1
|
Teou DC, Dorkenoo AM, Ataba E, Yakpa K, Sossou E, Ma L, Caspar E, Hemou M, Abdou-Kerim A, Menard D. Performance of ParaHIT® HRP2-Based Rapid Diagnostic Test and Proportions of Plasmodium falciparum Histidine-Rich Protein 2/3 Gene Deletions in Togo. Am J Trop Med Hyg 2024; 111:977-983. [PMID: 39288769 DOI: 10.4269/ajtmh.24-0197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/18/2024] [Indexed: 09/19/2024] Open
Abstract
In areas where malaria is endemic and microscopes are unavailable, rapid diagnostic tests (RDTs) are essential tools for early diagnosis and prompt and effective treatment. However, HRP2-based RDTs are threatened by the emergence of Plasmodium falciparum parasites that do not carry the pfhrp2 or pfhrp3 gene, leading to false-negative results. Therefore, the aim of this study was to evaluate the performance of the ParaHIT RDT together with the proportion of pfhrp2/3 gene-deleted P. falciparum parasites in Togo. The performance of RDTs compared with microscopy and polymerase chain reaction (PCR) was determined using capillary blood collected by finger prick during a cross-sectional study conducted from September 2021 to January 2022 in children aged 6-59 months at two sentinel sites. Blood spots were collected for molecular analysis. Amplicons from the target regions (exon 2 of hrp2 and hrp3 genes) were generated by multiplex nested PCR and sequenced using Illumina's MiSeq protocol. A total of 278 samples were analyzed for ParaHIT RDT evaluation. The sensitivity and specificity of the RDT test compared with microscopy were 96.4% and 85.7%, respectively, which increased to 97.9% and 90.7%, respectively, when compared with PCR. Of the microscopically and PCR-positive P. falciparum samples, 138 were sequenced to detect pfhrp2/3 deletions. None of the parasites had a single pfhrp2 deletion or a single pfhrp3 deletion. The ParaHIT RDT demonstrated an acceptable level of performance in this evaluation, confirming the use of HRP2-based RDTs for the detection of P. falciparum infection in areas where microscopy is not available in Togo.
Collapse
Affiliation(s)
| | | | - Essoham Ataba
- Programme National de Lutte Contre le Paludisme, Ministère de la Santé de l'Hygiène Publique et de l'Accès Universel Aux Soins, Lomé, Togo
| | - Kossi Yakpa
- Programme National de Lutte Contre le Paludisme, Ministère de la Santé de l'Hygiène Publique et de l'Accès Universel Aux Soins, Lomé, Togo
| | - Efoe Sossou
- Service des Laboratoires, Centre Hospitalier Universitaire Sylvanus Olympio, Tokoin Hopital, Lomé, Togo
| | - Laurence Ma
- Biomics Platform, C2RT, Institut Pasteur, Université Paris Cité, Paris, France
| | - Emmanuelle Caspar
- UR 3073, Pathogens Host Arthropods Vectors Interactions Unit, University of Strasbourg, Strasbourg, France
| | - Manani Hemou
- Département de Pédiatrie, Campus Hospitalier Universitaire de Lomé, Lomé, Togo
| | - Agueregna Abdou-Kerim
- Institut National d'Hygiène, Ministère de la Santé de l'Hygiène Publique et de l'Accès Universel Aux Soins, Lomé, Togo
| | - Didier Menard
- UR 3073, Pathogens Host Arthropods Vectors Interactions Unit, University of Strasbourg, Strasbourg, France
- Laboratory of Parasitology and Medical Mycology, Centre Hospitalier Universitaire Strasbourg, Strasbourg, France
- Malaria Parasite Biology and Vaccines Unit, Institut Pasteur, Université Paris Cité, Paris, France
| |
Collapse
|
2
|
Agaba BB, Travis J, Smith D, Rugera SP, Zalwango MG, Opigo J, Katureebe C, Mpirirwe R, Bakary D, Antonio M, Khalid B, Ngonzi J, Kamya MR, Kaleebu P, Piot P, Cheng Q. Emerging threat of artemisinin partial resistance markers (pfk13 mutations) in Plasmodium falciparum parasite populations in multiple geographical locations in high transmission regions of Uganda. Malar J 2024; 23:330. [PMID: 39501325 PMCID: PMC11539793 DOI: 10.1186/s12936-024-05158-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Artemisinin-based combination therapy (ACT) is currently recommended for treatment of uncomplicated malaria. However, the emergence and spread of partial artemisinin resistance threatens their effectiveness for malaria treatment in sub-Saharan Africa where the burden of malaria is highest. Early detection and reporting of validated molecular markers (pfk13 mutations) in Plasmodium falciparum is useful for tracking the emergence and spread of partial artemisinin resistance to inform containment efforts. METHODS Genomic surveillance was conducted at 50 surveillance sites across four regions of Uganda in Karamoja, Lango, Acholi and West Nile from June 2021 to August 2023. Symptomatic malaria suspected patients were recruited and screened for presence of parasites. In addition, dried blood spots (DBS) were collected for parasite genomic analysis with PCR and sequencing. Out of 563 available dried blood spots (DBS), a random subset of 240 P. falciparum mono-infections, confirmed by a multiplex PCR were selected and used for detecting the pfk13 mutations by Sanger sequencing using Big Dye Terminator method. Regional variations in the proportions of pfk13 mutations were assessed using the chi square or Fisher's exact tests while Kruskal-Wallis test was used to compare absolute parasite DNA levels between wild type and mutant parasites. RESULTS Overall, 238/240 samples (99.2%) contained sufficient DNA and were successfully sequenced. Three mutations were identified within the sequenced samples; pfk13 C469Y in 32/238 (13.5%) samples, pfk13 A675V in 14/238 (5.9%) and pfk13 S522C in (1/238 (0.42%) samples across the four surveyed regions. The prevalence of pfk13 C469Y mutation was significantly higher in Karamoja region (23.3%) compared to other regions, P = 0.007. The majority of parasite isolates circulating in West Nile are of wild type (98.3), P = 0.002. Relative parasite DNA quantity did not differ in samples carrying the wild type, C469Y and A675V alleles (Kruskal-Wallis test, P = 0.6373). CONCLUSION Detection of validated molecular markers of artemisinin partial resistance in multiple geographical locations in this setting provides additional evidence of emerging threat of artemisinin partial resistance in Uganda. In view of these findings, periodic genomic surveillance is recommended to detect and monitor levels of pfk13 mutations in other regions in parallel with TES to assess potential implication on delayed parasite clearance and associated treatment failure in this setting. Future studies should consider identification of potential drivers of artemisinin partial resistance in the different malaria transmission settings in Uganda.
Collapse
Affiliation(s)
- Bosco B Agaba
- The Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine: Peter Piot Fellowship for Global Health Innovation, Epidemic Preparedness & Response, Banjul, Fajara, The Gambia.
- Department of Medical Laboratory Sciences, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda.
- National Malaria Control Division, Kampala, Uganda.
- Infectious Diseases Research Collaboration, Kampala, Uganda.
| | - Jye Travis
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Australia
| | - David Smith
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Australia
| | - Simon P Rugera
- Department of Medical Laboratory Sciences, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | | | - Jimmy Opigo
- National Malaria Control Division, Kampala, Uganda
| | | | | | - Dembo Bakary
- The Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine: Peter Piot Fellowship for Global Health Innovation, Epidemic Preparedness & Response, Banjul, Fajara, The Gambia
| | - Martin Antonio
- The Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine: Peter Piot Fellowship for Global Health Innovation, Epidemic Preparedness & Response, Banjul, Fajara, The Gambia
| | - Beshir Khalid
- London School of Hygiene and Tropical Medicine, London, UK
| | - Joseph Ngonzi
- Department of Medical Laboratory Sciences, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Moses R Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Pontiano Kaleebu
- Medical Research Council/London School of Hygiene and Tropical Unit, Uganda Virus Research Institute, Entebbe, Uganda
| | - Peter Piot
- The Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine: Peter Piot Fellowship for Global Health Innovation, Epidemic Preparedness & Response, Banjul, Fajara, The Gambia
- London School of Hygiene and Tropical Medicine, London, UK
| | - Qin Cheng
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Australia
| |
Collapse
|
3
|
Fola AA, Kobayashi T, Hamapumbu H, Musonda M, Katowa B, Matoba J, Stevenson JC, Norris DE, Thuma PE, Wesolowski A, Moss WJ, Juliano JJ, Bailey JA. Temporal genomics in Southern Zambia shows rising prevalence of Plasmodium falciparum mutations linked to delayed clearance after artemisinin-lumefantrine treatment. Sci Rep 2024; 14:26789. [PMID: 39500918 PMCID: PMC11538544 DOI: 10.1038/s41598-024-76442-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/14/2024] [Indexed: 11/08/2024] Open
Abstract
The emergence of antimalarial drug resistance is an impediment to malaria control and elimination in Africa. Analysis of temporal trends in molecular markers of resistance is critical to inform policy makers and guide malaria treatment guidelines. In a low and seasonal transmission region of southern Zambia, we successfully genotyped 85.5% (389/455) of Plasmodium falciparum samples collected between 2013 and 2018 from 8 spatially clustered health centres using molecular inversion probes (MIPs) targeting key drug resistance genes. Aside from one sample from 2016 carrying K13 622I, no other World Health Organization-validated or candidate artemisinin partial resistance (ART-R) mutations were observed. However, in the more recent years (2016-2017) five novel K13-propeller-domain mutations, C532S, A578S, Q613E, D680N and G718S were identified at low prevalence. Moreover, 13% (CI, 9.6-17.2) of isolates had the AP2MU 160N mutation, which has been associated with delayed clearance following artemisinin combination therapy in Africa. This mutation increased in prevalence between 2015 and 2018 and bears a genomic signature of selection. During this time period, there was an increase in the MDR1 NFD haplotype that is associated with reduced susceptibility to lumefantrine. Sulfadoxine-pyrimethamine polymorphisms were near fixation. While validated ART-R mutations are rare, a mutation associated with slow parasite clearance in Africa appears to be under selection in southern Zambia.
Collapse
Affiliation(s)
- Abebe A Fola
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, 02906, USA
| | - Tamaki Kobayashi
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | | | | | | | | | | | - Douglas E Norris
- Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | | | - Amy Wesolowski
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - William J Moss
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Jonathan J Juliano
- Institute for Global Health and Infectious Diseases, University of North Carolina Chapel Hill, Chapel Hill, NC, 27599, USA
- Division of Infectious Diseases, School of Medicine, University of North Carolina Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina Chapel Hill, Chapel Hill, NC, 27599, USA
- Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jeffrey A Bailey
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, 02906, USA.
| |
Collapse
|
4
|
Ishengoma DS, Mandara CI, Bakari C, Fola AA, Madebe RA, Seth MD, Francis F, Buguzi CC, Moshi R, Garimo I, Lazaro S, Lusasi A, Aaron S, Chacky F, Mohamed A, Njau RJA, Kitau J, Rasmussen C, Bailey JA, Juliano JJ, Warsame M. Evidence of artemisinin partial resistance in northwestern Tanzania: clinical and molecular markers of resistance. THE LANCET. INFECTIOUS DISEASES 2024; 24:1225-1233. [PMID: 39159633 PMCID: PMC11511676 DOI: 10.1016/s1473-3099(24)00362-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND In 2021, nationwide malaria molecular surveillance revealed a high prevalence of a validated artemisinin resistance marker, the kelch13 (k13) Arg561His mutation, in the Kagera region of northwestern Tanzania. We aimed to investigate the efficacy of artemether-lumefantrine and artesunate-amodiaquine and to confirm the presence of artemisinin partial resistance (ART-R) in the Karagwe district of this region. METHODS This single-arm, therapeutic efficacy study was carried out at the Bukangara dispensary in the Karagwe district of the Kagera region in northwestern Tanzania. Eligible participants were aged between 6 months and 120 months, had confirmed Plasmodium falciparum asexual parasitaemia, and met other inclusion criteria according to WHO's standard protocol. Participants were enrolled, treated sequentially with either artemether-lumefantrine or artesunate-amodiaquine, and assessed clinically and parasitologically for 28 days as per WHO protocol. Parasitaemia was measured every 8 h until day 3, on day 7, and then during weekly follow-up visits until day 28. Mutations in the k13 gene and extended haplotypes with the mutations were analysed, and comparisons were made with previous samples collected in the same region of Kagera and in Rwanda and southeast Asia. The primary endpoint was PCR-corrected cure rate. FINDINGS Between April 29 and Sept 1, 2022, 343 patients were screened, of whom 176 were enrolled: 88 in each treatment group. The PCR-corrected cure rate was 98% (95% CI 91-100) in the artemether-lumefantrine group and 100% (96-100) in the artesunate-amodiaquine group. Persistent parasitaemia on day 3 occurred in 11 (13%) of 88 patients in the artemether-lumefantrine group and 17 (19%) of 88 patients in the artesunate-amodiaquine group. Arg561His mutations on day 0 and parasitaemia on day 3 were reported in eight (9%) of 87 patients in the artemether-lumefantrine group and ten (12%) of 86 patients in the artesunate-amodiaquine group. The median parasite clearance half-life in patients harbouring parasites with Arg561His mutation was 6·1 h in the artemether-lumefantrine group and 6·0 h in the artesunate-amodiaquine group. Parasites with the Arg561His mutation were not similar to those from southeast Asia and Rwanda but had similar haplotypes to parasites reported in the same Tanzanian region of Kagera in 2021. INTERPRETATION This study confirms the presence of ART-R in Tanzania, although artemether-lumefantrine and artesunate-amodiaquine showed high efficacy. A context-specific response strategy and vigilance to detect the reduced efficacy of current antimalarial treatments and ART-R in other parts of the country are urgently needed. FUNDING The Bill & Melinda Gates Foundation and the US National Institutes of Health.
Collapse
Affiliation(s)
- Deus S Ishengoma
- National Institute for Medical Research, Dar es Salaam, Tanzania; Department of Biochemistry, Kampala International University in Tanzania, Dar es Salaam, Tanzania.
| | - Celine I Mandara
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Catherine Bakari
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Abebe A Fola
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA; Centre for Computational Molecular Biology, Brown University, Providence, RI, USA
| | - Rashid A Madebe
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Misago D Seth
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Filbert Francis
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Creyton C Buguzi
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Ramadhan Moshi
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Issa Garimo
- National Malaria Control Program, Dodoma, Tanzania
| | | | | | | | - Frank Chacky
- National Malaria Control Program, Dodoma, Tanzania
| | - Ally Mohamed
- National Malaria Control Program, Dodoma, Tanzania
| | - Ritha J A Njau
- Department of Parasitology and Medical Entomology, School of Public Health and Social Sciences, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Jovin Kitau
- World Health Organization Country Office, Dar es Salaam, Tanzania
| | | | - Jeffrey A Bailey
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA; Centre for Computational Molecular Biology, Brown University, Providence, RI, USA
| | - Jonathan J Juliano
- Division of Infectious Diseases, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Marian Warsame
- Department of Public Health and Community Medicine, Gothenburg University, Gothenburg, Sweden; Research Unit in Rector's Office, Benadir University, Mogadishu, Somalia
| |
Collapse
|
5
|
Petro DA, Shaban N, Aaron S, Chacky F, Lazaro S, Boni MF, Ishengoma DS. Geospatial Analysis of Malaria Burden in Kagera Region, Northwestern Tanzania Using Health Facility and Community Survey Data. Open Forum Infect Dis 2024; 11:ofae609. [PMID: 39507880 PMCID: PMC11540141 DOI: 10.1093/ofid/ofae609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024] Open
Abstract
Background Malaria transmission in Tanzania has declined significantly over the last 2 decades due to scaled-up control interventions. However, recent confirmation of artemisinin partial resistance (ART-R) in Kagera region in northwest Tanzania threatens the ongoing efforts to eliminate malaria in the country. This study was conducted according to the World Health Organization recommendation to generate evidence of malaria burden in areas with confirmed ART-R as the first step before developing a response strategy to the resistance. Methods We assessed the local burden of malaria in Kagera region by geospatial analysis, using data collected retrospectively from health facilities and community surveys from 2015 to 2023 to identify malaria hot spots. Results From 2017 to 2023, a total of 8 124 363 suspected malaria cases were reported by health facilities, and 2 983 717 (36.7% [95% range across wards, 22.7%-50.7%]) tested positive by rapid diagnostic tests. Test positivity rates were similar among patients aged <5 years (33.1% [95% range, 19.7%-46.5%]) and those aged ≥5 years (33.7% [21.0%-46.5%]). The malaria prevalence was 10.0% (95% range across wards, 5.1%-14.9% [n = 84 999 of 853 761]) in pregnant women and 26.1% (11.7%-40.6% [n = 3409 of 13 065]) in schoolchildren. Despite high temporal variations, we identified hot spots and cold spots, including persistently high burden in 69 of 192 wards (35.9%). Conclusions The malaria burden in Kagera exhibited high temporal and spatial heterogeneity, with schoolchildren showing the highest prevalence. This demographic pattern underlines the need for targeted interventions and provides evidence for developing an ART-R response for the region.
Collapse
Affiliation(s)
- Daniel A Petro
- Department of Mathematics, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Nyimvua Shaban
- Department of Mathematics, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Sijenunu Aaron
- Office of the Chief Medical Officer, Ministry of Health, National Malaria Control Programme, Dodoma, Tanzania
| | - Frank Chacky
- Office of the Chief Medical Officer, Ministry of Health, National Malaria Control Programme, Dodoma, Tanzania
| | - Samuel Lazaro
- Office of the Chief Medical Officer, Ministry of Health, National Malaria Control Programme, Dodoma, Tanzania
| | - Maciej F Boni
- Department of Biology, Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Deus S Ishengoma
- Genomics Laboratory, National Institute for Medical Research, Dar es Salaam, Tanzania
- Department of Biochemistry, Kampala International University in Tanzania, Dar es Salaam, Tanzania
| |
Collapse
|
6
|
Kucharski M, Nayak S, Gendrot M, Dondorp AM, Bozdech Z. Peeling the onion: how complex is the artemisinin resistance genetic trait of malaria parasites? Trends Parasitol 2024; 40:970-986. [PMID: 39358163 DOI: 10.1016/j.pt.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024]
Abstract
The genetics of Plasmodium as an intracellular, mostly haploid, sexually reproducing, eukaryotic organism with a complex life cycle, presents unprecedented challenges in studying drug resistance. This article summarizes current knowledge on the genetic basis of artemisinin resistance (AR) - a main component of current drug therapies for falciparum malaria. Although centered on nonsynonymous single-nucleotide polymorphisms (nsSNPs), we describe multifaceted resistance mechanisms as part of a complex, cumulative genetic trait that involves regulation of expression by a wide array of polymorphisms in noncoding regions. These genetic variations alter transcriptome profiles linked to Plasmodium's development and population dynamics, ultimately influencing the emergence and spread of the resistance.
Collapse
Affiliation(s)
- Michal Kucharski
- School of Biological Sciences, Nanyang Technological University, Singapore; Amsterdam UMC, University of Amsterdam, Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam, The Netherlands
| | - Sourav Nayak
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Mathieu Gendrot
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Arjen M Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore; Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
7
|
Yadem AC, Armstrong JN, Sarimollaoglu M, Kiki Massa C, Ndifo JM, Menyaev YA, Mbe A, Richards K, Wade M, Zeng Y, Chen R, Zhou Q, Meten E, Ntone R, Tchuedji YLGN, Ullah S, Galanzha EI, Eteki L, Gonsu HK, Biris A, Suen JY, Boum Y, Zharov VP, Parikh S. Noninvasive in vivo photoacoustic detection of malaria with Cytophone in Cameroon. Nat Commun 2024; 15:9228. [PMID: 39455558 PMCID: PMC11511992 DOI: 10.1038/s41467-024-53243-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Current malaria diagnostics are invasive, lack sensitivity, and rapid tests are plagued by deletions in target antigens. Here we introduce the Cytophone, an innovative photoacoustic flow cytometer platform with high-pulse-rate lasers and a focused ultrasound transducer array to noninvasively detect and identify malaria-infected red blood cells (iRBCs) using specific wave shapes, widths, and time delays generated from the absorbance of laser energy by hemozoin, a universal biomarker of malaria infection. In a population of Cameroonian adults with uncomplicated malaria, we assess our device for safety in a cross-sectional cohort (n = 10) and conduct a performance assessment in a longitudinal cohort (n = 20) followed for 30 ± 7 days after clearance of parasitemia. Longitudinal cytophone measurements are compared to point-of-care and molecular assays (n = 94). Cytophone is safe with 90% sensitivity, 69% specificity, and a receiver-operator-curve-area-under-the-curve (ROC-AUC) of 0.84, as compared to microscopy. ROC-AUCs of Cytophone, microscopy, and RDT compared to quantitative PCR are not statistically different from one another. The ability to noninvasively detect iRBCs in the bloodstream is a major advancement which offers the potential to rapidly identify both the large asymptomatic reservoir of infection, as well as diagnose symptomatic cases without the need for a blood sample.
Collapse
Affiliation(s)
| | | | - Mustafa Sarimollaoglu
- CytoAstra, LLC, Bioventures/UAMS, Little Rock, AR, USA
- Department of Otolaryngology - Head and Neck Surgery, Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
| | | | | | - Yulian A Menyaev
- CytoAstra, LLC, Bioventures/UAMS, Little Rock, AR, USA
- Department of Otolaryngology - Head and Neck Surgery, Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
| | - Anastasie Mbe
- Epicentre, Yaoundé, Cameroon
- University of Yaoundé I, Yaoundé, Cameroon
| | | | - Martina Wade
- Yale School of Public Health, New Haven, CT, USA
| | - Yushun Zeng
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- Department of Ophthalmology, University of Southern California, Los Angeles, CA, USA
| | - Ruimin Chen
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- Department of Ophthalmology, University of Southern California, Los Angeles, CA, USA
| | - Qifa Zhou
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- Department of Ophthalmology, University of Southern California, Los Angeles, CA, USA
| | - Elvis Meten
- Epicentre, Yaoundé, Cameroon
- University of Yaoundé I, Yaoundé, Cameroon
| | | | | | - Safi Ullah
- CytoAstra, LLC, Bioventures/UAMS, Little Rock, AR, USA
| | - Ekaterina I Galanzha
- CytoAstra, LLC, Bioventures/UAMS, Little Rock, AR, USA
- Department of Otolaryngology - Head and Neck Surgery, Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
| | | | | | - Alexandru Biris
- Department of Applied Science & Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock (UALR), Little Rock, AR, USA
| | - James Y Suen
- CytoAstra, LLC, Bioventures/UAMS, Little Rock, AR, USA
- Department of Applied Science & Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock (UALR), Little Rock, AR, USA
| | - Yap Boum
- Epicentre, Yaoundé, Cameroon
- University of Yaoundé I, Yaoundé, Cameroon
| | - Vladimir P Zharov
- CytoAstra, LLC, Bioventures/UAMS, Little Rock, AR, USA.
- Department of Otolaryngology - Head and Neck Surgery, Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA.
| | - Sunil Parikh
- Yale School of Public Health, New Haven, CT, USA.
| |
Collapse
|
8
|
Kumar A, Chithanna S, Li Y, Zhang X, Dodean RA, Caridha D, Madejczyk MS, Lee PJ, Jin X, Chetree R, Blount C, Dennis WE, DeLuca J, Vuong C, Pannone K, Dinh HT, Leed S, Roth A, Reynolds KA, Kelly JX, Kancharla P. Optimization of B-Ring-Functionalized Antimalarial Tambjamines and Prodiginines. J Med Chem 2024. [PMID: 39425665 DOI: 10.1021/acs.jmedchem.4c02093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Malaria has been a deadly enemy of mankind throughout history, affecting over 200 million people annually, along with approximately half a million deaths. Resistance to current therapies is of great concern, and there is a dire need for novel and well-tolerated antimalarials that operate by clinically unexploited mechanisms. We have previously reported that both tambjamines and prodiginines are highly potent novel antiplasmodial agents, but they required rigor optimizations to enhance the oral efficacy, safety, and physicochemical properties. Here, we launched a comprehensive structure-activity relationship study for B-ring-functionalized tambjamines and prodiginines with 54 novel analogues systematically designed and synthesized. A number of compounds exhibited remarkable antiplasmodial activities against asexual erythrocytic Plasmodium parasites, with improved safety and metabolic profiles. Notably, several prodiginines cured erythrocytic Plasmodium yoelii infections after oral 25 mg/kg × 4 days in a murine model and provided partial protection against liver stage Plasmodium berghei sporozoite-induced infection in mice.
Collapse
Affiliation(s)
- Amrendra Kumar
- Department of Chemistry, Portland State University, Portland, Oregon 97201, United States
| | - Sivanna Chithanna
- Department of Chemistry, Portland State University, Portland, Oregon 97201, United States
| | - Yuexin Li
- Department of Veterans Affairs Medical Center, Portland, Oregon 97239, United States
| | - Xiaowei Zhang
- Department of Veterans Affairs Medical Center, Portland, Oregon 97239, United States
| | - Rozalia A Dodean
- Department of Chemistry, Portland State University, Portland, Oregon 97201, United States
- Department of Veterans Affairs Medical Center, Portland, Oregon 97239, United States
| | - Diana Caridha
- Experimental Therapeutics Branch, CIDR, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Michael S Madejczyk
- Experimental Therapeutics Branch, CIDR, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Patricia J Lee
- Experimental Therapeutics Branch, CIDR, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Xiannu Jin
- Experimental Therapeutics Branch, CIDR, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Ravi Chetree
- Experimental Therapeutics Branch, CIDR, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Cameron Blount
- Experimental Therapeutics Branch, CIDR, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - William E Dennis
- Experimental Therapeutics Branch, CIDR, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Jesse DeLuca
- Experimental Therapeutics Branch, CIDR, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Chau Vuong
- Experimental Therapeutics Branch, CIDR, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Kristina Pannone
- Experimental Therapeutics Branch, CIDR, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Hieu T Dinh
- Experimental Therapeutics Branch, CIDR, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Susan Leed
- Experimental Therapeutics Branch, CIDR, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Alison Roth
- Experimental Therapeutics Branch, CIDR, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Kevin A Reynolds
- Department of Chemistry, Portland State University, Portland, Oregon 97201, United States
| | - Jane X Kelly
- Department of Chemistry, Portland State University, Portland, Oregon 97201, United States
- Department of Veterans Affairs Medical Center, Portland, Oregon 97239, United States
| | - Papireddy Kancharla
- Department of Chemistry, Portland State University, Portland, Oregon 97201, United States
| |
Collapse
|
9
|
Makau M, Kanoi BN, Mgawe C, Maina M, Bitshi M, Too EK, Naruse TK, Abkallo HM, Waweru H, Adung'o F, Kaneko O, Gitaka J. Presence of Plasmodium falciparum strains with artemisinin-resistant K13 mutation C469Y in Busia County, Western Kenya. Trop Med Health 2024; 52:72. [PMID: 39425178 PMCID: PMC11488207 DOI: 10.1186/s41182-024-00640-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/29/2024] [Indexed: 10/21/2024] Open
Abstract
Malaria remains a key health and economic problem, particularly in sub-Saharan Africa. The emergence of artemisinin drug resistance (ART-R) parasite strains poses a serious threat to the control and elimination of this scourge. This is because artemisinin-based combination therapies (ACTs) remain the first-line treatment in the majority of malaria-endemic regions in Sub-Saharan Africa. Certain single-nucleotide polymorphisms in the propeller domains of Plasmodium falciparum Kelch 13 protein (K13) have been associated with delayed parasite clearance in vivo and in vitro. These mutations serve as vital molecular markers for tracking the emergence and dispersion of resistance. Recently, there have been increasing reports of the emergence and spread of P. falciparum ART-R parasites in the Eastern Africa region. This necessitates continued surveillance to best inform mitigation efforts. This study investigated the presence of all reported mutations of K13 propeller domains in the parasite population in Busia County, Kenya, a known malaria-endemic region. Two hundred twenty-six participants with microscopically confirmed uncomplicated malaria were recruited for this study. They were treated with artemether-lumefantrine under observation for the first dose, and microscopic examination was repeated 1 day later after ensuring the participants had taken the second and third doses. P. falciparum DNA from all samples underwent targeted amplification of the K13 gene using a semi-nested PCR approach, followed by Sanger sequencing. The recently validated ART-R K13 mutation C469Y was identified in three samples. These three samples were among 63 samples with a low reduction in parasitemia on day 1, suggesting day 1 parasitemia reduction rate is a useful parameter to enrich the ART-R parasites for further analysis. Our findings highlight the need for continuous surveillance of ART-R in western Kenya and the region to determine the spread of ART-R and inform containment.
Collapse
Affiliation(s)
- Mark Makau
- Centre for Malaria Elimination, Institute of Tropical Medicine, Mount Kenya University, Thika, Kenya
- Centre for Research in Infectious Diseases, Directorate of Research and Innovation, Mount Kenya University, Thika, Kenya
| | - Bernard N Kanoi
- Centre for Malaria Elimination, Institute of Tropical Medicine, Mount Kenya University, Thika, Kenya
- Centre for Research in Infectious Diseases, Directorate of Research and Innovation, Mount Kenya University, Thika, Kenya
| | - Calvin Mgawe
- Centre for Malaria Elimination, Institute of Tropical Medicine, Mount Kenya University, Thika, Kenya
| | - Michael Maina
- Centre for Malaria Elimination, Institute of Tropical Medicine, Mount Kenya University, Thika, Kenya
| | - Mimie Bitshi
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Edwin K Too
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Taeko K Naruse
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Hussein M Abkallo
- Animal and Human Health Program, International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Harrison Waweru
- Centre for Malaria Elimination, Institute of Tropical Medicine, Mount Kenya University, Thika, Kenya
| | - Ferdinand Adung'o
- Centre for Infectious and Parasitic Diseases Control Research, Kenya Medical Research Institute, Busia, Kenya
| | - Osamu Kaneko
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan.
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
| | - Jesse Gitaka
- Centre for Malaria Elimination, Institute of Tropical Medicine, Mount Kenya University, Thika, Kenya.
- Centre for Research in Infectious Diseases, Directorate of Research and Innovation, Mount Kenya University, Thika, Kenya.
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan.
| |
Collapse
|
10
|
Okombo J, Fidock DA. Towards next-generation treatment options to combat Plasmodium falciparum malaria. Nat Rev Microbiol 2024:10.1038/s41579-024-01099-x. [PMID: 39367132 DOI: 10.1038/s41579-024-01099-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 10/06/2024]
Abstract
Malaria, which is caused by infection of red blood cells with Plasmodium parasites, can be fatal in non-immune individuals if left untreated. The recent approval of the pre-erythrocytic vaccines RTS, S/AS01 and R21/Matrix-M has ushered in hope of substantial reductions in mortality rates, especially when combined with other existing interventions. However, the efficacy of these vaccines is partial, and chemotherapy remains central to malaria treatment and control. For many antimalarial drugs, clinical efficacy has been compromised by the emergence of drug-resistant Plasmodium falciparum strains. Therefore, there is an urgent need for new antimalarial medicines to complement the existing first-line artemisinin-based combination therapies. In this Review, we discuss various opportunities to expand the present malaria treatment space, appraise the current antimalarial drug development pipeline and highlight examples of promising targets. We also discuss other approaches to circumvent antimalarial resistance and how potency against drug-resistant parasites could be retained.
Collapse
Affiliation(s)
- John Okombo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA.
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
11
|
Juliano JJ, Giesbrecht DJ, Simkin A, Fola AA, Lyimo BM, Pereus D, Bakari C, Madebe RA, Seth MD, Mandara CI, Popkin-Hall ZR, Moshi R, Mbwambo RB, Niaré K, MacInnis B, Francis F, Mbwambo D, Garimo I, Chacky F, Aaron S, Lusasi A, Molteni F, Njau RJA, Nhiga SL, Mohamed A, Bailey JA, Ishengoma DS. Prevalence of mutations associated with artemisinin partial resistance and sulfadoxine-pyrimethamine resistance in 13 regions in Tanzania in 2021: a cross-sectional survey. THE LANCET. MICROBE 2024; 5:100920. [PMID: 39159629 PMCID: PMC11464622 DOI: 10.1016/s2666-5247(24)00160-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND The emergence of the artemisinin partial resistance (ART-R) mutation in the Plasmodium falciparum kelch13 gene (k13), Arg561His, in Rwanda and the regional presence of polymorphisms affecting sulfadoxine-pyrimethamine have raised concern in neighbouring Tanzania. The goal of this study was to assess the status of antimalarial resistance in Tanzania, with a focus on the border with Rwanda, to understand the distribution of the Arg561His mutation, partner drug resistance, and resistance to chemoprevention drugs. METHODS In this cross-sectional survey, capillary dried blood spots were collected from malaria positive asymptomatic individuals in the community and symptomatic individuals in health facilities aged 6 months and older, in 13 regions of mainland Tanzania from Jan 31 to June 26, 2021. Exclusion criteria included residence of the areas other than the target sites, presenting to the health facility for care and treatment of conditions other than malaria, and not providing informed consent. Samples were assessed for antimalarial resistance polymorphisms and genetic relatedness using molecular inversion probes targeting P falciparum and short-read whole-genome sequencing. The primary outcome was the prevalence of molecular markers of antimalarial resistance at the region level, as well as at the district level in Kagera, a region in the northwest of the country at the border with Rwanda. FINDINGS 6855 (88·1%) of 7782 capillary dried blood spot samples collected were successfully genotyped. The overall prevalence of k13 Arg561His in Kagera was 7·7% (90% CI 6·0-9·4; 50 of 649), with the highest prevalence in the districts near the Rwandan border (22·8% [31 of 136] in Karagwe, 14·4% [17 of 118]) in Kyerwa, and 1·4% [two of 144] in Ngara). k13 Arg561His was uncommon in the other regions. Haplotype analysis suggested that some of these parasites are related to isolates collected in Rwanda in 2015, supporting regional spread of Arg561His. However, a novel k13 Arg561His haplotype was observed, potentially indicating a second origin in the region. Other validated k13 resistance polymorphisms (one Arg622Ile and two Ala675Val isolates) were also identified. A region of prevalent dihydrofolate reductase Ile164Leu mutation, associated with sulfadoxine-pyrimethamine resistance, was also identified in Kagera (15·2% [12·6-17·8%]; 80 of 526). The mutant crt Lys76Thr mutation, associated with chloroquine and amodiaquine resistance, was uncommon, occurring only in 75 of 2861 genotyped isolates, whereases the wild-type mdr1 Asn86Tyr allele, associated with reduced sensitivity to lumefantrine, was found in 99·7% (3819 of 3830) of samples countrywide. INTERPRETATION These findings show that the k13 Arg561His mutation is common in northwest Tanzania and that multiple emergences of ART-R, similar as to what was seen in southeast Asia, have occurred. Mutations associated with high levels of sulfadoxine-pyrimethamine resistance are common. These results raise concerns about the long-term efficacy of artemisinin and chemoprevention antimalarials in the region. Understanding how multiple emergences interact with drivers of regional spread is essential for combating ART-R in Africa. FUNDING This study was funded by the Bill & Melinda Gates Foundation and the National Institutes of Health.
Collapse
Affiliation(s)
- Jonathan J Juliano
- Division of Infectious Diseases, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Curriculum of Genetics and Molecular Biology, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Institute for Global Health and Infectious Diseases, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David J Giesbrecht
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Alfred Simkin
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Abebe A Fola
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Beatus M Lyimo
- National Institute for Medical Research, Dar es Salaam, Tanzania; School of Life Sciences and Bioengineering, Nelson Mandela African Institute of Science and Technology, Arusha, Tanzania
| | - Dativa Pereus
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Catherine Bakari
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Rashid A Madebe
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Misago D Seth
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Celine I Mandara
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Zachary R Popkin-Hall
- Institute for Global Health and Infectious Diseases, University of North Carolina School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ramadhan Moshi
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Ruth B Mbwambo
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Karamoko Niaré
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Bronwyn MacInnis
- Department of Immunology and Infectious Diseases, Harvard T H Chan School of Public Health, Boston, MA, USA; Infectious Disease and Microbiome Program, Broad Institute, Boston, MA, USA
| | - Filbert Francis
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | | | - Issa Garimo
- National Malaria Control Programme, Dodoma, Tanzania
| | - Frank Chacky
- National Malaria Control Programme, Dodoma, Tanzania
| | | | | | | | - Ritha J A Njau
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | | | - Ally Mohamed
- National Malaria Control Programme, Dodoma, Tanzania
| | - Jeffrey A Bailey
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Deus S Ishengoma
- National Institute for Medical Research, Dar es Salaam, Tanzania; Department of Immunology and Infectious Diseases, Harvard T H Chan School of Public Health, Boston, MA, USA; Department of Biochemistry, Kampala International University in Tanzania, Dar es Salaam, Tanzania.
| |
Collapse
|
12
|
Ferreira LT, Cassiano GC, Alvarez LCS, Okombo J, Calit J, Fontinha D, Gil-Iturbe E, Coyle R, Andrade CH, Sunnerhagen P, Bargieri DY, Prudêncio M, Quick M, Cravo PV, Lee MCS, Fidock DA, Costa FTM. A novel 4-aminoquinoline chemotype with multistage antimalarial activity and lack of cross-resistance with PfCRT and PfMDR1 mutants. PLoS Pathog 2024; 20:e1012627. [PMID: 39471233 PMCID: PMC11521309 DOI: 10.1371/journal.ppat.1012627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/30/2024] [Indexed: 11/01/2024] Open
Abstract
Artemisinin-based combination therapy (ACT) is the mainstay of effective treatment of Plasmodium falciparum malaria. However, the long-term utility of ACTs is imperiled by widespread partial artemisinin resistance in Southeast Asia and its recent emergence in parts of East Africa. This underscores the need to identify chemotypes with new modes of action (MoAs) to circumvent resistance to ACTs. In this study, we characterized the asexual blood stage antiplasmodial activity and resistance mechanisms of LDT-623, a 4-aminoquinoline (4-AQ). We also detected LDT-623 activity against multiple stages (liver schizonts, stage IV-V gametocytes, and ookinetes) of Plasmodium's life cycle, a feature unlike other 4-AQs such as chloroquine (CQ) and piperaquine (PPQ). Using heme fractionation profiling and drug uptake studies in PfCRT-containing proteoliposomes, we observed inhibition of hemozoin formation and PfCRT-mediated transport, which constitute characteristic features of 4-AQs' MoA. We also found minimal cross-resistance to LDT-623 in a panel of mutant pfcrt or pfmdr1 lines, but not the PfCRT F145I mutant that is highly resistant to PPQ resistance yet is very unfit. No P. falciparum parasites were recovered in an in vitro resistance selection study, suggesting a high barrier for resistance to emerge. Finally, a competitive growth assay comprising >50 barcoded parasite lines with mutated resistance mediators or major drug targets found no evidence of cross-resistance. Our findings support further exploration of this promising 4-AQ.
Collapse
Affiliation(s)
- Letícia Tiburcio Ferreira
- Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Gustavo Capatti Cassiano
- Global Health and Tropical Medicine, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Luis Carlos Salazar Alvarez
- Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - John Okombo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Juliana Calit
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Diana Fontinha
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Eva Gil-Iturbe
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Rachael Coyle
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, United Kingdom
| | - Carolina Horta Andrade
- Laboratory of Molecular Modeling and Drug Design, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
- Center for the Research and Advancement in Fragments and molecular Targets, School of Pharmaceutical Sciences at Ribeirao Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Center for Excellence in Artificial Intelligence, Institute of Informatics, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Per Sunnerhagen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Daniel Youssef Bargieri
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Miguel Prudêncio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Matthias Quick
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York, United States of America
- Department of Physiology & Cellular Biophysics, Columbia University Irving Medical Center, New York, New York, United States of America
- New York State Psychiatric Institute, Area Neuroscience – Molecular Therapeutics, New York, New York, United States of America
| | - Pedro V. Cravo
- Global Health and Tropical Medicine, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Marcus C. S. Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, United Kingdom
| | - David A. Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, New York, United States of America
- Division of Infectious Diseases, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Fabio Trindade Maranhão Costa
- Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
- Global Health and Tropical Medicine, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, Lisboa, Portugal
| |
Collapse
|
13
|
Niu G, Wang X, Gao W, Cui L, Li J. Leucinostatins from fungal extracts block malaria transmission to mosquitoes. Parasit Vectors 2024; 17:401. [PMID: 39304934 DOI: 10.1186/s13071-024-06450-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 08/13/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Malaria is a mosquito-transmitted disease that kills more than half a million people annually. The lack of effective malaria vaccines and recently increasing malaria cases urge innovative approaches to prevent malaria. Previously, we reported that the extract from the soil-dwelling fungus Purpureocillium lilacinum, a common fungus from the soil, reduced Plasmodium falciparum oocysts in Anopheles gambiae midguts after mosquitoes contacted the treated surface before feeding. METHODS We used liquid chromatography to fraction fungal crude extract and tract the active fraction using a contact-wise approach and standard membrane feeding assays. The purified small molecules were analyzed using precise mass spectrometry and tandem mass spectrometry. RESULTS We isolated four active small molecules from P. lilacinum and determined them as leucinostatin A, B, A2, and B2. Pre-exposure of mosquitoes via contact with very low-concentration leucinostatin A significantly reduced the number of oocysts. The half-maximal response or inhibition concentration (EC50) via pre-exposure was 0.7 mg/m2, similar to atovaquone but lower than other known antimalarials. The inhibitory effect of leucinostatin A against P. falciparum during intraerythrocytic development, gametogenesis, sporogonic development, and ookinete formation, with the exception of oocyst development, suggests that leucinostatins play a part during parasite invasion of new cells. CONCLUSIONS Leucinostatins, secondary metabolites from P. lilacinum disrupt malaria development, particular transmission to mosquitoes by contact. The contact-wise malaria control as a nonconventional approach is highly needed in malaria-endemic areas.
Collapse
Affiliation(s)
- Guodong Niu
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
| | - Xiaohong Wang
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
| | - Wenda Gao
- Antagen Pharmaceuticals, Canton, MA, 02021, USA
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Jun Li
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
14
|
Zheng D, Liu T, Yu S, Liu Z, Wang J, Wang Y. Antimalarial Mechanisms and Resistance Status of Artemisinin and Its Derivatives. Trop Med Infect Dis 2024; 9:223. [PMID: 39330912 PMCID: PMC11435542 DOI: 10.3390/tropicalmed9090223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
Artemisinin is an endoperoxide sesquiterpene lactone isolated from Artemisia annua and is often used to treat malaria. Artemisinin's peroxide bridge is the key structure behind its antimalarial action. Scientists have created dihydroartemisinin, artemether, artesunate, and other derivatives preserving artemisinin's peroxide bridge to increase its clinical utility value. Artemisinin compounds exhibit excellent efficacy, quick action, and minimal toxicity in malaria treatment and have greatly contributed to malaria control. With the wide and unreasonable application of artemisinin-based medicines, malaria parasites have developed artemisinin resistance, making malaria prevention and control increasingly challenging. Artemisinin-resistant Plasmodium strains have been found in many countries and regions. The mechanisms of antimalarials and artemisinin resistance are not well understood, making malaria prevention and control a serious challenge. Understanding the antimalarial and resistance mechanisms of artemisinin drugs helps develop novel antimalarials and guides the rational application of antimalarials to avoid the spread of resistance, which is conducive to malaria control and elimination efforts. This review will discuss the antimalarial mechanisms and resistance status of artemisinin and its derivatives, which will provide a reference for avoiding drug resistance and the research and development of new antimalarial drugs.
Collapse
Affiliation(s)
- Dan Zheng
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing 400038, China; (D.Z.); (T.L.); (S.Y.); (Z.L.); (J.W.)
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China
| | - Tingting Liu
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing 400038, China; (D.Z.); (T.L.); (S.Y.); (Z.L.); (J.W.)
| | - Shasha Yu
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing 400038, China; (D.Z.); (T.L.); (S.Y.); (Z.L.); (J.W.)
| | - Zhilong Liu
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing 400038, China; (D.Z.); (T.L.); (S.Y.); (Z.L.); (J.W.)
| | - Jing Wang
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing 400038, China; (D.Z.); (T.L.); (S.Y.); (Z.L.); (J.W.)
| | - Ying Wang
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing 400038, China; (D.Z.); (T.L.); (S.Y.); (Z.L.); (J.W.)
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China
| |
Collapse
|
15
|
Kreutzfeld O, Orena S, Okitwi M, Tumwebaze PK, Byaruhanga O, Katairo T, Conrad MD, Legac J, Garg S, Crudale R, Aydemir O, Giesbrecht D, Nsobya SL, Blasco B, Duffey M, Rouillier M, Bailey JA, Cooper RA, Rosenthal PJ. Ex vivo susceptibilities to ganaplacide and diversity in potential resistance mediators in Ugandan Plasmodium falciparum isolates. Antimicrob Agents Chemother 2024; 68:e0046624. [PMID: 39136468 PMCID: PMC11373204 DOI: 10.1128/aac.00466-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/20/2024] [Indexed: 09/05/2024] Open
Abstract
Novel antimalarials are urgently needed to combat rising resistance to available drugs. The imidazolopiperazine ganaplacide is a promising drug candidate, but decreased susceptibility of laboratory strains has been linked to polymorphisms in the Plasmodium falciparum cyclic amine resistance locus (PfCARL), acetyl-CoA transporter (PfACT), and UDP-galactose transporter (PfUGT). To characterize parasites causing disease in Africa, we assessed ex vivo drug susceptibilities to ganaplacide in 750 P. falciparum isolates collected in Uganda from 2017 to 2023. Drug susceptibilities were assessed using a 72-hour SYBR Green growth inhibition assay. The median IC50 for ganaplacide was 13.8 nM, but some isolates had up to 31-fold higher IC50s (31/750 with IC50 > 100 nM). To assess genotype-phenotype associations, we sequenced genes potentially mediating altered ganaplacide susceptibility in the isolates using molecular inversion probe and dideoxy sequencing methods. PfCARL was highly polymorphic, with eight mutations present in >5% of isolates. None of these eight mutations had previously been selected in laboratory strains with in vitro drug pressure and none were found to be significantly associated with decreased ganaplacide susceptibility. Mutations in PfACT and PfUGT were found in ≤5% of isolates, except for two frequent (>20%) mutations in PfACT; one mutation in PfACT (I140V) was associated with a modest decrease in susceptibility. Overall, Ugandan P. falciparum isolates were mostly highly susceptible to ganaplacide. Known resistance mediators were polymorphic, but mutations previously selected with in vitro drug pressure were not seen, and mutations identified in the Ugandan isolates were generally not associated with decreased ganaplacide susceptibility.
Collapse
Affiliation(s)
| | - Stephen Orena
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Martin Okitwi
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | | | - Thomas Katairo
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | - Jennifer Legac
- University of California, San Francisco, California, USA
| | - Shreeya Garg
- University of California, San Francisco, California, USA
| | | | - Ozkan Aydemir
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | | | | | | | | | | | - Roland A Cooper
- Dominican University of California, San Rafael, California, USA
| | | |
Collapse
|
16
|
Ouédraogo A, Pouplin JNN, Mukaka M, Kaendiao T, Ruecker A, Millet P, Vallet T, Ruiz F, Sirima SB, Taylor WR. Anti-infectivity efficacy and pharmacokinetics of WHO recommended single low-dose primaquine in children with acute Plasmodium falciparum in Burkina Faso: study protocol. Trials 2024; 25:583. [PMID: 39227956 PMCID: PMC11373093 DOI: 10.1186/s13063-024-08428-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Primaquine (PQ) has activity against mature P. falciparum gametocytes and proven transmission blocking efficacy (TBE) between humans and mosquitoes. WHO formerly recommended a single transmission blocking dose of 0.75 mg/kg but this was little used. Then in 2012, faced with the emergence of artemisinin-resistant P. falciparum (ARPf) in SE Asia, the WHO recommended a lower dose of 0.25 mg/kg to be added to artemisinin-based combination therapy in falciparum-infected patients in low transmission areas. This dose was considered safe in glucose-6-phosphate dehydrogenase deficiency (G6PDd) and not requiring G6PD testing. Subsequent single low-dose primaquine (SLDPQ) studies have demonstrated safety in different G6PD variants. Dosing remains challenging in children under the age of 5 because of the paucity of PQ pharmacokinetic (PK) data. We plan to assess the anti-infectivity efficacy of SLDPQ using an allometrically scaled, weight-based regimen, with a target dose of 0.25 mg/kg, in children with acute uncomplicated falciparum malaria. METHODS This study is an open label, randomised 1:1, phase IIb study to assess TBE, tolerability, pharmacokinetics and acceptability of artesunate pyronaridine (ASPYR) administered alone or combined with SLDPQ in 56 Burkinabe children aged ≥ 6 months- < 5 years, with uncomplicated P. falciparum and a haemoglobin (Hb) concentration of ≥ 5 g/dL. We will assess TBE, using direct membrane feeding assays (DMFA), and further investigate PQ pharmacokinetics, adverse events, Hb dynamics, G6PD, sickle cells, thalassaemia and cytochrome 2D6 (CYP2D6) status, acceptability of flavoured PQ [CAST-ClinSearch Acceptability Score Test®], and the population's knowledge, attitude and practices on malaria. EXPECTED RESULTS AND DISCUSSION We expect children to accept tablets, confirm the TBE and gametocytocidal effects of SLDPQ and then construct a PK infectivity model (including age, sex, baseline Hb, G6PD and CYP2D6 status) to define the dose response TBE relationship that may lead to fine tuning our SLDPQ regimen. Our study will complement others that have examined factors associated with Hb dynamics and PQ PK. It will provide much needed, high-quality evidence of SLDPQ in sick African children and provide reassurance that SLDPQ should be used as a strategy against emerging ARPf in Africa. TRIAL REGISTRATION ISRCTN16297951. Registered on September 26, 2021.
Collapse
Affiliation(s)
- Alphonse Ouédraogo
- Groupe de Recherche Action en Santé (GRAS), 06 BP 10248, Ouagadougou 06, Burkina Faso.
| | | | - Mavuto Mukaka
- Mahidol Oxford Tropical Medicine Research Unit (MORU), 420/6 Rajvithi Road, Rajthevee, Bangkok, 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Thoopmanee Kaendiao
- Mahidol Oxford Tropical Medicine Research Unit (MORU), 420/6 Rajvithi Road, Rajthevee, Bangkok, 10400, Thailand
| | - Andrea Ruecker
- Mahidol Oxford Tropical Medicine Research Unit (MORU), 420/6 Rajvithi Road, Rajthevee, Bangkok, 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Pascal Millet
- ReMeD, 21bis Avenue du Commandant de L'Herminier, Saint-Nazaire, 44 600, France
| | - Thibaut Vallet
- ClinSearch, 110 Avenue Pierre Brossolette, Malakoff, 92240, France
| | - Fabrice Ruiz
- ClinSearch, 110 Avenue Pierre Brossolette, Malakoff, 92240, France
| | - Sodiomon B Sirima
- Groupe de Recherche Action en Santé (GRAS), 06 BP 10248, Ouagadougou 06, Burkina Faso
| | - Walter R Taylor
- Mahidol Oxford Tropical Medicine Research Unit (MORU), 420/6 Rajvithi Road, Rajthevee, Bangkok, 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
17
|
Rosenthal PJ, Asua V, Bailey JA, Conrad MD, Ishengoma DS, Kamya MR, Rasmussen C, Tadesse FG, Uwimana A, Fidock DA. The emergence of artemisinin partial resistance in Africa: how do we respond? THE LANCET. INFECTIOUS DISEASES 2024; 24:e591-e600. [PMID: 38552654 DOI: 10.1016/s1473-3099(24)00141-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 04/21/2024]
Abstract
Malaria remains one of the most important infectious diseases in the world, with the greatest burden in sub-Saharan Africa, primarily from Plasmodium falciparum infection. The treatment and control of malaria is challenged by resistance to most available drugs, but partial resistance to artemisinins (ART-R), the most important class for the treatment of malaria, was until recently confined to southeast Asia. This situation has changed, with the emergence of ART-R in multiple countries in eastern Africa. ART-R is mediated primarily by single point mutations in the P falciparum kelch13 protein, with several mutations present in African parasites that are now validated resistance mediators based on clinical and laboratory criteria. Major priorities at present are the expansion of genomic surveillance for ART-R mutations across the continent, more frequent testing of the efficacies of artemisinin-based regimens against uncomplicated and severe malaria in trials, more regular assessment of ex-vivo antimalarial drug susceptibilities, consideration of changes in treatment policy to deter the spread of ART-R, and accelerated development of new antimalarial regimens to overcome the impacts of ART-R. The emergence of ART-R in Africa is an urgent concern, and it is essential that we increase efforts to characterise its spread and mitigate its impact.
Collapse
Affiliation(s)
- Philip J Rosenthal
- Department of Medicine, University of California, San Francisco, CA, USA.
| | - Victor Asua
- Infectious Diseases Research Collaboration, Kampala, Uganda; University of Tübingen, Tübingen, Germany
| | - Jeffrey A Bailey
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA; Departments of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Melissa D Conrad
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Deus S Ishengoma
- National Institute for Medical Research, Dar es Salaam, Tanzania; Department of Biochemistry, Kampala International University in Tanzania, Dar es Salaam, Tanzania; School of Public Health, Harvard University, Boston, MA, USA
| | - Moses R Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda; Department of Medicine, Makerere University, Kampala, Uganda
| | | | - Fitsum G Tadesse
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia; London School of Hygiene and Tropical Medicine, London, UK
| | - Aline Uwimana
- Rwanda Biomedical Center, Kigali, Rwanda; Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - David A Fidock
- Department of Microbiology and Immunology and Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
18
|
Lawong A, Gahalawat S, Ray S, Ho N, Han Y, Ward KE, Deng X, Chen Z, Kumar A, Xing C, Hosangadi V, Fairhurst KJ, Tashiro K, Liszczak G, Shackleford DM, Katneni K, Chen G, Saunders J, Crighton E, Casas A, Robinson JJ, Imlay LS, Zhang X, Lemoff A, Zhao Z, Angulo-Barturen I, Jiménez-Díaz MB, Wittlin S, Campbell SF, Fidock DA, Laleu B, Charman SA, Ready JM, Phillips MA. Identification of potent and reversible piperidine carboxamides that are species-selective orally active proteasome inhibitors to treat malaria. Cell Chem Biol 2024; 31:1503-1517.e19. [PMID: 39084225 PMCID: PMC11531662 DOI: 10.1016/j.chembiol.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/08/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024]
Abstract
Malaria remains a global health concern as drug resistance threatens treatment programs. We identified a piperidine carboxamide (SW042) with anti-malarial activity by phenotypic screening. Selection of SW042-resistant Plasmodium falciparum (Pf) parasites revealed point mutations in the Pf_proteasome β5 active-site (Pfβ5). A potent analog (SW584) showed efficacy in a mouse model of human malaria after oral dosing. SW584 had a low propensity to generate resistance (minimum inoculum for resistance [MIR] >109) and was synergistic with dihydroartemisinin. Pf_proteasome purification was facilitated by His8-tag introduction onto β7. Inhibition of Pfβ5 correlated with parasite killing, without inhibiting human proteasome isoforms or showing cytotoxicity. The Pf_proteasome_SW584 cryoelectron microscopy (cryo-EM) structure showed that SW584 bound non-covalently distal from the catalytic threonine, in an unexplored pocket at the β5/β6/β3 subunit interface that has species differences between Pf and human proteasomes. Identification of a reversible, species selective, orally active series with low resistance propensity provides a path for drugging this essential target.
Collapse
Affiliation(s)
- Aloysus Lawong
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Suraksha Gahalawat
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Sneha Ray
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Nhi Ho
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Yan Han
- Department of Biophysics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Kurt E Ward
- Department of Microbiology and Immunology, and Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Xiaoyi Deng
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Zhe Chen
- Department of Biophysics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Ashwani Kumar
- Department of Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Chao Xing
- Department of Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA; Department of Bioinformatics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Varun Hosangadi
- Department of Microbiology and Immunology, and Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Kate J Fairhurst
- Department of Microbiology and Immunology, and Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Kyuto Tashiro
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Glen Liszczak
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - David M Shackleford
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Kasiram Katneni
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Gong Chen
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Jessica Saunders
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Elly Crighton
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Arturo Casas
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Joshua J Robinson
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Leah S Imlay
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Xiaoyu Zhang
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Andrew Lemoff
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Zhiyu Zhao
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Iñigo Angulo-Barturen
- The Art of Discovery, Biscay Science and Technology Park, Astrondo Bidea, BIC Bizkaia Bd 612, Derio, 48160 Bizkaia, Basque Country, Spain
| | - María Belén Jiménez-Díaz
- The Art of Discovery, Biscay Science and Technology Park, Astrondo Bidea, BIC Bizkaia Bd 612, Derio, 48160 Bizkaia, Basque Country, Spain
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland; University of Basel Kreuzstrasse 2, 4123 Allschwil, Switzerland
| | | | - David A Fidock
- Department of Microbiology and Immunology, and Columbia University Irving Medical Center, New York, NY 10032, USA; Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Benoît Laleu
- Medicines for Malaria Venture, 1215 Geneva, Switzerland
| | - Susan A Charman
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Joseph M Ready
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA.
| | - Margaret A Phillips
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA.
| |
Collapse
|
19
|
Awor P, Coppée R, Khim N, Rondepierre L, Roesch C, Khean C, Kul C, Eam R, Lorn T, Athieno P, Kimera J, Balikagala B, Odongo-Aginya EI, Anywar DA, Mita T, Clain J, Ringwald P, Signorell A, Lengeler C, Burri C, Ariey F, Hetzel MW, Witkowski B. Indigenous emergence and spread of kelch13 C469Y artemisinin-resistant Plasmodium falciparum in Uganda. Antimicrob Agents Chemother 2024; 68:e0165923. [PMID: 39028193 PMCID: PMC11304714 DOI: 10.1128/aac.01659-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/07/2024] [Indexed: 07/20/2024] Open
Abstract
Artemisinin-based combination therapies (ACTs) were introduced as the standard of care for uncomplicated malaria in Africa almost two decades ago. Recent studies in East Africa have reported a gradual increase in kelch13 (k13) mutant parasites associated with reduced artesunate efficacy. As part of the Community Access to Rectal Artesunate for Malaria project, we collected blood samples from 697 children with signs of severe malaria in northern Uganda between 2018 and 2020, before and after the introduction of rectal artesunate (RAS) in 2019. K13 polymorphisms were assessed, and parasite editing and phenotyping were performed to assess the impact of mutations on parasite resistance. Whole-genome sequencing was performed, and haplotype networks were constructed to determine the geographic origin of k13 mutations. Of the 697 children, 540 were positive for Plasmodium falciparum malaria by PCR and were treated with either RAS or injectable artesunate monotherapy followed in most cases by ACT. The most common k13 mutation was C469Y (6.7%), which was detected more frequently in samples collected after RAS introduction. Genome editing confirmed reduced in vitro susceptibility to artemisinin in C469Y-harboring parasites compared to wild-type controls (P < 0.001). The haplotypic network showed that flanking regions of the C469Y mutation shared the same African genetic background, suggesting a single and indigenous origin of the mutation. Our data provide evidence of selection for the artemisinin-resistant C469Y mutation. The realistic threat of multiresistant parasites emerging in Africa should encourage careful monitoring of the efficacy of artemisinin derivatives and strict adherence to ACT treatment regimens.
Collapse
Affiliation(s)
- Phyllis Awor
- School of Public Health, Makerere University, Kampala, Uganda
| | - Romain Coppée
- Laboratoire de parasitologie-mycologie, UR 7510 ESCAPE, Université de Rouen Normandie, Rouen, France
| | - Nimol Khim
- Malaria Research Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia
| | | | - Camille Roesch
- Malaria Research Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Chanra Khean
- Malaria Research Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Chanvong Kul
- Malaria Research Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Rotha Eam
- Malaria Research Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Thornleaksmey Lorn
- Malaria Research Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia
| | | | - Joseph Kimera
- School of Public Health, Makerere University, Kampala, Uganda
| | - Betty Balikagala
- Department of Tropical Medicine and Parasitology, School of Medicine, Juntendo University, Tokyo, Japan
| | | | | | - Toshihiro Mita
- Department of Tropical Medicine and Parasitology, School of Medicine, Juntendo University, Tokyo, Japan
| | - Jérôme Clain
- MERIT, IRD, Université Paris Cité, Paris, France
| | | | - Aita Signorell
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Christian Lengeler
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Christian Burri
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Frédéric Ariey
- INSERM U1016, Institut Cochin, Université Paris Cité, Paris, France
- Service de Parasitologie, Hôpital Cochin, Paris, France
| | - Manuel W. Hetzel
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Benoit Witkowski
- Malaria Research Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia
| |
Collapse
|
20
|
Dhorda M, Kaneko A, Komatsu R, Kc A, Mshamu S, Gesase S, Kapologwe N, Assefa A, Opigo J, Adoke Y, Ebong C, Karema C, Uwimana A, Mangara JLN, Amaratunga C, Peto TJ, Tripura R, Callery JJ, Adhikari B, Mukaka M, Cheah PY, Mutesa L, Day NPJ, Barnes KI, Dondorp A, Rosenthal PJ, White NJ, von Seidlein L. Artemisinin-resistant malaria in Africa demands urgent action. Science 2024; 385:252-254. [PMID: 39024426 DOI: 10.1126/science.adp5137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Investment in community health workers is essential.
Collapse
Affiliation(s)
- Mehul Dhorda
- Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Akira Kaneko
- Department of Microbiology, Tumor and Cell Biology (C1), Karolinska Institutet, Solna, Sweden
| | | | - Achyut Kc
- Department of Microbiology, Tumor and Cell Biology (C1), Karolinska Institutet, Solna, Sweden
| | | | - Samwel Gesase
- National Institute of Malaria Research, Tanga Medical Research Centre, Tanga, Tanzania
| | - Ntuli Kapologwe
- Department of Preventive Health Services, Ministry of Health, Dodoma, Tanzania
| | - Ashenafi Assefa
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
- Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC, USA
| | | | - Yeka Adoke
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Chris Ebong
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | | | | | - Chanaki Amaratunga
- Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Thomas J Peto
- Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Rupam Tripura
- Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - James J Callery
- Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Bipin Adhikari
- Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mavuto Mukaka
- Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Phaik Yeong Cheah
- Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Leon Mutesa
- Centre for Human Genetics, College of Medicine and Health Sciences University of Rwanda, Kigali, Rwanda
| | - Nicholas P J Day
- Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Karen I Barnes
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Arjen Dondorp
- Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Philip J Rosenthal
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Nicholas J White
- Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Lorenz von Seidlein
- Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
21
|
Rosado J, Fola AA, Cojean S, Sarrasin V, Coppée R, Zaffaroulah R, Bouzayene A, Cicéron L, Houzé L, Crudale R, Musset L, Thellier M, Pradines B, Clain J, Bailey JA, Houzé S. Ex vivo susceptibility to antimalarial drugs and polymorphisms in drug resistance genes of African Plasmodium falciparum, 2016-2023: a genotype-phenotype association study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.17.24310448. [PMID: 39072017 PMCID: PMC11275679 DOI: 10.1101/2024.07.17.24310448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Background Given the altered responses to both artemisinins and lumefantrine in Eastern Africa, monitoring antimalarial drug resistance in all African countries is paramount. Methods We measured the susceptibility to six antimalarials using ex vivo growth inhibition assays (IC50) for a total of 805 Plasmodium falciparum isolates obtained from travelers returning to France (2016-2023), mainly from West and Central Africa. Isolates were sequenced using molecular inversion probes (MIPs) targeting fourteen drug resistance genes across the parasite genome. Findings Ex vivo susceptibility to several drugs has significantly decreased in 2019-2023 versus 2016-2018 parasite samples: lumefantrine (median IC50: 23·0 nM [IQR: 14·4-35·1] in 2019-2023 versus 13·9 nM [8·42-21·7] in 2016-2018, p<0·0001), monodesethylamodiaquine (35·4 [21·2-51·1] versus 20·3 nM [15·4-33·1], p<0·0001), and marginally piperaquine (20·5 [16·5-26·2] versus 18.0 [14·2-22·4] nM, p<0·0001). Only four isolates carried a validated pfkelch13 mutation. Multiple mutations in pfcrt and one in pfmdr1 (N86Y) were significantly associated with altered susceptibility to multiple drugs. The susceptibility to lumefantrine was altered by pfcrt and pfmdr1 mutations in an additive manner, with the wild-type haplotype (pfcrt K76-pfmdr1 N86) exhibiting the least susceptibility. Interpretation Our study on P. falciparum isolates from West and Central Africa indicates a low prevalence of molecular markers of artemisinin resistance but a significant decrease in susceptibility to the partner drugs that have been the most widely used since a decade -lumefantrine and amodiaquine. These phenotypic changes likely mark parasite adaptation to sustained drug pressure and call for intensifying the monitoring of antimalarial drug resistance in Africa. Funding This work was supported by the French Ministry of Health (grant to the French National Malaria Reference Center) and by the Agence Nationale de la Recherche (ANR-17-CE15-0013-03 to JC). JAB was supported by NIH R01AI139520. JR postdoctoral fellowship was funded by Institut de Recherche pour le Développement.
Collapse
Affiliation(s)
- Jason Rosado
- Université Paris Cité, Institut de Recherche pour le Développement, MERIT, F-75006 Paris, France
| | - Abebe A. Fola
- Department of Pathology and Laboratory Medicine, Brown University, RI, USA, 02906
- Center for Computational Molecular Biology, Brown University, RI, USA, 02906
| | - Sandrine Cojean
- Centre National de Référence du Paludisme, Assistance Publique-Hôpitaux de Paris, Hôpital Bichat-Claude-Bernard, Paris, France
- Université Paris-Saclay, Faculté de Pharmacie, Orsay, France
- UMR BIPAR, Anses, Laboratoire de Santé Animale, INRAE, Ecole Nationale Vétérinaire d’Alfort, Maisons-Alfort, France
| | - Véronique Sarrasin
- Centre National de Référence du Paludisme, Assistance Publique-Hôpitaux de Paris, Hôpital Bichat-Claude-Bernard, Paris, France
| | - Romain Coppée
- Université de Rouen Normandie, Laboratoire de Parasitologie-Mycologie, UR 7510 ESCAPE, Rouen, France
| | - Rizwana Zaffaroulah
- Centre National de Référence du Paludisme, Assistance Publique-Hôpitaux de Paris, Hôpital Bichat-Claude-Bernard, Paris, France
| | - Azza Bouzayene
- Centre National de Référence du Paludisme, Assistance Publique-Hôpitaux de Paris, Hôpital Bichat-Claude-Bernard, Paris, France
| | - Liliane Cicéron
- Centre National de Référence du Paludisme, Assistance Publique-Hôpitaux de Paris, Hôpital Bichat-Claude-Bernard, Paris, France
| | - Ludivine Houzé
- Centre National de Référence du Paludisme, Assistance Publique-Hôpitaux de Paris, Hôpital Bichat-Claude-Bernard, Paris, France
| | - Rebecca Crudale
- Department of Pathology and Laboratory Medicine, Brown University, RI, USA, 02906
- Center for Computational Molecular Biology, Brown University, RI, USA, 02906
| | - Lise Musset
- Laboratoire de Parasitologie, World Health Organization Collaborating Center for Surveillance of Antimalarial Drug Resistance, Centre Nationale de Référence du Paludisme, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Marc Thellier
- Centre National de Référence du Paludisme, Sorbonne Université, Assistance Publique des Hôpitaux de Paris, Laboratoire de Mycologie et Parasitologie, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Bruno Pradines
- Unité Parasitologie et Entomologie, Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
- Aix Marseille Université, SSA, AP-HM, RITMES, Marseille, France
- Centre National de Référence du Paludisme, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Jérôme Clain
- Université Paris Cité, Institut de Recherche pour le Développement, MERIT, F-75006 Paris, France
| | - Jeffrey A. Bailey
- Department of Pathology and Laboratory Medicine, Brown University, RI, USA, 02906
- Center for Computational Molecular Biology, Brown University, RI, USA, 02906
| | - Sandrine Houzé
- Université Paris Cité, Institut de Recherche pour le Développement, MERIT, F-75006 Paris, France
- Centre National de Référence du Paludisme, Assistance Publique-Hôpitaux de Paris, Hôpital Bichat-Claude-Bernard, Paris, France
| | | |
Collapse
|
22
|
Milong Melong CS, Peloewetse E, Russo G, Tamgue O, Tchoumbougnang F, Paganotti GM. An overview of artemisinin-resistant malaria and associated Pfk13 gene mutations in Central Africa. Parasitol Res 2024; 123:277. [PMID: 39023630 DOI: 10.1007/s00436-024-08301-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Malaria caused by Plasmodium falciparum is one of the deadliest and most common tropical infectious diseases. However, the emergence of artemisinin drug resistance associated with the parasite's Pfk13 gene, threatens the public health of individual countries as well as current efforts to reduce malaria burdens globally. It is of concern that artemisinin-resistant parasites may be selected or have already emerged in Africa. This narrative review aims to evaluate the published evidence concerning validated, candidate, and novel Pfk13 polymorphisms in ten Central African countries. Results show that four validated non-synonymous polymorphisms (M476I, R539T, P553L, and P574L), directly associated with a delayed therapy response, have been reported in the region. Also, two Pfk13 polymorphisms associated to artemisinin resistance but not validated (C469F and P527H) have been reported. Furthermore, several non-validated mutations have been observed in Central Africa, and one allele A578S, is commonly found in different countries, although additional molecular and biochemical studies are needed to investigate whether those mutations alter artemisinin effects. This information is discussed in the context of biochemical and genetic aspects of Pfk13, and related to the regional malaria epidemiology of Central African countries.
Collapse
Affiliation(s)
- Charlotte Sabine Milong Melong
- Department of Biochemistry, Faculty of Sciences, University of Douala, P.O. Box 24157, Douala, Cameroon
- Botswana-University of Pennsylvania Partnership, P.O. Box 45498, Gaborone, Riverwalk, Botswana
| | - Elias Peloewetse
- Department of Biological Sciences, Faculty of Sciences, University of Botswana, Private Bag, 0022, Gaborone, UB, Botswana
| | - Gianluca Russo
- Department of Public Health and Infectious Diseases, Faculty of Pharmacy and Medicine, Sapienza University of Rome, P.Le Aldo Moro 5, 00185, Rome, Italy
| | - Ousman Tamgue
- Department of Biochemistry, Faculty of Sciences, University of Douala, P.O. Box 24157, Douala, Cameroon
| | - Francois Tchoumbougnang
- Department of Processing and Quality Control of Aquatic Products, Institute of Fisheries and Aquatic Sciences, University of Douala, P.O. Box 7236, Douala, Cameroon
| | - Giacomo Maria Paganotti
- Botswana-University of Pennsylvania Partnership, P.O. Box 45498, Gaborone, Riverwalk, Botswana.
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| |
Collapse
|
23
|
Barber BE, Webster R, Potter AJ, Llewellyn S, Sahai N, Leelasena I, Mathison S, Kuritz K, Flynn J, Chalon S, Marrast AC, Gobeau N, Moehrle JJ. Characterising the blood-stage antimalarial activity of pyronaridine in healthy volunteers experimentally infected with Plasmodium falciparum. Int J Antimicrob Agents 2024; 64:107196. [PMID: 38734217 DOI: 10.1016/j.ijantimicag.2024.107196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/23/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
With the spread of artemisinin resistance throughout Southeast Asia and now in Africa, the antimalarial drug pyronaridine is likely to become an increasingly important component of new antimalarial drug regimens. However, the antimalarial activity of pyronaridine in humans has not been completely characterised. This volunteer infection study aimed to determine the pharmacokinetic/pharmacodynamic (PK/PD) relationship of pyronaridine in malaria naïve adults. Volunteers were inoculated with Plasmodium falciparum-infected erythrocytes on day 0 and administered different single oral doses of pyronaridine on day 8. Parasitaemia and concentrations of pyronaridine were measured and standard safety assessments performed. Curative artemether-lumefantrine therapy was administered if parasite regrowth occurred, or on day 47 ± 2. Outcomes were parasite clearance kinetics, PK and PK/PD parameters from modelling. Ten participants were inoculated and administered 360 mg (n = 4), 540 mg (n = 4) or 720 mg (n = 1) pyronaridine. One participant was withdrawn without receiving pyronaridine. The time to maximum pyronaridine concentration was 1-2 h, the elimination half-life was 8-9 d, and the parasite clearance half-life was approximately 5 h. Parasite regrowth occurred with 360 mg (4/4 participants) and 540 mg (2/4 participants). Key efficacy parameters including the minimum inhibitory concentration (5.5 ng/mL) and minimum parasiticidal concentration leading to 90% of maximum effect (MPC90: 8 ng/mL) were derived from the PK/PD model. Adverse events considered related to pyronaridine were predominantly mild to moderate gastrointestinal symptoms. There were no serious adverse events. Data obtained in this study will support the use of pyronaridine in new antimalarial combination therapies by informing partner drug selection and dosing considerations.
Collapse
Affiliation(s)
- Bridget E Barber
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia; University of the Sunshine Coast Clinical Trials, Morayfield, QLD, Australia; Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Rebecca Webster
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Adam J Potter
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Stacey Llewellyn
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Nischal Sahai
- University of the Sunshine Coast Clinical Trials, Morayfield, QLD, Australia
| | - Indika Leelasena
- University of the Sunshine Coast Clinical Trials, Morayfield, QLD, Australia
| | - Susan Mathison
- University of the Sunshine Coast Clinical Trials, Morayfield, QLD, Australia
| | | | - Julia Flynn
- Medicines for Malaria Venture, Geneva, Switzerland
| | | | | | | | | |
Collapse
|
24
|
Tesfaye M, Assefa A, Hailgiorgis H, Gidey B, Mohammed H, Tollera G, Tasew G, Assefa G, Bekele W, Mamo H. Therapeutic efficacy and safety of artemether-lumefantrine for uncomplicated Plasmodium falciparum malaria treatment in Metehara, Central-east Ethiopia. Malar J 2024; 23:184. [PMID: 38867217 PMCID: PMC11170838 DOI: 10.1186/s12936-024-04991-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/20/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Malaria remains a major global health problem although there was a remarkable achievement between 2000 and 2015. Malaria drug resistance, along with several other factors, presents a significant challenge to malaria control and elimination efforts. Numerous countries in sub-Saharan Africa have documented the presence of confirmed or potential markers of partial resistance against artemisinin, the drug of choice for the treatment of uncomplicated Plasmodium falciparum malaria. The World Health Organization (WHO) recommends regular surveillance of artemisinin therapeutic efficacy to inform policy decisions. METHODS This study aimed to evaluate the therapeutic efficacy of artemether-lumefantrine (AL), which is the first-line treatment for uncomplicated P. falciparum malaria in Ethiopia since 2004. Using a single-arm prospective evaluation design, the study assessed the clinical and parasitological responses of patients with uncomplicated P. falciparum malaria in Metehara Health Centre, central-east Ethiopia. Out of 2332 malaria suspects (1187 males, 1145 females) screened, 80 (50 males, 30 females) were enrolled, followed up for 28 days, and 73 (44 males, 29 females) completed the follow up. The study was conducted and data was analysed by employing the per-protocol and Kaplan-Meier analyses following the WHO Malaria Therapeutic Efficacy Evaluation Guidelines 2009. RESULTS The results indicated rapid parasite clearance and resolution of clinical symptoms, with all patients achieving complete recovery from asexual parasitaemia and fever by day (D) 3. The prevalence of gametocytes decreased from 6.3% on D0 to 2.5% on D2, D3, D7, and ultimately achieving complete clearance afterward. CONCLUSION The overall cure rate for AL treatment was 100%, demonstrating its high efficacy in effectively eliminating malaria parasites in patients. No serious adverse events related to AL treatment were reported during the study, suggesting its safety and tolerability among the participants. These findings confirm that AL remains a highly efficacious treatment for uncomplicated P. falciparum malaria in the study site after 20 years of its introduction in Ethiopia.
Collapse
Affiliation(s)
- Mahelet Tesfaye
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Ashenafi Assefa
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
- Institute of Infectious Disease and Global Health, University of North Carolina, Chapel Hill, USA
| | | | | | | | | | - Geremew Tasew
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | | | - Worku Bekele
- World Health Organization, Addis Ababa, Ethiopia
| | - Hassen Mamo
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia.
| |
Collapse
|
25
|
Fola AA, Kobayashi T, Shields T, Hamapumbu H, Musonda M, Katowa B, Matoba J, Stevenson JC, Norris DE, Thuma PE, Wesolowski A, Moss WJ, Juliano JJ, Bailey JA. Temporal genomic analysis of Plasmodium falciparum reveals increased prevalence of mutations associated with delayed clearance following treatment with artemisinin-lumefantrine in Choma District, Southern Province, Zambia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.05.24308497. [PMID: 38883763 PMCID: PMC11178023 DOI: 10.1101/2024.06.05.24308497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The emergence of antimalarial drug resistance is an impediment to malaria control and elimination in Africa. Analysis of temporal trends in molecular markers of resistance is critical to inform policy makers and guide malaria treatment guidelines. In a low and seasonal transmission region of southern Zambia, we successfully genotyped 85.5% (389/455) of Plasmodium falciparum samples collected between 2013-2018 from 8 spatially clustered health centres using molecular inversion probes (MIPs) targeting key drug resistance genes. Aside from one sample carrying K13 R622I, none of the isolates carried other World Health Organization-validated or candidate artemisinin partial resistance (ART-R) mutations in K13. However, 13% (CI, 9.6-17.2) of isolates had the AP2MU S160N mutation, which has been associated with delayed clearance following artemisinin combination therapy in Africa. This mutation increased in prevalence between 2015-2018 and bears a genomic signature of selection. During this time period, there was an increase in the MDR1 NFD haplotype that is associated with reduced susceptibility to lumefantrine. Sulfadoxine-pyrimethamine polymorphisms were near fixation. While validated ART-R mutations are rare, a mutation associated with slow parasite clearance in Africa appears to be under selection in southern Zambia.
Collapse
Affiliation(s)
- Abebe A. Fola
- Department of Pathology and Laboratory Medicine, Brown University, RI, USA, 02906
| | - Tamaki Kobayashi
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA, 21205
| | - Timothy Shields
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA, 21205
| | | | | | - Ben Katowa
- Macha Research Trust, Choma District, Zambia
| | | | | | - Douglas E. Norris
- Johns Hopkins Malaria Research Institute, Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA, 21205
| | | | - Amy Wesolowski
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA, 21205
| | - William J. Moss
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA, 21205
- Johns Hopkins Malaria Research Institute, Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA, 21205
| | - Jonathan J. Juliano
- Institute for Global Health and Infectious Diseases, University of North Carolina Chapel Hill, NC, USA, 27599
- Division of Infectious Diseases, School of Medicine, University of North Carolina Chapel Hill, Chapel Hill, NC 27599
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina Chapel Hill, Chapel Hill, NC, USA, 27599
- Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina Chapel Hill, Chapel Hill, NC 27599
| | - Jeffrey A. Bailey
- Department of Pathology and Laboratory Medicine, Brown University, RI, USA, 02906
| |
Collapse
|
26
|
Nguyen Ngoc Pouplin J, Kaendiao T, Rahimi BA, Soni M, Basopia H, Shah D, Patil J, Dholakia V, Suthar Y, Tarning J, Mukaka M, Taylor WR. Bioequivalence of a new coated 15 mg primaquine formulation for malaria elimination. Malar J 2024; 23:176. [PMID: 38840151 PMCID: PMC11155120 DOI: 10.1186/s12936-024-04947-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/12/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND With only one 15 mg primaquine tablet registered by a stringent regulatory authority and marketed, more quality-assured primaquine is needed to meet the demands of malaria elimination. METHODS A classic, two sequence, crossover study, with a 10-day wash out period, of 15 mg of IPCA-produced test primaquine tablets and 15 mg of Sanofi reference primaquine tablets was conducted. Healthy volunteers, aged 18-45 years, without glucose-6-phosphate dehydrogenase deficiency, a baseline haemoglobin ≥ 11 g/dL, creatinine clearance ≥ 70 mL/min/1.73 ms, and body mass index of 18.5-30 kg/m2 were randomized to either test or reference primaquine, administered on an empty stomach with 240 mL of water. Plasma primaquine and carboxyprimaquine concentrations were measured at baseline, then 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.333, 2.667, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 8.0, 10.0, 12.0, 16.0, 24.0, 36.0, 48.0 and 72.0 h by liquid chromatography coupled to tandem mass spectrometry. Primaquine pharmacokinetic profiles were evaluated by non-compartmental analysis and bioequivalence concluded if the 90% confidence intervals (CI) of geometric mean (GM) ratios of test vs. reference formulation for the peak concentrations (Cmax) and area under the drug concentration-time (AUC0-t) were within 80.00 to 125.00%. RESULTS 47 of 50 volunteers, median age 33 years, completed both dosing rounds and were included in the bioequivalence analysis. For primaquine, GM Cmax values for test and reference formulations were 62.12 vs. 59.63 ng/mL, resulting in a GM ratio (90% CI) of 104.17% (96.92-111.96%); the corresponding GM AUC0-t values were 596.56 vs. 564.09 ngxh/mL, for a GM ratio of 105.76% (99.76-112.08%). Intra-subject coefficient of variation was 20.99% for Cmax and 16.83% for AUC0-t. Median clearances and volumes of distribution were similar between the test and reference products: 24.6 vs. 25.2 L/h, 189.4 vs. 191.0 L, whilst the median half-lives were the same, 5.2 h. CONCLUSION IPCA primaquine was bioequivalent to the Sanofi primaquine. This opens the door to prequalification, registration in malaria endemic countries, and programmatic use for malaria elimination. Trial registration The trial registration reference is ISRCTN 54640699.
Collapse
Affiliation(s)
- Julie Nguyen Ngoc Pouplin
- Réseau Médicaments et Développement, 21Bis Avenue du Commandant l'Herminier, 44600, Saint-Nazaire, France.
| | - Thoopmanee Kaendiao
- Mahidol Oxford Tropical Medicine Clinical Research Unit, Mahidol University, Bangkok, Thailand
| | - Bilal Ahmad Rahimi
- Department of Paediatrics, Faculty of Medicine, Kandahar University, Kandahar, Afghanistan
| | - Mayur Soni
- Cliantha Research Limited, Cliantha Corporate, Ahmedabad, Gujarat, India
| | - Hensi Basopia
- Cliantha Research Limited, Cliantha Corporate, Ahmedabad, Gujarat, India
| | - Darshana Shah
- Cliantha Research Limited, Cliantha Corporate, Ahmedabad, Gujarat, India
| | - Jitendra Patil
- Cliantha Research Limited, Cliantha Corporate, Ahmedabad, Gujarat, India
| | - Vyom Dholakia
- Cliantha Research Limited, Cliantha Corporate, Ahmedabad, Gujarat, India
| | - Yash Suthar
- Cliantha Research Limited, Cliantha Corporate, Ahmedabad, Gujarat, India
| | - Joel Tarning
- Mahidol Oxford Tropical Medicine Clinical Research Unit, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mavuto Mukaka
- Mahidol Oxford Tropical Medicine Clinical Research Unit, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Walter R Taylor
- Mahidol Oxford Tropical Medicine Clinical Research Unit, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
27
|
Fukuda N, Yoshida N, Balikagala B, Tsuru I, Ikeda M, Hirai M, Anywar DA, Odongo-Aginya EI, Mita T. Detection of drug-resistant malaria in resource-limited settings: efficient and high-throughput surveillance of artemisinin and partner drug resistance. J Antimicrob Chemother 2024; 79:1418-1422. [PMID: 38661223 DOI: 10.1093/jac/dkae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/04/2024] [Indexed: 04/26/2024] Open
Abstract
OBJECTIVES Artemisinin-resistant Plasmodium falciparum malaria is currently spreading globally, including in Africa. Artemisinin resistance also leads to resistance to partner drugs used in artemisinin-based combination therapies. Sequencing of kelch13, which is associated with artemisinin resistance, culture-based partner drug susceptibility tests, and ELISA-based growth measurement are conventionally used to monitor resistance; however, their application is challenging in resource-limited settings. METHODS An experimental package for field studies with minimum human/material requirements was developed. RESULTS First, qPCR-based SNP assay was applied in artemisinin resistance screening, which can detect mutations within 1 h and facilitate sample selection for subsequent processes. It had 100% sensitivity and specificity compared with DNA sequencing in the detection of the two common artemisinin resistance mutations in Uganda, C469Y and A675V. Moreover, in the partner drug susceptibility test, the cultured samples were dry-preserved on a 96-well filter paper plate and shipped to the central laboratory. Parasite growth was measured by ELISA using redissolved samples. It well reproduced the results of direct ELISA, reducing significant workload in the field (Pearson correlation coefficient: 0.984; 95% CI: 0.975-0.990). CONCLUSIONS Large-scale and sustainable monitoring is required urgently to track rapidly spreading drug-resistant malaria. In malaria-endemic areas, where research resources are often limited, simplicity and feasibility of the procedure is especially important. Our approach combines a qPCR-based rapid test, which is also applicable to point-of-care diagnosis of artemisinin resistance and centralized analysis of ex vivo culture. The approach could improve efficiency of field experiments and accelerate global drug resistance surveillance.
Collapse
Affiliation(s)
- Naoyuki Fukuda
- Department of Tropical Medicine and Parasitology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Naoko Yoshida
- Department of Tropical Medicine and Parasitology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Betty Balikagala
- Department of Tropical Medicine and Parasitology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Ibuki Tsuru
- Department of Tropical Medicine and Parasitology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Mie Ikeda
- Department of Tropical Medicine and Parasitology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Makoto Hirai
- Department of Tropical Medicine and Parasitology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | | | | | - Toshihiro Mita
- Department of Tropical Medicine and Parasitology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| |
Collapse
|
28
|
Vanhove M, Schwabl P, Clementson C, Early AM, Laws M, Anthony F, Florimond C, Mathieu L, James K, Knox C, Singh N, Buckee CO, Musset L, Cox H, Niles-Robin R, Neafsey DE. Temporal and spatial dynamics of Plasmodium falciparum clonal lineages in Guyana. PLoS Pathog 2024; 20:e1012013. [PMID: 38870266 PMCID: PMC11206942 DOI: 10.1371/journal.ppat.1012013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/26/2024] [Accepted: 05/24/2024] [Indexed: 06/15/2024] Open
Abstract
Plasmodium parasites, the causal agents of malaria, are eukaryotic organisms that obligately undergo sexual recombination within mosquitoes. In low transmission settings, parasites recombine with themselves, and the clonal lineage is propagated rather than broken up by outcrossing. We investigated whether stochastic/neutral factors drive the persistence and abundance of Plasmodium falciparum clonal lineages in Guyana, a country with relatively low malaria transmission, but the only setting in the Americas in which an important artemisinin resistance mutation (pfk13 C580Y) has been observed. We performed whole genome sequencing on 1,727 Plasmodium falciparum samples collected from infected patients across a five-year period (2016-2021). We characterized the relatedness between each pair of monoclonal infections (n = 1,409) through estimation of identity-by-descent (IBD) and also typed each sample for known or candidate drug resistance mutations. A total of 160 multi-isolate clones (mean IBD ≥ 0.90) were circulating in Guyana during the study period, comprising 13 highly related clusters (mean IBD ≥ 0.40). In the five-year study period, we observed a decrease in frequency of a mutation associated with artemisinin partner drug (piperaquine) resistance (pfcrt C350R) and limited co-occurence of pfcrt C350R with duplications of plasmepsin 2/3, an epistatic interaction associated with piperaquine resistance. We additionally observed 61 nonsynonymous substitutions that increased markedly in frequency over the study period as well as a novel pfk13 mutation (G718S). However, P. falciparum clonal dynamics in Guyana appear to be largely driven by stochastic factors, in contrast to other geographic regions, given that clones carrying drug resistance polymorphisms do not demonstrate enhanced persistence or higher abundance than clones carrying polymorphisms of comparable frequency that are unrelated to resistance. The use of multiple artemisinin combination therapies in Guyana may have contributed to the disappearance of the pfk13 C580Y mutation.
Collapse
Affiliation(s)
- Mathieu Vanhove
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Philipp Schwabl
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | | | - Angela M. Early
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Margaret Laws
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Frank Anthony
- National Malaria Program, Ministry of Health, Georgetown, Guyana
| | - Célia Florimond
- Laboratoire de Parasitologie, World Health Organization Collaborating Center for Surveillance of Antimalarial Drug Resistance, Center Nationale de Référence du Paludisme, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Luana Mathieu
- Laboratoire de Parasitologie, World Health Organization Collaborating Center for Surveillance of Antimalarial Drug Resistance, Center Nationale de Référence du Paludisme, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Kashana James
- National Malaria Program, Ministry of Health, Georgetown, Guyana
| | - Cheyenne Knox
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Narine Singh
- National Malaria Program, Ministry of Health, Georgetown, Guyana
| | - Caroline O. Buckee
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Lise Musset
- Laboratoire de Parasitologie, World Health Organization Collaborating Center for Surveillance of Antimalarial Drug Resistance, Center Nationale de Référence du Paludisme, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Horace Cox
- National Malaria Program, Ministry of Health, Georgetown, Guyana
- Caribbean Public Health Agency, Port of Spain, Trinidad and Tobago
| | - Reza Niles-Robin
- National Malaria Program, Ministry of Health, Georgetown, Guyana
| | - Daniel E. Neafsey
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| |
Collapse
|
29
|
Rosenthal PJ, Asua V, Conrad MD. Emergence, transmission dynamics and mechanisms of artemisinin partial resistance in malaria parasites in Africa. Nat Rev Microbiol 2024; 22:373-384. [PMID: 38321292 DOI: 10.1038/s41579-024-01008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2024] [Indexed: 02/08/2024]
Abstract
Malaria, mostly due to Plasmodium falciparum infection in Africa, remains one of the most important infectious diseases in the world. Standard treatment for uncomplicated P. falciparum malaria is artemisinin-based combination therapy (ACT), which includes a rapid-acting artemisinin derivative plus a longer-acting partner drug, and standard therapy for severe P. falciparum malaria is intravenous artesunate. The efficacy of artemisinins and ACT has been threatened by the emergence of artemisinin partial resistance in Southeast Asia, mediated principally by mutations in the P. falciparum Kelch 13 (K13) protein. High ACT treatment failure rates have occurred when resistance to partner drugs is also seen. Recently, artemisinin partial resistance has emerged in Rwanda, Uganda and the Horn of Africa, with independent emergences of different K13 mutants in each region. In this Review, we summarize our current knowledge of artemisinin partial resistance and focus on the emergence of resistance in Africa, including its epidemiology, transmission dynamics and mechanisms. At present, the clinical impact of emerging resistance in Africa is unclear and most available evidence suggests that the efficacies of leading ACTs remain excellent, but there is an urgent need to better appreciate the extent of the problem and its consequences for the treatment and control of malaria.
Collapse
Affiliation(s)
| | - Victor Asua
- Infectious Diseases Research Collaboration, Kampala, Uganda
- University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
30
|
Amador LA, Colón-Lorenzo EE, Rodríguez AD, Serrano AE. Probing the Antiplasmodial Properties of Plakortinic Acids C and D: An Uncommon Pair of Marine Peroxide-Polyketides Isolated from a Two-Sponge Association of Plakortis symbiotica and Xetospongia deweerdtae Collected near Puerto Rico. Life (Basel) 2024; 14:684. [PMID: 38929667 PMCID: PMC11204963 DOI: 10.3390/life14060684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Plakortinic acids C (1) and D (2), an unseparable pair of endoperoxide polyketides isolated and purified from the symbiotic association of Caribbean Sea sponges Plakortis symbiotica-Xestospongia deweerdtae, underwent in vitro evaluation for antiplasmodial activity against the malaria parasite Plasmodium berghei using a drug luminescence assay. Initial screening at 10 µM revealed 50% in vitro parasite growth inhibition. The title compounds displayed antiplasmodial activity with an EC50 of 5.3 µM toward P. berghei parasites. The lytic activity against erythrocytes was assessed through an erythrocyte cell lysis assay, which showed non-lytic activity at lower concentrations ranging from 1.95 to 3.91 µM. The antiplasmodial activity and the absence of hemolytic activity support the potential of plakortinic acids C (1) and D (2) as promising lead compounds. Moreover, drug-likeness (ADMET) properties assessed through the pkCSM server predicted high intestinal absorption, hepatic metabolism, and volume of distribution, indicating favorable pharmacokinetic profiles for oral administration. These findings suggest the potential suitability of these metabolites for further investigations of antiplasmodial activity in multiple parasitic stages in the mosquito and Plasmodium falciparum. Notably, this study represents the first report of a marine natural product exhibiting the unique 7,8-dioxatricyclo[4.2.2.02,5]dec-9-ene motif being evaluated against malaria.
Collapse
Affiliation(s)
- Luis A. Amador
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce de León Avenue, San Juan 00926, Puerto Rico;
| | - Emilee E. Colón-Lorenzo
- Department of Microbiology and Medical Zoology, University of Puerto Rico School of Medicine, San Juan 00921, Puerto Rico;
| | - Abimael D. Rodríguez
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce de León Avenue, San Juan 00926, Puerto Rico;
| | - Adelfa E. Serrano
- Department of Microbiology and Medical Zoology, University of Puerto Rico School of Medicine, San Juan 00921, Puerto Rico;
| |
Collapse
|
31
|
Schreidah C, Giesbrecht D, Gashema P, Young NW, Munyaneza T, Muvunyi CM, Thwai K, Mazarati JB, Bailey JA, Juliano JJ, Karema C. Expansion of artemisinin partial resistance mutations and lack of histidine rich protein-2 and -3 deletions in Plasmodium falciparum infections from Rukara, Rwanda. Malar J 2024; 23:150. [PMID: 38755607 PMCID: PMC11100144 DOI: 10.1186/s12936-024-04981-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 05/10/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Emerging artemisinin partial resistance and diagnostic resistance are a threat to malaria control in Africa. Plasmodium falciparum kelch13 (k13) propeller-domain mutations that confer artemisinin partial resistance have emerged in Africa. k13-561H was initially described at a frequency of 7.4% from Masaka in 2014-2015, but not present in nearby Rukara. By 2018, 19.6% of isolates in Masaka and 22% of isolates in Rukara contained the mutation. Longitudinal monitoring is essential to inform control efforts. In Rukara, an assessment was conducted to evaluate recent k13-561H prevalence changes, as well as other key mutations. Prevalence of hrp2/3 deletions was also assessed. METHODS Samples collected in Rukara in 2021 were genotyped for key artemisinin and partner drug resistance mutations using molecular inversion probe assays and for hrp2/3 deletions using qPCR. RESULTS Clinically validated k13 artemisinin partial resistance mutations continue to increase in prevalence with the overall level of mutant infections reaching 32% in Rwanda. The increase appears to be due to the rapid emergence of k13-675V (6.4%, 6/94 infections), previously not observed, rather than continued expansion of 561H (23.5% 20/85). Mutations to partner drugs and other anti-malarials were variable, with high levels of multidrug resistance 1 (mdr1) N86 (95.5%) associated with lumefantrine decreased susceptibility and dihydrofolate reductase (dhfr) 164L (24.7%) associated with a high level of antifolate resistance, but low levels of amodiaquine resistance polymorphisms with chloroquine resistance transporter (crt) 76T: at 6.1% prevalence. No hrp2 or hrp3 gene deletions associated with diagnostic resistance were found. CONCLUSIONS Increasing prevalence of artemisinin partial resistance due to k13-561H and the rapid expansion of k13-675V is concerning for the longevity of artemisinin effectiveness in the region. False negative RDT results do not appear to be an issue with no hrp2 or hpr3 deletions detected. Continued molecular surveillance in this region and surrounding areas is needed to follow artemisinin partial resistance and provide early detection of partner drug resistance, which would likely compromise control and increase malaria morbidity and mortality in East Africa.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kyaw Thwai
- University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | | | | | - Jonathan J Juliano
- University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Corine Karema
- Quality Equity Health Care, Kigali, Rwanda
- Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland
| |
Collapse
|
32
|
Goodwin J, Kajubi R, Wang K, Li F, Wade M, Orukan F, Huang L, Whalen M, Aweeka FT, Mwebaza N, Parikh S. Persistent and multiclonal malaria parasite dynamics despite extended artemether-lumefantrine treatment in children. Nat Commun 2024; 15:3817. [PMID: 38714692 PMCID: PMC11076639 DOI: 10.1038/s41467-024-48210-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/24/2024] [Indexed: 05/10/2024] Open
Abstract
Standard diagnostics used in longitudinal antimalarial studies are unable to characterize the complexity of submicroscopic parasite dynamics, particularly in high transmission settings. We use molecular markers and amplicon sequencing to characterize post-treatment stage-specific malaria parasite dynamics during a 42 day randomized trial of 3- versus 5 day artemether-lumefantrine in 303 children with and without HIV (ClinicalTrials.gov number NCT03453840). The prevalence of parasite-derived 18S rRNA is >70% in children throughout follow-up, and the ring-stage marker SBP1 is detectable in over 15% of children on day 14 despite effective treatment. We find that the extended regimen significantly lowers the risk of recurrent ring-stage parasitemia compared to the standard 3 day regimen, and that higher day 7 lumefantrine concentrations decrease the probability of ring-stage parasites in the early post-treatment period. Longitudinal amplicon sequencing reveals remarkably dynamic patterns of multiclonal infections that include new and persistent clones in both the early post-treatment and later time periods. Our data indicate that post-treatment parasite dynamics are highly complex despite efficacious therapy, findings that will inform strategies to optimize regimens in the face of emerging partial artemisinin resistance in Africa.
Collapse
Affiliation(s)
- Justin Goodwin
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Yale School of Medicine, New Haven, CT, USA
| | - Richard Kajubi
- Infectious Disease Research Collaboration, Kampala, Uganda
| | - Kaicheng Wang
- Yale Center for Analytical Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Fangyong Li
- Yale Center for Analytical Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Martina Wade
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Francis Orukan
- Infectious Disease Research Collaboration, Kampala, Uganda
| | - Liusheng Huang
- University of California, San Francisco, San Francisco, CA, USA
| | - Meghan Whalen
- University of California, San Francisco, San Francisco, CA, USA
| | | | - Norah Mwebaza
- Infectious Disease Research Collaboration, Kampala, Uganda
- Department of Pharmacology and Therapeutics, Makerere University College of Health Sciences, Kampala, Uganda
| | - Sunil Parikh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.
- Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
33
|
Kayentao K, Ongoiba A, Preston AC, Healy SA, Hu Z, Skinner J, Doumbo S, Wang J, Cisse H, Doumtabe D, Traore A, Traore H, Djiguiba A, Li S, Peterson ME, Telscher S, Idris AH, Adams WC, McDermott AB, Narpala S, Lin BC, Serebryannyy L, Hickman SP, McDougal AJ, Vazquez S, Reiber M, Stein JA, Gall JG, Carlton K, Schwabl P, Traore S, Keita M, Zéguimé A, Ouattara A, Doucoure M, Dolo A, Murphy SC, Neafsey DE, Portugal S, Djimdé A, Traore B, Seder RA, Crompton PD. Subcutaneous Administration of a Monoclonal Antibody to Prevent Malaria. N Engl J Med 2024; 390:1549-1559. [PMID: 38669354 PMCID: PMC11238904 DOI: 10.1056/nejmoa2312775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
BACKGROUND Subcutaneous administration of the monoclonal antibody L9LS protected adults against controlled Plasmodium falciparum infection in a phase 1 trial. Whether a monoclonal antibody administered subcutaneously can protect children from P. falciparum infection in a region where this organism is endemic is unclear. METHODS We conducted a phase 2 trial in Mali to assess the safety and efficacy of subcutaneous administration of L9LS in children 6 to 10 years of age over a 6-month malaria season. In part A of the trial, safety was assessed at three dose levels in adults, followed by assessment at two dose levels in children. In part B of the trial, children were randomly assigned, in a 1:1:1 ratio, to receive 150 mg of L9LS, 300 mg of L9LS, or placebo. The primary efficacy end point, assessed in a time-to-event analysis, was the first P. falciparum infection, as detected on blood smear performed at least every 2 weeks for 24 weeks. A secondary efficacy end point was the first episode of clinical malaria, as assessed in a time-to-event analysis. RESULTS No safety concerns were identified in the dose-escalation part of the trial (part A). In part B, 225 children underwent randomization, with 75 children assigned to each group. No safety concerns were identified in part B. P. falciparum infection occurred in 36 participants (48%) in the 150-mg group, in 30 (40%) in the 300-mg group, and in 61 (81%) in the placebo group. The efficacy of L9LS against P. falciparum infection, as compared with placebo, was 66% (adjusted confidence interval [95% CI], 45 to 79) with the 150-mg dose and 70% (adjusted 95% CI, 50 to 82) with the 300-mg dose (P<0.001 for both comparisons). Efficacy against clinical malaria was 67% (adjusted 95% CI, 39 to 82) with the 150-mg dose and 77% (adjusted 95% CI, 55 to 89) with the 300-mg dose (P<0.001 for both comparisons). CONCLUSIONS Subcutaneous administration of L9LS to children was protective against P. falciparum infection and clinical malaria over a period of 6 months. (Funded by the National Institute of Allergy and Infectious Diseases; ClinicalTrials.gov number, NCT05304611.).
Collapse
MESH Headings
- Adult
- Child
- Female
- Humans
- Male
- Dose-Response Relationship, Drug
- Double-Blind Method
- Endemic Diseases/prevention & control
- Injections, Subcutaneous
- Kaplan-Meier Estimate
- Malaria, Falciparum/drug therapy
- Malaria, Falciparum/epidemiology
- Malaria, Falciparum/prevention & control
- Mali/epidemiology
- Plasmodium falciparum
- Treatment Outcome
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/therapeutic use
- Directly Observed Therapy
- Artemether, Lumefantrine Drug Combination/administration & dosage
- Artemether, Lumefantrine Drug Combination/therapeutic use
- Young Adult
- Middle Aged
Collapse
Affiliation(s)
- Kassoum Kayentao
- From the Malaria Research and Training Center, Mali International Center of Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., J.S., H.C., S.L., M.E.P., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, the Vaccine Research Center (S. Telscher, A.H.I., W.C.A., A.B.M., S.N., B.C.L., L.S., S.P.H., A.J.M., S.V., M.R., J.A.S., J.G.G., K.C., R.A.S.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, and the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick (J.W.) - all in Maryland; the Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston (P.S., D.E.N.); the Malaria Molecular Diagnostic Laboratory, Department of Laboratory Medicine and Pathology, and the Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle (S.C.M.); and the Max Planck Institute for Infection Biology, Berlin (S.P.)
| | - Aissata Ongoiba
- From the Malaria Research and Training Center, Mali International Center of Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., J.S., H.C., S.L., M.E.P., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, the Vaccine Research Center (S. Telscher, A.H.I., W.C.A., A.B.M., S.N., B.C.L., L.S., S.P.H., A.J.M., S.V., M.R., J.A.S., J.G.G., K.C., R.A.S.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, and the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick (J.W.) - all in Maryland; the Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston (P.S., D.E.N.); the Malaria Molecular Diagnostic Laboratory, Department of Laboratory Medicine and Pathology, and the Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle (S.C.M.); and the Max Planck Institute for Infection Biology, Berlin (S.P.)
| | - Anne C Preston
- From the Malaria Research and Training Center, Mali International Center of Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., J.S., H.C., S.L., M.E.P., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, the Vaccine Research Center (S. Telscher, A.H.I., W.C.A., A.B.M., S.N., B.C.L., L.S., S.P.H., A.J.M., S.V., M.R., J.A.S., J.G.G., K.C., R.A.S.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, and the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick (J.W.) - all in Maryland; the Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston (P.S., D.E.N.); the Malaria Molecular Diagnostic Laboratory, Department of Laboratory Medicine and Pathology, and the Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle (S.C.M.); and the Max Planck Institute for Infection Biology, Berlin (S.P.)
| | - Sara A Healy
- From the Malaria Research and Training Center, Mali International Center of Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., J.S., H.C., S.L., M.E.P., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, the Vaccine Research Center (S. Telscher, A.H.I., W.C.A., A.B.M., S.N., B.C.L., L.S., S.P.H., A.J.M., S.V., M.R., J.A.S., J.G.G., K.C., R.A.S.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, and the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick (J.W.) - all in Maryland; the Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston (P.S., D.E.N.); the Malaria Molecular Diagnostic Laboratory, Department of Laboratory Medicine and Pathology, and the Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle (S.C.M.); and the Max Planck Institute for Infection Biology, Berlin (S.P.)
| | - Zonghui Hu
- From the Malaria Research and Training Center, Mali International Center of Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., J.S., H.C., S.L., M.E.P., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, the Vaccine Research Center (S. Telscher, A.H.I., W.C.A., A.B.M., S.N., B.C.L., L.S., S.P.H., A.J.M., S.V., M.R., J.A.S., J.G.G., K.C., R.A.S.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, and the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick (J.W.) - all in Maryland; the Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston (P.S., D.E.N.); the Malaria Molecular Diagnostic Laboratory, Department of Laboratory Medicine and Pathology, and the Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle (S.C.M.); and the Max Planck Institute for Infection Biology, Berlin (S.P.)
| | - Jeff Skinner
- From the Malaria Research and Training Center, Mali International Center of Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., J.S., H.C., S.L., M.E.P., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, the Vaccine Research Center (S. Telscher, A.H.I., W.C.A., A.B.M., S.N., B.C.L., L.S., S.P.H., A.J.M., S.V., M.R., J.A.S., J.G.G., K.C., R.A.S.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, and the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick (J.W.) - all in Maryland; the Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston (P.S., D.E.N.); the Malaria Molecular Diagnostic Laboratory, Department of Laboratory Medicine and Pathology, and the Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle (S.C.M.); and the Max Planck Institute for Infection Biology, Berlin (S.P.)
| | - Safiatou Doumbo
- From the Malaria Research and Training Center, Mali International Center of Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., J.S., H.C., S.L., M.E.P., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, the Vaccine Research Center (S. Telscher, A.H.I., W.C.A., A.B.M., S.N., B.C.L., L.S., S.P.H., A.J.M., S.V., M.R., J.A.S., J.G.G., K.C., R.A.S.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, and the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick (J.W.) - all in Maryland; the Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston (P.S., D.E.N.); the Malaria Molecular Diagnostic Laboratory, Department of Laboratory Medicine and Pathology, and the Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle (S.C.M.); and the Max Planck Institute for Infection Biology, Berlin (S.P.)
| | - Jing Wang
- From the Malaria Research and Training Center, Mali International Center of Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., J.S., H.C., S.L., M.E.P., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, the Vaccine Research Center (S. Telscher, A.H.I., W.C.A., A.B.M., S.N., B.C.L., L.S., S.P.H., A.J.M., S.V., M.R., J.A.S., J.G.G., K.C., R.A.S.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, and the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick (J.W.) - all in Maryland; the Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston (P.S., D.E.N.); the Malaria Molecular Diagnostic Laboratory, Department of Laboratory Medicine and Pathology, and the Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle (S.C.M.); and the Max Planck Institute for Infection Biology, Berlin (S.P.)
| | - Hamidou Cisse
- From the Malaria Research and Training Center, Mali International Center of Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., J.S., H.C., S.L., M.E.P., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, the Vaccine Research Center (S. Telscher, A.H.I., W.C.A., A.B.M., S.N., B.C.L., L.S., S.P.H., A.J.M., S.V., M.R., J.A.S., J.G.G., K.C., R.A.S.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, and the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick (J.W.) - all in Maryland; the Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston (P.S., D.E.N.); the Malaria Molecular Diagnostic Laboratory, Department of Laboratory Medicine and Pathology, and the Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle (S.C.M.); and the Max Planck Institute for Infection Biology, Berlin (S.P.)
| | - Didier Doumtabe
- From the Malaria Research and Training Center, Mali International Center of Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., J.S., H.C., S.L., M.E.P., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, the Vaccine Research Center (S. Telscher, A.H.I., W.C.A., A.B.M., S.N., B.C.L., L.S., S.P.H., A.J.M., S.V., M.R., J.A.S., J.G.G., K.C., R.A.S.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, and the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick (J.W.) - all in Maryland; the Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston (P.S., D.E.N.); the Malaria Molecular Diagnostic Laboratory, Department of Laboratory Medicine and Pathology, and the Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle (S.C.M.); and the Max Planck Institute for Infection Biology, Berlin (S.P.)
| | - Abdrahamane Traore
- From the Malaria Research and Training Center, Mali International Center of Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., J.S., H.C., S.L., M.E.P., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, the Vaccine Research Center (S. Telscher, A.H.I., W.C.A., A.B.M., S.N., B.C.L., L.S., S.P.H., A.J.M., S.V., M.R., J.A.S., J.G.G., K.C., R.A.S.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, and the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick (J.W.) - all in Maryland; the Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston (P.S., D.E.N.); the Malaria Molecular Diagnostic Laboratory, Department of Laboratory Medicine and Pathology, and the Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle (S.C.M.); and the Max Planck Institute for Infection Biology, Berlin (S.P.)
| | - Hamadi Traore
- From the Malaria Research and Training Center, Mali International Center of Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., J.S., H.C., S.L., M.E.P., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, the Vaccine Research Center (S. Telscher, A.H.I., W.C.A., A.B.M., S.N., B.C.L., L.S., S.P.H., A.J.M., S.V., M.R., J.A.S., J.G.G., K.C., R.A.S.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, and the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick (J.W.) - all in Maryland; the Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston (P.S., D.E.N.); the Malaria Molecular Diagnostic Laboratory, Department of Laboratory Medicine and Pathology, and the Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle (S.C.M.); and the Max Planck Institute for Infection Biology, Berlin (S.P.)
| | - Adama Djiguiba
- From the Malaria Research and Training Center, Mali International Center of Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., J.S., H.C., S.L., M.E.P., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, the Vaccine Research Center (S. Telscher, A.H.I., W.C.A., A.B.M., S.N., B.C.L., L.S., S.P.H., A.J.M., S.V., M.R., J.A.S., J.G.G., K.C., R.A.S.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, and the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick (J.W.) - all in Maryland; the Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston (P.S., D.E.N.); the Malaria Molecular Diagnostic Laboratory, Department of Laboratory Medicine and Pathology, and the Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle (S.C.M.); and the Max Planck Institute for Infection Biology, Berlin (S.P.)
| | - Shanping Li
- From the Malaria Research and Training Center, Mali International Center of Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., J.S., H.C., S.L., M.E.P., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, the Vaccine Research Center (S. Telscher, A.H.I., W.C.A., A.B.M., S.N., B.C.L., L.S., S.P.H., A.J.M., S.V., M.R., J.A.S., J.G.G., K.C., R.A.S.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, and the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick (J.W.) - all in Maryland; the Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston (P.S., D.E.N.); the Malaria Molecular Diagnostic Laboratory, Department of Laboratory Medicine and Pathology, and the Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle (S.C.M.); and the Max Planck Institute for Infection Biology, Berlin (S.P.)
| | - Mary E Peterson
- From the Malaria Research and Training Center, Mali International Center of Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., J.S., H.C., S.L., M.E.P., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, the Vaccine Research Center (S. Telscher, A.H.I., W.C.A., A.B.M., S.N., B.C.L., L.S., S.P.H., A.J.M., S.V., M.R., J.A.S., J.G.G., K.C., R.A.S.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, and the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick (J.W.) - all in Maryland; the Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston (P.S., D.E.N.); the Malaria Molecular Diagnostic Laboratory, Department of Laboratory Medicine and Pathology, and the Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle (S.C.M.); and the Max Planck Institute for Infection Biology, Berlin (S.P.)
| | - Shinyi Telscher
- From the Malaria Research and Training Center, Mali International Center of Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., J.S., H.C., S.L., M.E.P., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, the Vaccine Research Center (S. Telscher, A.H.I., W.C.A., A.B.M., S.N., B.C.L., L.S., S.P.H., A.J.M., S.V., M.R., J.A.S., J.G.G., K.C., R.A.S.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, and the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick (J.W.) - all in Maryland; the Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston (P.S., D.E.N.); the Malaria Molecular Diagnostic Laboratory, Department of Laboratory Medicine and Pathology, and the Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle (S.C.M.); and the Max Planck Institute for Infection Biology, Berlin (S.P.)
| | - Azza H Idris
- From the Malaria Research and Training Center, Mali International Center of Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., J.S., H.C., S.L., M.E.P., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, the Vaccine Research Center (S. Telscher, A.H.I., W.C.A., A.B.M., S.N., B.C.L., L.S., S.P.H., A.J.M., S.V., M.R., J.A.S., J.G.G., K.C., R.A.S.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, and the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick (J.W.) - all in Maryland; the Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston (P.S., D.E.N.); the Malaria Molecular Diagnostic Laboratory, Department of Laboratory Medicine and Pathology, and the Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle (S.C.M.); and the Max Planck Institute for Infection Biology, Berlin (S.P.)
| | - William C Adams
- From the Malaria Research and Training Center, Mali International Center of Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., J.S., H.C., S.L., M.E.P., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, the Vaccine Research Center (S. Telscher, A.H.I., W.C.A., A.B.M., S.N., B.C.L., L.S., S.P.H., A.J.M., S.V., M.R., J.A.S., J.G.G., K.C., R.A.S.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, and the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick (J.W.) - all in Maryland; the Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston (P.S., D.E.N.); the Malaria Molecular Diagnostic Laboratory, Department of Laboratory Medicine and Pathology, and the Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle (S.C.M.); and the Max Planck Institute for Infection Biology, Berlin (S.P.)
| | - Adrian B McDermott
- From the Malaria Research and Training Center, Mali International Center of Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., J.S., H.C., S.L., M.E.P., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, the Vaccine Research Center (S. Telscher, A.H.I., W.C.A., A.B.M., S.N., B.C.L., L.S., S.P.H., A.J.M., S.V., M.R., J.A.S., J.G.G., K.C., R.A.S.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, and the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick (J.W.) - all in Maryland; the Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston (P.S., D.E.N.); the Malaria Molecular Diagnostic Laboratory, Department of Laboratory Medicine and Pathology, and the Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle (S.C.M.); and the Max Planck Institute for Infection Biology, Berlin (S.P.)
| | - Sandeep Narpala
- From the Malaria Research and Training Center, Mali International Center of Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., J.S., H.C., S.L., M.E.P., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, the Vaccine Research Center (S. Telscher, A.H.I., W.C.A., A.B.M., S.N., B.C.L., L.S., S.P.H., A.J.M., S.V., M.R., J.A.S., J.G.G., K.C., R.A.S.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, and the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick (J.W.) - all in Maryland; the Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston (P.S., D.E.N.); the Malaria Molecular Diagnostic Laboratory, Department of Laboratory Medicine and Pathology, and the Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle (S.C.M.); and the Max Planck Institute for Infection Biology, Berlin (S.P.)
| | - Bob C Lin
- From the Malaria Research and Training Center, Mali International Center of Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., J.S., H.C., S.L., M.E.P., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, the Vaccine Research Center (S. Telscher, A.H.I., W.C.A., A.B.M., S.N., B.C.L., L.S., S.P.H., A.J.M., S.V., M.R., J.A.S., J.G.G., K.C., R.A.S.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, and the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick (J.W.) - all in Maryland; the Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston (P.S., D.E.N.); the Malaria Molecular Diagnostic Laboratory, Department of Laboratory Medicine and Pathology, and the Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle (S.C.M.); and the Max Planck Institute for Infection Biology, Berlin (S.P.)
| | - Leonid Serebryannyy
- From the Malaria Research and Training Center, Mali International Center of Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., J.S., H.C., S.L., M.E.P., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, the Vaccine Research Center (S. Telscher, A.H.I., W.C.A., A.B.M., S.N., B.C.L., L.S., S.P.H., A.J.M., S.V., M.R., J.A.S., J.G.G., K.C., R.A.S.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, and the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick (J.W.) - all in Maryland; the Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston (P.S., D.E.N.); the Malaria Molecular Diagnostic Laboratory, Department of Laboratory Medicine and Pathology, and the Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle (S.C.M.); and the Max Planck Institute for Infection Biology, Berlin (S.P.)
| | - Somia P Hickman
- From the Malaria Research and Training Center, Mali International Center of Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., J.S., H.C., S.L., M.E.P., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, the Vaccine Research Center (S. Telscher, A.H.I., W.C.A., A.B.M., S.N., B.C.L., L.S., S.P.H., A.J.M., S.V., M.R., J.A.S., J.G.G., K.C., R.A.S.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, and the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick (J.W.) - all in Maryland; the Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston (P.S., D.E.N.); the Malaria Molecular Diagnostic Laboratory, Department of Laboratory Medicine and Pathology, and the Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle (S.C.M.); and the Max Planck Institute for Infection Biology, Berlin (S.P.)
| | - Andrew J McDougal
- From the Malaria Research and Training Center, Mali International Center of Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., J.S., H.C., S.L., M.E.P., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, the Vaccine Research Center (S. Telscher, A.H.I., W.C.A., A.B.M., S.N., B.C.L., L.S., S.P.H., A.J.M., S.V., M.R., J.A.S., J.G.G., K.C., R.A.S.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, and the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick (J.W.) - all in Maryland; the Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston (P.S., D.E.N.); the Malaria Molecular Diagnostic Laboratory, Department of Laboratory Medicine and Pathology, and the Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle (S.C.M.); and the Max Planck Institute for Infection Biology, Berlin (S.P.)
| | - Sandra Vazquez
- From the Malaria Research and Training Center, Mali International Center of Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., J.S., H.C., S.L., M.E.P., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, the Vaccine Research Center (S. Telscher, A.H.I., W.C.A., A.B.M., S.N., B.C.L., L.S., S.P.H., A.J.M., S.V., M.R., J.A.S., J.G.G., K.C., R.A.S.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, and the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick (J.W.) - all in Maryland; the Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston (P.S., D.E.N.); the Malaria Molecular Diagnostic Laboratory, Department of Laboratory Medicine and Pathology, and the Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle (S.C.M.); and the Max Planck Institute for Infection Biology, Berlin (S.P.)
| | - Matthew Reiber
- From the Malaria Research and Training Center, Mali International Center of Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., J.S., H.C., S.L., M.E.P., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, the Vaccine Research Center (S. Telscher, A.H.I., W.C.A., A.B.M., S.N., B.C.L., L.S., S.P.H., A.J.M., S.V., M.R., J.A.S., J.G.G., K.C., R.A.S.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, and the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick (J.W.) - all in Maryland; the Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston (P.S., D.E.N.); the Malaria Molecular Diagnostic Laboratory, Department of Laboratory Medicine and Pathology, and the Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle (S.C.M.); and the Max Planck Institute for Infection Biology, Berlin (S.P.)
| | - Judy A Stein
- From the Malaria Research and Training Center, Mali International Center of Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., J.S., H.C., S.L., M.E.P., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, the Vaccine Research Center (S. Telscher, A.H.I., W.C.A., A.B.M., S.N., B.C.L., L.S., S.P.H., A.J.M., S.V., M.R., J.A.S., J.G.G., K.C., R.A.S.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, and the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick (J.W.) - all in Maryland; the Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston (P.S., D.E.N.); the Malaria Molecular Diagnostic Laboratory, Department of Laboratory Medicine and Pathology, and the Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle (S.C.M.); and the Max Planck Institute for Infection Biology, Berlin (S.P.)
| | - Jason G Gall
- From the Malaria Research and Training Center, Mali International Center of Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., J.S., H.C., S.L., M.E.P., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, the Vaccine Research Center (S. Telscher, A.H.I., W.C.A., A.B.M., S.N., B.C.L., L.S., S.P.H., A.J.M., S.V., M.R., J.A.S., J.G.G., K.C., R.A.S.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, and the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick (J.W.) - all in Maryland; the Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston (P.S., D.E.N.); the Malaria Molecular Diagnostic Laboratory, Department of Laboratory Medicine and Pathology, and the Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle (S.C.M.); and the Max Planck Institute for Infection Biology, Berlin (S.P.)
| | - Kevin Carlton
- From the Malaria Research and Training Center, Mali International Center of Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., J.S., H.C., S.L., M.E.P., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, the Vaccine Research Center (S. Telscher, A.H.I., W.C.A., A.B.M., S.N., B.C.L., L.S., S.P.H., A.J.M., S.V., M.R., J.A.S., J.G.G., K.C., R.A.S.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, and the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick (J.W.) - all in Maryland; the Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston (P.S., D.E.N.); the Malaria Molecular Diagnostic Laboratory, Department of Laboratory Medicine and Pathology, and the Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle (S.C.M.); and the Max Planck Institute for Infection Biology, Berlin (S.P.)
| | - Philipp Schwabl
- From the Malaria Research and Training Center, Mali International Center of Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., J.S., H.C., S.L., M.E.P., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, the Vaccine Research Center (S. Telscher, A.H.I., W.C.A., A.B.M., S.N., B.C.L., L.S., S.P.H., A.J.M., S.V., M.R., J.A.S., J.G.G., K.C., R.A.S.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, and the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick (J.W.) - all in Maryland; the Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston (P.S., D.E.N.); the Malaria Molecular Diagnostic Laboratory, Department of Laboratory Medicine and Pathology, and the Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle (S.C.M.); and the Max Planck Institute for Infection Biology, Berlin (S.P.)
| | - Siriman Traore
- From the Malaria Research and Training Center, Mali International Center of Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., J.S., H.C., S.L., M.E.P., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, the Vaccine Research Center (S. Telscher, A.H.I., W.C.A., A.B.M., S.N., B.C.L., L.S., S.P.H., A.J.M., S.V., M.R., J.A.S., J.G.G., K.C., R.A.S.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, and the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick (J.W.) - all in Maryland; the Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston (P.S., D.E.N.); the Malaria Molecular Diagnostic Laboratory, Department of Laboratory Medicine and Pathology, and the Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle (S.C.M.); and the Max Planck Institute for Infection Biology, Berlin (S.P.)
| | - Mamadou Keita
- From the Malaria Research and Training Center, Mali International Center of Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., J.S., H.C., S.L., M.E.P., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, the Vaccine Research Center (S. Telscher, A.H.I., W.C.A., A.B.M., S.N., B.C.L., L.S., S.P.H., A.J.M., S.V., M.R., J.A.S., J.G.G., K.C., R.A.S.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, and the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick (J.W.) - all in Maryland; the Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston (P.S., D.E.N.); the Malaria Molecular Diagnostic Laboratory, Department of Laboratory Medicine and Pathology, and the Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle (S.C.M.); and the Max Planck Institute for Infection Biology, Berlin (S.P.)
| | - Amatigué Zéguimé
- From the Malaria Research and Training Center, Mali International Center of Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., J.S., H.C., S.L., M.E.P., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, the Vaccine Research Center (S. Telscher, A.H.I., W.C.A., A.B.M., S.N., B.C.L., L.S., S.P.H., A.J.M., S.V., M.R., J.A.S., J.G.G., K.C., R.A.S.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, and the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick (J.W.) - all in Maryland; the Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston (P.S., D.E.N.); the Malaria Molecular Diagnostic Laboratory, Department of Laboratory Medicine and Pathology, and the Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle (S.C.M.); and the Max Planck Institute for Infection Biology, Berlin (S.P.)
| | - Adama Ouattara
- From the Malaria Research and Training Center, Mali International Center of Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., J.S., H.C., S.L., M.E.P., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, the Vaccine Research Center (S. Telscher, A.H.I., W.C.A., A.B.M., S.N., B.C.L., L.S., S.P.H., A.J.M., S.V., M.R., J.A.S., J.G.G., K.C., R.A.S.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, and the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick (J.W.) - all in Maryland; the Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston (P.S., D.E.N.); the Malaria Molecular Diagnostic Laboratory, Department of Laboratory Medicine and Pathology, and the Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle (S.C.M.); and the Max Planck Institute for Infection Biology, Berlin (S.P.)
| | - M'Bouye Doucoure
- From the Malaria Research and Training Center, Mali International Center of Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., J.S., H.C., S.L., M.E.P., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, the Vaccine Research Center (S. Telscher, A.H.I., W.C.A., A.B.M., S.N., B.C.L., L.S., S.P.H., A.J.M., S.V., M.R., J.A.S., J.G.G., K.C., R.A.S.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, and the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick (J.W.) - all in Maryland; the Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston (P.S., D.E.N.); the Malaria Molecular Diagnostic Laboratory, Department of Laboratory Medicine and Pathology, and the Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle (S.C.M.); and the Max Planck Institute for Infection Biology, Berlin (S.P.)
| | - Amagana Dolo
- From the Malaria Research and Training Center, Mali International Center of Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., J.S., H.C., S.L., M.E.P., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, the Vaccine Research Center (S. Telscher, A.H.I., W.C.A., A.B.M., S.N., B.C.L., L.S., S.P.H., A.J.M., S.V., M.R., J.A.S., J.G.G., K.C., R.A.S.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, and the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick (J.W.) - all in Maryland; the Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston (P.S., D.E.N.); the Malaria Molecular Diagnostic Laboratory, Department of Laboratory Medicine and Pathology, and the Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle (S.C.M.); and the Max Planck Institute for Infection Biology, Berlin (S.P.)
| | - Sean C Murphy
- From the Malaria Research and Training Center, Mali International Center of Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., J.S., H.C., S.L., M.E.P., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, the Vaccine Research Center (S. Telscher, A.H.I., W.C.A., A.B.M., S.N., B.C.L., L.S., S.P.H., A.J.M., S.V., M.R., J.A.S., J.G.G., K.C., R.A.S.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, and the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick (J.W.) - all in Maryland; the Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston (P.S., D.E.N.); the Malaria Molecular Diagnostic Laboratory, Department of Laboratory Medicine and Pathology, and the Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle (S.C.M.); and the Max Planck Institute for Infection Biology, Berlin (S.P.)
| | - Daniel E Neafsey
- From the Malaria Research and Training Center, Mali International Center of Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., J.S., H.C., S.L., M.E.P., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, the Vaccine Research Center (S. Telscher, A.H.I., W.C.A., A.B.M., S.N., B.C.L., L.S., S.P.H., A.J.M., S.V., M.R., J.A.S., J.G.G., K.C., R.A.S.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, and the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick (J.W.) - all in Maryland; the Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston (P.S., D.E.N.); the Malaria Molecular Diagnostic Laboratory, Department of Laboratory Medicine and Pathology, and the Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle (S.C.M.); and the Max Planck Institute for Infection Biology, Berlin (S.P.)
| | - Silvia Portugal
- From the Malaria Research and Training Center, Mali International Center of Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., J.S., H.C., S.L., M.E.P., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, the Vaccine Research Center (S. Telscher, A.H.I., W.C.A., A.B.M., S.N., B.C.L., L.S., S.P.H., A.J.M., S.V., M.R., J.A.S., J.G.G., K.C., R.A.S.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, and the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick (J.W.) - all in Maryland; the Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston (P.S., D.E.N.); the Malaria Molecular Diagnostic Laboratory, Department of Laboratory Medicine and Pathology, and the Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle (S.C.M.); and the Max Planck Institute for Infection Biology, Berlin (S.P.)
| | - Abdoulaye Djimdé
- From the Malaria Research and Training Center, Mali International Center of Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., J.S., H.C., S.L., M.E.P., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, the Vaccine Research Center (S. Telscher, A.H.I., W.C.A., A.B.M., S.N., B.C.L., L.S., S.P.H., A.J.M., S.V., M.R., J.A.S., J.G.G., K.C., R.A.S.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, and the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick (J.W.) - all in Maryland; the Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston (P.S., D.E.N.); the Malaria Molecular Diagnostic Laboratory, Department of Laboratory Medicine and Pathology, and the Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle (S.C.M.); and the Max Planck Institute for Infection Biology, Berlin (S.P.)
| | - Boubacar Traore
- From the Malaria Research and Training Center, Mali International Center of Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., J.S., H.C., S.L., M.E.P., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, the Vaccine Research Center (S. Telscher, A.H.I., W.C.A., A.B.M., S.N., B.C.L., L.S., S.P.H., A.J.M., S.V., M.R., J.A.S., J.G.G., K.C., R.A.S.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, and the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick (J.W.) - all in Maryland; the Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston (P.S., D.E.N.); the Malaria Molecular Diagnostic Laboratory, Department of Laboratory Medicine and Pathology, and the Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle (S.C.M.); and the Max Planck Institute for Infection Biology, Berlin (S.P.)
| | - Robert A Seder
- From the Malaria Research and Training Center, Mali International Center of Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., J.S., H.C., S.L., M.E.P., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, the Vaccine Research Center (S. Telscher, A.H.I., W.C.A., A.B.M., S.N., B.C.L., L.S., S.P.H., A.J.M., S.V., M.R., J.A.S., J.G.G., K.C., R.A.S.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, and the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick (J.W.) - all in Maryland; the Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston (P.S., D.E.N.); the Malaria Molecular Diagnostic Laboratory, Department of Laboratory Medicine and Pathology, and the Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle (S.C.M.); and the Max Planck Institute for Infection Biology, Berlin (S.P.)
| | - Peter D Crompton
- From the Malaria Research and Training Center, Mali International Center of Excellence in Research, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali (K.K., A. Ongoiba, S.D., D.D., A.T., H.T., A. Djiguiba, S. Traore, M.K., A.Z., A. Ouattara, M.D., A. Dolo, A. Djimdé, B.T.); the Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, Division of Intramural Research (A.C.P., S.A.H., J.S., H.C., S.L., M.E.P., P.D.C.), and the Biostatistics Research Branch, Division of Clinical Research (Z.H.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, the Vaccine Research Center (S. Telscher, A.H.I., W.C.A., A.B.M., S.N., B.C.L., L.S., S.P.H., A.J.M., S.V., M.R., J.A.S., J.G.G., K.C., R.A.S.), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, and the Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick (J.W.) - all in Maryland; the Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston (P.S., D.E.N.); the Malaria Molecular Diagnostic Laboratory, Department of Laboratory Medicine and Pathology, and the Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle (S.C.M.); and the Max Planck Institute for Infection Biology, Berlin (S.P.)
| |
Collapse
|
34
|
Dunican C, Andradi-Brown C, Ebmeier S, Georgiadou A, Cunnington AJ. The malarial blood transcriptome: translational applications. Biochem Soc Trans 2024; 52:651-660. [PMID: 38421063 PMCID: PMC11088907 DOI: 10.1042/bst20230497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
The blood transcriptome of malaria patients has been used extensively to elucidate the pathophysiological mechanisms and host immune responses to disease, identify candidate diagnostic and prognostic biomarkers, and reveal new therapeutic targets for drug discovery. This review gives a high-level overview of the three main translational applications of these studies (diagnostics, prognostics, and therapeutics) by summarising recent literature and outlining the main limitations and future directions of each application. It highlights the need for consistent and accurate definitions of disease states and subject groups and discusses how prognostic studies must distinguish clearly between analyses that attempt to predict future disease states and those which attempt to discriminate between current disease states (classification). Lastly it examines how many promising therapeutics fail due to the choice of imperfect animal models for pre-clinical testing and lack of appropriate validation studies in humans, and how future transcriptional studies may be utilised to overcome some of these limitations.
Collapse
Affiliation(s)
- Claire Dunican
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, U.K
- Centre for Paediatrics and Child Health, Imperial College London, London, U.K
| | - Clare Andradi-Brown
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, U.K
- Centre for Paediatrics and Child Health, Imperial College London, London, U.K
| | - Stefan Ebmeier
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, U.K
- Centre for Paediatrics and Child Health, Imperial College London, London, U.K
| | - Athina Georgiadou
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, U.K
- Centre for Paediatrics and Child Health, Imperial College London, London, U.K
| | - Aubrey J. Cunnington
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, U.K
- Centre for Paediatrics and Child Health, Imperial College London, London, U.K
| |
Collapse
|
35
|
Kassimu KR, Ali AM, Omolo JJ, Mdemu A, Machumi F, Ngasala B. The effect of an anti-malarial herbal remedy, Maytenus senegalensis, on electrocardiograms of healthy Tanzanian volunteers. Malar J 2024; 23:103. [PMID: 38609987 PMCID: PMC11015626 DOI: 10.1186/s12936-024-04935-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND The emergence of resistance to artemisinin-based combination therapy necessitates the search for new, more potent antiplasmodial compounds, including herbal remedies. The whole extract of Maytenus senegalensis has been scientifically investigated for potential biological activities both in vitro and in vivo, demonstrating strong antimalarial activity. However, there is a lack of data on the electrocardiographic effects of M. senegalensis in humans, which is a crucial aspect in the investigation of malaria treatment. Assessing the electrocardiographic effects of M. senegalensis is essential, as many anti-malarial drugs can inadvertently prolong the QT interval on electrocardiograms. Therefore, the study's objective was to evaluate the electrocardiographic effects of M. senegalensis in healthy adult volunteers. METHODS This study is a secondary analysis of an open-label single-arm dose escalation. Twelve healthy eligible Tanzanian males, aged 18 to 45, were enrolled in four study dose groups. A single 12-lead electrocardiogram (ECG) was performed at baseline and on days 3, 7, 14, 28, and 56. RESULTS No QTcF adverse events occurred with any drug dose. Only one volunteer who received the highest dose (800 mg) of M. senegalensis experienced a moderate transient change (△QTcF > 30 ms; specifically, the value was 37 ms) from baseline on day 28. There was no difference in maximum QTcF and maximum △QTcF between volunteers in all four study dose groups. CONCLUSIONS A four-day regimen of 800 mg every 8 h of M. senegalensis did not impact the electrocardiographic parameters in healthy volunteers. This study suggests that M. senegalensis could be a valuable addition to malaria treatment, providing a safer alternative and potentially aiding in the battle against artemisinin-resistant malaria. The results of this study support both the traditional use and the modern therapeutic potential of M. senegalensis. They also set the stage for future research involving larger and more diverse populations to explore the safety profile of M. senegalensis in different demographic groups. This is especially important considering the potential use of M. senegalensis as a therapeutic agent and its widespread utilization as traditional medicine. Trial registration ClinicalTrials.gov, NCT04944966. Registered 30 June 2021-Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT04944966?term=kamaka&draw=2&rank=1.
Collapse
Affiliation(s)
- Kamaka R Kassimu
- Bagamoyo Clinical Trial Facility, Ifakara Health Institute, 74, Bagamoyo, Tanzania.
- Department of Parasitology, Muhimbili University of Health and Allied Sciences, 65001, Dar es Salaam, Tanzania.
| | - Ali M Ali
- Bagamoyo Clinical Trial Facility, Ifakara Health Institute, 74, Bagamoyo, Tanzania
| | - Justin J Omolo
- Traditional Medicine Research and Development Center, National Institute for Medical Research, 9653, Dar es Salaam, Tanzania
| | - Abel Mdemu
- Traditional Medicine Research and Development Center, National Institute for Medical Research, 9653, Dar es Salaam, Tanzania
| | - Francis Machumi
- Institute of Traditional Medicine, Muhimbili University of Health and Allied Sciences, 65001, Dar es Salaam, Tanzania
| | - Billy Ngasala
- Department of Parasitology, Muhimbili University of Health and Allied Sciences, 65001, Dar es Salaam, Tanzania
| |
Collapse
|
36
|
Somé AF, Conrad MD, Kabré Z, Fofana A, Yerbanga RS, Bazié T, Neya C, Somé M, Kagambega TJ, Legac J, Garg S, Bailey JA, Ouédraogo JB, Rosenthal PJ, Cooper RA. Ex vivo drug susceptibility and resistance mediating genetic polymorphisms of Plasmodium falciparum in Bobo-Dioulasso, Burkina Faso. Antimicrob Agents Chemother 2024; 68:e0153423. [PMID: 38411062 PMCID: PMC10989024 DOI: 10.1128/aac.01534-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/31/2024] [Indexed: 02/28/2024] Open
Abstract
Malaria remains a leading cause of morbidity and mortality in Burkina Faso, which utilizes artemether-lumefantrine as the principal therapy to treat uncomplicated malaria and seasonal malaria chemoprevention with monthly sulfadoxine-pyrimethamine plus amodiaquine in children during the transmission season. Monitoring the activities of available antimalarial drugs is a high priority. We assessed the ex vivo susceptibility of Plasmodium falciparum to 11 drugs in isolates from patients presenting with uncomplicated malaria in Bobo-Dioulasso in 2021 and 2022. IC50 values were derived using a standard 72 h growth inhibition assay. Parasite DNA was sequenced to characterize known drug resistance-mediating polymorphisms. Isolates were generally susceptible, with IC50 values in the low-nM range, to chloroquine (median IC5010 nM, IQR 7.9-24), monodesethylamodiaquine (22, 14-46) piperaquine (6.1, 3.6-9.2), pyronaridine (3.0, 1.3-5.5), quinine (50, 30-75), mefloquine (7.1, 3.7-10), lumefantrine (7.1, 4.5-12), dihydroartemisinin (3.7, 2.2-5.5), and atovaquone (0.2, 0.1-0.3) and mostly resistant to cycloguanil (850, 543-1,290) and pyrimethamine (33,200, 18,400-54,200), although a small number of outliers were seen. Considering genetic markers of resistance to aminoquinolines, most samples had wild-type PfCRT K76T (87%) and PfMDR1 N86Y (95%) sequences. For markers of resistance to antifolates, established PfDHFR and PfDHPS mutations were highly prevalent, the PfDHPS A613S mutation was seen in 19% of samples, and key markers of high-level resistance (PfDHFR I164L; PfDHPS K540E) were absent or rare (A581G). Mutations in the PfK13 propeller domain known to mediate artemisinin partial resistance were not detected. Overall, our results suggest excellent susceptibilities to drugs now used to treat malaria and moderate, but stable, resistance to antifolates used to prevent malaria.
Collapse
Affiliation(s)
- A. Fabrice Somé
- Institut de Recherche en Sciences de la Santé, Direction Régionale de l’Ouest, Bobo-Dioulasso, Burkina Faso
| | - Melissa D. Conrad
- Department of Medicine, University of California, San Francisco, California, USA
| | - Zachari Kabré
- Institut de Recherche en Sciences de la Santé, Direction Régionale de l’Ouest, Bobo-Dioulasso, Burkina Faso
| | - Aminata Fofana
- Institut de Recherche en Sciences de la Santé, Direction Régionale de l’Ouest, Bobo-Dioulasso, Burkina Faso
| | - R. Serge Yerbanga
- Institut de Recherche en Sciences de la Santé, Direction Régionale de l’Ouest, Bobo-Dioulasso, Burkina Faso
- Institut des Sciences et Techniques, Bobo-Dioulasso, Burkina Faso
| | - Thomas Bazié
- Institut de Recherche en Sciences de la Santé, Direction Régionale de l’Ouest, Bobo-Dioulasso, Burkina Faso
| | - Catherine Neya
- Institut de Recherche en Sciences de la Santé, Direction Régionale de l’Ouest, Bobo-Dioulasso, Burkina Faso
| | - Myreille Somé
- Institut de Recherche en Sciences de la Santé, Direction Régionale de l’Ouest, Bobo-Dioulasso, Burkina Faso
| | - Tegawinde Josue Kagambega
- Institut de Recherche en Sciences de la Santé, Direction Régionale de l’Ouest, Bobo-Dioulasso, Burkina Faso
| | - Jenny Legac
- Department of Medicine, University of California, San Francisco, California, USA
| | - Shreeya Garg
- Department of Medicine, University of California, San Francisco, California, USA
| | - Jeffrey A. Bailey
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | | | - Philip J. Rosenthal
- Department of Medicine, University of California, San Francisco, California, USA
| | - Roland A. Cooper
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, California, USA
| |
Collapse
|
37
|
Tandoh KZ, Duah-Quashie NO, Raman J, Ochola-Oyier LI. Editorial: Malaria molecular epidemiology current situation in Africa. FRONTIERS IN EPIDEMIOLOGY 2024; 4:1400612. [PMID: 38633210 PMCID: PMC11021640 DOI: 10.3389/fepid.2024.1400612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/19/2024]
Affiliation(s)
- Kwesi Zandoh Tandoh
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Nancy Odurowah Duah-Quashie
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Jaishree Raman
- Laboratory for Antimalarial Resistance Monitoring and Malaria Operational Research, National Institute of Communicable Diseases (NCID), Johannesburg, South Africa
| | | |
Collapse
|
38
|
Dorkenoo AM, Warsame M, Ataba E, Hemou M, Yakpa K, Sossou E, Mitigmsagou M, Teou CD, Caspar E, Ma L, Djadou KE, Atcha-Oubou T, Rasmussen C, Menard D. Efficacy of artemether-lumefantrine and dihydroartemisinin-piperaquine and prevalence of molecular markers of anti-malarial drug resistance in children in Togo in 2021. Malar J 2024; 23:92. [PMID: 38570791 PMCID: PMC10988893 DOI: 10.1186/s12936-024-04922-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/27/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Artemether-lumefantrine (AL) and dihydroartemisinin-piperaquine (DP) are the currently recommended first- and second-line therapies for uncomplicated Plasmodium falciparum infections in Togo. This study assessed the efficacy of these combinations, the proportion of Day3-positive patients (D3 +), the proportion of molecular markers associated with P. falciparum resistance to anti-malarial drugs, and the variable performance of HRP2-based malaria rapid diagnostic tests (RDTs). METHODS A single arm prospective study evaluating the efficacy of AL and DP was conducted at two sites (Kouvé and Anié) from September 2021 to January 2022. Eligible children were enrolled, randomly assigned to treatment at each site and followed up for 42 days after treatment initiation. The primary endpoint was polymerase chain reaction (PCR) adjusted adequate clinical and parasitological response (ACPR). At day 0, samples were analysed for mutations in the Pfkelch13, Pfcrt, Pfmdr-1, dhfr, dhps, and deletions in the hrp2/hrp3 genes. RESULTS A total of 179 and 178 children were included in the AL and DP groups, respectively. After PCR correction, cure rates of patients treated with AL were 97.5% (91.4-99.7) at day 28 in Kouvé and 98.6% (92.4-100) in Anié, whereas 96.4% (CI 95%: 89.1-98.8) and 97.3% (CI 95%: 89.5-99.3) were observed at day 42 in Kouvé and Anié, respectively. The cure rates of patients treated with DP at day 42 were 98.9% (CI 95%: 92.1-99.8) in Kouvé and 100% in Anié. The proportion of patients with parasites on day 3 (D3 +) was 8.5% in AL and 2.6% in DP groups in Anié and 4.3% in AL and 2.1% DP groups in Kouvé. Of the 357 day 0 samples, 99.2% carried the Pfkelch13 wild-type allele. Two isolates carried nonsynonymous mutations not known to be associated with artemisinin partial resistance (ART-R) (A578S and A557S). Most samples carried the Pfcrt wild-type allele (97.2%). The most common Pfmdr-1 allele was the single mutant 184F (75.6%). Among dhfr/dhps mutations, the quintuple mutant haplotype N51I/C59R/S108N + 437G/540E, which is responsible for SP treatment failure in adults and children, was not detected. Single deletions in hrp2 and hrp3 genes were detected in 1/357 (0.3%) and 1/357 (0.3%), respectively. Dual hrp2/hrp3 deletions, which could affect the performances of HRP2-based RDTs, were not observed. CONCLUSION The results of this study confirm that the AL and DP treatments are highly effective. The absence of the validated Pfkelch13 mutants in the study areas suggests the absence of ART -R, although a significant proportion of D3 + cases were found. The absence of dhfr/dhps quintuple or sextuple mutants (quintuple + 581G) supports the continued use of SP for IPTp during pregnancy and in combination with amodiaquine for seasonal malaria chemoprevention. TRIAL REGISTRATION ACTRN12623000344695.
Collapse
Affiliation(s)
| | - Marian Warsame
- School of Public Health and Community Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Essoham Ataba
- Programme National de Lutte Contre le Paludisme, Lomé, Togo
| | - Manani Hemou
- Service de Pédiatrie, Centre Hospitalier Universitaire Campus, Lomé, Togo
| | - Kossi Yakpa
- Programme National de Lutte Contre le Paludisme, Lomé, Togo
| | - Efoe Sossou
- Service des Laboratoires, Centre Hospitalier Universitaire Sylvanus Olympio Lomé, Lomé, Togo
| | | | | | - Emmanuelle Caspar
- Institute of Parasitology and Tropical Diseases, Université de Strasbourg, UR7292 Dynamics of Host-Pathogen Interactions, 67000, Strasbourg, France
| | - Laurence Ma
- Biomics Platform, C2RT, Institut Pasteur, 75015, Paris, France
| | | | | | | | - Didier Menard
- Institute of Parasitology and Tropical Diseases, Université de Strasbourg, UR7292 Dynamics of Host-Pathogen Interactions, 67000, Strasbourg, France
- Malaria Genetics and Resistance Unit, Institut Pasteur, Université Paris Cité, INSERM U1201, 75015, Paris, France
- Malaria Parasite Biology and Vaccines, Institut Pasteur, Université Paris Cité, 75015, Paris, France
- Laboratory of Parasitology and Medical Mycology, CHU Strasbourg, 67000, Strasbourg, France
| |
Collapse
|
39
|
Platon L, Leroy D, Fidock DA, Ménard D. Drug-induced stress mediates Plasmodium falciparum ring-stage growth arrest and reduces in vitro parasite susceptibility to artemisinin. Microbiol Spectr 2024; 12:e0350023. [PMID: 38363132 PMCID: PMC10986542 DOI: 10.1128/spectrum.03500-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024] Open
Abstract
During blood-stage infection, Plasmodium falciparum parasites are constantly exposed to a range of extracellular stimuli, including host molecules and drugs such as artemisinin derivatives, the mainstay of artemisinin-based combination therapies currently used as first-line treatment worldwide. Partial resistance of P. falciparum to artemisinin has been associated with mutations in the propeller domain of the Pfkelch13 gene, resulting in a fraction of ring stages that are able to survive exposure to artemisinin through a temporary growth arrest. Here, we investigated whether the growth arrest in ring-stage parasites reflects a general response to stress. We mimicked a stressful environment in vitro by exposing parasites to chloroquine or dihydroartemisinin (DHA). We observed that early ring-stage parasites pre-exposed to a stressed culture supernatant exhibited a temporary growth arrest and a reduced susceptibility to DHA, as assessed by the ring-stage survival assay, irrespective of their Pfkelch13 genotype. These data suggest that temporary growth arrest of early ring stages may be a constitutive, Pfkelch13-independent survival mechanism in P. falciparum.IMPORTANCEPlasmodium falciparum ring stages have the ability to sense the extracellular environment, regulate their growth, and enter a temporary growth arrest state in response to adverse conditions such as drug exposure. This temporary growth arrest results in reduced susceptibility to artemisinin in vitro. The signal responsible for this process is thought to be small molecules (less than 3 kDa) released by stressed mature-stage parasites. These data suggest that Pfkelch13-dependent artemisinin resistance and the growth arrest phenotype are two complementary but unrelated mechanisms of ring-stage survival in P. falciparum. This finding provides new insights into the field of P. falciparum antimalarial drug resistance by highlighting the extracellular compartment and cellular communication as an understudied mechanism.
Collapse
Affiliation(s)
- Lucien Platon
- Malaria Genetics and Resistance Unit, INSERM U1201, Institut Pasteur, Université Paris Cité, Paris, France
- Sorbonne Université, Collège Doctoral ED 515 Complexité du Vivant, Paris, France
- Malaria Parasite Biology and Vaccines Unit, Institut Pasteur, Université Paris Cité, Paris, France
- Institute of Parasitology and Tropical Diseases, UR7292 Dynamics of Host–Pathogen Interactions, Université de Strasbourg, Strasbourg, France
| | - Didier Leroy
- Department of Drug Discovery, Medicines for Malaria Venture, Geneva, Switzerland
| | - David A. Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Didier Ménard
- Malaria Genetics and Resistance Unit, INSERM U1201, Institut Pasteur, Université Paris Cité, Paris, France
- Malaria Parasite Biology and Vaccines Unit, Institut Pasteur, Université Paris Cité, Paris, France
- Institute of Parasitology and Tropical Diseases, UR7292 Dynamics of Host–Pathogen Interactions, Université de Strasbourg, Strasbourg, France
- Laboratory of Parasitology and Medical Mycology, CHU Strasbourg, Strasbourg, France
| |
Collapse
|
40
|
Ishengoma DS, Mandara CI, Madebe RA, Warsame M, Ngasala B, Kabanywanyi AM, Mahende MK, Kamugisha E, Kavishe RA, Muro F, Mandike R, Mkude S, Chacky F, Njau R, Martin T, Mohamed A, Bailey JA, Fola AA. Microsatellites reveal high polymorphism and high potential for use in anti-malarial efficacy studies in areas with different transmission intensities in mainland Tanzania. Malar J 2024; 23:79. [PMID: 38491359 PMCID: PMC10943981 DOI: 10.1186/s12936-024-04901-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 03/04/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Tanzania is currently implementing therapeutic efficacy studies (TES) in areas of varying malaria transmission intensities as per the World Health Organization (WHO) recommendations. In TES, distinguishing reinfection from recrudescence is critical for the determination of anti-malarial efficacy. Recently, the WHO recommended genotyping polymorphic coding genes, merozoite surface proteins 1 and 2 (msp1 and msp2), and replacing the glutamate-rich protein (glurp) gene with one of the highly polymorphic microsatellites in Plasmodium falciparum to adjust the efficacy of antimalarials in TES. This study assessed the polymorphisms of six neutral microsatellite markers and their potential use in TES, which is routinely performed in Tanzania. METHODS Plasmodium falciparum samples were obtained from four TES sentinel sites, Kibaha (Pwani), Mkuzi (Tanga), Mlimba (Morogoro) and Ujiji (Kigoma), between April and September 2016. Parasite genomic DNA was extracted from dried blood spots on filter papers using commercial kits. Genotyping was done using six microsatellites (Poly-α, PfPK2, TA1, C3M69, C2M34 and M2490) by capillary method, and the data were analysed to determine the extent of their polymorphisms and genetic diversity at the four sites. RESULTS Overall, 83 (88.3%) of the 94 samples were successfully genotyped (with positive results for ≥ 50.0% of the markers), and > 50.0% of the samples (range = 47.6-59.1%) were polyclonal, with a mean multiplicity of infection (MOI) ranging from 1.68 to 1.88 among the four sites. There was high genetic diversity but limited variability among the four sites based on mean allelic richness (RS = 7.48, range = 7.27-8.03, for an adjusted minimum sample size of 18 per site) and mean expected heterozygosity (He = 0.83, range = 0.80-0.85). Cluster analysis of haplotypes using STRUCTURE, principal component analysis, and pairwise genetic differentiation (FST) did not reveal population structure or clustering of parasites according to geographic origin. Of the six markers, Poly-α was the most polymorphic, followed by C2M34, TA1 and C3M69, while M2490 was the least polymorphic. CONCLUSION Microsatellite genotyping revealed high polyclonality and genetic diversity but no significant population structure. Poly-α, C2M34, TA1 and C3M69 were the most polymorphic markers, and Poly-α alone or with any of the other three markers could be adopted for use in TES in Tanzania.
Collapse
Affiliation(s)
- Deus S Ishengoma
- National Institute for Medical Research, Dar es Salaam, Tanzania.
- Faculty of Pharmaceutical Sciences, Monash University, Melbourne, Australia.
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA.
| | - Celine I Mandara
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Rashid A Madebe
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | | | - Billy Ngasala
- Department of Parasitology, School of Public Health, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- Department of Women's and Children's Health, International Maternal and Child Health (IMCH), Uppsala University, Uppsala, Sweden
| | | | | | - Erasmus Kamugisha
- Bugando Medical Centre, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | - Reginald A Kavishe
- Kilimanjaro Christian Medical Centre, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Florida Muro
- Kilimanjaro Christian Medical Centre, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Renata Mandike
- National Malaria Control Programme, Ministry of Health, Dodoma, Tanzania
| | - Sigsbert Mkude
- National Malaria Control Programme, Ministry of Health, Dodoma, Tanzania
| | - Frank Chacky
- National Malaria Control Programme, Ministry of Health, Dodoma, Tanzania
| | - Ritha Njau
- Malariologist and Public Health Specialist, Dar es Salaam, Tanzania
| | - Troy Martin
- HIV Vaccine Trials Network, Fred Hutch Cancer Research Centre, Seattle, WA, USA
| | - Ally Mohamed
- National Malaria Control Programme, Ministry of Health, Dodoma, Tanzania
| | - Jeffrey A Bailey
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Abebe A Fola
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA
| |
Collapse
|
41
|
Bakari C, Mandara CI, Madebe RA, Seth MD, Ngasala B, Kamugisha E, Ahmed M, Francis F, Bushukatale S, Chiduo M, Makene T, Kabanywanyi AM, Mahende MK, Kavishe RA, Muro F, Mkude S, Mandike R, Molteni F, Chacky F, Bishanga DR, Njau RJA, Warsame M, Kabula B, Nyinondi SS, Lucchi NW, Talundzic E, Venkatesan M, Moriarty LF, Serbantez N, Kitojo C, Reaves EJ, Halsey ES, Mohamed A, Udhayakumar V, Ishengoma DS. Trends of Plasmodium falciparum molecular markers associated with resistance to artemisinins and reduced susceptibility to lumefantrine in Mainland Tanzania from 2016 to 2021. Malar J 2024; 23:71. [PMID: 38461239 PMCID: PMC10924419 DOI: 10.1186/s12936-024-04896-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/28/2024] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND Therapeutic efficacy studies (TESs) and detection of molecular markers of drug resistance are recommended by the World Health Organization (WHO) to monitor the efficacy of artemisinin-based combination therapy (ACT). This study assessed the trends of molecular markers of artemisinin resistance and/or reduced susceptibility to lumefantrine using samples collected in TES conducted in Mainland Tanzania from 2016 to 2021. METHODS A total of 2,015 samples were collected during TES of artemether-lumefantrine at eight sentinel sites (in Kigoma, Mbeya, Morogoro, Mtwara, Mwanza, Pwani, Tabora, and Tanga regions) between 2016 and 2021. Photo-induced electron transfer polymerase chain reaction (PET-PCR) was used to confirm presence of malaria parasites before capillary sequencing, which targeted two genes: Plasmodium falciparum kelch 13 propeller domain (k13) and P. falciparum multidrug resistance 1 (pfmdr1). RESULTS Sequencing success was ≥ 87.8%, and 1,724/1,769 (97.5%) k13 wild-type samples were detected. Thirty-seven (2.1%) samples had synonymous mutations and only eight (0.4%) had non-synonymous mutations in the k13 gene; seven of these were not validated by the WHO as molecular markers of resistance. One sample from Morogoro in 2020 had a k13 R622I mutation, which is a validated marker of artemisinin partial resistance. For pfmdr1, all except two samples carried N86 (wild-type), while mutations at Y184F increased from 33.9% in 2016 to about 60.5% in 2021, and only four samples (0.2%) had D1246Y mutations. pfmdr1 haplotypes were reported in 1,711 samples, with 985 (57.6%) NYD, 720 (42.1%) NFD, and six (0.4%) carrying minor haplotypes (three with NYY, 0.2%; YFD in two, 0.1%; and NFY in one sample, 0.1%). Between 2016 and 2021, NYD decreased from 66.1% to 45.2%, while NFD increased from 38.5% to 54.7%. CONCLUSION This is the first report of the R622I (k13 validated mutation) in Tanzania. N86 and D1246 were nearly fixed, while increases in Y184F mutations and NFD haplotype were observed between 2016 and 2021. Despite the reports of artemisinin partial resistance in Rwanda and Uganda, this study did not report any other validated mutations in these study sites in Tanzania apart from R622I suggesting that intensified surveillance is urgently needed to monitor trends of drug resistance markers and their impact on the performance of ACT.
Collapse
Affiliation(s)
- Catherine Bakari
- National Institute for Medical Research, Dar Es Salaam, Tanzania
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Celine I Mandara
- National Institute for Medical Research, Dar Es Salaam, Tanzania
| | - Rashid A Madebe
- National Institute for Medical Research, Dar Es Salaam, Tanzania
| | - Misago D Seth
- National Institute for Medical Research, Dar Es Salaam, Tanzania
| | - Billy Ngasala
- Department of Parasitology, Muhimbili University of Health and Allied Sciences, Dar Es Salaam, Tanzania
| | - Erasmus Kamugisha
- Catholic University of Health and Allied Sciences, Bugando Medical Centre, Mwanza, Tanzania
| | - Maimuna Ahmed
- Catholic University of Health and Allied Sciences, Bugando Medical Centre, Mwanza, Tanzania
| | - Filbert Francis
- National Institute for Medical Research, Tanga Research Centre, Tanga, Tanzania
| | - Samwel Bushukatale
- Department of Parasitology, Muhimbili University of Health and Allied Sciences, Dar Es Salaam, Tanzania
| | - Mercy Chiduo
- National Institute for Medical Research, Tanga Research Centre, Tanga, Tanzania
| | - Twilumba Makene
- Department of Parasitology, Muhimbili University of Health and Allied Sciences, Dar Es Salaam, Tanzania
| | | | - Muhidin K Mahende
- Ifakara Health Institute, Dar Es Salaam Office, Dar Es Salaam, Tanzania
| | | | - Florida Muro
- Kilimanjaro Christian Medical Centre, Moshi, Tanzania
| | | | | | - Fabrizio Molteni
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- National Malaria Control Program, Dodoma, Tanzania
| | - Frank Chacky
- National Malaria Control Program, Dodoma, Tanzania
| | - Dunstan R Bishanga
- Ifakara Health Institute, Dar Es Salaam Office, Dar Es Salaam, Tanzania
- Maternal and Child Survival Program, Jhpiego, Dar Es Salaam, Tanzania
- School of Public Health and Social Sciences, Muhimbili University of Health and Allied Sciences, Dar Es Salaam, Tanzania
| | - Ritha J A Njau
- Malariologist and Public Health Specialist, Dar Es Salaam, Tanzania
| | | | - Bilali Kabula
- PMI/Okoa Maisha Dhibiti Malaria, RTI International, Dar Es Salaam, Tanzania
- National Institute for Medical Research, Amani Research Centre, Muheza, Tanga, Tanzania
| | - Ssanyu S Nyinondi
- PMI/Okoa Maisha Dhibiti Malaria, RTI International, Dar Es Salaam, Tanzania
| | - Naomi W Lucchi
- Malaria Branch, U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA
- Division of Global Health Protection, U.S. Centers for Disease Control and Prevention, Nairobi, Kenya
| | - Eldin Talundzic
- Malaria Branch, U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Leah F Moriarty
- Malaria Branch, U.S. President's Malaria Initiative, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Naomi Serbantez
- U.S. President's Malaria Initiative, USAID, Dar Es Salaam, Tanzania
| | - Chonge Kitojo
- U.S. President's Malaria Initiative, USAID, Dar Es Salaam, Tanzania
| | - Erik J Reaves
- U.S. President's Malaria Initiative, US Centers for Disease Control and Prevention, Dar Es Salaam, Tanzania
| | - Eric S Halsey
- Malaria Branch, U.S. President's Malaria Initiative, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ally Mohamed
- National Malaria Control Program, Dodoma, Tanzania
| | - Venkatachalam Udhayakumar
- Malaria Branch, U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA
- Independenant Consultant, Decatur, Georgia
| | - Deus S Ishengoma
- National Institute for Medical Research, Dar Es Salaam, Tanzania.
- Faculty of Pharmaceutical Sciences, Monash University, Melbourne, Australia.
- Harvard T.H Chan School of Public Health, Harvard University, Boston, MA, USA.
- Department of Biochemistry, Kampala International University, Dar Es Salaam, Tanzania.
| |
Collapse
|
42
|
Holzschuh A, Ewnetu Y, Carlier L, Lerch A, Gerlovina I, Baker SC, Yewhalaw D, Haileselassie W, Berhane N, Lemma W, Koepfli C. Plasmodium falciparum transmission in the highlands of Ethiopia is driven by closely related and clonal parasites. Mol Ecol 2024; 33:e17292. [PMID: 38339833 DOI: 10.1111/mec.17292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/28/2023] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Malaria cases are frequently recorded in the Ethiopian highlands even at altitudes above 2000 m. The epidemiology of malaria in the Ethiopian highlands, and, in particular, the role of importation by human migration from the highly endemic lowlands is not well understood. We sequenced 187 Plasmodium falciparum samples from two sites in the Ethiopian highlands, Gondar (n = 159) and Ziway (n = 28), using a multiplexed droplet digital PCR (ddPCR)-based amplicon sequencing method targeting 35 microhaplotypes and drug resistance loci. Here, we characterize the parasite population structure and genetic relatedness. We identify moderate parasite diversity (mean HE : 0.54) and low infection complexity (74.9% monoclonal). A significant percentage of infections share microhaplotypes, even across transmission seasons and sites, indicating persistent local transmission. We identify multiple clusters of clonal or near-clonal infections, highlighting high genetic relatedness. Only 6.3% of individuals diagnosed with P. falciparum reported recent travel. Yet, in clonal or near-clonal clusters, infections of travellers were frequently observed first in time, suggesting that parasites may have been imported and then transmitted locally. 31.1% of infections are pfhrp2-deleted and 84.4% pfhrp3-deleted, and 28.7% have pfhrp2/3 double deletions. Parasites with pfhrp2/3 deletions and wild-type parasites are genetically distinct. Mutations associated with resistance to sulphadoxine-pyrimethamine or suggested to reduce sensitivity to lumefantrine are observed at near-fixation. In conclusion, genomic data corroborate local transmission and the importance of intensified control in the Ethiopian highlands.
Collapse
Affiliation(s)
- Aurel Holzschuh
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| | - Yalemwork Ewnetu
- Department of Medical Biotechnology, University of Gondar, Gondar, Ethiopia
| | - Lise Carlier
- Trinity Centre for Global Health, Trinity College Dublin, Dublin, Ireland
- Noul Inc., Seoul, Republic of Korea
| | - Anita Lerch
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| | - Inna Gerlovina
- Department of Medicine, Division of HIV, ID and Global Medicine, EPPIcenter Research Program, University of California, San Francisco, California, USA
| | - Sarah Cate Baker
- Trinity Centre for Global Health, Trinity College Dublin, Dublin, Ireland
| | - Delenasaw Yewhalaw
- Tropical and Infectious Disease Research Center, Jimma University, Jimma, Ethiopia
| | | | - Nega Berhane
- Department of Medical Biotechnology, University of Gondar, Gondar, Ethiopia
| | - Wossenseged Lemma
- Department of Medical Biotechnology, University of Gondar, Gondar, Ethiopia
| | - Cristian Koepfli
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
43
|
van Schalkwyk DA, Pratt S, Nolder D, Stewart LB, Liddy H, Muwanguzi-Karugaba J, Beshir KB, Britten D, Victory E, Rogers C, Millard J, Brown M, Nabarro LE, Taylor A, Young BC, Chiodini PL, Sutherland CJ. Treatment Failure in a UK Malaria Patient Harboring Genetically Variant Plasmodium falciparum From Uganda With Reduced In Vitro Susceptibility to Artemisinin and Lumefantrine. Clin Infect Dis 2024; 78:445-452. [PMID: 38019958 PMCID: PMC10874266 DOI: 10.1093/cid/ciad724] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Recent cases of clinical failure in malaria patients in the United Kingdom (UK) treated with artemether-lumefantrine have implications for malaria chemotherapy worldwide. METHODS Parasites were isolated from an index case of confirmed Plasmodium falciparum treatment failure after standard treatment, and from comparable travel-acquired UK malaria cases. Drug susceptibility in vitro and genotypes at 6 resistance-associated loci were determined for all parasite isolates and compared with clinical outcomes for each parasite donor. RESULTS A traveler, who returned to the UK from Uganda in 2022 with Plasmodium falciparum malaria, twice failed treatment with full courses of artemether-lumefantrine. Parasites from the patient exhibited significantly reduced susceptibility to artemisinin (ring-stage survival, 17.3% [95% confidence interval {CI}, 13.6%-21.1%]; P < .0001) and lumefantrine (effective concentration preventing 50% of growth = 259.4 nM [95% CI, 130.6-388.2 nM]; P = .001). Parasite genotyping identified an allele of pfk13 encoding both the A675V variant in the Pfk13 propeller domain and a novel L145V nonpropeller variant. In vitro susceptibility testing of 6 other P. falciparum lines of Ugandan origin identified reduced susceptibility to artemisinin and lumefantrine in 1 additional line, also from a 2022 treatment failure case. These parasites did not harbor a pfk13 propeller domain variant but rather the novel nonpropeller variant T349I. Variant alleles of pfubp1, pfap2mu, and pfcoronin were also identified among the 7 parasite lines. CONCLUSIONS We confirm, in a documented case of artemether-lumefantrine treatment failure imported from Uganda, the presence of pfk13 mutations encoding L145V and A675V. Parasites with reduced susceptibility to both artemisinin and lumefantrine may be emerging in Uganda.
Collapse
Affiliation(s)
- Donelly A van Schalkwyk
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Sade Pratt
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Debbie Nolder
- UK Health Security Agency Malaria Reference Laboratory, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Lindsay B Stewart
- UK Health Security Agency Malaria Reference Laboratory, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Helen Liddy
- UK Health Security Agency Malaria Reference Laboratory, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Julian Muwanguzi-Karugaba
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Khalid B Beshir
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Dawn Britten
- UK Health Security Agency Malaria Reference Laboratory, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Emma Victory
- UK Health Security Agency Malaria Reference Laboratory, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Claire Rogers
- UK Health Security Agency Malaria Reference Laboratory, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - James Millard
- Hospital for Tropical Diseases, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Michael Brown
- Hospital for Tropical Diseases, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Laura E Nabarro
- Hospital for Tropical Diseases, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Andrew Taylor
- Department of Infectious Diseases, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Bernadette C Young
- Department of Infectious Diseases, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Peter L Chiodini
- UK Health Security Agency Malaria Reference Laboratory, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Colin J Sutherland
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- UK Health Security Agency Malaria Reference Laboratory, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
44
|
Zhang J, Shahbaz M, Ijaz M, Zhang H. Bibliometric analysis of antimalarial drug resistance. Front Cell Infect Microbiol 2024; 14:1270060. [PMID: 38410722 PMCID: PMC10895045 DOI: 10.3389/fcimb.2024.1270060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/02/2024] [Indexed: 02/28/2024] Open
Abstract
Background Malaria has always been a serious infectious disease prevalent in the world. Antimalarial drugs such as chloroquine and artemisinin have been the main compounds used to treat malaria. However, the massive use of this type of drugs accelerates the evolution and spread of malaria parasites, leading to the development of resistance. A large number of related data have been published by researchers in recent years. CiteSpace software has gained popularity among us researchers in recent years, because of its ability to help us obtain the core information we want in a mass of articles. In order to analyze the hotspots and develop trends in this field through visual analysis, this study used CiteSpace software to summarize the available data in the literature to provide insights. Method Relevant literature was collected from the Web of Science Core Collection (WOSCC) from 1 January 2015 to 29 March 2023. CiteSpace software and Microsoft Excel were used to analyze and present the data, respectively. Results A total of 2,561 literatures were retrieved and 2,559 literatures were included in the analysis after the removal of duplicates. An irrefutable witness of the ever-growing interest in the topic of antimalarial drug resistance could be expressed by the exponentially increased number of publications and related citations from 2015 to 2022, and its sustained growth trend by 2023. During the past 7 years, USA, Oxford University, and David A Fidock are the country, institution, and author with the most publications in this field of research, respectively. We focused on the references and keywords from literature and found that the research and development of new drugs is the newest hotspot in this field. A growing number of scientists are devoted to finding new antimalarial drugs. Conclusion This study is the first visual metrological analysis of antimalarial drug resistance, using bibliometric methods. As a baseline information, it is important to analyze research output published globally on antimalarial drug resistance. In order to better understand the current research situation and future research plan agenda, such baseline data are needed accordingly.
Collapse
Affiliation(s)
- Jialu Zhang
- Shandong University of Traditional Chinese Medicine, College of Pharmacy, Jinan, China
- Shandong Academy of Chinese Medicine, Institute of Chinese medicine analysis, Jinan, China
| | - Muhammad Shahbaz
- Shandong Academy of Chinese Medicine, Institute of Chinese medicine analysis, Jinan, China
- Department of Radiology, Qilu Hospital Affiliated to Shandong University, Jinan, China
- Research Center for Sectional and Imaging Anatomy, Digital Human Institute, School of Basic Medical Science, Shandong University, Jinan, Shandong, China
| | - Muhammad Ijaz
- The Faculty of Medicine, Qilu Institute of Technology, Jinan, China
- Department of Pharmacology, School of Pharmaceutical Science, Shandong University, Jinan, China
| | - Huimin Zhang
- Shandong Academy of Chinese Medicine, Institute of Chinese medicine analysis, Jinan, China
| |
Collapse
|
45
|
Meier-Scherling CPG, Watson OJ, Asua V, Ghinai I, Katairo T, Garg S, Conrad M, Rosenthal PJ, Okell LC, Bailey JA. Selection of artemisinin partial resistance Kelch13 mutations in Uganda in 2016-22 was at a rate comparable to that seen previously in South-East Asia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.03.24302209. [PMID: 38352505 PMCID: PMC10862983 DOI: 10.1101/2024.02.03.24302209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Background Artemisinin partial resistance, mediated by mutations in the Plasmodium falciparum Kelch13 protein (K13), rapidly spread in South-East Asia (SEA), undermining antimalarial efficacies of artemisinin-based combination therapies (ACT). Validated K13 mutations have recently arisen in Africa, but rates of increase are not well characterized. Methods We investigated K13 mutation prevalence at 16 sites in Uganda (2016-2022, 6586 samples), and five sites in SEA (2003-2018, 5465 samples) by calculating selection coefficients using Bayesian mixed-effect linear models. We then tested whether SEA K13 mutation prevalence could have been forecast accurately using up to the first five years of available data and forecast future K13 mutation prevalence in Uganda. Findings The selection coefficient for the prevalence of relevant K13 mutations (441L, 469F/Y, 561H, 675V) was estimated at s=0·383 (95% CrI: 0·247 - 0·528) per year, a 38% relative prevalence increase. Selection coefficients across Uganda were s=0·968 (0·463 - 1·569) for 441L, s=0·153 (-0·445 - 0·727) for 469F, s=0·222 (-0·011 - 0·398) for 469Y, and s=0·152 (-0·023 - 0·312) for 675V. In SEA, the selection coefficient was s=-0·005 (-0·852 - 0·814) for 539T, s=0·574 (-0·092 - 1·201) for 580Y, and s=0·308 (0·089 - 0·536) for all validated K13 mutations. Forecast prevalences for Uganda assuming constant selection neared fixation (>95% prevalence) within a decade (2028-2033) for combined K13 mutations. Interpretation The selection of K13 mutations in Uganda was at a comparable rate to that observed in SEA, suggesting K13 mutations may continue to increase quickly in Uganda. Funding NIH R01AI156267, R01AI075045, and R01AI089674.
Collapse
Affiliation(s)
| | - Oliver J Watson
- Medical Research Council Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
| | - Victor Asua
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | - Thomas Katairo
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Shreeya Garg
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Melissa Conrad
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Philip J. Rosenthal
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Lucy C Okell
- Medical Research Council Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
| | - Jeffrey A. Bailey
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI, USA
| |
Collapse
|
46
|
Vanhove M, Schwabl P, Clementson C, Early AM, Laws M, Anthony F, Florimond C, Mathieu L, James K, Knox C, Singh N, Buckee CO, Musset L, Cox H, Niles-Robin R, Neafsey DE. Temporal and spatial dynamics of Plasmodium falciparum clonal lineages in Guyana. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578156. [PMID: 38352461 PMCID: PMC10862847 DOI: 10.1101/2024.01.31.578156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Plasmodium parasites, the causal agents of malaria, are eukaryotic organisms that obligately undergo sexual recombination within mosquitoes. However, in low transmission settings where most mosquitoes become infected with only a single parasite clone, parasites recombine with themselves, and the clonal lineage is propagated rather than broken up by outcrossing. We investigated whether stochastic/neutral factors drive the persistence and abundance of Plasmodium falciparum clonal lineages in Guyana, a country with relatively low malaria transmission, but the only setting in the Americas in which an important artemisinin resistance mutation (pfk13 C580Y) has been observed. To investigate whether this clonality was potentially associated with the persistence and spatial spread of the mutation, we performed whole genome sequencing on 1,727 Plasmodium falciparum samples collected from infected patients across a five-year period (2016-2021). We characterized the relatedness between each pair of monoclonal infections (n=1,409) through estimation of identity by descent (IBD) and also typed each sample for known or candidate drug resistance mutations. A total of 160 clones (mean IBD ≥ 0.90) were circulating in Guyana during the study period, comprising 13 highly related clusters (mean IBD ≥ 0.40). In the five-year study period, we observed a decrease in frequency of a mutation associated with artemisinin partner drug (piperaquine) resistance (pfcrt C350R) and limited co-occurence of pfcrt C350R with duplications of plasmepsin 2/3, an epistatic interaction associated with piperaquine resistance. We additionally report polymorphisms exhibiting evidence of selection for drug resistance or other phenotypes and reported a novel pfk13 mutation (G718S) as well as 61 nonsynonymous substitutions that increased markedly in frequency. However, P. falciparum clonal dynamics in Guyana appear to be largely driven by stochastic factors, in contrast to other geographic regions. The use of multiple artemisinin combination therapies in Guyana may have contributed to the disappearance of the pfk13 C580Y mutation.
Collapse
Affiliation(s)
- Mathieu Vanhove
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Philipp Schwabl
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Angela M Early
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Margaret Laws
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Frank Anthony
- National Malaria Program, Ministry of Health, Georgetown, Guyana
| | - Célia Florimond
- Laboratoire de parasitologie, World Health Organization Collaborating Center for Surveillance of Antimalarial Drug Resistance, Center Nationale de Référence du Paludisme, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Luana Mathieu
- Laboratoire de parasitologie, World Health Organization Collaborating Center for Surveillance of Antimalarial Drug Resistance, Center Nationale de Référence du Paludisme, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Kashana James
- National Malaria Program, Ministry of Health, Georgetown, Guyana
| | - Cheyenne Knox
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Narine Singh
- National Malaria Program, Ministry of Health, Georgetown, Guyana
| | - Caroline O Buckee
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Lise Musset
- Laboratoire de parasitologie, World Health Organization Collaborating Center for Surveillance of Antimalarial Drug Resistance, Center Nationale de Référence du Paludisme, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Horace Cox
- National Malaria Program, Ministry of Health, Georgetown, Guyana
- Caribbean Public Health Agency, Trinidad and Tobago
| | - Reza Niles-Robin
- National Malaria Program, Ministry of Health, Georgetown, Guyana
| | - Daniel E Neafsey
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
47
|
Platon L, Ménard D. Plasmodium falciparum ring-stage plasticity and drug resistance. Trends Parasitol 2024; 40:118-130. [PMID: 38104024 DOI: 10.1016/j.pt.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023]
Abstract
Malaria is a life-threatening tropical disease caused by parasites of the genus Plasmodium, of which Plasmodium falciparum is the most lethal. Malaria parasites have a complex life cycle, with stages occurring in both the Anopheles mosquito vector and human host. Ring stages are the youngest form of the parasite in the intraerythrocytic developmental cycle and are associated with evasion of spleen clearance, temporary growth arrest (TGA), and drug resistance. This formidable ability to survive and develop into mature, sexual, or growth-arrested forms demonstrates the inherent population heterogeneity. Here we highlight the role of the ring stage as a crossroads in parasite development and as a reservoir of surviving cells in the human host via TGA survival mechanisms.
Collapse
Affiliation(s)
- Lucien Platon
- Institut Pasteur, Université Paris Cité, Malaria Genetics and Resistance Unit, INSERM U1201, F-75015 Paris, France; Sorbonne Université, Collège Doctoral ED 515 Complexité du Vivant, F-75015 Paris, France; Université de Strasbourg, Institute of Parasitology and Tropical Diseases, UR7292 Dynamics of Host-Pathogen Interactions, F-67000 Strasbourg, France.
| | - Didier Ménard
- Institut Pasteur, Université Paris Cité, Malaria Genetics and Resistance Unit, INSERM U1201, F-75015 Paris, France; Institut Pasteur, Université Paris Cité, Malaria Parasite Biology and Vaccines Unit, F-75015 Paris, France; Université de Strasbourg, Institute of Parasitology and Tropical Diseases, UR7292 Dynamics of Host-Pathogen Interactions, F-67000 Strasbourg, France; CHU Strasbourg, Laboratory of Parasitology and Medical Mycology, F-67000 Strasbourg, France.
| |
Collapse
|
48
|
Ishengoma DS, Mandara CI, Bakari C, Fola AA, Madebe RA, Seth MD, Francis F, Buguzi C, Moshi R, Garimo I, Lazaro S, Lusasi A, Aaron S, Chacky F, Mohamed A, Njau RJA, Kitau J, Rasmussen C, Bailey JA, Juliano JJ, Warsame M. Evidence of artemisinin partial resistance in North-western Tanzania: clinical and drug resistance markers study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.31.24301954. [PMID: 38352311 PMCID: PMC10863006 DOI: 10.1101/2024.01.31.24301954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
Background Artemisinin-based combination therapies (ACTs) are the recommended antimalarial drugs for the treatment of uncomplicated malaria. The recent emergence of artemisinin partial resistance (ART-R) in Rwanda, Uganda and Eritrea is of great concern. In Tanzania, a nationwide molecular malaria surveillance in 2021 showed a high prevalence of the Kelch13 (K13) 561H mutation in Plasmodium falciparum from the north-western region, close to the border with Rwanda and Uganda. This study was conducted in 2022 to evaluate the efficacy of artemether-lumefantrine (AL) and artesunate-amodiaquine (ASAQ) for the treatment of uncomplicated falciparum malaria and to confirm the presence of ART-R in Tanzania. Methods This single-arm study evaluated the efficacy of AL and ASAQ in eligible children aged six months to 10 years at Bukangara Dispensary in Karagwe District, Kagera Region. Clinical and parasitological responses were monitored for 28 days according to standard WHO protocol. Mutations in K13 gene and extended haplotypes with these mutations were analysed using Sanger and whole genome sequencing data, respectively. Findings 176 children (88 in each AL and ASAQ group) were enrolled and all achieved the defined outcomes. PCR-corrected adequate clinical and parasitological response (ACPR) was 98.3% (95% CI: 90.8-100) and 100.0% (95% CI: 95.8-100) for AL and ASAQ, respectively. Parasitaemia on day 3 was observed in 11/88 (12.5%) and 17/88 (19.3%) in the AL and ASAQ groups, respectively. The half-life of parasitaemia was significantly higher (>6.5 hrs) in patients with parasitaemia on day 3 and/or mutations in K13 gene at enrolment. Most patients with parasitaemia on day 3 (8/11 = 72.7% in the AL group and 10/17 = 58.8% in the ASAQ group) had 561H mutation at enrolment. The parasites with K13 mutations were not similar to those from south-east Asia and Rwanda, but had the same core haplotype of a new 561H haplotype reported in Kagera in 2021. Interpretation These findings confirm the presence of ART-R in Tanzania. A context-specific strategy to respond to artemisinin partial resistance is urgently needed. Although both AL and ASAQ showed high efficacy, increased vigilance for reduced efficacy of these ACTs and detection of ART-R in other parts of the country is critical.
Collapse
Affiliation(s)
- Deus S. Ishengoma
- National Institute for Medical Research, Dar es Salaam, Tanzania
- Harvard T.H Chan School of Public Health, Boston, MA, USA
- Faculty of Pharmaceutical Sciences, Monash University, VIC, Australia
- Department of Biochemistry, Kampala International University in Tanzania, Dar es Salaam, Tanzania
| | | | - Catherine Bakari
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Abebe A. Fola
- Department of Pathology and Laboratory Medicine and Center for Computational Molecular Biology, Brown University, Providence, RI, USA
| | - Rashid A. Madebe
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Misago D. Seth
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Filbert Francis
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Creyton Buguzi
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Ramadhan Moshi
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Issa Garimo
- National Malaria Control Program (NMCP), Dodoma, Tanzania
| | - Samwel Lazaro
- National Malaria Control Program (NMCP), Dodoma, Tanzania
| | | | - Sijenunu Aaron
- National Malaria Control Program (NMCP), Dodoma, Tanzania
| | - Frank Chacky
- National Malaria Control Program (NMCP), Dodoma, Tanzania
| | - Ally Mohamed
- National Malaria Control Program (NMCP), Dodoma, Tanzania
| | - Ritha J. A. Njau
- Malariologist and Public Health Specialist, Muhimbili University of Health and Allied Sciences, School of Public Health and Social Sciences Dar es Salaam, Tanzania
| | - Jovin Kitau
- World Health Organization Country Office, Dar es Salaam, Tanzania
| | | | - Jeffrey A. Bailey
- Department of Pathology and Laboratory Medicine and Center for Computational Molecular Biology, Brown University, Providence, RI, USA
| | | | - Marian Warsame
- Gothenburg University, Gothenburg, Sweden
- Benadir University, Mogadishu, Somalia
| |
Collapse
|
49
|
Assefa A, Fola AA, Tasew G. Emergence of Plasmodium falciparum strains with artemisinin partial resistance in East Africa and the Horn of Africa: is there a need to panic? Malar J 2024; 23:34. [PMID: 38273360 PMCID: PMC10809756 DOI: 10.1186/s12936-024-04848-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/10/2024] [Indexed: 01/27/2024] Open
Abstract
The emergence and spread of artemisinin partial resistance in East and Horn of Africa is alarming. However, artemisinin-based combination therapy (ACT) generally remains efficacious for the treatment of falciparum malaria. The emergence of partial artemisinin resistance does not currently meet the criteria to initiate change on treatment guidelines nor affect ACT routine procurement and distribution. It is high time for scientists and transitional researchers to be more critical and vigilant on further changes so that national programmes will be able to make informed decisions as well as remain alert and prepared for any change that may be required in the future.
Collapse
Affiliation(s)
- Ashenafi Assefa
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia.
- Institute of Global Health and Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
| | - Abebe A Fola
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
| | - Geremew Tasew
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| |
Collapse
|
50
|
Ménard D, Mihreteab S, Fidock DA. Artemisinin-Resistant HRP2-Negative Malaria in Eritrea. Reply. N Engl J Med 2023; 389:2497-2498. [PMID: 38157513 DOI: 10.1056/nejmc2312559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Affiliation(s)
- Didier Ménard
- Centre Hospitalier Universitaire Strasbourg, Strasbourg, France
| | | | | |
Collapse
|