1
|
Narkin K, Legg HR, Brown GJ, El-Shazly K, Martin TD, Jarrell M, McCunn LR, Chen Z, Parish CA. Thermal Decomposition of 2-Cyclopentenone. J Phys Chem A 2024; 128:9226-9234. [PMID: 39405375 PMCID: PMC11514027 DOI: 10.1021/acs.jpca.4c05532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024]
Abstract
The thermal decomposition of 2-cyclopentenone, a cyclic oxygenated hydrocarbon that occurs in the pyrolysis of biomass, has been studied in a combined experimental and theoretical approach. Gas-phase pyrolysis was performed at temperatures ranging from 1000 to 1400 K in a pulsed, microtubular reactor. Products were identified by FTIR spectroscopy following their isolation in a low-temperature argon matrix. The following products were identified: carbon monoxide, ketene, propenylketene, vinylacetylene, ethylene, propene, acrolein, acetylene, propyne, and propargyl radical. Computational results identify three different decomposition channels involving a H atom migration, and producing prop-2-enylketene (Pathway 1), prop-1-enylketene (Pathway 2), and a second conformation of prop-2-enylketene (Pathway 3). A fourth decomposition pathway involves simultaneous rupture of two C-C bonds forming a high energy cyclopropenone intermediate that further reacts to form ethylene, acetylene, and carbon monoxide. Finally, a fifth pathway to the formation of acrolein and acetylene was identified that proceeds via a multistep mechanism, and an interconversion from 2-cyclopentenone to 3-cyclopentenone was identified computationally, but not observed experimentally.
Collapse
Affiliation(s)
- Kathryn Narkin
- Department
of Chemistry, Marshall University, 1 John Marshall Dr., Huntington, West Virginia 25755, United States
| | - Heather R. Legg
- Department
of Chemistry, Marshall University, 1 John Marshall Dr., Huntington, West Virginia 25755, United States
| | - Glenna J. Brown
- Department
of Chemistry, Marshall University, 1 John Marshall Dr., Huntington, West Virginia 25755, United States
| | - Khaled El-Shazly
- Department
of Chemistry, Marshall University, 1 John Marshall Dr., Huntington, West Virginia 25755, United States
| | - Thaddeus D. Martin
- Department
of Chemistry, Marshall University, 1 John Marshall Dr., Huntington, West Virginia 25755, United States
| | - Mia Jarrell
- Department
of Chemistry, Marshall University, 1 John Marshall Dr., Huntington, West Virginia 25755, United States
| | - Laura R. McCunn
- Department
of Chemistry, Marshall University, 1 John Marshall Dr., Huntington, West Virginia 25755, United States
| | - Zhijian Chen
- Department
of Chemistry, University of Richmond, Gottwald
Center for the Sciences, Richmond, Virginia 23173, United States
| | - Carol A. Parish
- Department
of Chemistry, University of Richmond, Gottwald
Center for the Sciences, Richmond, Virginia 23173, United States
| |
Collapse
|
2
|
Pan Z, Wu X, Bodi A, van Bokhoven JA, Hemberger P. Catalytic pyrolysis mechanism of lignin moieties driven by aldehyde, hydroxyl, methoxy, and allyl functionalization: the role of reactive quinone methide and ketene intermediates. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2024; 26:9899-9910. [PMID: 39219704 PMCID: PMC11363027 DOI: 10.1039/d4gc03143a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The catalytic pyrolysis of guaiacol-based lignin monomers, vanillin, syringol, and eugenol over commercial HZSM-5 has been investigated using operando Photoelectron Photoion Coincidence (PEPICO) spectroscopy to unveil the reaction mechanism by detecting reactive intermediates, such as quinone methides and ketenes, and products. Vanillin shares the decomposition mechanism with guaiacol due to prompt and efficient decarbonylation, which allows us to control this reaction leading to a phenol selectivity increase by switching to a faujasite catalyst and decreasing the Si/Al ratio. Syringol first demethylates to 3-methoxycatechol, which mainly dehydroxylates to o- and m-guaiacol. Ketene formation channels over HZSM-5 are less important here than for guaiacol or vanillin, but product distribution remains similar. C3 addition to guaiacol yields eugenol, which shows a more complex product distribution upon catalytic pyrolysis. By analogies to monomers with simplified functionalization, namely allylbenzene, 4-allylcatechol, and 4-methylcatechol, the eugenol chemistry could be fully resolved. Previously postulated reactive semi-quinone intermediates are detected spectroscopically, and their involvement opens alternative pathways to condensation and phenol formation. Allyl groups, produced by dehydroxylation of the β-O-4 bond, may not only decompose via C1/C2/C3 loss, but also cyclize to indene and its derivatives over HZSM-5. This comparably high reactivity leads to an unselective branching of the chemistry and to a complex product distribution, which is difficult to control. Indenes and naphthalenes are also prototypical coke precursors efficiently deactivating the catalyst. We rely on these mechanistic insights to discuss strategies to fine-tune process conditions to increase the selectivities of desired products by enhancing either vanillin and guaiacol or supressing eugenol yields from native lignin.
Collapse
Affiliation(s)
- Zeyou Pan
- Paul Scherrer Institute 5232 Villigen Switzerland
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich 8093 Zurich Switzerland
| | - Xiangkun Wu
- Paul Scherrer Institute 5232 Villigen Switzerland
| | - Andras Bodi
- Paul Scherrer Institute 5232 Villigen Switzerland
| | - Jeroen A van Bokhoven
- Paul Scherrer Institute 5232 Villigen Switzerland
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich 8093 Zurich Switzerland
| | | |
Collapse
|
3
|
Li S, Harir M, Bastviken D, Schmitt-Kopplin P, Gonsior M, Enrich-Prast A, Valle J, Hertkorn N. Dearomatization drives complexity generation in freshwater organic matter. Nature 2024; 628:776-781. [PMID: 38658683 PMCID: PMC11043043 DOI: 10.1038/s41586-024-07210-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 02/20/2024] [Indexed: 04/26/2024]
Abstract
Dissolved organic matter (DOM) is one of the most complex, dynamic and abundant sources of organic carbon, but its chemical reactivity remains uncertain1-3. Greater insights into DOM structural features could facilitate understanding its synthesis, turnover and processing in the global carbon cycle4,5. Here we use complementary multiplicity-edited 13C nuclear magnetic resonance (NMR) spectra to quantify key substructures assembling the carbon skeletons of DOM from four main Amazon rivers and two mid-size Swedish boreal lakes. We find that one type of reaction mechanism, oxidative dearomatization (ODA), widely used in organic synthetic chemistry to create natural product scaffolds6-10, is probably a key driver for generating structural diversity during processing of DOM that are rich in suitable polyphenolic precursor molecules. Our data suggest a high abundance of tetrahedral quaternary carbons bound to one oxygen and three carbon atoms (OCqC3 units). These units are rare in common biomolecules but could be readily produced by ODA of lignin-derived and tannin-derived polyphenols. Tautomerization of (poly)phenols by ODA creates non-planar cyclohexadienones, which are subject to immediate and parallel cycloadditions. This combination leads to a proliferation of structural diversity of DOM compounds from early stages of DOM processing, with an increase in oxygenated aliphatic structures. Overall, we propose that ODA is a key reaction mechanism for complexity acceleration in the processing of DOM molecules, creation of new oxygenated aliphatic molecules and that it could be prevalent in nature.
Collapse
Affiliation(s)
- Siyu Li
- Research Unit Analytical Biogeochemistry (BGC), Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Mourad Harir
- Research Unit Analytical Biogeochemistry (BGC), Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Analytical Food Chemistry, Technische Universität München, Freising-Weihenstephan, Germany
| | - David Bastviken
- Department of Thematic Studies - Environmental Change, Linköping University, Linköping, Sweden
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical Biogeochemistry (BGC), Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Analytical Food Chemistry, Technische Universität München, Freising-Weihenstephan, Germany
| | - Michael Gonsior
- Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science, Solomons, MD, USA
| | - Alex Enrich-Prast
- Department of Thematic Studies - Environmental Change, Linköping University, Linköping, Sweden
- Institute of Marine Science, Federal University of São Paulo, Santos, Brazil
| | - Juliana Valle
- Research Unit Analytical Biogeochemistry (BGC), Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Norbert Hertkorn
- Research Unit Analytical Biogeochemistry (BGC), Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany.
- Department of Thematic Studies - Environmental Change, Linköping University, Linköping, Sweden.
| |
Collapse
|
4
|
Wang J, Jiang H, Chen Y, Han Y, Cai J, Peng Y, Feng Y. Emission characteristics and influencing mechanisms of PAHs and EC from the combustion of three components (cellulose, hemicellulose, lignin) of biomasses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160359. [PMID: 36423835 DOI: 10.1016/j.scitotenv.2022.160359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Biomass burning is an important source of polycyclic aromatic hydrocarbons (PAHs) and elemental carbon (EC), but the formation mechanisms are still unclear. Cellulose, hemicellulose, and lignin are the three major components of biomass. In this study, the three-components extracted from three typical biomass raw materials were used for laboratory combustion experiments, to investigate the differences in the emission factors and chemical compositions of PAHs and EC. The average emission factors of the 16 kinds of PAHs were showing as lignin (135 ± 180 mg/kg) > cellulose (97.8 ± 124 mg/kg) > hemicellulose (48.9 ± 65.2 mg/kg), and the average emission factors of EC presented in the descending order of cellulose (1.65 ± 3.02 g/kg), lignin (1.30 ± 1.04 g/kg), and hemicellulose (0.450 ± 0.480 g/kg), respectively. The proportion of naphthalene emitted from cellulose and hemicellulose combustion is higher, while fluoranthene and pyrene accounted significantly higher proportion for lignin. Moreover, the influence of ignition temperature and oxygen content on the emission characteristics of PAHs and EC were also discussed. The influence of ignition temperature on the emission of EC and PAHs is more significant compared to oxygen content, because it obviously promoted the PAHs and EC formations through resonance-stabilized hydrocarbon-radical chain reaction (RSR) pathway. However, correlation analysis combined with cluster analysis showed that the RSR-pathway probably had different effects on PAH growth for the three-components, as the indene-involved RSR-pathway were mainly related to 4-6 ring PAHs for cellulose and lignin (except fluoranthene and pyrene), but 2-4 ring PAHs for hemicellulose. We also found that the fitted results according to the proportion of three-components were significantly higher than the measured values of raw materials for indene, medium-molecular-weight PAHs, and soot-EC. These results presented the different formation pathways for medium-molecular-weight PAHs and the two EC components emitted by biomass combustion, which are worthy of further studies in exploring the generation mechanisms of PAHs and EC.
Collapse
Affiliation(s)
- Junhan Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Hongxing Jiang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yingjun Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| | - Yong Han
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Junjie Cai
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yu Peng
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yanli Feng
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
5
|
Nabihah Mohd Yusof Chan N, Idris A, Hazrin Zainal Abidin Z, Anuar Tajuddin H. White light emission from coumarin and rhodamine derivatives based on RGB multicomponent system. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
6
|
Fernholz C, Bodi A, Hemberger P. Threshold Photoelectron Spectrum of the Phenoxy Radical. J Phys Chem A 2022; 126:9022-9030. [DOI: 10.1021/acs.jpca.2c06670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christin Fernholz
- Laboratory for Synchtrotron Radiation and Femtochemistry, Paul Scherrer Institute, Forschungsstrasse 111, CH-5232Villigen, Switzerland
| | - Andras Bodi
- Laboratory for Synchtrotron Radiation and Femtochemistry, Paul Scherrer Institute, Forschungsstrasse 111, CH-5232Villigen, Switzerland
| | - Patrick Hemberger
- Laboratory for Synchtrotron Radiation and Femtochemistry, Paul Scherrer Institute, Forschungsstrasse 111, CH-5232Villigen, Switzerland
| |
Collapse
|
7
|
Pan Z, Bodi A, van Bokhoven JA, Hemberger P. Operando PEPICO unveils the catalytic fast pyrolysis mechanism of the three methoxyphenol isomers. Phys Chem Chem Phys 2022; 24:21786-21793. [PMID: 36082786 PMCID: PMC9491049 DOI: 10.1039/d2cp02741k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of lignin valorization processes such as catalytic fast pyrolysis (CFP) to produce fine chemicals and fuels leads to a more sustainable future. The implementation of CFP is enabled by understanding the chemistry of lignin constituents, which, however, requires thorough mechanistic investigations by detecting reactive species. In this contribution, we investigate the CFP of the three methoxyphenol (MP) isomers over H-ZSM-5 utilizing vacuum ultraviolet synchrotron radiation and operando photoelectron photoion coincidence (PEPICO) spectroscopy. All isomers demethylate at first to yield benzenediols, from which dehydroxylation reactions proceed to produce phenol and benzene. Additional pathways to form benzene proceed over cyclopentadiene, methylcyclopentadiene, and fulvene intermediates. The detection of trace amounts of methanol in the product stream suggests a demethoxylation reaction to yield phenol. Guaiacol (2- or ortho-MP) exhibits slightly higher reactivity compared to 3-MP and 4-MP, due to the formation of the fulvenone ketene, which opens additional routes to benzene and phenol. When compared to benzenediol catalytic pyrolysis, the additional methyl group in MP leads to high conversion at lower reactor temperatures, which is mostly owed to the lower H3C–O vs. H–O bond energy and the possibility to demethoxylate to produce phenol. Demethylation, demethoxylation and fulvenone ketene formation determine the reactivity of methoxyphenols over H-ZSM-5 to yield phenols, benzene and toluene. Intermediates are isomer-selectively detected utilizing threshold photoelectron spectroscopy.![]()
Collapse
Affiliation(s)
- Zeyou Pan
- Paul Scherrer Institute, 5232 Villigen, Switzerland. .,Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Andras Bodi
- Paul Scherrer Institute, 5232 Villigen, Switzerland.
| | - Jeroen A van Bokhoven
- Paul Scherrer Institute, 5232 Villigen, Switzerland. .,Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | | |
Collapse
|
8
|
Zhao L, Yang Y, Liu J, Ding J. Mechanistic insights into benzene oxidation over CuMn 2O 4 catalyst. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128640. [PMID: 35359105 DOI: 10.1016/j.jhazmat.2022.128640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/28/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
The spinel-type CuMn2O4 catalyst exhibits good catalytic activity towards benzene oxidation, but the catalytic oxidation mechanism is not established. Theoretical calculations were implemented to unearth the reaction mechanism of benzene catalytic oxidation over CuMn2O4 catalyst through density functional theory (DFT). The results indicate that benzene adsorption on both Cu-terminated and Mn-terminated surfaces are controlled by the chemisorption mechanism. The Cu-terminated surface is more active for benzene adsorption than the Mn-terminated surface. Cu atom is regarded as the primary active site. During benzene catalytic oxidation, benzene firstly undergoes dehydrooxidation reaction to generate phenoxy group (C6H6* → C6H5* → C6H5O*). Two reaction channels are responsible for the ring-opening and oxidation reactions of phenoxy group, including benzoquinone- and cyclopentadienyl-dominated channels. In the benzoquinone-dominated channel, C6H4O2* is produced from phenoxy dehydrogenation and oxidation, and then decomposes into acetylene via the ring-opening reaction (C6H4O2* → C4H2O2* → C4H2O4* → C2H2*). Compared with the benzoquinone-dominated channel, the cyclopentadienyl-dominated channel is dominant for phenoxy group oxidation. Phenoxy group decomposes to generate cyclopentadienyl. C5H5* is dehydrogenated and oxidized to form cyclopentadienone. Finally, C5H4O* is oxidized to form carbon dioxide through a nine-step reaction pathway. The ring-opening reaction (C5H4O* → C3H2O*) has the highest energy barrier of 283.45 kJ/mol, and is identified as the rate-determining step of benzene catalytic oxidation.
Collapse
Affiliation(s)
- Liming Zhao
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yingju Yang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Jing Liu
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Junyan Ding
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
9
|
Hemberger P, Wu X, Pan Z, Bodi A. Continuous Pyrolysis Microreactors: Hot Sources with Little Cooling? New Insights Utilizing Cation Velocity Map Imaging and Threshold Photoelectron Spectroscopy. J Phys Chem A 2022; 126:2196-2210. [PMID: 35316066 DOI: 10.1021/acs.jpca.2c00766] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Resistively heated silicon carbide microreactors are widely applied as continuous sources to selectively prepare elusive and reactive intermediates with astrochemical, catalytic, or combustion relevance to measure their photoelectron spectrum. These reactors also provide deep mechanistic insights into uni- and bimolecular chemistry. However, the sampling conditions and effects have not been fully characterized. We use cation velocity map imaging to measure the velocity distribution of the molecular beam signal and to quantify the scattered, rethermalized background sample. Although translational cooling is efficient in the adiabatic expansion from the reactor, the breakdown diagrams of methane and chlorobenzene confirm that the molecular beam component exhibits a rovibrational temperature comparable with that of the reactor. Thus, rovibrational cooling is practically absent in the expansion from the microreactor. The high rovibrational temperature also affects the threshold photoelectron spectrum of both benzene and the allyl radical in the molecular beam, but to different degrees. While the extreme broadening of the benzene TPES suggests a complex ionization mechanism, the allyl TPES is in fact consistent with an internal temperature close to that of the reactor. The background, room-temperature spectra of both are superbly reproduced by Franck-Condon simulations at 300 K. On the one hand, this leads us to suggest that room-temperature reference spectra should be used in species identification. On the other hand, analysis of the allyl iodide pyrolysis data shows that iodine atoms often recombine to form molecular iodine on the chamber surfaces. Such sampling effects may distort the chemical composition of the scattered background with respect to the molecular beam signal emanating directly from the reactor. This must be considered in quantitative analyses and kinetic modeling.
Collapse
Affiliation(s)
- Patrick Hemberger
- Paul Scherrer Insitute, Forschungsstrasse 111, CH-5232 Villigen PSI, Switzerland
| | - Xiangkun Wu
- Paul Scherrer Insitute, Forschungsstrasse 111, CH-5232 Villigen PSI, Switzerland
| | - Zeyou Pan
- Paul Scherrer Insitute, Forschungsstrasse 111, CH-5232 Villigen PSI, Switzerland
| | - Andras Bodi
- Paul Scherrer Insitute, Forschungsstrasse 111, CH-5232 Villigen PSI, Switzerland
| |
Collapse
|
10
|
Puente‐Urbina A, Pan Z, Paunović V, Šot P, Hemberger P, van Bokhoven JA. Direct Evidence on the Mechanism of Methane Conversion under Non-oxidative Conditions over Iron-modified Silica: The Role of Propargyl Radicals Unveiled. Angew Chem Int Ed Engl 2021; 60:24002-24007. [PMID: 34459534 PMCID: PMC8596584 DOI: 10.1002/anie.202107553] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Indexed: 11/08/2022]
Abstract
Radical-mediated gas-phase reactions play an important role in the conversion of methane under non-oxidative conditions into olefins and aromatics over iron-modified silica catalysts. Herein, we use operando photoelectron photoion coincidence spectroscopy to disentangle the elusive C2+ radical intermediates participating in the complex gas-phase reaction network. Our experiments pinpoint different C2 -C5 radical species that allow for a stepwise growth of the hydrocarbon chains. Propargyl radicals (H2 C-C≡C-H) are identified as essential precursors for the formation of aromatics, which then contribute to the formation of heavier hydrocarbon products via hydrogen abstraction-acetylene addition routes (HACA mechanism). These results provide comprehensive mechanistic insights that are relevant for the development of methane valorization processes.
Collapse
Affiliation(s)
- Allen Puente‐Urbina
- Institute for Chemical and BioengineeringDepartment of Chemistry and Applied BiosciencesETH ZurichVladimir-Prelog-Weg 1–5/108093ZurichSwitzerland
| | - Zeyou Pan
- Institute for Chemical and BioengineeringDepartment of Chemistry and Applied BiosciencesETH ZurichVladimir-Prelog-Weg 1–5/108093ZurichSwitzerland
- Laboratory for Synchrotron Radiation and FemtochemistryPaul Scherrer InstituteForschungsstrasse 1115232VilligenSwitzerland
| | - Vladimir Paunović
- Institute for Chemical and BioengineeringDepartment of Chemistry and Applied BiosciencesETH ZurichVladimir-Prelog-Weg 1–5/108093ZurichSwitzerland
| | - Petr Šot
- Institute for Chemical and BioengineeringDepartment of Chemistry and Applied BiosciencesETH ZurichVladimir-Prelog-Weg 1–5/108093ZurichSwitzerland
- Laboratory of Inorganic ChemistryDepartment of Chemistry and Applied BiosciencesETH ZurichVladimir-Prelog-Weg 1–5/108093ZurichSwitzerland
| | - Patrick Hemberger
- Laboratory for Synchrotron Radiation and FemtochemistryPaul Scherrer InstituteForschungsstrasse 1115232VilligenSwitzerland
| | - Jeroen Anton van Bokhoven
- Institute for Chemical and BioengineeringDepartment of Chemistry and Applied BiosciencesETH ZurichVladimir-Prelog-Weg 1–5/108093ZurichSwitzerland
- Laboratory for Catalysis and Sustainable ChemistryPaul Scherrer InstituteForschungsstrasse 1115232VilligenSwitzerland
| |
Collapse
|
11
|
Puente‐Urbina A, Pan Z, Paunović V, Šot P, Hemberger P, Bokhoven JA. Direct Evidence on the Mechanism of Methane Conversion under Non‐oxidative Conditions over Iron‐modified Silica: The Role of Propargyl Radicals Unveiled. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Allen Puente‐Urbina
- Institute for Chemical and Bioengineering Department of Chemistry and Applied Biosciences ETH Zurich Vladimir-Prelog-Weg 1–5/10 8093 Zurich Switzerland
| | - Zeyou Pan
- Institute for Chemical and Bioengineering Department of Chemistry and Applied Biosciences ETH Zurich Vladimir-Prelog-Weg 1–5/10 8093 Zurich Switzerland
- Laboratory for Synchrotron Radiation and Femtochemistry Paul Scherrer Institute Forschungsstrasse 111 5232 Villigen Switzerland
| | - Vladimir Paunović
- Institute for Chemical and Bioengineering Department of Chemistry and Applied Biosciences ETH Zurich Vladimir-Prelog-Weg 1–5/10 8093 Zurich Switzerland
| | - Petr Šot
- Institute for Chemical and Bioengineering Department of Chemistry and Applied Biosciences ETH Zurich Vladimir-Prelog-Weg 1–5/10 8093 Zurich Switzerland
- Laboratory of Inorganic Chemistry Department of Chemistry and Applied Biosciences ETH Zurich Vladimir-Prelog-Weg 1–5/10 8093 Zurich Switzerland
| | - Patrick Hemberger
- Laboratory for Synchrotron Radiation and Femtochemistry Paul Scherrer Institute Forschungsstrasse 111 5232 Villigen Switzerland
| | - Jeroen Anton Bokhoven
- Institute for Chemical and Bioengineering Department of Chemistry and Applied Biosciences ETH Zurich Vladimir-Prelog-Weg 1–5/10 8093 Zurich Switzerland
- Laboratory for Catalysis and Sustainable Chemistry Paul Scherrer Institute Forschungsstrasse 111 5232 Villigen Switzerland
| |
Collapse
|
12
|
Lopes Jesus AJ, Fausto R, Reva I. Conformational Space, IR-Induced, and UV-Induced Chemistry of Carvacrol Isolated in a Low-Temperature Argon Matrix. J Phys Chem A 2021; 125:8215-8229. [PMID: 34506137 DOI: 10.1021/acs.jpca.1c05907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In this work, monomers of carvacrol (5-isopropyl-2-methylphenol), a natural monoterpene exhibiting wide range bioactivity, were trapped in a cryogenic argon matrix and characterized by infrared spectroscopy, while quantum chemical calculations at the B3LYP and MP2 levels were employed to characterize the conformational landscape of the isolated molecule. Four conformers have been localized on the potential energy surface, and the factors accounting for their relative stability were analyzed. The two most stable conformers of carvacrol, differing in the relative orientation of the isopropyl group and both having the OH group pointing away from the vicinal methyl fragment, were identified in the cryomatrix for the first time. The individual spectral signatures of the two conformers were distinguished based on the change in their relative abundance induced by exposing the matrix to broadband infrared light. Matrix-isolated carvacrol was also irradiated with broadband UV light (λ > 200 nm), which resulted in the cleavage of the OH group. Recombination of the released H atom at the ortho- or para-position of the ring resulted in the formation of alkyl-substituted cyclohexadienones. These were found to undergo subsequent valence and open-ring isomerizations, leading, respectively, to the formation of a Dewar isomer and open-chain conjugated ketenes. Decarbonylation of the photoproducts was also observed for longer irradiation times. A mechanistic analysis of the observed photochemical transformations is presented.
Collapse
Affiliation(s)
- A J Lopes Jesus
- University of Coimbra, CQC, Faculty of Pharmacy, 3004-295 Coimbra, Portugal
| | - Rui Fausto
- University of Coimbra, CQC, Department of Chemistry, 3004-535 Coimbra, Portugal
| | - Igor Reva
- University of Coimbra, CQC, Department of Chemistry, 3004-535 Coimbra, Portugal.,University of Coimbra, CIEPQPF, Department of Chemical Engineering, 3030-790 Coimbra, Portugal
| |
Collapse
|
13
|
Pan Z, Puente-Urbina A, Bodi A, van Bokhoven JA, Hemberger P. Isomer-dependent catalytic pyrolysis mechanism of the lignin model compounds catechol, resorcinol and hydroquinone. Chem Sci 2021; 12:3161-3169. [PMID: 34164083 PMCID: PMC8179379 DOI: 10.1039/d1sc00654a] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 12/26/2022] Open
Abstract
The catalytic pyrolysis mechanism of the initial lignin depolymerization products will help us develop biomass valorization strategies. How does isomerism influence reactivity, product formation, selectivities, and side reactions? By using imaging photoelectron photoion coincidence (iPEPICO) spectroscopy with synchrotron radiation, we reveal initial, short-lived reactive intermediates driving benzenediol catalytic pyrolysis over H-ZSM-5 catalyst. The detailed reaction mechanism unveils new pathways leading to the most important products and intermediates. Thanks to the two vicinal hydroxyl groups, catechol (o-benzenediol) is readily dehydrated to form fulvenone, a reactive ketene intermediate, and exhibits the highest reactivity. Fulvenone is hydrogenated on the catalyst surface to phenol or is decarbonylated to produce cyclopentadiene. Hydroquinone (p-benzenediol) mostly dehydrogenates to produce p-benzoquinone. Resorcinol, m-benzenediol, is the most stable isomer, because dehydration and dehydrogenation both involve biradicals owing to the meta position of the hydroxyl groups and are unfavorable. The three isomers may also interconvert in a minor reaction channel, which yields small amounts of cyclopentadiene and phenol via dehydroxylation and decarbonylation. We propose a generalized reaction mechanism for benzenediols in lignin catalytic pyrolysis and provide detailed mechanistic insights on how isomerism influences conversion and product formation. The mechanism accounts for processes ranging from decomposition reactions to molecular growth by initial polycyclic aromatic hydrocarbon (PAH) formation steps to yield, e.g., naphthalene. The latter involves a Diels-Alder dimerization of cyclopentadiene, isomerization, and dehydrogenation.
Collapse
Affiliation(s)
- Zeyou Pan
- Laboratory for Synchrotron Radiation and Femtochemistry, Paul Scherrer Institute 5232 Villigen Switzerland
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich 8093 Zurich Switzerland
| | - Allen Puente-Urbina
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich 8093 Zurich Switzerland
| | - Andras Bodi
- Laboratory for Synchrotron Radiation and Femtochemistry, Paul Scherrer Institute 5232 Villigen Switzerland
| | - Jeroen A van Bokhoven
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich 8093 Zurich Switzerland
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute 5232 Villigen Switzerland
| | - Patrick Hemberger
- Laboratory for Synchrotron Radiation and Femtochemistry, Paul Scherrer Institute 5232 Villigen Switzerland
| |
Collapse
|
14
|
Yang H, Jiang J, Zhang B, Xu P. Experimental study on light volatile products from thermal decomposition of lignin monomer model compounds: effect of temperature, residence time and methoxyl group. RSC Adv 2021; 11:37067-37082. [PMID: 35496408 PMCID: PMC9043566 DOI: 10.1039/d1ra06743e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/22/2021] [Indexed: 11/21/2022] Open
Abstract
In order to investigate the effects of temperature, residence time (RT) and methoxyl (OCH3) on the product distribution and vapor phase reactions during pyrolysis of complex solid fuels, three model phenolic representatives, phenol, guaiacol and syringol, were pyrolyzed at a residence time of 0.7 s, over a temperature range of 400 °C–950 °C, and at temperatures of 650 °C and 750 °C, in a RT region of 0.1 s–4.2 s. Increasing yields of CO and C1–C5 light hydrocarbons (LHs) with RT at 650 °C and 750 °C indicated that ring-reduction/CO elimination of phenolic compounds happened at 650 °C, and dramatically at 750 °C. The addition of OCH3 affects the product distribution and ring-reduction pathways: C5 LHs from phenol, C2 LHs, C4 LHs and C5 LHs from guaiacol, and C1–C2 LHs from syringol. CO2 yields increase with the addition of OCH3. CO2 was formed via benzoyl and a four-membered ring, which would compete with the CO formation. The addition of OCH3 promotes the formation of coke and tar. The decomposition pathways are discussed, based on the experimental data, focusing on ring-reduction reactions and the formation of CO/CO2 and C1–C5 LHs. Effects of temperature, residence time and methoxyl on the decomposition of phenol, guaiacol and syringol, were investigated. Thermal decomposition pathways of the three model compounds were discussed based on ring reduction/CO elimination reactions.![]()
Collapse
Affiliation(s)
- Huamei Yang
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu 221018, China
| | - Ju Jiang
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu 221018, China
| | - Bingzhe Zhang
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu 221018, China
| | - Panpan Xu
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu 221018, China
| |
Collapse
|
15
|
Hemberger P, van Bokhoven JA, Pérez-Ramírez J, Bodi A. New analytical tools for advanced mechanistic studies in catalysis: photoionization and photoelectron photoion coincidence spectroscopy. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02587a] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
How can we detect reactive and elusive intermediates in catalysis to unveil reaction mechanisms? In this mini review, we discuss novel photoionization tools to support this quest.
Collapse
Affiliation(s)
- Patrick Hemberger
- Laboratory for Synchrotron Radiation and Femtochemistry
- Paul Scherrer Institute
- CH-5232 Villigen PSI
- Switzerland
| | - Jeroen A. van Bokhoven
- Laboratory for Catalysis and Sustainable Chemistry
- Paul Scherrer Institute
- CH-5232 Villigen PSI
- Switzerland
- Institute for Chemical and Bioengineering
| | - Javier Pérez-Ramírez
- Institute for Chemical and Bioengineering
- Department of Chemistry and Applied Biosciences
- ETH Zurich
- Zurich
- Switzerland
| | - Andras Bodi
- Laboratory for Synchrotron Radiation and Femtochemistry
- Paul Scherrer Institute
- CH-5232 Villigen PSI
- Switzerland
| |
Collapse
|
16
|
Pratali Maffei L, Pelucchi M, Faravelli T, Cavallotti C. Theoretical study of sensitive reactions in phenol decomposition. REACT CHEM ENG 2020. [DOI: 10.1039/c9re00418a] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reactivity of phenol is of utmost importance in combustion systems.
Collapse
Affiliation(s)
- Luna Pratali Maffei
- CRECK Modeling Lab
- Department of Chemistry, Materials, and Chemical Engineering
- Politecnico di Milano
- Italy
| | - Matteo Pelucchi
- CRECK Modeling Lab
- Department of Chemistry, Materials, and Chemical Engineering
- Politecnico di Milano
- Italy
| | - Tiziano Faravelli
- CRECK Modeling Lab
- Department of Chemistry, Materials, and Chemical Engineering
- Politecnico di Milano
- Italy
| | - Carlo Cavallotti
- CRECK Modeling Lab
- Department of Chemistry, Materials, and Chemical Engineering
- Politecnico di Milano
- Italy
| |
Collapse
|
17
|
Reusch E, Holzmeier F, Gerlach M, Fischer I, Hemberger P. Decomposition of Picolyl Radicals at High Temperature: A Mass Selective Threshold Photoelectron Spectroscopy Study. Chemistry 2019; 25:16652-16659. [PMID: 31637775 PMCID: PMC6972682 DOI: 10.1002/chem.201903937] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/16/2019] [Indexed: 01/24/2023]
Abstract
The reaction products of the picolyl radicals at high temperature were characterized by mass-selective threshold photoelectron spectroscopy in the gas phase. Aminomethylpyridines were pyrolyzed to initially produce picolyl radicals (m/z=92). At higher temperatures further thermal reaction products are generated in the pyrolysis reactor. All compounds were identified by mass-selected threshold photoelectron spectroscopy and several hitherto unexplored reactive molecules were characterized. The mechanism for several dissociation pathways was outlined in computations. The spectrum of m/z=91, resulting from hydrogen loss of picolyl, shows four isomers, two ethynyl pyrroles with adiabatic ionization energies (IEad ) of 7.99 eV (2-ethynyl-1H-pyrrole) and 8.12 eV (3-ethynyl-1H-pyrrole), and two cyclopentadiene carbonitriles with IE's of 9.14 eV (cyclopenta-1,3-diene-1-carbonitrile) and 9.25 eV (cyclopenta-1,4-diene-1-carbonitrile). A second consecutive hydrogen loss forms the cyanocyclopentadienyl radical with IE's of 9.07 eV (T0 ) and 9.21 eV (S1 ). This compound dissociates further to acetylene and the cyanopropynyl radical (IE=9.35 eV). Furthermore, the cyclopentadienyl radical, penta-1,3-diyne, cyclopentadiene and propargyl were identified in the spectra. Computations indicate that dissociation of picolyl proceeds initially via a resonance-stabilized seven-membered ring.
Collapse
Affiliation(s)
- Engelbert Reusch
- Institute of Physical and Theoretical ChemistryUniversity of WürzburgAm Hubland Süd97074WürzburgGermany
| | - Fabian Holzmeier
- Dipartimento di FisicaPolitecnico di MilanoPiazza Leonardo da Vinci 3220133MilanoItaly
| | - Marius Gerlach
- Institute of Physical and Theoretical ChemistryUniversity of WürzburgAm Hubland Süd97074WürzburgGermany
| | - Ingo Fischer
- Institute of Physical and Theoretical ChemistryUniversity of WürzburgAm Hubland Süd97074WürzburgGermany
| | - Patrick Hemberger
- Laboratory for Femtochemistry and Synchrotron RadiationPaul Scherrer Institut (PSI)5232VilligenSwitzerland
| |
Collapse
|
18
|
Oregui-Bengoechea M, Agirre I, Iriondo A, Lopez-Urionabarrenechea A, Requies JM, Agirrezabal-Telleria I, Bizkarra K, Barrio VL, Cambra JF. Heterogeneous Catalyzed Thermochemical Conversion of Lignin Model Compounds: An Overview. Top Curr Chem (Cham) 2019; 377:36. [PMID: 31728773 DOI: 10.1007/s41061-019-0260-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/18/2019] [Indexed: 02/08/2023]
Abstract
Thermochemical lignin conversion processes can be described as complex reaction networks involving not only de-polymerization and re-polymerization reactions, but also chemical transformations of the depolymerized mono-, di-, and oligomeric compounds. They typically result in a product mixture consisting of a gaseous, liquid (i.e., mono-, di-, and oligomeric products), and solid phase. Consequently, researchers have developed a common strategy to simplify this issue by replacing lignin with simpler, but still representative, lignin model compounds. This strategy is typically applied to the elucidation of reaction mechanisms and the exploration of novel lignin conversion approaches. In this review, we present a general overview of the latest advances in the principal thermochemical processes applied for the conversion of lignin model compounds using heterogeneous catalysts. This review focuses on the most representative lignin conversion methods, i.e., reductive, oxidative, pyrolytic, and hydrolytic processes. An additional subchapter on the reforming of pyrolysis oil model compounds has also been included. Special attention will be given to those research papers using "green" reactants (i.e., H2 or renewable hydrogen donor molecules in reductive processes or air/O2 in oxidative processes) and solvents, although less environmentally friendly chemicals will be also considered. Moreover, the scope of the review is limited to those most representative lignin model compounds and to those reaction products that are typically targeted in lignin valorization.
Collapse
Affiliation(s)
- Mikel Oregui-Bengoechea
- Department of Chemical and Environmental Engineering, School of Engineering, University of the Basque Country EHU/UPV, Plaza Ingeniero Torres Quevedo 1, 48013, Bilbao, Spain.
| | - Ion Agirre
- Department of Chemical and Environmental Engineering, School of Engineering, University of the Basque Country EHU/UPV, Plaza Ingeniero Torres Quevedo 1, 48013, Bilbao, Spain
| | - Aitziber Iriondo
- Department of Chemical and Environmental Engineering, School of Engineering, University of the Basque Country EHU/UPV, Plaza Ingeniero Torres Quevedo 1, 48013, Bilbao, Spain
| | - Alexander Lopez-Urionabarrenechea
- Department of Chemical and Environmental Engineering, School of Engineering, University of the Basque Country EHU/UPV, Plaza Ingeniero Torres Quevedo 1, 48013, Bilbao, Spain
| | - Jesus M Requies
- Department of Chemical and Environmental Engineering, School of Engineering, University of the Basque Country EHU/UPV, Plaza Ingeniero Torres Quevedo 1, 48013, Bilbao, Spain
| | - Iker Agirrezabal-Telleria
- Department of Chemical and Environmental Engineering, School of Engineering, University of the Basque Country EHU/UPV, Plaza Ingeniero Torres Quevedo 1, 48013, Bilbao, Spain
| | - Kepa Bizkarra
- Department of Chemical and Environmental Engineering, School of Engineering, University of the Basque Country EHU/UPV, Plaza Ingeniero Torres Quevedo 1, 48013, Bilbao, Spain
| | - V Laura Barrio
- Department of Chemical and Environmental Engineering, School of Engineering, University of the Basque Country EHU/UPV, Plaza Ingeniero Torres Quevedo 1, 48013, Bilbao, Spain
| | - Jose F Cambra
- Department of Chemical and Environmental Engineering, School of Engineering, University of the Basque Country EHU/UPV, Plaza Ingeniero Torres Quevedo 1, 48013, Bilbao, Spain
| |
Collapse
|
19
|
On the Origin of Alkali-Catalyzed Aromatization of Phenols. Polymers (Basel) 2019; 11:polym11071119. [PMID: 31269629 PMCID: PMC6680450 DOI: 10.3390/polym11071119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/17/2019] [Accepted: 06/25/2019] [Indexed: 11/24/2022] Open
Abstract
To gain an insight of the chemistry in the alkali-promoted aromatization of oxygen-containing heavily aromatic polymers or biomass; thermal degradations of sodium phenolates with different substituents have been investigated. The -ONa group strongly destabilizes the phenolates. The thermal stability of phenolates is largely in parallel with bond strengths of Ar substituents. De-substituents and the removal of aromatic hydrogens are dominant reactions in the main degradation step. CO is formed only at a very late stage. This degradation pattern is completely different from that of phenol. To account for this distinctive decomposition; a mechanism involving an unprecedented formation of an aromatic carbon radical anion generated from the homolytic cleavage of Ar substituent (or Ar–H) in keto forms has been proposed. The homolytic cleavage of Ar substituent (or Ar–H) is facilitated by the strong electron-donating ability of the oxygen anion. A set of free-radical reactions involved in the alkali-catalyzed aromatization have been established.
Collapse
|
20
|
Rosi M, Skouteris D, Balucani N, Nappi C, Faginas Lago N, Pacifici L, Falcinelli S, Stranges D. An Experimental and Theoretical Investigation of 1-Butanol Pyrolysis. Front Chem 2019; 7:326. [PMID: 31139618 PMCID: PMC6527765 DOI: 10.3389/fchem.2019.00326] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/23/2019] [Indexed: 11/17/2022] Open
Abstract
Bioalcohols are a promising family of biofuels. Among them, 1-butanol has a strong potential as a substitute for petrol. In this manuscript, we report on a theoretical and experimental characterization of 1-butanol thermal decomposition, a very important process in the 1-butanol combustion at high temperatures. Advantage has been taken of a flash pyrolysis experimental set-up with mass spectrometric detection, in which the brief residence time of the pyrolyzing mixture inside a short, resistively heated SiC tube allows the identification of the primary products of the decomposing species, limiting secondary processes. Dedicated electronic structure calculations of the relevant potential energy surface have also been performed and RRKM estimates of the rate coefficients and product branching ratios up to 2,000 K are provided. Both electronic structure and RRKM calculations are in line with previous determinations. According to the present study, the H2O elimination channel leading to 1-butene is more important than previously believed. In addition to that, we provide experimental evidence that butanal formation by H2 elimination is not a primary decomposition route. Finally, we have experimental evidence of a small yield of the CH3 elimination channel.
Collapse
Affiliation(s)
- Marzio Rosi
- Department of Civil and Environmental Engineering, University of Perugia, Perugia, Italy
| | | | - Nadia Balucani
- Laboratory of Molecular Processes in Combustion, Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy
| | - Caterina Nappi
- Laboratory of Molecular Processes in Combustion, Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy
| | - Noelia Faginas Lago
- Laboratory of Molecular Processes in Combustion, Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy
| | - Leonardo Pacifici
- Master-Up, Perugia, Italy.,Laboratory of Molecular Processes in Combustion, Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy
| | - Stefano Falcinelli
- Department of Civil and Environmental Engineering, University of Perugia, Perugia, Italy
| | - Domenico Stranges
- Department of Chemistry, University of Rome "La Sapienza", Rome, Italy
| |
Collapse
|
21
|
Kraemer M, Broecker S, Madea B, Hess C. Decarbonylation: A metabolic pathway of cannabidiol in humans. Drug Test Anal 2019; 11:957-967. [DOI: 10.1002/dta.2572] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/24/2019] [Accepted: 01/24/2019] [Indexed: 01/15/2023]
Affiliation(s)
- Michael Kraemer
- Institute of Forensic Medicine, Forensic ToxicologyUniversity Bonn Stiftsplatz 12 53111 Bonn Germany
| | | | - Burkhard Madea
- Institute of Forensic Medicine, Forensic ToxicologyUniversity Bonn Stiftsplatz 12 53111 Bonn Germany
| | - Cornelius Hess
- Institute of Forensic Medicine, Forensic ToxicologyUniversity Bonn Stiftsplatz 12 53111 Bonn Germany
- Institute of Forensic Medicine, Forensic ToxicologyUniversity Mainz Am Pulverturm 3 55131 Mainz Germany
| |
Collapse
|
22
|
Van Geem K. Kinetic modeling of the pyrolysis chemistry of fossil and alternative feedstocks. COMPUTER AIDED CHEMICAL ENGINEERING 2019. [DOI: 10.1016/b978-0-444-64087-1.00006-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
23
|
Gerlach M, Bodi A, Hemberger P. Metamorphic meta isomer: carbon dioxide and ketenes are formed via retro-Diels–Alder reactions in the decomposition of meta-benzenediol. Phys Chem Chem Phys 2019; 21:19480-19487. [DOI: 10.1039/c9cp03519b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Deoxygenation of the lignin model compound resorcinol was investigated using VUV synchrotron radiation: Formation of two reactive ketenes and decarboxylation are the dominating pathways, much different from the other two benzenediol isomers.
Collapse
Affiliation(s)
- Marius Gerlach
- Laboratory for Synchrotron Radiation and Femtochemistry
- Paul Scherrer Institute
- CH-5234 Villigen PSI
- Switzerland
| | - Andras Bodi
- Laboratory for Synchrotron Radiation and Femtochemistry
- Paul Scherrer Institute
- CH-5234 Villigen PSI
- Switzerland
| | - Patrick Hemberger
- Laboratory for Synchrotron Radiation and Femtochemistry
- Paul Scherrer Institute
- CH-5234 Villigen PSI
- Switzerland
| |
Collapse
|
24
|
Krupa J, Pagacz-Kostrzewa M, Wierzejewska M. UV laser-induced photolysis of matrix isolated o-guaiacol. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.05.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Ormond TK, Baraban JH, Porterfield JP, Scheer AM, Hemberger P, Troy TP, Ahmed M, Nimlos MR, Robichaud DJ, Daily JW, Ellison GB. Thermal Decompositions of the Lignin Model Compounds: Salicylaldehyde and Catechol. J Phys Chem A 2018; 122:5911-5924. [DOI: 10.1021/acs.jpca.8b03201] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Thomas K. Ormond
- National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
| | - Joshua H. Baraban
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
| | - Jessica P. Porterfield
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
| | - Adam M. Scheer
- Combustion Research Facility, Sandia National Laboratory, PO Box 969, Livermore, California 94551-0969, United States
| | - Patrick Hemberger
- Laboratory for Femtochemistry and Synchrotron Radiation, Paul Scherrer Institute, CH-5234 Villigen-PSI, Switzerland
| | - Tyler P. Troy
- Chemical Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720, United States
| | - Musahid Ahmed
- Chemical Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720, United States
| | - Mark R. Nimlos
- National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - David J. Robichaud
- National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - John W. Daily
- Center for Combustion and Environmental Research, Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309-0427, United States
| | - G. Barney Ellison
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
| |
Collapse
|
26
|
Furutani Y, Dohara Y, Kudo S, Hayashi JI, Norinaga K. Computational Study on the Thermal Decomposition of Phenol-Type Monolignols. INT J CHEM KINET 2018. [DOI: 10.1002/kin.21164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yuki Furutani
- Interdisciplinary Graduate School of Engineering Sciences; Kyushu University; Kasuga Fukuoka 816-8580 Japan
| | - Yuki Dohara
- Interdisciplinary Graduate School of Engineering Sciences; Kyushu University; Kasuga Fukuoka 816-8580 Japan
| | - Shinji Kudo
- Institute for Materials Chemistry and Engineering; Kyushu University; Kasuga Fukuoka 816-8580 Japan
| | - Jun-Ichiro Hayashi
- Institute for Materials Chemistry and Engineering; Kyushu University; Kasuga Fukuoka 816-8580 Japan
- Research and Education Centre of Carbon Resources; Kyushu University; Kasuga Fukuoka 816-8580 Japan
| | - Koyo Norinaga
- Department of Chemical Systems Engineering; Graduate School of Engineering; Nagoya University; Nagoya 464-8603 Japan
| |
Collapse
|
27
|
Furutani Y, Dohara Y, Kudo S, Hayashi JI, Norinaga K. Theoretical Study on the Kinetics of Thermal Decomposition of Guaiacol and Catechol. J Phys Chem A 2017; 121:8495-8503. [DOI: 10.1021/acs.jpca.7b08112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | | | - Koyo Norinaga
- Department
of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| |
Collapse
|
28
|
Understanding the mechanism of catalytic fast pyrolysis by unveiling reactive intermediates in heterogeneous catalysis. Nat Commun 2017; 8:15946. [PMID: 28660882 PMCID: PMC5493764 DOI: 10.1038/ncomms15946] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 05/08/2017] [Indexed: 12/27/2022] Open
Abstract
Catalytic fast pyrolysis is a promising way to convert lignin into fine chemicals and fuels, but current approaches lack selectivity and yield unsatisfactory conversion. Understanding the pyrolysis reaction mechanism at the molecular level may help to make this sustainable process more economic. Reactive intermediates are responsible for product branching and hold the key to unveiling these mechanisms, but are notoriously difficult to detect isomer-selectively. Here, we investigate the catalytic pyrolysis of guaiacol, a lignin model compound, using photoelectron photoion coincidence spectroscopy with synchrotron radiation, which allows for isomer-selective detection of reactive intermediates. In combination with ambient pressure pyrolysis, we identify fulvenone as the central reactive intermediate, generated by catalytic demethylation to catechol and subsequent dehydration. The fulvenone ketene is responsible for the phenol formation. This technique may open unique opportunities for isomer-resolved probing in catalysis, and holds the potential for achieving a mechanistic understanding of complex, real-life catalytic processes. The conversion of lignin by catalytic fast pyrolysis into useful fine chemicals is a promising route to fuel production, however selectivity and conversion are still not optimal. Here, the authors investigate the reaction mechanism by detection of reactive intermediates responsible for the formation of key products.
Collapse
|
29
|
Porterfield JP, Bross DH, Ruscic B, Thorpe JH, Nguyen TL, Baraban JH, Stanton JF, Daily JW, Ellison GB. Thermal Decomposition of Potential Ester Biofuels. Part I: Methyl Acetate and Methyl Butanoate. J Phys Chem A 2017; 121:4658-4677. [PMID: 28517940 DOI: 10.1021/acs.jpca.7b02639] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two methyl esters were examined as models for the pyrolysis of biofuels. Dilute samples (0.06-0.13%) of methyl acetate (CH3COOCH3) and methyl butanoate (CH3CH2CH2COOCH3) were entrained in (He, Ar) carrier gas and decomposed in a set of flash-pyrolysis microreactors. The pyrolysis products resulting from the methyl esters were detected and identified by vacuum ultraviolet photoionization mass spectrometry. Complementary product identification was provided by matrix infrared absorption spectroscopy. Pyrolysis pressures in the pulsed microreactor were about 20 Torr and residence times through the reactors were roughly 25-150 μs. Reactor temperatures of 300-1600 K were explored. Decomposition of CH3COOCH3 commences at 1000 K, and the initial products are (CH2═C═O and CH3OH). As the microreactor is heated to 1300 K, a mixture of CH2═C═O and CH3OH, CH3, CH2═O, H, CO, and CO2 appears. The thermal cracking of CH3CH2CH2COOCH3 begins at 800 K with the formation of CH3CH2CH═C═O and CH3OH. By 1300 K, the pyrolysis of methyl butanoate yields a complex mixture of CH3CH2CH═C═O, CH3OH, CH3, CH2═O, CO, CO2, CH3CH═CH2, CH2CHCH2, CH2═C═CH2, HCCCH2, CH2═C═C═O, CH2═CH2, HC≡CH, and CH2═C═O. On the basis of the results from the thermal cracking of methyl acetate and methyl butanoate, we predict several important decomposition channels for the pyrolysis of fatty acid methyl esters, R-CH2-COOCH3. The lowest-energy fragmentation will be a 4-center elimination of methanol to form the ketene RCH═C═O. At higher temperatures, concerted fragmentation to radicals will ensue to produce a mixture of species: (RCH2 + CO2 + CH3) and (RCH2 + CO + CH2═O + H). Thermal cracking of the β C-C bond of the methyl ester will generate the radicals (R and H) as well as CH2═C═O + CH2═O. The thermochemistry of methyl acetate and its fragmentation products were obtained via the Active Thermochemical Tables (ATcT) approach, resulting in ΔfH298(CH3COOCH3) = -98.7 ± 0.2 kcal mol-1, ΔfH298(CH3CO2) = -45.7 ± 0.3 kcal mol-1, and ΔfH298(COOCH3) = -38.3 ± 0.4 kcal mol-1.
Collapse
Affiliation(s)
| | - David H Bross
- Chemical Sciences and Engineering Division, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - Branko Ruscic
- Chemical Sciences and Engineering Division, Argonne National Laboratory , Argonne, Illinois 60439, United States.,Computation Institute, The University of Chicago , Chicago, Illinois 60637, United States
| | - James H Thorpe
- Department of Chemistry, University of Texas , Austin, Texas 78712, United States
| | - Thanh Lam Nguyen
- Department of Chemistry, University of Texas , Austin, Texas 78712, United States
| | | | - John F Stanton
- Department of Chemistry, University of Texas , Austin, Texas 78712, United States.,Department of Chemistry, University of Florida , Gainesville, Florida 32611, United States
| | | | | |
Collapse
|
30
|
Custodis VBF, Hemberger P, van Bokhoven JA. How Inter- and Intramolecular Reactions Dominate the Formation of Products in Lignin Pyrolysis. Chemistry 2017; 23:8658-8668. [DOI: 10.1002/chem.201700639] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Victoria B. F. Custodis
- Institute for Chemical and Bioengineering; Department of Chemistry and Applied Biosciences; ETH Zurich, HCI E 127; Vladimir-Prelog-Weg 1 8093 Zurich Switzerland
- Laboratory for Catalysis and Sustainable Chemistry; Paul Scherrer Institute, WLGA 135; 5232 Villigen Switzerland
| | - Patrick Hemberger
- Laboratory for Femtochemistry and Synchrotron Radiation; Paul Scherrer Institute; CH-5232 Villigen-PSI Switzerland
| | - Jeroen A. van Bokhoven
- Institute for Chemical and Bioengineering; Department of Chemistry and Applied Biosciences; ETH Zurich, HCI E 127; Vladimir-Prelog-Weg 1 8093 Zurich Switzerland
- Laboratory for Catalysis and Sustainable Chemistry; Paul Scherrer Institute, WLGA 135; 5232 Villigen Switzerland
| |
Collapse
|
31
|
Wong YF, Kulsing C, Marriott PJ. Switchable Enantioselective Three- and Four-Dimensional Dynamic Gas Chromatography–Mass Spectrometry: Example Study of On-Column Molecular Interconversion. Anal Chem 2017; 89:5620-5628. [DOI: 10.1021/acs.analchem.7b00853] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yong Foo Wong
- Australian Centre for Research
on Separation Science, School of Chemistry, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Chadin Kulsing
- Australian Centre for Research
on Separation Science, School of Chemistry, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Philip J. Marriott
- Australian Centre for Research
on Separation Science, School of Chemistry, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| |
Collapse
|
32
|
Asatryan R, Bennadji H, Bozzelli JW, Ruckenstein E, Khachatryan L. Molecular Products and Fundamentally Based Reaction Pathways in the Gas-Phase Pyrolysis of the Lignin Model Compound p-Coumaryl Alcohol. J Phys Chem A 2017; 121:3352-3371. [PMID: 28406634 DOI: 10.1021/acs.jpca.7b01656] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The fractional pyrolysis of lignin model compound para-coumaryl alcohol (p-CMA) containing a propanoid side chain and a phenolic OH group was studied using the System for Thermal Diagnostic Studies at temperatures from 200 to 900 °C, in order to gain mechanistic insight into the role of large substituents in high-lignin feedstocks pyrolysis. Phenol and its simple derivatives p-cresol, ethyl-, propenyl-, and propyl-phenols were found to be the major products predominantly formed at low pyrolysis temperatures (<500 °C). A cryogenic trapping technique was employed combined with EPR spectroscopy to identify the open-shell intermediates registered at pyrolysis temperatures above 500 °C. These were characterized as radical mixtures primarily consisting of oxygen-linked conjugated radicals. A comprehensive potential energy surface analysis of p-CMA and p-CMA + H atom systems was performed using various DFT protocols to examine the possible role of concerted molecular eliminations and free-radical mechanisms in the formation of major products. Other significant unimolecular concerted reactions along with formation and decomposition of primary radicals are also described and evaluated. The calculations suggest that a set of the chemically activated secondary radical channels is relevant to the low temperature product formation under fractional pyrolysis conditions.
Collapse
Affiliation(s)
- Rubik Asatryan
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York , Buffalo, New York 14226, United States
| | - Hayat Bennadji
- Department of Environmental Sciences, Louisiana State University , Baton Rouge, Louisiana 70808, United States
| | - Joseph W Bozzelli
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology , Newark, New Jersey 07102, United States
| | - Eli Ruckenstein
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York , Buffalo, New York 14226, United States
| | - Lavrent Khachatryan
- Department of Chemistry, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
33
|
Ince A, Carstensen H, Sabbe M, Reyniers M, Marin GB. Group additive modeling of substituent effects in monocyclic aromatic hydrocarbon radicals. AIChE J 2016. [DOI: 10.1002/aic.15588] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Alper Ince
- Laboratory for Chemical TechnologyGhent University, Technologypark 914GhentB‐9052 Belgium
| | | | - Maarten Sabbe
- Laboratory for Chemical TechnologyGhent University, Technologypark 914GhentB‐9052 Belgium
| | | | - Guy B. Marin
- Laboratory for Chemical TechnologyGhent University, Technologypark 914GhentB‐9052 Belgium
| |
Collapse
|
34
|
Buckingham GT, Porterfield JP, Kostko O, Troy TP, Ahmed M, Robichaud DJ, Nimlos MR, Daily JW, Ellison GB. The thermal decomposition of the benzyl radical in a heated micro-reactor. II. Pyrolysis of the tropyl radical. J Chem Phys 2016; 145:014305. [DOI: 10.1063/1.4954895] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Grant T. Buckingham
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, USA
- National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden Colorado 80401, USA
| | - Jessica P. Porterfield
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, USA
| | - Oleg Kostko
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Tyler P. Troy
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Musahid Ahmed
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - David J. Robichaud
- National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden Colorado 80401, USA
| | - Mark R. Nimlos
- National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden Colorado 80401, USA
| | - John W. Daily
- Department of Mechanical Engineering, Center for Combustion and Environmental Research, University of Colorado, Boulder, Colorado 80309-0427, USA
| | - G. Barney Ellison
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, USA
| |
Collapse
|
35
|
Prendergast MB, Kirk BB, Savee JD, Osborn DL, Taatjes CA, Masters KS, Blanksby SJ, da Silva G, Trevitt AJ. Formation and stability of gas-phase o-benzoquinone from oxidation of ortho-hydroxyphenyl: a combined neutral and distonic radical study. Phys Chem Chem Phys 2016; 18:4320-32. [DOI: 10.1039/c5cp02953h] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The o-hydroxyphenyl radical reacts with O2 to form o-benzoquinone + OH and cyclopentadienone is assigned as a secondary product.
Collapse
Affiliation(s)
| | | | - John D. Savee
- Combustion Research Facility
- Sandia National Laboratories
- Livermore
- USA
| | - David L. Osborn
- Combustion Research Facility
- Sandia National Laboratories
- Livermore
- USA
| | - Craig A. Taatjes
- Combustion Research Facility
- Sandia National Laboratories
- Livermore
- USA
| | - Kye-Simeon Masters
- School of Chemistry, Physics and Mechanical Engineering
- Faculty of Science and Engineering
- Queensland University of Technology
- Brisbane
- Australia
| | - Stephen J. Blanksby
- Central Analytical Research Facility
- Queensland University of Technology
- Brisbane
- Australia
| | - Gabriel da Silva
- Department of Chemical and Biomolecular Engineering
- The University of Melbourne
- Melbourne
- Australia
| | - Adam J. Trevitt
- School of Chemistry
- University of Wollongong
- Wollongong
- Australia
| |
Collapse
|
36
|
Porterfield JP, Nguyen TL, Baraban JH, Buckingham GT, Troy TP, Kostko O, Ahmed M, Stanton JF, Daily JW, Ellison GB. Isomerization and Fragmentation of Cyclohexanone in a Heated Micro-Reactor. J Phys Chem A 2015; 119:12635-47. [DOI: 10.1021/acs.jpca.5b10984] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jessica P. Porterfield
- Department
of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
| | - Thanh Lam Nguyen
- Department
of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Joshua H. Baraban
- Department
of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
| | - Grant T. Buckingham
- Department
of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
| | - Tyler P. Troy
- Chemical
Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720, United States
| | - Oleg Kostko
- Chemical
Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720, United States
| | - Musahid Ahmed
- Chemical
Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720, United States
| | - John F. Stanton
- Department
of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - John W. Daily
- Center
for Combustion and Environmental Research, Department of Mechanical
Engineering, University of Colorado, Boulder, Colorado 80309-0427, United States
| | - G. Barney Ellison
- Department
of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
| |
Collapse
|
37
|
Hemberger P, da Silva G, Trevitt AJ, Gerber T, Bodi A. Are the three hydroxyphenyl radical isomers created equal?--The role of the phenoxy radical. Phys Chem Chem Phys 2015; 17:30076-83. [PMID: 26500055 DOI: 10.1039/c5cp05346c] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have investigated the thermal decomposition of the three hydroxyphenyl radicals (˙C6H4OH) in a heated microtubular reactor. Intermediates and products were identified isomer-selectively applying photoion mass-selected threshold photoelectron spectroscopy with vacuum ultraviolet synchrotron radiation. Similarly to the phenoxy radical (C6H5-O˙), hydroxyphenyl decomposition yields cyclopentadienyl (c-C5H5) radicals in a decarbonylation reaction at elevated temperatures. This finding suggests that all hydroxyphenyl isomers first rearrange to form phenoxy species, which subsequently decarbonylate, a mechanism which we also investigate computationally. Meta- and para-radicals were selectively produced and spectroscopically detectable, whereas the ortho isomer could not be traced due to its fast rethermalization and rapid decomposition in the reactor. A smaller barrier to isomerization to phenoxy was found to be the reason for this observation. Since hydroxyphenyl species may be present under typical sooting conditions in flames, the resonantly stabilized cyclopentadienyl radical adds to the hydrocarbon pool and can contribute to the formation of polycyclic aromatic hydrocarbons, which are precursors in soot formation.
Collapse
Affiliation(s)
- P Hemberger
- Molecular Dynamics Group, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland.
| | | | | | | | | |
Collapse
|
38
|
Urness KN, Guan Q, Troy TP, Ahmed M, Daily JW, Ellison GB, Simmie JM. Pyrolysis Pathways of the Furanic Ether 2-Methoxyfuran. J Phys Chem A 2015; 119:9962-77. [PMID: 26351733 DOI: 10.1021/acs.jpca.5b06779] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Substituted furans, including furanic ethers, derived from nonedible biomass have been proposed as second-generation biofuels. In order to use these molecules as fuels, it is important to understand how they break apart thermally. In this work, a series of experiments were conducted to study the unimolecular and low-pressure bimolecular decomposition mechanisms of the smallest furanic ether, 2-methoxyfuran. Electronic structure (CBS-QB3) calculations indicate this substituted furan has an unusually weak O-CH3 bond, approximately 190 kJ mol(-1) (45 kcal mol(-1)); thus, the primary decomposition pathway is through bond scission resulting in CH3 and 2-furanyloxy (O-C4H3O) radicals. Final products from the ring opening of the furanyloxy radical include 2 CO, HC≡CH, and H. The decomposition of methoxyfuran is studied over a range of concentrations (0.0025-0.1%) in helium or argon in a heated silicon carbide (SiC) microtubular flow reactor (0.66-1 mm i.d., 2.5-3.5 cm long) with reactor wall temperatures from 300 to 1300 K. Inlet pressures to the reactor are 150-1500 Torr, and the gas mixture emerges as a skimmed molecular beam at a pressure of approximately 10 μTorr. Products formed at early pyrolysis times (100 μs) are detected by 118.2 nm (10.487 eV) photoionization mass spectrometry (PIMS), tunable synchrotron VUV PIMS, and matrix infrared absorption spectroscopy. Secondary products resulting from H or CH3 addition to the parent and reaction with 2-furanyloxy were also observed and include CH2═CH-CHO, CH3-CH═CH-CHO, CH3-CO-CH═CH2, and furanones; under the conditions in the reactor, we estimate these reactions contribute to at most 1-3% of total methoxyfuran decomposition. This work also includes observation and characterization of an allylic lactone radical, 2-furanyloxy (O-C4H3O), with the assignment of several intense vibrational bands in an Ar matrix, an estimate of the ionization threshold, and photoionization efficiency. A pressure-dependent kinetic mechanism is also developed to model the decomposition behavior of methoxyfuran and provide pathways for the minor bimolecular reaction channels that are observed experimentally.
Collapse
Affiliation(s)
- Kimberly N Urness
- Department of Mechanical Engineering, University of Colorado , Boulder, Colorado 80309-0427, United States
| | - Qi Guan
- Department of Mechanical Engineering, University of Colorado , Boulder, Colorado 80309-0427, United States
| | - Tyler P Troy
- Chemical Sciences Division, Lawrence Berkeley National Laboratory , MS 6R-2100, Berkeley, California 94720, United States
| | - Musahid Ahmed
- Chemical Sciences Division, Lawrence Berkeley National Laboratory , MS 6R-2100, Berkeley, California 94720, United States
| | - John W Daily
- Department of Mechanical Engineering, University of Colorado , Boulder, Colorado 80309-0427, United States
| | - G Barney Ellison
- Department of Chemistry and Biochemistry, University of Colorado , Boulder, Colorado 80309-0215, United States
| | - John M Simmie
- Combustion Chemistry Centre, School of Chemistry, National University of Ireland , Galway, Ireland
| |
Collapse
|
39
|
Ormond TK, Scheer AM, Nimlos MR, Robichaud DJ, Troy TP, Ahmed M, Daily JW, Nguyen TL, Stanton JF, Ellison GB. Pyrolysis of Cyclopentadienone: Mechanistic Insights from a Direct Measurement of Product Branching Ratios. J Phys Chem A 2015; 119:7222-34. [DOI: 10.1021/jp511390f] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Thomas K. Ormond
- National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
- Department
of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
| | - Adam M. Scheer
- Combustion
Research Facility, Sandia National Laboratory, PO Box 969, Livermore, California 94551-0969, United States
| | - Mark R. Nimlos
- National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - David J. Robichaud
- National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Tyler P. Troy
- Chemical
Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720, United States
| | - Musahid Ahmed
- Chemical
Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720, United States
| | - John W. Daily
- Center
for Combustion and Environmental Research, Department of Mechanical
Engineering, University of Colorado, Boulder, Colorado 80309-0427, United States
| | - Thanh Lam Nguyen
- Institute
for Theoretical Chemistry, Department of Chemistry, University of Texas, Austin, Texas 78712, United States
| | - John F. Stanton
- Institute
for Theoretical Chemistry, Department of Chemistry, University of Texas, Austin, Texas 78712, United States
| | - G. Barney Ellison
- Department
of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
| |
Collapse
|
40
|
Buckingham GT, Ormond TK, Porterfield JP, Hemberger P, Kostko O, Ahmed M, Robichaud DJ, Nimlos MR, Daily JW, Ellison GB. The thermal decomposition of the benzyl radical in a heated micro-reactor. I. Experimental findings. J Chem Phys 2015; 142:044307. [DOI: 10.1063/1.4906156] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Grant T. Buckingham
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, USA
- National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, USA
| | - Thomas K. Ormond
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, USA
- National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, USA
| | - Jessica P. Porterfield
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, USA
| | - Patrick Hemberger
- Molecular Dynamics Group, Paul Scherrer Institut, CH-5232 Villigen-PSI, Switzerland
| | - Oleg Kostko
- Chemical Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720, USA
| | - Musahid Ahmed
- Chemical Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720, USA
| | - David J. Robichaud
- National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, USA
| | - Mark R. Nimlos
- National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, USA
| | - John W. Daily
- Department of Mechanical Engineering, Center for Combustion and Environmental Research,University of Colorado, Boulder, Colorado 80309-0427, USA
| | - G. Barney Ellison
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, USA
| |
Collapse
|
41
|
Liang S, Hemberger P, Neisius NM, Bodi A, Grützmacher H, Levalois-Grützmacher J, Gaan S. Elucidating the Thermal Decomposition of Dimethyl Methylphosphonate by Vacuum Ultraviolet (VUV) Photoionization: Pathways to the PO Radical, a Key Species in Flame-Retardant Mechanisms. Chemistry 2014; 21:1073-80. [DOI: 10.1002/chem.201404271] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Indexed: 11/09/2022]
|
42
|
Custodis VBF, Hemberger P, Ma Z, van Bokhoven JA. Mechanism of Fast Pyrolysis of Lignin: Studying Model Compounds. J Phys Chem B 2014; 118:8524-31. [DOI: 10.1021/jp5036579] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Victoria B. F. Custodis
- Department
of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, HCI E 127, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Patrick Hemberger
- Molecular
Dynamics Group, Paul Scherrer Institute, CH-5232 Villigen-PSI, Switzerland
| | - Zhiqiang Ma
- Department
of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, HCI E 127, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Jeroen A. van Bokhoven
- Department
of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, HCI E 127, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
- Laboratory
for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, WLGA 135, 5232 Villigen, Switzerland
| |
Collapse
|
43
|
Robichaud DJ, Scheer AM, Mukarakate C, Ormond TK, Buckingham GT, Ellison GB, Nimlos MR. Unimolecular thermal decomposition of dimethoxybenzenes. J Chem Phys 2014; 140:234302. [DOI: 10.1063/1.4879615] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
44
|
Krupa J, Wierzejewska M, Nunes CM, Fausto R. UV-tunable laser induced phototransformations of matrix isolated anethole. J Chem Phys 2014; 140:105102. [DOI: 10.1063/1.4867896] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
45
|
Pagacz-Kostrzewa M, Krupa J, Wierzejewska M. Carboxylic Group and Its Tetrazolyl Isostere in One Molecule. Matrix Isolation FTIR and DFT Studies on Thermal Decomposition and Photochemistry of (Tetrazol-5-yl)acetic Acid. J Phys Chem A 2014; 118:2072-82. [DOI: 10.1021/jp5001804] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- M. Pagacz-Kostrzewa
- Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, 50-383 Wrocław, Poland
| | - J. Krupa
- Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, 50-383 Wrocław, Poland
| | - M. Wierzejewska
- Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, 50-383 Wrocław, Poland
| |
Collapse
|
46
|
Ormond TK, Scheer AM, Nimlos MR, Robichaud DJ, Daily JW, Stanton JF, Ellison GB. Polarized Matrix Infrared Spectra of Cyclopentadienone: Observations, Calculations, and Assignment for an Important Intermediate in Combustion and Biomass Pyrolysis. J Phys Chem A 2014; 118:708-18. [DOI: 10.1021/jp411257k] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Thomas K. Ormond
- National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
- Department
of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
| | - Adam M. Scheer
- Combustion
Research Facility, Sandia National Laboratory, P. O. Box 969, Livermore, California 94551-0969, United States
| | - Mark R. Nimlos
- National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - David J. Robichaud
- National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - John W. Daily
- Center
for Combustion and Environmental Research, Department of Mechanical
Engineering, University of Colorado, Boulder, Colorado 80309-0427, United States
| | - John F. Stanton
- Institute
for Theoretical Chemistry, Department of Chemistry, University of Texas, Austin, Texas 78712, United States
| | - G. Barney Ellison
- Department
of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
| |
Collapse
|
47
|
Vasiliou AK, Piech KM, Reed B, Zhang X, Nimlos MR, Ahmed M, Golan A, Kostko O, Osborn DL, David DE, Urness KN, Daily JW, Stanton JF, Ellison GB. Thermal decomposition of CH3CHO studied by matrix infrared spectroscopy and photoionization mass spectroscopy. J Chem Phys 2012; 137:164308. [DOI: 10.1063/1.4759050] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
48
|
Vautard F, Fioux P, Vidal L, Dentzer J, Schultz J, Nardin M, Defoort B. Influence of an oxidation of the carbon fiber surface by boiling nitric acid on the adhesion strength in carbon fiber-acrylate composites cured by electron beam. SURF INTERFACE ANAL 2012. [DOI: 10.1002/sia.5147] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - P. Fioux
- Institut de Science des Matériaux de Mulhouse; Université de Haute Alsace; LRC-CNRS 7228, 15 rue Jean Starcky; 68057; Mulhouse; France
| | - L. Vidal
- Institut de Science des Matériaux de Mulhouse; Université de Haute Alsace; LRC-CNRS 7228, 15 rue Jean Starcky; 68057; Mulhouse; France
| | - J. Dentzer
- Institut de Science des Matériaux de Mulhouse; Université de Haute Alsace; LRC-CNRS 7228, 15 rue Jean Starcky; 68057; Mulhouse; France
| | - J. Schultz
- Institut de Science des Matériaux de Mulhouse; Université de Haute Alsace; LRC-CNRS 7228, 15 rue Jean Starcky; 68057; Mulhouse; France
| | - M. Nardin
- Institut de Science des Matériaux de Mulhouse; Université de Haute Alsace; LRC-CNRS 7228, 15 rue Jean Starcky; 68057; Mulhouse; France
| | - B. Defoort
- EADS Astrium; Avenue du Général Niox; 33165; Saint Médard en Jalles; France
| |
Collapse
|