRas), mitogen-activated protein kinase 1 (Mek1), phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), Akt serine/threonine kinase 1 (Akt1), Ras homolog enriched in brain (Rheb) Janus kinase 2 (Jak2), or signal transducer and activator of transcription 3 (Stat3) expression versus controls was evaluated, along with EC signaling events, pharmacologic inhibitor assays, and siRNA suppression experiments. Primary stimulators of EC lumen formation included kRas, Akt1, and Mek1, whereas PIK3CA and Akt1 stimulated a specialized type of cystic lumen formation. In contrast, the key drivers of EC sprouting behavior were Jak2, Stat3, Mek1, PIK3CA, and mammalian target of rapamycin (mTor). These conclusions are further supported by pharmacologic inhibitor and siRNA suppression experiments. EC expression of active Akt1, kRas, and PIK3CA led to markedly dysregulated lumen formation coupled to strongly inhibited pericyte recruitment and basement membrane deposition. For example, activated Akt1 expression in ECs excessively stimulated lumen formation, decreased EC sprouting behavior, and showed minimal pericyte recruitment with reduced mRNA expression of platelet-derived growth factor-BB, platelet-derived growth factor-DD, and endothelin-1, critical EC-derived factors known to stimulate pericyte invasion. The study identified key signals controlling fundamental steps in capillary morphogenesis and maturation and provided mechanistic details on why EC activating mutations induced a capillary deficiency state with abnormal lumens, impaired pericyte recruitment, and basement deposition: predisposing stimuli for the development of vascular malformations.
Collapse
Affiliation(s)
- Prisca K Lin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, Florida
| | - Zheying Sun
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, Florida
| | - George E Davis
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, Florida.
| |
Collapse
|
20
|
Smith ER. Cavernous Malformations of the Central Nervous System. N Engl J Med 2024; 390:1022-1028. [PMID: 38477989 DOI: 10.1056/nejmra2305116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Affiliation(s)
- Edward R Smith
- From the Department of Neurosurgery, Children's Hospital Boston, and Harvard Medical School - both in Boston
| |
Collapse
|
21
|
van Splunder H, Villacampa P, Martínez-Romero A, Graupera M. Pericytes in the disease spotlight. Trends Cell Biol 2024; 34:58-71. [PMID: 37474376 PMCID: PMC10777571 DOI: 10.1016/j.tcb.2023.06.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 07/22/2023]
Abstract
Pericytes are known as the mural cells in small-caliber vessels that interact closely with the endothelium. Pericytes play a key role in vasculature formation and homeostasis, and when dysfunctional contribute to vasculature-related diseases such as diabetic retinopathy and neurodegenerative conditions. In addition, significant extravascular roles of pathological pericytes are being discovered with relevant implications for cancer and fibrosis. Pericyte research is challenged by the lack of consistent molecular markers and clear discrimination criteria versus other (mural) cells. However, advances in single-cell approaches are uncovering and clarifying mural cell identities, biological functions, and ontogeny across organs. We discuss the latest developments in pericyte pathobiology to inform future research directions and potential outcomes.
Collapse
Affiliation(s)
- Hielke van Splunder
- Endothelial Pathobiology and Microenviroment Group, Josep Carreras Leukemia Research Institute (IJC), 08916 Badalona, Barcelona, Catalonia, Spain
| | - Pilar Villacampa
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona and Bellvitge Biomedical Research Institute (IDIBELL), Carrer de la Feixa Llarga s/n, 08907 l'Hospitalet de Llobregat, Barcelona, Spain
| | - Anabel Martínez-Romero
- Endothelial Pathobiology and Microenviroment Group, Josep Carreras Leukemia Research Institute (IJC), 08916 Badalona, Barcelona, Catalonia, Spain
| | - Mariona Graupera
- Endothelial Pathobiology and Microenviroment Group, Josep Carreras Leukemia Research Institute (IJC), 08916 Badalona, Barcelona, Catalonia, Spain; Institución Catalana de Investigación y Estudios Avanzados (ICREA), Passeig de Lluís Companys 23, Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Avenida de Monforte de Lemos 5, 28029 Madrid, Spain.
| |
Collapse
|
22
|
Huang S. Efficient analysis of toxicity and mechanisms of environmental pollutants with network toxicology and molecular docking strategy: Acetyl tributyl citrate as an example. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167904. [PMID: 37858827 DOI: 10.1016/j.scitotenv.2023.167904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
The study aims to promote network toxicology strategy to efficiently investigate the putative toxicity and underlying molecular mechanisms of environmental pollutants through an example of exploring brain injury induced by ATBC exposure. By utilizing ChEMBL, STITCH, GeneCards, and OMIM databases, we identified 213 potential targets associated with ATBC exposure and brain injury. Further refinements via STRING and Cytoscape software highlight 23 core targets, including AKT1, CASP3, and HSP90AA1. GO and KEGG pathway analysis conducted through DAVID and FUMA databases reveal that core targets of ATBC-induced brain toxicity are predominantly enriched in cancer signaling and neuroactive ligand receptor interaction pathways. Molecular docking was performed with Autodock, which confirmed robust binding between ATBC and core targets. Together, these findings suggest that ATBC may impact the occurrence and development of brain cancer and brain related inflammation, whereas pose risks for cognitive impairment and neurodegeneration, by modulating the apoptosis and proliferation of brain cancer cells, activating inflammatory signaling pathways, and regulating neuroplasticity. This research provides a theoretical basis for understanding the molecular mechanism of ATBC-induced brain toxicity, as well as establishing a foundation for the prevention and treatment of prostatic diseases associated with exposure to plastic products containing ATBC and certain ATBC-overwhelmed environments. Moreover, our network toxicology approach also expedites the elucidation of toxicity pathways for uncharacterized environmental chemicals.
Collapse
Affiliation(s)
- Shujun Huang
- West China School Of Public Health, West China Medical Center, Sichuan University, China.
| |
Collapse
|
23
|
Mentis AFA, Papavassiliou KA, Piperi C, Papavassiliou AG. How can cancer research be illuminated by brain research (and vice versa)? Int J Cancer 2023; 153:1967-1970. [PMID: 37534858 DOI: 10.1002/ijc.34682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/04/2023]
Abstract
Cancer and brain research have historically followed concrete pathways and converged mostly to studying brain cancer. Nowadays, the fields of neuro-oncology and neuroendocrine regulation of tumorigenesis are both emerging fields of intense research and promising applications. An increasing body of evidence suggests that somatic mutations in cancer-related genes are prevalent in several noncancerous brain disorders. These findings highlighting that certain aspects of cancer development/progression and pathologies of the nervous system share molecular alterations, could assist in elucidating the unique hallmarks of cancer and in cancer drugs repurposing for brain disorders. In so doing, identifying the commonalities in these conditions could be crucial not only for better understanding the basis of these pathologies but also for considering the previously underappreciated and/or neglected possibility of using drugs known to be effective in one type of pathology for the other type.
Collapse
Affiliation(s)
| | - Kostas A Papavassiliou
- First University Department of Respiratory Medicine, 'Sotiria' Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
24
|
Zhao S, Mekbib KY, van der Ent MA, Allington G, Prendergast A, Chau JE, Smith H, Shohfi J, Ocken J, Duran D, Furey CG, Hao LT, Duy PQ, Reeves BC, Zhang J, Nelson-Williams C, Chen D, Li B, Nottoli T, Bai S, Rolle M, Zeng X, Dong W, Fu PY, Wang YC, Mane S, Piwowarczyk P, Fehnel KP, See AP, Iskandar BJ, Aagaard-Kienitz B, Moyer QJ, Dennis E, Kiziltug E, Kundishora AJ, DeSpenza T, Greenberg ABW, Kidanemariam SM, Hale AT, Johnston JM, Jackson EM, Storm PB, Lang SS, Butler WE, Carter BS, Chapman P, Stapleton CJ, Patel AB, Rodesch G, Smajda S, Berenstein A, Barak T, Erson-Omay EZ, Zhao H, Moreno-De-Luca A, Proctor MR, Smith ER, Orbach DB, Alper SL, Nicoli S, Boggon TJ, Lifton RP, Gunel M, King PD, Jin SC, Kahle KT. Mutation of key signaling regulators of cerebrovascular development in vein of Galen malformations. Nat Commun 2023; 14:7452. [PMID: 37978175 PMCID: PMC10656524 DOI: 10.1038/s41467-023-43062-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 10/30/2023] [Indexed: 11/19/2023] Open
Abstract
To elucidate the pathogenesis of vein of Galen malformations (VOGMs), the most common and most severe of congenital brain arteriovenous malformations, we performed an integrated analysis of 310 VOGM proband-family exomes and 336,326 human cerebrovasculature single-cell transcriptomes. We found the Ras suppressor p120 RasGAP (RASA1) harbored a genome-wide significant burden of loss-of-function de novo variants (2042.5-fold, p = 4.79 x 10-7). Rare, damaging transmitted variants were enriched in Ephrin receptor-B4 (EPHB4) (17.5-fold, p = 1.22 x 10-5), which cooperates with p120 RasGAP to regulate vascular development. Additional probands had damaging variants in ACVRL1, NOTCH1, ITGB1, and PTPN11. ACVRL1 variants were also identified in a multi-generational VOGM pedigree. Integrative genomic analysis defined developing endothelial cells as a likely spatio-temporal locus of VOGM pathophysiology. Mice expressing a VOGM-specific EPHB4 kinase-domain missense variant (Phe867Leu) exhibited disrupted developmental angiogenesis and impaired hierarchical development of arterial-capillary-venous networks, but only in the presence of a "second-hit" allele. These results illuminate human arterio-venous development and VOGM pathobiology and have implications for patients and their families.
Collapse
Affiliation(s)
- Shujuan Zhao
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kedous Y Mekbib
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Martijn A van der Ent
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Garrett Allington
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Andrew Prendergast
- Yale Zebrafish Research Core, Yale School of Medicine, New Haven, CT, USA
| | - Jocelyn E Chau
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, USA
| | - Hannah Smith
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - John Shohfi
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Jack Ocken
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Daniel Duran
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, MS, USA
| | - Charuta G Furey
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ, USA
- Ivy Brain Tumor Center, Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Le Thi Hao
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Phan Q Duy
- Department of Neurosurgery, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Benjamin C Reeves
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Junhui Zhang
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Di Chen
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Boyang Li
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Timothy Nottoli
- Yale Genome Editing Center, Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Suxia Bai
- Yale Genome Editing Center, Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Myron Rolle
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Xue Zeng
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, USA
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Weilai Dong
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Po-Ying Fu
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Yung-Chun Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Shrikant Mane
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Paulina Piwowarczyk
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Katie Pricola Fehnel
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alfred Pokmeng See
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Bermans J Iskandar
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Beverly Aagaard-Kienitz
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Quentin J Moyer
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Evan Dennis
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Emre Kiziltug
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Adam J Kundishora
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Tyrone DeSpenza
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Ana B W Greenberg
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Andrew T Hale
- Department of Neurosurgery, University of Alabama School of Medicine, Birmingham, AL, USA
| | - James M Johnston
- Department of Neurosurgery, University of Alabama School of Medicine, Birmingham, AL, USA
| | - Eric M Jackson
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Phillip B Storm
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Shih-Shan Lang
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - William E Butler
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Bob S Carter
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Paul Chapman
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Christopher J Stapleton
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Aman B Patel
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Georges Rodesch
- Service de Neuroradiologie Diagnostique et Thérapeutique, Hôpital Foch, Suresnes, France
- Department of Interventional Neuroradiology, Hôpital Fondation A. de Rothschild, Paris, France
| | - Stanislas Smajda
- Department of Interventional Neuroradiology, Hôpital Fondation A. de Rothschild, Paris, France
| | - Alejandro Berenstein
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tanyeri Barak
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | | | - Hongyu Zhao
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Andres Moreno-De-Luca
- Department of Radiology, Autism & Developmental Medicine Institute, Genomic Medicine Institute, Geisinger, Danville, PA, USA
| | - Mark R Proctor
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Edward R Smith
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Darren B Orbach
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurointerventional Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Seth L Alper
- Division of Nephrology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Stefania Nicoli
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale School of Medicine, New Haven, CT, USA
| | - Titus J Boggon
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, USA
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - Richard P Lifton
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Murat Gunel
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Philip D King
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Sheng Chih Jin
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
| | - Kristopher T Kahle
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA.
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, US.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
25
|
Ressler AK, Snellings DA, Girard R, Gallione CJ, Lightle R, Allen AS, Awad IA, Marchuk DA. Single-nucleus DNA sequencing reveals hidden somatic loss-of-heterozygosity in Cerebral Cavernous Malformations. Nat Commun 2023; 14:7009. [PMID: 37919320 PMCID: PMC10622526 DOI: 10.1038/s41467-023-42908-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/24/2023] [Indexed: 11/04/2023] Open
Abstract
Cerebral Cavernous Malformations (CCMs) are vascular malformations of the central nervous system which can lead to moderate to severe neurological phenotypes in patients. A majority of CCM lesions are driven by a cancer-like three-hit mutational mechanism, including a somatic, activating mutation in the oncogene PIK3CA, as well as biallelic loss-of-function mutations in a CCM gene. However, standard sequencing approaches often fail to yield a full complement of pathogenic mutations in many CCMs. We suggest this reality reflects the limited sensitivity to identify low-frequency variants and the presence of mutations undetectable with bulk short-read sequencing. Here we report a single-nucleus DNA-sequencing approach that leverages the underlying biology of CCMs to identify lesions with somatic loss-of-heterozygosity, a class of such hidden mutations. We identify an alternative genetic mechanism for CCM pathogenesis and establish a method that can be repurposed to investigate the genetic underpinning of other disorders with multiple somatic mutations.
Collapse
Affiliation(s)
- Andrew K Ressler
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA.
| | - Daniel A Snellings
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Romuald Girard
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Carol J Gallione
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Rhonda Lightle
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Andrew S Allen
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, 27710, USA
| | - Issam A Awad
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Douglas A Marchuk
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
26
|
Phillips CM, Johnson AM, Stamatovic SM, Keep RF, Andjelkovic AV. 20 kDa isoform of connexin-43 augments spatial reorganization of the brain endothelial junctional complex and lesion leakage in cerebral cavernous malformation type-3. Neurobiol Dis 2023; 186:106277. [PMID: 37652184 DOI: 10.1016/j.nbd.2023.106277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/14/2023] [Accepted: 08/29/2023] [Indexed: 09/02/2023] Open
Abstract
Cerebral cavernous malformation type-3 (CCM3) is a type of brain vascular malformation caused by mutations in programmed cell death protein-10 (PDCD10). It is characterized by early life occurrence of hemorrhagic stroke and profound blood-brain barrier defects. The pathogenic mechanisms responsible for microvascular hyperpermeability and lesion progression in CCM3 are still largely unknown. The current study examined brain endothelial barrier structural defects formed in the absence of CCM3 in vivo and in vitro that may lead to CCM3 lesion leakage. We found significant upregulation of a 20 kDa isoform of connexin 43 (GJA1-20 k) in brain endothelial cells (BEC) in both non-leaky and leaky lesions, as well as in an in vitro CCM3 knockdown model (CCM3KD-BEC). Morphological, biochemical, FRET, and FRAP analyses of CCM3KD-BEC found GJA1-20 k regulates full-length GJA1 biogenesis, prompting uncontrolled gap junction growth. Furthermore, by binding to a tight junction scaffolding protein, ZO-1, GJA1-20 k interferes with Cx43/ZO-1 interactions and gap junction/tight junction crosstalk, promoting ZO-1 dissociation from tight junction complexes and diminishing claudin-5/ZO-1 interaction. As a consequence, the tight junction complex is destabilized, allowing "replacement" of tight junctions with gap junctions leading to increased brain endothelial barrier permeability. Modifying cellular levels of GJA1-20 k rescued brain endothelial barrier integrity re-establishing the spatial organization of gap and tight junctional complexes. This study highlights generation of potential defects at the CCM3-affected brain endothelial barrier which may underlie prolonged vascular leakiness.
Collapse
Affiliation(s)
- Chelsea M Phillips
- Neuroscience Graduate program, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA; Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Anuska V Andjelkovic
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA; Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
27
|
Ren J, Huang Y, Ren Y, Tu T, Qiu B, Ai D, Bi Z, Bai X, Li F, Li JL, Chen XJ, Feng Z, Guo Z, Lei J, Tian A, Cui Z, Lindner V, Adams RH, Wang Y, Zhao F, Körbelin J, Sun W, Wang Y, Zhang H, Hong T, Ge WP. Somatic variants of MAP3K3 are sufficient to cause cerebral and spinal cord cavernous malformations. Brain 2023; 146:3634-3647. [PMID: 36995941 PMCID: PMC10473567 DOI: 10.1093/brain/awad104] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 03/07/2023] [Accepted: 03/12/2023] [Indexed: 03/31/2023] Open
Abstract
Cerebral cavernous malformations (CCMs) and spinal cord cavernous malformations (SCCMs) are common vascular abnormalities of the CNS that can lead to seizure, haemorrhage and other neurological deficits. Approximately 85% of patients present with sporadic (versus congenital) CCMs. Somatic mutations in MAP3K3 and PIK3CA were recently reported in patients with sporadic CCM, yet it remains unknown whether MAP3K3 mutation is sufficient to induce CCMs. Here we analysed whole-exome sequencing data for patients with CCM and found that ∼40% of them have a single, specific MAP3K3 mutation [c.1323C>G (p.Ile441Met)] but not any other known mutations in CCM-related genes. We developed a mouse model of CCM with MAP3K3I441M uniquely expressed in the endothelium of the CNS. We detected pathological phenotypes similar to those found in patients with MAP3K3I441M. The combination of in vivo imaging and genetic labelling revealed that CCMs were initiated with endothelial expansion followed by disruption of the blood-brain barrier. Experiments with our MAP3K3I441M mouse model demonstrated that CCM can be alleviated by treatment with rapamycin, the mTOR inhibitor. CCM pathogenesis has usually been attributed to acquisition of two or three distinct genetic mutations involving the genes CCM1/2/3 and/or PIK3CA. However, our results demonstrate that a single genetic hit is sufficient to cause CCMs.
Collapse
Affiliation(s)
- Jian Ren
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, Beijing 100053, China
| | - Yazi Huang
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Yeqing Ren
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, Beijing 100053, China
| | - Tianqi Tu
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, Beijing 100053, China
| | - Baoshan Qiu
- Chinese Institute for Brain Research, Beijing 102206, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Daosheng Ai
- Chinese Institute for Brain Research, Beijing 102206, China
- Academy for Advanced Interdisciplinary Studies (AAIS), Peking University, Beijing 100871, China
| | - Zhanying Bi
- Chinese Institute for Brain Research, Beijing 102206, China
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xue Bai
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Fengzhi Li
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Jun-Liszt Li
- Chinese Institute for Brain Research, Beijing 102206, China
- Academy for Advanced Interdisciplinary Studies (AAIS), Peking University, Beijing 100871, China
| | - Xing-jun Chen
- Chinese Institute for Brain Research, Beijing 102206, China
- Academy for Advanced Interdisciplinary Studies (AAIS), Peking University, Beijing 100871, China
| | - Ziyan Feng
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Zongpei Guo
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Jianfeng Lei
- Medical Imaging laboratory of Core Facility Center, Capital Medical University, Beijing 100054, China
| | - An Tian
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, Beijing 100053, China
| | - Ziwei Cui
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, Beijing 100053, China
| | - Volkhard Lindner
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME 04074, USA
| | - Ralf H Adams
- Department of Tissue Morphogenesis, Max-Planck-Institute for Molecular Biomedicine, and Faculty of Medicine, University of Münster, D-48149 Münster, Germany
| | - Yibo Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Fei Zhao
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Jakob Körbelin
- Department of Oncology, Hematology and Bone Marrow Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Wenzhi Sun
- Chinese Institute for Brain Research, Beijing 102206, China
- School of Basic Medical Sciences, Capital Medical University, Beijing 100054, China
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Hongqi Zhang
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, Beijing 100053, China
| | - Tao Hong
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, Beijing 100053, China
| | - Woo-ping Ge
- Chinese Institute for Brain Research, Beijing 102206, China
- Department of Neurosurgery, Xuanwu Hospital, Beijing Institute of Brain Disorders (BIBD), China International Neuroscience Institute, Capital Medical University, Beijing 100053, China
| |
Collapse
|
28
|
Cômes PC, Le Van T, Tran S, Huard S, Abi-Jaoude S, Venot Q, Marijon P, Boetto J, Blouin A, Bielle F, Ducos Y, Teranishi Y, Kalamarides M, Peyre M. Respective roles of Pik3ca mutations and cyproterone acetate impregnation in mouse meningioma tumorigenesis. Cancer Gene Ther 2023; 30:1114-1123. [PMID: 37188724 DOI: 10.1038/s41417-023-00621-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/05/2023] [Accepted: 04/28/2023] [Indexed: 05/17/2023]
Abstract
Despite their rarity, PIK3CA mutations in meningiomas have raised interest as potentially targetable, ubiquitous mutations owing to their presence in sporadic benign and malignant tumors but also in hormone-related cases. Using new genetically engineered mouse models, we here demonstrate that Pik3ca mutations in postnatal meningeal cells are sufficient to promote meningioma formation but also tumor progression in mice. Conversely, hormone impregnation, whether alone or in association with Pik3ca and Nf2 mutations, fails to induce meningioma tumorigenesis while promoting breast tumor formation. We then confirm in vitro the effect of Pik3ca mutations but not hormone impregnation on the proliferation of primary cultures of mouse meningeal cells. Finally, we show by exome analysis of breast tumors and meninges that hormone impregnation promotes breast tumor formation without additional somatic oncogenic mutation but is associated with an increased mutational burden on Pik3ca-mutant background. Taken together, these results tend to suggest a prominent role of Pik3ca mutations over hormone impregnation in meningioma tumorigenesis, the exact effect of the latter is still to be discovered.
Collapse
Affiliation(s)
- Pierre-Cyril Cômes
- Sorbonne Université, CRICM INSERM U1127 CNRS UMR 7225, Paris Brain Institute, Paris, 75013, France
| | - Tuan Le Van
- Sorbonne Université, CRICM INSERM U1127 CNRS UMR 7225, Paris Brain Institute, Paris, 75013, France
| | - Suzanne Tran
- Sorbonne Université, CRICM INSERM U1127 CNRS UMR 7225, Paris Brain Institute, Paris, 75013, France
- Department of Neuropathology, AP-HP, Hôpital Pitié Salpétrière, Paris, 75013, France
| | - Solène Huard
- Sorbonne Université, CRICM INSERM U1127 CNRS UMR 7225, Paris Brain Institute, Paris, 75013, France
| | - Samiya Abi-Jaoude
- Sorbonne Université, CRICM INSERM U1127 CNRS UMR 7225, Paris Brain Institute, Paris, 75013, France
| | - Quitterie Venot
- Université de Paris, Paris, 75006, France
- INSERM U1151, Institut Necker-Enfants Malades, Paris, 75015, France
| | - Pauline Marijon
- Sorbonne Université, CRICM INSERM U1127 CNRS UMR 7225, Paris Brain Institute, Paris, 75013, France
- Department of Neurosurgery, AP-HP, Hôpital Pitié-Salpêtrière, Paris, 75013, France
| | - Julien Boetto
- Sorbonne Université, CRICM INSERM U1127 CNRS UMR 7225, Paris Brain Institute, Paris, 75013, France
| | - Antoine Blouin
- Sorbonne Université, CRICM INSERM U1127 CNRS UMR 7225, Paris Brain Institute, Paris, 75013, France
| | - Franck Bielle
- Sorbonne Université, CRICM INSERM U1127 CNRS UMR 7225, Paris Brain Institute, Paris, 75013, France
- Department of Neuropathology, AP-HP, Hôpital Pitié Salpétrière, Paris, 75013, France
| | - Yohan Ducos
- Sorbonne Université, CRICM INSERM U1127 CNRS UMR 7225, Paris Brain Institute, Paris, 75013, France
| | - Yu Teranishi
- Sorbonne Université, CRICM INSERM U1127 CNRS UMR 7225, Paris Brain Institute, Paris, 75013, France
| | - Michel Kalamarides
- Sorbonne Université, CRICM INSERM U1127 CNRS UMR 7225, Paris Brain Institute, Paris, 75013, France
- Department of Neurosurgery, AP-HP, Hôpital Pitié-Salpêtrière, Paris, 75013, France
| | - Matthieu Peyre
- Sorbonne Université, CRICM INSERM U1127 CNRS UMR 7225, Paris Brain Institute, Paris, 75013, France.
- Department of Neurosurgery, AP-HP, Hôpital Pitié-Salpêtrière, Paris, 75013, France.
| |
Collapse
|
29
|
Dudley AC, Griffioen AW. Pathological angiogenesis: mechanisms and therapeutic strategies. Angiogenesis 2023; 26:313-347. [PMID: 37060495 PMCID: PMC10105163 DOI: 10.1007/s10456-023-09876-7] [Citation(s) in RCA: 105] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/26/2023] [Indexed: 04/16/2023]
Abstract
In multicellular organisms, angiogenesis, the formation of new blood vessels from pre-existing ones, is an essential process for growth and development. Different mechanisms such as vasculogenesis, sprouting, intussusceptive, and coalescent angiogenesis, as well as vessel co-option, vasculogenic mimicry and lymphangiogenesis, underlie the formation of new vasculature. In many pathological conditions, such as cancer, atherosclerosis, arthritis, psoriasis, endometriosis, obesity and SARS-CoV-2(COVID-19), developmental angiogenic processes are recapitulated, but are often done so without the normal feedback mechanisms that regulate the ordinary spatial and temporal patterns of blood vessel formation. Thus, pathological angiogenesis presents new challenges yet new opportunities for the design of vascular-directed therapies. Here, we provide an overview of recent insights into blood vessel development and highlight novel therapeutic strategies that promote or inhibit the process of angiogenesis to stabilize, reverse, or even halt disease progression. In our review, we will also explore several additional aspects (the angiogenic switch, hypoxia, angiocrine signals, endothelial plasticity, vessel normalization, and endothelial cell anergy) that operate in parallel to canonical angiogenesis mechanisms and speculate how these processes may also be targeted with anti-angiogenic or vascular-directed therapies.
Collapse
Affiliation(s)
- Andrew C Dudley
- Department of Microbiology, Immunology and Cancer Biology, The University of Virginia, Charlottesville, VA, 22908, USA.
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
30
|
Ren J, Hong T, Zhang H. Angioarchitecture and genetic variants of spinal cord cavernous malformations and associated developmental venous anomalies: a case report. Childs Nerv Syst 2023; 39:1945-1948. [PMID: 36917268 DOI: 10.1007/s00381-023-05887-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/14/2023] [Indexed: 03/16/2023]
Abstract
Cavernous malformations (CM) have long been considered congenital of central nervous system, while the mechanism of CMs detailed development process associated with genetic factors remains unclear. We reported an uncommon case which suffered spinal cord cavernous malformations. In this work, representative samples were obtained, and the sequenced results were described for the first time. A 9-year-old boy was found oblique shoulder with slightly weakness of left limbs; MRI indicated spinal cord cavernous malformations (CMs) located at the C4-C6 vertebral level. On genetic analysis, a shared mutation of PIK3CA (p.H1047R) in CMs and associated developmental venous anomalies (DVAs) was detected, with a different abundance (2% and 7%, respectively), and a somatic mutation of MAP3K3 (p.I441M) was detected in the CM tissue samples. This case provides better knowledge of the formation history and genetic triggers of the DVA-associated CMs. This evidence allows us to speculate the developmental history of the CM lesion: The DVA with PIK3CA mutation might be genetic precursor, and then the associated CM could be derived from terminal cell population of the DVA by acquiring a somatic mutation in MAP3K3.
Collapse
Affiliation(s)
- Jian Ren
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China
- China International Neuroscience Institute, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Tao Hong
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China
- China International Neuroscience Institute, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China
| | - Hongqi Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China.
- China International Neuroscience Institute, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China.
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China.
| |
Collapse
|
31
|
Qi C, Bujaroski RS, Baell J, Zheng X. Kinases in cerebral cavernous malformations: Pathogenesis and therapeutic targets. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119488. [PMID: 37209718 DOI: 10.1016/j.bbamcr.2023.119488] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/03/2023] [Accepted: 05/11/2023] [Indexed: 05/22/2023]
Abstract
Cerebral cavernous malformations (CCMs) are low-flow, hemorrhagic vascular lesions of the central nervous system of genetic origin, which can cause stroke-like symptoms and seizures. From the identification of CCM1, CCM2 and CCM3 as genes related to disease progression, molecular and cellular mechanisms for CCM pathogenesis have been established and the search for potential drugs to target CCM has begun. Broadly speaking, kinases are the major group signaling in CCM pathogenesis. These include the MEKK3/MEK5/ERK5 cascade, Rho/Rock signaling, CCM3/GCKIII signaling, PI3K/mTOR signaling, and others. Since the discovery of Rho/Rock in CCM pathogenesis, inhibitors for Rho signaling and subsequently other components in CCM signaling were discovered and applied in preclinical and clinical trials to ameliorate CCM progression. This review discusses the general aspects of CCM disease, kinase-mediated signaling in CCM pathogenesis and the current state of potential treatment options for CCM. It is suggested that kinase target drug development in the context of CCM might facilitate and meet the unmet requirement - a non-surgical option for CCM disease.
Collapse
Affiliation(s)
- Chunxiao Qi
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, China
| | - Richard Sean Bujaroski
- Medicinal Chemistry Theme, Monash Institute of Pharmaceutical Sciences, Australian Translational Medicinal Chemistry Facility (ATMCF), Monash University, Parkville, Victoria, Australia
| | - Jonathan Baell
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, China
| | - Xiangjian Zheng
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, 300070, China.
| |
Collapse
|
32
|
Mojarad BA, Hernandez PV, Evenson MJ, Corliss MM, Stein SL, Theos A, Coughlin CC, Sisk B, Menezes M, Schroeder MC, Heusel JW, Neidich JA, Cao Y. Profiling PIK3CA variants in disorders of somatic mosaicism. GENETICS IN MEDICINE OPEN 2023; 1:100815. [PMID: 39669231 PMCID: PMC11613552 DOI: 10.1016/j.gimo.2023.100815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/17/2023] [Accepted: 04/28/2023] [Indexed: 12/14/2024]
Abstract
Purpose Variants in PIK3CA (encoding p110α; the catalytic subunit of PI3K) characterize some disorders of somatic mosaicism (DoSM) conditions with clinical features, including sporadic overgrowth and vascular malformations. Here, we profile PIK3CA variants in DoSM. Methods We applied a next-generation, sequencing-based, laboratory-developed test, using an average coverage of approximately 2000× for up to 37 genes associated with DoSM, on a cohort of 1197 patients with DoSM referred for clinical genomics services between 2013 and 2022. Results We identified clinically reportable variants in 747 (62.4%) individuals in this cohort. Notably, 371 clinically reportable variants in PIK3CA were identified in 368 patients, constituting approximately 49.2% of all patients with reportable findings. Variants in the C2 domain of p110α are enriched in DoSM (this cohort) compared with those of cancer (Catalogue of Somatic Mutations in Cancer [COSMIC] database), highlighting the role of the C2 domain in driving uncontrolled cell proliferation in DoSM. Furthermore, we report 17 novel variants in PIK3CA that are not previously reported in DoSM and describe clinical presentation correlation for 4 novel variants. Conclusion Our findings from the largest single-center cohort of patients with DoSM expand the spectrum of variants in PIK3CA and shed light on the less-studied role of the C2 domain in the pathogenesis of DoSM.
Collapse
Affiliation(s)
- Bahareh A. Mojarad
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Patricia V. Hernandez
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Michael J. Evenson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Meagan M. Corliss
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Sarah L. Stein
- Section of Dermatology, Departments of Medicine and Pediatrics, University of Chicago, Chicago, IL
| | - Amy Theos
- Department of Dermatology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL
| | - Carrie C. Coughlin
- Division of Dermatology, Departments of Medicine and Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Bryan Sisk
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, and Department of Medicine, Oncology and Bioethics Research Center, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Maithilee Menezes
- Division of Pediatric Otolaryngology, Department of Otolaryngology, Head and Neck Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Molly C. Schroeder
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Jonathan W. Heusel
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
- Department of Genetics, Washington University School of Medicine, St. Louis, MO
| | - Julie A. Neidich
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Yang Cao
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
33
|
Zhang J, Croft J, Le A. Familial CCM Genes Might Not Be Main Drivers for Pathogenesis of Sporadic CCMs-Genetic Similarity between Cancers and Vascular Malformations. J Pers Med 2023; 13:jpm13040673. [PMID: 37109059 PMCID: PMC10143507 DOI: 10.3390/jpm13040673] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/05/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Cerebral cavernous malformations (CCMs) are abnormally dilated intracranial capillaries that form cerebrovascular lesions with a high risk of hemorrhagic stroke. Recently, several somatic "activating" gain-of-function (GOF) point mutations in PIK3CA (phosphatidylinositol-4, 5-bisphosphate 3-kinase catalytic subunit p110α) were discovered as a dominant mutation in the lesions of sporadic forms of cerebral cavernous malformation (sCCM), raising the possibility that CCMs, like other types of vascular malformations, fall in the PIK3CA-related overgrowth spectrum (PROS). However, this possibility has been challenged with different interpretations. In this review, we will continue our efforts to expound the phenomenon of the coexistence of gain-of-function (GOF) point mutations in the PIK3CA gene and loss-of-function (LOF) mutations in CCM genes in the CCM lesions of sCCM and try to delineate the relationship between mutagenic events with CCM lesions in a temporospatial manner. Since GOF PIK3CA point mutations have been well studied in reproductive cancers, especially breast cancer as a driver oncogene, we will perform a comparative meta-analysis for GOF PIK3CA point mutations in an attempt to demonstrate the genetic similarities shared by both cancers and vascular anomalies.
Collapse
Affiliation(s)
- Jun Zhang
- Departments of Molecular & Translational Medicine (MTM), Texas Tech University Health Science Center El Paso (TTUHSCEP), El Paso, TX 79905, USA
| | - Jacob Croft
- Departments of Molecular & Translational Medicine (MTM), Texas Tech University Health Science Center El Paso (TTUHSCEP), El Paso, TX 79905, USA
| | - Alexander Le
- Departments of Molecular & Translational Medicine (MTM), Texas Tech University Health Science Center El Paso (TTUHSCEP), El Paso, TX 79905, USA
| |
Collapse
|
34
|
Zhao S, Mekbib KY, van der Ent MA, Allington G, Prendergast A, Chau JE, Smith H, Shohfi J, Ocken J, Duran D, Furey CG, Le HT, Duy PQ, Reeves BC, Zhang J, Nelson-Williams C, Chen D, Li B, Nottoli T, Bai S, Rolle M, Zeng X, Dong W, Fu PY, Wang YC, Mane S, Piwowarczyk P, Fehnel KP, See AP, Iskandar BJ, Aagaard-Kienitz B, Kundishora AJ, DeSpenza T, Greenberg ABW, Kidanemariam SM, Hale AT, Johnston JM, Jackson EM, Storm PB, Lang SS, Butler WE, Carter BS, Chapman P, Stapleton CJ, Patel AB, Rodesch G, Smajda S, Berenstein A, Barak T, Erson-Omay EZ, Zhao H, Moreno-De-Luca A, Proctor MR, Smith ER, Orbach DB, Alper SL, Nicoli S, Boggon TJ, Lifton RP, Gunel M, King PD, Jin SC, Kahle KT. Genetic dysregulation of an endothelial Ras signaling network in vein of Galen malformations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.18.532837. [PMID: 36993588 PMCID: PMC10055230 DOI: 10.1101/2023.03.18.532837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
To elucidate the pathogenesis of vein of Galen malformations (VOGMs), the most common and severe congenital brain arteriovenous malformation, we performed an integrated analysis of 310 VOGM proband-family exomes and 336,326 human cerebrovasculature single-cell transcriptomes. We found the Ras suppressor p120 RasGAP ( RASA1 ) harbored a genome-wide significant burden of loss-of-function de novo variants (p=4.79×10 -7 ). Rare, damaging transmitted variants were enriched in Ephrin receptor-B4 ( EPHB4 ) (p=1.22×10 -5 ), which cooperates with p120 RasGAP to limit Ras activation. Other probands had pathogenic variants in ACVRL1 , NOTCH1 , ITGB1 , and PTPN11 . ACVRL1 variants were also identified in a multi-generational VOGM pedigree. Integrative genomics defined developing endothelial cells as a key spatio-temporal locus of VOGM pathophysiology. Mice expressing a VOGM-specific EPHB4 kinase-domain missense variant exhibited constitutive endothelial Ras/ERK/MAPK activation and impaired hierarchical development of angiogenesis-regulated arterial-capillary-venous networks, but only when carrying a "second-hit" allele. These results illuminate human arterio-venous development and VOGM pathobiology and have clinical implications.
Collapse
|
35
|
Eaton C, Avalos L, Liu SJ, Casey-Clyde T, Bisignano P, Lucas CH, Stevenson E, Choudhury A, Vasudevan H, Magill S, Krogan N, Villanueva-Meyer J, Swaney D, Raleigh D. Merlin S13 phosphorylation controls meningioma Wnt signaling and magnetic resonance imaging features. RESEARCH SQUARE 2023:rs.3.rs-2577844. [PMID: 36993679 PMCID: PMC10055685 DOI: 10.21203/rs.3.rs-2577844/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Meningiomas are the most common primary intracranial tumors and are associated with inactivation of the tumor suppressor NF2/Merlin, but one-third of meningiomas retain Merlin expression and typically have favorable clinical outcomes. Biochemical mechanisms underlying Merlin-intact meningioma growth are incompletely understood, and non-invasive biomarkers that predict meningioma outcomes and could be used to guide treatment de-escalation or imaging surveillance of Merlin-intact meningiomas are lacking. Here we integrate single-cell RNA sequencing, proximity-labeling proteomic mass spectrometry, mechanistic and functional approaches, and magnetic resonance imaging (MRI) across meningioma cells, xenografts, and human patients to define biochemical mechanisms and an imaging biomarker that distinguish Merlin-intact meningiomas with favorable clinical outcomes from meningiomas with unfavorable clinical outcomes. We find Merlin drives meningioma Wnt signaling and tumor growth through a feed-forward mechanism that requires Merlin dephosphorylation on serine 13 (S13) to attenuate inhibitory interactions with β-catenin and activate the Wnt pathway. Meningioma MRI analyses of xenografts and human patients show Merlin-intact meningiomas with S13 phosphorylation and favorable clinical outcomes are associated with high apparent diffusion coefficient (ADC) on diffusion-weighted imaging. In sum, our results shed light on Merlin posttranslational modifications that regulate meningioma Wnt signaling and tumor growth in tumors without NF2/Merlin inactivation. To translate these findings to clinical practice, we establish a non-invasive imaging biomarker that could be used to guide treatment de-escalation or imaging surveillance for patients with favorable meningiomas.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Nevan Krogan
- Quantitative Biosciences Institute, University of California San Francisco
| | | | | | | |
Collapse
|
36
|
Single-cell sequencing reveals that endothelial cells, EndMT cells and mural cells contribute to the pathogenesis of cavernous malformations. Exp Mol Med 2023; 55:628-642. [PMID: 36914857 PMCID: PMC10073145 DOI: 10.1038/s12276-023-00962-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/13/2022] [Accepted: 01/01/2023] [Indexed: 03/14/2023] Open
Abstract
Cavernous malformations (CMs) invading the central nervous system occur in ~0.16-0.4% of the general population, often resulting in hemorrhages and focal neurological deficits. Further understanding of disease mechanisms and therapeutic strategies requires a deeper knowledge of CMs in humans. Herein, we performed single-cell RNA sequencing (scRNA-seq) analysis on unselected viable cells from twelve human CM samples and three control samples. A total of 112,670 high-quality cells were clustered into 11 major cell types, which shared a number of common features in CMs harboring different genetic mutations. A new EC subpopulation marked with PLVAP was uniquely identified in lesions. The cellular ligand‒receptor network revealed that the PLVAP-positive EC subcluster was the strongest contributor to the ANGPT and VEGF signaling pathways in all cell types. The PI3K/AKT/mTOR pathway was strongly activated in the PLVAP-positive subcluster even in non-PIK3CA mutation carriers. Moreover, endothelial-to-mesenchymal transition (EndMT) cells were identified for the first time in CMs at the single-cell level, which was accompanied by strong immune activation. The transcription factor SPI1 was predicted to be a novel key driver of EndMT, which was confirmed by in vitro and in vivo studies. A specific fibroblast-like phenotype was more prevalent in lesion smooth muscle cells, hinting at the role of vessel reconstructions and repairs in CMs, and we also confirmed that TWIST1 could induce SMC phenotypic switching in vitro and in vivo. Our results provide novel insights into the pathomechanism decryption and further precise therapy of CMs.
Collapse
|
37
|
Duy PQ, Timberlake AT, Lifton RP, Kahle KT. Molecular genetics of human developmental neurocranial anomalies: towards "precision surgery". Cereb Cortex 2023; 33:2912-2918. [PMID: 35739418 PMCID: PMC10016031 DOI: 10.1093/cercor/bhac249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 11/14/2022] Open
Abstract
Recent trio-based whole-exome sequencing studies of congenital hydrocephalus and nonsyndromic craniosynostosis have identified multiple novel disease genes that have illuminated the pathogenesis of these disorders and shed new insight into the genetic regulation of human brain and skull development. Continued study of these and other historically understudied developmental anomalies has the potential to replace the current antiquated, anatomically based disease classification systems with a molecular nomenclature that may increase precision for genetic counseling, prognostication, and surgical treatment stratification-including when not to operate. Data will also inform future clinical trials, catalyze the development of targeted therapies, and generate infrastructure and publicly available data sets relevant for other related nonsurgical neurodevelopmental and neuropsychiatric diseases.
Collapse
Affiliation(s)
| | | | - Richard P Lifton
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Kristopher T Kahle
- Corresponding author: Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
38
|
Genetics of brain arteriovenous malformations and cerebral cavernous malformations. J Hum Genet 2023; 68:157-167. [PMID: 35831630 DOI: 10.1038/s10038-022-01063-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/13/2022] [Accepted: 06/26/2022] [Indexed: 11/08/2022]
Abstract
Cerebrovascular malformations comprise abnormal development of cerebral vasculature. They can result in hemorrhagic stroke due to rupture of lesions as well as seizures and neurological defects. The most common forms of cerebrovascular malformations are brain arteriovenous malformations (bAVMs) and cerebral cavernous malformations (CCMs). They occur in both sporadic and inherited forms. Rapidly evolving molecular genetic methodologies have helped to identify causative or associated genes involved in genesis of bAVMs and CCMs. In this review, we highlight the current knowledge regarding the genetic basis of these malformations.
Collapse
|
39
|
Perrelli A, Ferraris C, Berni E, Glading AJ, Retta SF. KRIT1: A Traffic Warden at the Busy Crossroads Between Redox Signaling and the Pathogenesis of Cerebral Cavernous Malformation Disease. Antioxid Redox Signal 2023; 38:496-528. [PMID: 36047808 PMCID: PMC10039281 DOI: 10.1089/ars.2021.0263] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 12/18/2022]
Abstract
Significance: KRIT1 (Krev interaction trapped 1) is a scaffolding protein that plays a critical role in vascular morphogenesis and homeostasis. Its loss-of-function has been unequivocally associated with the pathogenesis of Cerebral Cavernous Malformation (CCM), a major cerebrovascular disease of genetic origin characterized by defective endothelial cell-cell adhesion and ensuing structural alterations and hyperpermeability in brain capillaries. KRIT1 contributes to the maintenance of endothelial barrier function by stabilizing the integrity of adherens junctions and inhibiting the formation of actin stress fibers. Recent Advances: Among the multiple regulatory mechanisms proposed so far, significant evidence accumulated over the past decade has clearly shown that the role of KRIT1 in the stability of endothelial barriers, including the blood-brain barrier, is largely based on its involvement in the complex machinery governing cellular redox homeostasis and responses to oxidative stress and inflammation. KRIT1 loss-of-function has, indeed, been demonstrated to cause an impairment of major redox-sensitive mechanisms involved in spatiotemporal regulation of cell adhesion and signaling, which ultimately leads to decreased cell-cell junction stability and enhanced sensitivity to oxidative stress and inflammation. Critical Issues: This review explores the redox mechanisms that influence endothelial cell adhesion and barrier function, focusing on the role of KRIT1 in such mechanisms. We propose that this supports a novel model wherein redox signaling forms the common link between the various pathogenetic mechanisms and therapeutic approaches hitherto associated with CCM disease. Future Directions: A comprehensive characterization of the role of KRIT1 in redox control of endothelial barrier physiology and defense against oxy-inflammatory insults will provide valuable insights into the development of precision medicine strategies. Antioxid. Redox Signal. 38, 496-528.
Collapse
Affiliation(s)
- Andrea Perrelli
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
- CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, USA
| | - Chiara Ferraris
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
- CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Elisa Berni
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
- CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Angela J. Glading
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, USA
| | - Saverio Francesco Retta
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
- CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| |
Collapse
|
40
|
Perrelli A, Bozza A, Ferraris C, Osella S, Moglia A, Mioletti S, Battaglia L, Retta SF. Multidrug-Loaded Lipid Nanoemulsions for the Combinatorial Treatment of Cerebral Cavernous Malformation Disease. Biomedicines 2023; 11:biomedicines11020480. [PMID: 36831015 PMCID: PMC9953270 DOI: 10.3390/biomedicines11020480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/04/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
Cerebral cavernous malformation (CCM) or cavernoma is a major vascular disease of genetic origin, whose main phenotypes occur in the central nervous system, and is currently devoid of pharmacological therapeutic strategies. Cavernomas can remain asymptomatic during a lifetime or manifest with a wide range of symptoms, including recurrent headaches, seizures, strokes, and intracerebral hemorrhages. Loss-of-function mutations in KRIT1/CCM1 are responsible for more than 50% of all familial cases, and have been clearly shown to affect cellular junctions, redox homeostasis, inflammatory responses, and angiogenesis. In this study, we investigated the therapeutic effects of multidrug-loaded lipid nanoemulsions in rescuing the pathological phenotype of CCM disease. The pro-autophagic rapamycin, antioxidant avenanthramide, and antiangiogenic bevacizumab were loaded into nanoemulsions, with the aim of reducing the major molecular dysfunctions associated with cavernomas. Through Western blot analysis of biomarkers in an in vitro CCM model, we demonstrated that drug-loaded lipid nanoemulsions rescue antioxidant responses, reactivate autophagy, and reduce the effect of pro-angiogenic factors better than the free drugs. Our results show the importance of developing a combinatorial preventive and therapeutic approach to reduce the risk of lesion formation and inhibit or completely revert the multiple hallmarks that characterize the pathogenesis and progression of cavernomas.
Collapse
Affiliation(s)
- Andrea Perrelli
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, TO, Italy
- CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, TO, Italy
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, Rochester, NY 14620, USA
| | - Annalisa Bozza
- Department of Drug Science and Technology, University of Torino, 10125 Torino, TO, Italy
| | - Chiara Ferraris
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, TO, Italy
- CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, TO, Italy
| | - Sara Osella
- San Giovanni Bosco Hospital, University of Torino, 10154 Torino, TO, Italy
| | - Andrea Moglia
- Department of Agricultural, Forest and Food Sciences, University of Torino, 10095 Grugliasco, TO, Italy
| | - Silvia Mioletti
- Department of Veterinary Sciences, University of Torino, 10095 Grugliasco, TO, Italy
| | - Luigi Battaglia
- Department of Drug Science and Technology, University of Torino, 10125 Torino, TO, Italy
- Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, University of Torino, 10124 Torino, TO, Italy
- Correspondence: (L.B.); (S.F.R.)
| | - Saverio Francesco Retta
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, TO, Italy
- CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, TO, Italy
- Correspondence: (L.B.); (S.F.R.)
| |
Collapse
|
41
|
Natural history of familial cerebral cavernous malformation syndrome in children: a multicenter cohort study. Neuroradiology 2023; 65:401-414. [PMID: 36198887 PMCID: PMC9859903 DOI: 10.1007/s00234-022-03056-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/17/2022] [Indexed: 01/28/2023]
Abstract
PURPOSE There is limited data concerning neuroimaging findings and longitudinal evaluation of familial cerebral cavernous malformations (FCCM) in children. Our aim was to study the natural history of pediatric FCCM, with an emphasis on symptomatic hemorrhagic events and associated clinical and imaging risk factors. METHODS We retrospectively reviewed all children diagnosed with FCCM in four tertiary pediatric hospitals between January 2010 and March 2022. Subjects with first available brain MRI and [Formula: see text] 3 months of clinical follow-up were included. Neuroimaging studies were reviewed, and clinical data collected. Annual symptomatic hemorrhage risk rates and cumulative risks were calculated using survival analysis and predictors of symptomatic hemorrhagic identified using regression analysis. RESULTS Forty-one children (53.7% males) were included, of whom 15 (36.3%) presenting with symptomatic hemorrhage. Seven symptomatic hemorrhages occurred during 140.5 person-years of follow-up, yielding a 5-year annual hemorrhage rate of 5.0% per person-year. The 1-, 2-, and 5-year cumulative risks of symptomatic hemorrhage were 7.3%, 14.6%, and 17.1%, respectively. The latter was higher in children with prior symptomatic hemorrhage (33.3%), CCM2 genotype (33.3%), and positive family history (20.7%). Number of brainstem (adjusted hazard ratio [HR] = 1.37, P = 0.005) and posterior fossa (adjusted HR = 1.64, P = 0.004) CCM at first brain MRI were significant independent predictors of prospective symptomatic hemorrhage. CONCLUSION The 5-year annual and cumulative symptomatic hemorrhagic risk in our pediatric FCCM cohort equals the overall risk described in children and adults with all types of CCM. Imaging features at first brain MRI may help to predict potential symptomatic hemorrhage at 5-year follow-up.
Collapse
|
42
|
The Dual Role of PDCD10 in Cancers: A Promising Therapeutic Target. Cancers (Basel) 2022; 14:cancers14235986. [PMID: 36497468 PMCID: PMC9740655 DOI: 10.3390/cancers14235986] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/11/2022] Open
Abstract
Programmed cell death 10 (PDCD10) was initially considered as a protein associated with apoptosis. However, recent studies showed that PDCD10 is actually an adaptor protein. By interacting with multiple molecules, PDCD10 participates in various physiological processes, such as cell survival, migration, cell differentiation, vesicle trafficking, cellular senescence, neurovascular development, and gonadogenesis. Moreover, over the past few decades, accumulating evidence has demonstrated that the aberrant expression or mutation of PDCD10 is extremely common in various pathological processes, especially in cancers. The dysfunction of PDCD10 has been strongly implicated in oncogenesis and tumor progression. However, the updated data seem to indicate that PDCD10 has a dual role (either pro- or anti-tumor effects) in various cancer types, depending on cell/tissue specificity with different cellular interactors. In this review, we aimed to summarize the knowledge of the dual role of PDCD10 in cancers with a special focus on its cellular function and potential molecular mechanism. With these efforts, we hoped to provide new insight into the future development and application of PDCD10 as a clinical therapeutic target in cancers.
Collapse
|
43
|
Yang X, Dai Z, Gao C, Yin Y, Shi C, Liu R, Zhuge Q, Huang Y, Zhou B, Han Z, Zheng X. Cerebral cavernous malformation development in chronic mouse models driven by dual recombinases induced gene deletion in brain endothelial cells. J Cereb Blood Flow Metab 2022; 42:2230-2244. [PMID: 35686705 PMCID: PMC9669998 DOI: 10.1177/0271678x221105995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cerebral cavernous malformation (CCM) is a brain vascular disease which can cause stroke, cerebral hemorrhage and neurological deficits in affected individuals. Loss-of-function mutations in three genes (CCM1, CCM2 and CCM3) cause CCM disease. Multiple mouse models for CCM disease have been developed although each of them are associated with various limitations. Here, we employed the Dre-Cre dual recombinase system to specifically delete Ccm genes in brain endothelial cells. In this new series of CCM mouse models, robust CCM lesions now develop in the cerebrum. The survival curve and lesion burden analysis revealed that Ccm2 deletion causes modest CCM lesions with a median life expectance of ∼10 months and Ccm3 gene deletion leads to the most severe CCM lesions with median life expectance of ∼2 months. The extended lifespan of these mutant mice enables their utility in behavioral analyses of neurologic deficits in adult mice, and allow the development of methods to quantify lesion burden in mice over time and also permit longitudinal drug testing in live animals.
Collapse
Affiliation(s)
- Xi Yang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zifeng Dai
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Caixia Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yongqiang Yin
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Changbin Shi
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Renjing Liu
- Vascular Epigenetics Laboratory, Victor Chang Cardiac Research Institute, Sydney, Australia
| | - Qichuan Zhuge
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yue Huang
- China National Clinical Research Centre for Neurological Disorders, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bin Zhou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Zhiming Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiangjian Zheng
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
44
|
Bianconi A, Salvati LF, Perrelli A, Ferraris C, Massara A, Minardi M, Aruta G, Rosso M, Massa Micon B, Garbossa D, Retta SF. Distant Recurrence of a Cerebral Cavernous Malformation in the Vicinity of a Developmental Venous Anomaly: Case Report of Local Oxy-Inflammatory Events. Int J Mol Sci 2022; 23:ijms232314643. [PMID: 36498972 PMCID: PMC9736411 DOI: 10.3390/ijms232314643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Cerebral cavernous malformations (CCMs) are a major type of cerebrovascular lesions of proven genetic origin that occur in either sporadic (sCCM) or familial (fCCM) forms, the latter being inherited as an autosomal dominant condition linked to loss-of-function mutations in three known CCM genes. In contrast to fCCMs, sCCMs are rarely linked to mutations in CCM genes and are instead commonly and peculiarly associated with developmental venous anomalies (DVAs), suggesting distinct origins and common pathogenic mechanisms. CASE REPORT A hemorrhagic sCCM in the right frontal lobe of the brain was surgically excised from a symptomatic 3 year old patient, preserving intact and pervious the associated DVA. MRI follow-up examination performed periodically up to 15 years after neurosurgery intervention demonstrated complete removal of the CCM lesion and no residual or relapse signs. However, 18 years after surgery, the patient experienced acute episodes of paresthesia due to a distant recurrence of a new hemorrhagic CCM lesion located within the same area as the previous one. A new surgical intervention was, therefore, necessary, which was again limited to the CCM without affecting the pre-existing DVA. Subsequent follow-up examination by contrast-enhanced MRI evidenced a persistent pattern of signal-intensity abnormalities in the bed of the DVA, including hyperintense gliotic areas, suggesting chronic inflammatory conditions. CONCLUSIONS This case report highlights the possibility of long-term distant recurrence of hemorrhagic sCCMs associated with a DVA, suggesting that such recurrence is secondary to focal sterile inflammatory conditions generated by the DVA.
Collapse
Affiliation(s)
- Andrea Bianconi
- Division of Neurosurgery, Department of Neurosciences “Rita Levi Montalcini”, City of Health and Science and University of Turin, 10124 Torino, Italy
- CCM Italia Research Network, National Coordination Center, Department of Clinical and Biological Sciences, University of Turin, 10124 Orbassano, Italy
- Correspondence: (A.B.); (S.F.R.)
| | | | - Andrea Perrelli
- CCM Italia Research Network, National Coordination Center, Department of Clinical and Biological Sciences, University of Turin, 10124 Orbassano, Italy
- Department of Clinical and Biological Sciences, School of Medicine and Surgery, University of Turin, Regione Gonzole 10, 10124 Orbassano, Italy
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14602, USA
| | - Chiara Ferraris
- CCM Italia Research Network, National Coordination Center, Department of Clinical and Biological Sciences, University of Turin, 10124 Orbassano, Italy
- Department of Clinical and Biological Sciences, School of Medicine and Surgery, University of Turin, Regione Gonzole 10, 10124 Orbassano, Italy
| | - Armando Massara
- Division of Neurosurgery, Department of Neurosciences “Rita Levi Montalcini”, City of Health and Science and University of Turin, 10124 Torino, Italy
| | - Massimiliano Minardi
- Division of Neurosurgery, Department of Neurosciences “Rita Levi Montalcini”, City of Health and Science and University of Turin, 10124 Torino, Italy
| | - Gelsomina Aruta
- Division of Neurosurgery, Department of Neurosciences “Rita Levi Montalcini”, City of Health and Science and University of Turin, 10124 Torino, Italy
| | - Miriam Rosso
- Division of Neurosurgery, Department of Neurosciences “Rita Levi Montalcini”, City of Health and Science and University of Turin, 10124 Torino, Italy
| | - Barbara Massa Micon
- Division of Neurosurgery, Department of Neurosciences “Rita Levi Montalcini”, City of Health and Science and University of Turin, 10124 Torino, Italy
| | - Diego Garbossa
- Division of Neurosurgery, Department of Neurosciences “Rita Levi Montalcini”, City of Health and Science and University of Turin, 10124 Torino, Italy
- CCM Italia Research Network, National Coordination Center, Department of Clinical and Biological Sciences, University of Turin, 10124 Orbassano, Italy
| | - Saverio Francesco Retta
- CCM Italia Research Network, National Coordination Center, Department of Clinical and Biological Sciences, University of Turin, 10124 Orbassano, Italy
- Department of Clinical and Biological Sciences, School of Medicine and Surgery, University of Turin, Regione Gonzole 10, 10124 Orbassano, Italy
- Correspondence: (A.B.); (S.F.R.)
| |
Collapse
|
45
|
Lai CC, Nelsen B, Frias-Anaya E, Gallego-Gutierrez H, Orecchioni M, Herrera V, Ortiz E, Sun H, Mesarwi OA, Ley K, Gongol B, Lopez-Ramirez MA. Neuroinflammation Plays a Critical Role in Cerebral Cavernous Malformation Disease. Circ Res 2022; 131:909-925. [PMID: 36285625 PMCID: PMC9669201 DOI: 10.1161/circresaha.122.321129] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 10/11/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Cerebral cavernous malformations (CCMs) are neurovascular lesions caused by loss of function mutations in 1 of 3 genes, including KRIT1 (CCM1), CCM2, and PDCD10 (CCM3). CCMs affect ≈1 out of 200 children and adults, and no pharmacologic therapy is available. CCM lesion count, size, and aggressiveness vary widely among patients of similar ages with the same mutation or even within members of the same family. However, what determines the transition from quiescent lesions into mature and active (aggressive) CCM lesions is unknown. METHODS We use genetic, RNA-sequencing, histology, flow cytometry, and imaging techniques to report the interaction between CCM endothelium, astrocytes, leukocytes, microglia/macrophages, neutrophils (CCM endothelium, astrocytes, leukocytes, microglia/macrophages, neutrophils interaction) during the pathogenesis of CCMs in the brain tissue. RESULTS Expression profile of astrocytes in adult mouse brains using translated mRNAs obtained from the purification of EGFP (enhanced green fluorescent protein)-tagged ribosomes (Aldh1l1-EGFP/Rpl10a) in the presence or absence of CCM lesions (Slco1c1-iCreERT2;Pdcd10fl/fl; Pdcd10BECKO) identifies a novel gene signature for neuroinflammatory astrocytes. CCM-induced reactive astrocytes have a neuroinflammatory capacity by expressing genes involved in angiogenesis, chemotaxis, hypoxia signaling, and inflammation. RNA-sequencing analysis on RNA isolated from brain endothelial cells in chronic Pdcd10BECKO mice (CCM endothelium), identified crucial genes involved in recruiting inflammatory cells and thrombus formation through chemotaxis and coagulation pathways. In addition, CCM endothelium was associated with increased expression of Nlrp3 and Il1b. Pharmacological inhibition of NLRP3 (NOD [nucleotide-binding oligomerization domain]-' LRR [leucine-rich repeat]- and pyrin domain-containing protein 3) significantly decreased inflammasome activity as assessed by quantification of a fluorescent indicator of caspase-1 activity (FAM-FLICA [carboxyfluorescein-fluorochrome-labeled inhibitors of caspases] caspase-1) in brain endothelial cells from Pdcd10BECKO in chronic stage. Importantly, our results support the hypothesis of the crosstalk between astrocytes and CCM endothelium that can trigger recruitment of inflammatory cells arising from brain parenchyma (microglia) and the peripheral immune system (leukocytes) into mature active CCM lesions that propagate lesion growth, immunothrombosis, and bleedings. Unexpectedly, partial or total loss of brain endothelial NF-κB (nuclear factor κB) activity (using Ikkbfl/fl mice) in chronic Pdcd10BECKO mice does not prevent lesion genesis or neuroinflammation. Instead, this resulted in a trend increase in the number of lesions and immunothrombosis, suggesting that therapeutic approaches designed to target inflammation through endothelial NF-κB inhibition may contribute to detrimental side effects. CONCLUSIONS Our study reveals previously unknown links between neuroinflammatory astrocytes and inflamed CCM endothelium as contributors that trigger leukocyte recruitment and precipitate immunothrombosis in CCM lesions. However, therapeutic approaches targeting brain endothelial NF-κB activity may contribute to detrimental side effects.
Collapse
Affiliation(s)
| | - Bliss Nelsen
- Department of Medicine, University of California, San
Diego, La Jolla, California, USA
| | - Eduardo Frias-Anaya
- Department of Medicine, University of California, San
Diego, La Jolla, California, USA
| | | | - Marco Orecchioni
- Division of Inflammation Biology, La Jolla Institute for
Immunology, La Jolla, California, USA
| | - Victoria Herrera
- Department of Medicine, University of California, San
Diego, La Jolla, California, USA
| | - Elan Ortiz
- Department of Medicine, University of California, San
Diego, La Jolla, California, USA
| | - Hao Sun
- Department of Medicine, University of California, San
Diego, La Jolla, California, USA
| | - Omar A. Mesarwi
- Department of Medicine, University of California, San
Diego, La Jolla, California, USA
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for
Immunology, La Jolla, California, USA
| | - Brendan Gongol
- Department of Health Sciences, Victor Valley College,
Victorville, California, USA
- Institute for Integrative Genome Biology, 1207F Genomics
Building, University of California, Riverside, CA 92521, USA
| | - Miguel Alejandro Lopez-Ramirez
- Department of Medicine, University of California, San
Diego, La Jolla, California, USA
- Department of Pharmacology, University of California, San
Diego, La Jolla, California, USA
| |
Collapse
|
46
|
Romano F, Madia F, De Marco P, Ognibene M, Guerrisi S, Scala M, Iacomino M, Baldassari S, Vercellino N, Manunza F, Tallone R, Pavanello M, Piatelli G, Garaventa A, Zara F, Capra V. Clinical and genetic analysis of patients with segmental overgrowth features and somatic mammalian target of rapamycin (mTOR) pathway disruption: Possible novel clinical issues. Birth Defects Res 2022; 114:1440-1448. [DOI: 10.1002/bdr2.2113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Ferruccio Romano
- Medical Genetics Unit IRCCS Istituto Giannina Gaslini Genoa Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health University of Genoa Genoa Italy
| | - Francesca Madia
- Medical Genetics Unit IRCCS Istituto Giannina Gaslini Genoa Italy
| | | | - Marzia Ognibene
- Medical Genetics Unit IRCCS Istituto Giannina Gaslini Genoa Italy
| | - Sara Guerrisi
- Medical Genetics Unit IRCCS Istituto Giannina Gaslini Genoa Italy
| | - Marcello Scala
- Medical Genetics Unit IRCCS Istituto Giannina Gaslini Genoa Italy
| | - Michele Iacomino
- Medical Genetics Unit IRCCS Istituto Giannina Gaslini Genoa Italy
| | | | | | | | - Ramona Tallone
- D.O.P.O. Ambulatory for Oncologic Follow‐up IRCCS Istituto Giannina Gaslini Genoa Italy
| | - Marco Pavanello
- Neurosurgery Unit IRCCS Istituto Giannina Gaslini Genoa Italy
| | | | | | - Federico Zara
- Medical Genetics Unit IRCCS Istituto Giannina Gaslini Genoa Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health University of Genoa Genoa Italy
| | - Valeria Capra
- Medical Genetics Unit IRCCS Istituto Giannina Gaslini Genoa Italy
| |
Collapse
|
47
|
Angulo-Urarte A, Graupera M. When, where and which PIK3CA mutations are pathogenic in congenital disorders. NATURE CARDIOVASCULAR RESEARCH 2022; 1:700-714. [PMID: 39196083 DOI: 10.1038/s44161-022-00107-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/22/2022] [Indexed: 08/29/2024]
Abstract
PIK3CA encodes the class I PI3Kα isoform and is frequently mutated in cancer. Activating mutations in PIK3CA also cause a range of congenital disorders featuring asymmetric tissue overgrowth, known as the PIK3CA-related overgrowth spectrum (PROS), with frequent vascular involvement. In PROS, PIK3CA mutations arise postzygotically, during embryonic development, leading to a mosaic body pattern distribution resulting in a variety of phenotypic features. A clear skewed pattern of overgrowth favoring some mesoderm-derived and ectoderm-derived tissues is observed but not understood. Here, we summarize our current knowledge of the determinants of PIK3CA-related pathogenesis in PROS, including intrinsic factors such as cell lineage susceptibility and PIK3CA variant bias, and extrinsic factors, which refers to environmental modifiers. We also include a section on PIK3CA-related vascular malformations given that the vasculature is frequently affected in PROS. Increasing our biological understanding of PIK3CA mutations in PROS will contribute toward unraveling the onset and progression of these conditions and ultimately impact on their treatment. Given that PIK3CA mutations are similar in PROS and cancer, deeper insights into one will also inform about the other.
Collapse
Affiliation(s)
- Ana Angulo-Urarte
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain.
| | - Mariona Graupera
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
48
|
Tu T, Peng Z, Ren J, Zhang H. Cerebral Cavernous Malformation: Immune and Inflammatory Perspectives. Front Immunol 2022; 13:922281. [PMID: 35844490 PMCID: PMC9280619 DOI: 10.3389/fimmu.2022.922281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/18/2022] [Indexed: 12/03/2022] Open
Abstract
Cerebral cavernous malformation (CCM) is a type of vascular anomaly that arises due to the dyshomeostasis of brain capillary networks. In the past two decades, many advances have been made in this research field. Notably, as a more reasonable current view, the CCM lesions should be attributed to the results of a great number of additional events related to the homeostasis disorder of the endothelial cell. Indeed, one of the most fascinating concerns in the research field is the inflammatory perturbation in the immune microenvironment, which would affect the disease progression as well as the patients’ outcomes. In this work, we focused on this topic, and underlined the immune-related factors’ contribution to the CCM pathologic progression.
Collapse
Affiliation(s)
- Tianqi Tu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhenghong Peng
- Health Management Department, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jian Ren
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hongqi Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Xuanwu Hospital, Capital Medical University, Beijing, China
- *Correspondence: Hongqi Zhang,
| |
Collapse
|
49
|
Next-Generation Sequencing Advances the Genetic Diagnosis of Cerebral Cavernous Malformation (CCM). Antioxidants (Basel) 2022; 11:antiox11071294. [PMID: 35883785 PMCID: PMC9311989 DOI: 10.3390/antiox11071294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 02/07/2023] Open
Abstract
Cerebral Cavernous Malformation (CCM) is a cerebrovascular disease of genetic origin that predisposes to seizures, focal neurological deficits and fatal intracerebral hemorrhage. It may occur sporadically or in familial forms, segregating as an autosomal dominant condition with incomplete penetrance and highly variable expressivity. Its pathogenesis has been associated with loss-of-function mutations in three genes, namely KRIT1 (CCM1), CCM2 and PDCD10 (CCM3), which are implicated in defense mechanisms against oxidative stress and inflammation. Herein, we screened 21 Italian CCM cases using clinical exome sequencing and found six cases (~29%) with pathogenic variants in CCM genes, including a large 145−256 kb genomic deletion spanning the KRIT1 gene and flanking regions, and the KRIT1 c.1664C>T variant, which we demonstrated to activate a donor splice site in exon 16. The segregation of this cryptic splicing mutation was studied in a large Italian family (five affected and seven unaffected cases), and showed a largely heterogeneous clinical presentation, suggesting the implication of genetic modifiers. Moreover, by analyzing ad hoc gene panels, including a virtual panel of 23 cerebrovascular disease-related genes (Cerebro panel), we found two variants in NOTCH3 and PTEN genes, which could contribute to the abnormal oxidative stress and inflammatory responses to date implicated in CCM disease pathogenesis.
Collapse
|
50
|
Kobialka P, Sabata H, Vilalta O, Gouveia L, Angulo-Urarte A, Muixí L, Zanoncello J, Muñoz-Aznar O, Olaciregui NG, Fanlo L, Esteve-Codina A, Lavarino C, Javierre BM, Celis V, Rovira C, López-Fernández S, Baselga E, Mora J, Castillo SD, Graupera M. The onset of PI3K-related vascular malformations occurs during angiogenesis and is prevented by the AKT inhibitor miransertib. EMBO Mol Med 2022; 14:e15619. [PMID: 35695059 PMCID: PMC9260211 DOI: 10.15252/emmm.202115619] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 12/15/2022] Open
Abstract
Low‐flow vascular malformations are congenital overgrowths composed of abnormal blood vessels potentially causing pain, bleeding and obstruction of different organs. These diseases are caused by oncogenic mutations in the endothelium, which result in overactivation of the PI3K/AKT pathway. Lack of robust in vivo preclinical data has prevented the development and translation into clinical trials of specific molecular therapies for these diseases. Here, we demonstrate that the Pik3caH1047R activating mutation in endothelial cells triggers a transcriptome rewiring that leads to enhanced cell proliferation. We describe a new reproducible preclinical in vivo model of PI3K‐driven vascular malformations using the postnatal mouse retina. We show that active angiogenesis is required for the pathogenesis of vascular malformations caused by activating Pik3ca mutations. Using this model, we demonstrate that the AKT inhibitor miransertib both prevents and induces the regression of PI3K‐driven vascular malformations. We confirmed the efficacy of miransertib in isolated human endothelial cells with genotypes spanning most of human low‐flow vascular malformations.
Collapse
Affiliation(s)
- Piotr Kobialka
- Endothelial Pathobiology and Microenvironment, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Helena Sabata
- Endothelial Pathobiology and Microenvironment, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Odena Vilalta
- Endothelial Pathobiology and Microenvironment, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Leonor Gouveia
- Endothelial Pathobiology and Microenvironment, Josep Carreras Leukaemia Research Institute, Barcelona, Spain.,Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
| | - Ana Angulo-Urarte
- Endothelial Pathobiology and Microenvironment, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Laia Muixí
- Endothelial Pathobiology and Microenvironment, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Jasmina Zanoncello
- Endothelial Pathobiology and Microenvironment, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Oscar Muñoz-Aznar
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Nagore G Olaciregui
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Lucia Fanlo
- 3D Chromatin Organization, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Cinzia Lavarino
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Biola M Javierre
- 3D Chromatin Organization, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Veronica Celis
- Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
| | - Carlota Rovira
- Department of Pathology, Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
| | - Susana López-Fernández
- Department of Plastic Surgery, Hospital de la Santa Creu i de Sant Pau, Barcelona, Spain
| | - Eulàlia Baselga
- Department of Dermatology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Jaume Mora
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Barcelona, Spain.,Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
| | - Sandra D Castillo
- Endothelial Pathobiology and Microenvironment, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Mariona Graupera
- Endothelial Pathobiology and Microenvironment, Josep Carreras Leukaemia Research Institute, Barcelona, Spain.,CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|