1
|
Colley JE, Dynak NJ, Blais JRC, Duncan MA. Photodissociation Spectroscopy and Photofragment Imaging of the Mg +(Benzene) Complex. J Phys Chem A 2024; 128:10507-10515. [PMID: 39585751 DOI: 10.1021/acs.jpca.4c05703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Tunable laser photodissociation spectroscopy and photofragment imaging experiments are employed to investigate the spectroscopy and dissociation dynamics of the Mg+(benzene) ion-molecule complex. When excited with ultraviolet radiation, Mg+(benzene) photodissociates efficiently, producing both Mg+ and benzene+ fragments, with branching ratios depending on the wavelength. The wavelength dependence of these processes are similar, with intense resonances at 330 and 241 nm and weaker features at 290 and 258 nm. Comparisons of the experimental spectra to those predicted by computational chemistry at the TD-DFT level allow assignment of these to metal ion-based (330 and 241 nm), charge-transfer (290 nm), and benzene-based (258 nm) transitions. However, the observation of the benzene cation fragment at all wavelengths, which can only result from charge-transfer, indicates unanticipated excited state dynamics. Spectroscopy experiments are complemented by photofragment imaging to investigate these dynamics. The high kinetic energy release indicates that multiphoton absorption based on the intense atomic resonances is responsible at least in part for the dissociation processes.
Collapse
Affiliation(s)
- Jason E Colley
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Nathan J Dynak
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - John R C Blais
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Michael A Duncan
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
2
|
Jin S, Juanes M, van der Linde C, Ončák M, Beyer MK. Symmetry reduction induced by argon tagging gives access to low-lying excited states of FeH + in the overtone region of the Fe-H stretching mode. Phys Chem Chem Phys 2024; 26:26363-26369. [PMID: 39385679 PMCID: PMC11465007 DOI: 10.1039/d4cp03270e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
Iron is the most abundant transition metal in the interstellar medium (ISM), and is thought to be involved in a variety of astrochemical processes. Here, we present the infrared multiple photon dissociation (IRMPD) spectra of Ar1,2FeH+ and their deuterated isotopologues in the region of 2240-14 000 cm-1. The Fe-H overtone stretching mode in ArFeH+ and Ar2FeH+ is observed at 3636 ± 28 cm-1 and 3659 ± 13 cm-1, respectively. Deuteration shifts these bands to 2618 ± 31 cm-1 and 2650 ± 14 cm-1 in ArFeD+ and Ar2FeD+, respectively. Additionally, the spectra of Ar2FeH+ and Ar2FeD+ feature broad transitions at ∼2200-4000 cm-1 and ∼4500-6500 cm-1. We assign these bands to electronic transitions from the thermally populated X5A2/X'5A1 ground state manifold into the A'5B2 and B5A1 states, which we model with multi-reference quantum chemical calculations including spin-orbit coupling. The calculations show that these transitions are symmetry forbidden in FeH+ and in the equilibrium geometry of ArFeH+/ArFeD+, while the zero-point oscillation of the bending mode of the triatomic molecule leads to some oscillator strength. Upon addition of the second argon atom, the transitions become weakly allowed in the equilibrium geometry of Ar2FeH+/Ar2FeD+ due to symmetry reduction from C∞v to C2v.
Collapse
Affiliation(s)
- Shan Jin
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
| | - Marcos Juanes
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
- Departamento Química Física y Química Inorgánica, University of Valladolid, Paseo de Belén 7, 47011 Valladolid, Spain
| | - Christian van der Linde
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
| | - Martin K Beyer
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
| |
Collapse
|
3
|
Batchelor AG, Marks JH, Ward TB, Duncan MA. Co +(C 2H 2) n Complexes Studied with Selected-Ion Infrared Spectroscopy and Theory. J Phys Chem A 2024; 128:8954-8963. [PMID: 39373697 PMCID: PMC11492291 DOI: 10.1021/acs.jpca.4c05304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/08/2024]
Abstract
Co+(C2H2)n (n = 1-6) complexes produced with laser vaporization in a supersonic molecular beam are studied with infrared photodissociation spectroscopy and computational chemistry. Infrared spectra are measured in the C-H stretching region using the method of tagging with argon atoms to enhance the photodissociation yields. C-H stretch vibrations for all clusters studied are shifted to lower frequencies than those of the well-known acetylene vibrations from ligand → metal charge transfer interactions. The magnitude of the red shifts decreases in the larger clusters as the interaction is distributed over more ligands. Computational studies identify various unreacted complexes with individual acetylene ligands in cation-π bonding configurations as well as reacted isomers in which ligand coupling reactions have taken place. Infrared spectra are consistent only with unreacted structures, even though the formation of reacted structures such as the metal ion-benzene complex is highly exothermic. Large activation barriers are predicted by theory along the reaction coordinates for the n = 2 and 3 complexes, which inhibit reactions in these smaller clusters, and this situation is presumed to persist in larger clusters.
Collapse
Affiliation(s)
- Anna G. Batchelor
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Joshua H. Marks
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Timothy B. Ward
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Michael A. Duncan
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
4
|
Ariyarathna IR. Wavefunction theory and density functional theory analysis of ground and excited electronic states of TaB and WB. Phys Chem Chem Phys 2024; 26:22858-22869. [PMID: 39109413 DOI: 10.1039/d4cp02202e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Several low-lying electronic states of TaB and WB molecules were studied using ab initio multireference configuration interaction (MRCI), Davidson corrected MRCI (MRCI+Q), and coupled cluster singles doubles and perturbative triples [CCSD(T)] methods. Their full potential energy curves (PECs), equilibrium electron configurations, equilibrium bond distances (res), dissociation energies (Des), excitation energies (Tes), harmonic vibrational frequencies (ωes), and anharmonicities (ωexes) are reported. The MRCI dipole moment curves (DMCs) of the first 5 electronic states of both TaB and WB are also reported and the equilibrium dipole moment (μ) values are compared with the CCSD(T) μ values. The most stable 13Π (1σ22σ23σ11π3) and 15Δ (1σ22σ23σ11π21δ1) electronic states of TaB lie close in energy with ∼62 kcal mol-1De with respect to the Ta(4F) + B(2P) asymptote. However, spin-orbit coupling effects make the 15Δ0+ state the true ground state of TaB. The ground electronic state of WB (16Π) has the 1σ22σ13σ11π31δ2 electron configuration and is followed by the excited 16Σ+ and 14Δ states. Finally, the MRCI De, re, ωe, and ωexe values of the 13Π state of TaB and 16Π and 14Δ states of WB are used to assess the density functional theory (DFT) errors on a series of exchange-correlation functionals that span multiple-rungs of the Jacob's ladder of density functional approximations (DFA).
Collapse
Affiliation(s)
- Isuru R Ariyarathna
- Physics and Chemistry of Materials (T-1), Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| |
Collapse
|
5
|
Tomchak KH, Sorensen JJ, Tieu E, Morse MD. Predissociation-based measurements of bond dissociation energies: US2, OUS, and USe. J Chem Phys 2024; 161:044306. [PMID: 39041877 DOI: 10.1063/5.0220813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/05/2024] [Indexed: 07/24/2024] Open
Abstract
The uranium-containing molecules US2, OUS, and USe have been investigated using a pulsed laser ablation supersonic beam molecular source with time-of-flight mass spectrometric detection. Spectra have been recorded using the resonant two-photon ionization method over the spectroscopic range from 277 to 238 nm. These species have a myriad of excited electronic states in this spectroscopic region, leading to spectra that are highly congested and appear quasicontinuous. Sharp predissociation thresholds are observed, allowing precise bond dissociation energies to be measured. In the case of the triatomic molecules, it was necessary to use one laser for excitation and a delayed laser for ionization in order to observe a sharp predissociation threshold that allowed a precise bond dissociation energy to be measured. The resulting thermochemical values are D0(SU-S) = 4.910 ± 0.003 eV, D0(OU-S) = 5.035 ± 0.004 eV, and D0(USe) = 4.609 ± 0.009 eV. These results provide the first measurement of D0(USe) and reduce the error limits in the previous values of D0(SU-S) and D0(OU-S) by a factor of more than 70.
Collapse
Affiliation(s)
- Kimberly H Tomchak
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112-0850, USA
| | - Jason J Sorensen
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112-0850, USA
| | - Erick Tieu
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112-0850, USA
| | - Michael D Morse
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112-0850, USA
| |
Collapse
|
6
|
Jank D, Ončák M, Jin S, van der Linde C, Beyer MK. Multiconfigurational Character of Repulsive A 2Σ g+ State Leaves Strong Signature in the Photodissociation Spectrum of Zn 2. J Am Chem Soc 2024; 146:16385-16388. [PMID: 38838087 PMCID: PMC11191677 DOI: 10.1021/jacs.4c05620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024]
Abstract
For the excitation to a repulsive state of a diatomic molecule, one expects a single broad peak in the photodissociation spectrum. For Zn2+, however, two peaks for the spin- and symmetry-allowed A2Σg+ ← X2Σu+ transition are observed. A detailed quantum-chemical analysis reveals pronounced multiconfigurational character of the A2Σg+ state. The σg(4s)2σg(4p) configuration with bond order 1.5 dominates at short distances, while the repulsive σg(4s)σu*(4s)2 configuration with bond order -0.5 wins over with increasing bond length. The two excited-state configurations contribute with opposite signs to the transition dipole moment, which reaches zero near the equilibrium distance. This local minimum of the oscillator strength is responsible for the pronounced dip in the photodissociation spectrum, which is thus the spectroscopic signature of the multiconfigurational character of the A2Σg+ state.
Collapse
Affiliation(s)
- Dominik Jank
- Institut für Ionenphysik
und Angewandte Physik, Universität
Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Milan Ončák
- Institut für Ionenphysik
und Angewandte Physik, Universität
Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Shan Jin
- Institut für Ionenphysik
und Angewandte Physik, Universität
Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Christian van der Linde
- Institut für Ionenphysik
und Angewandte Physik, Universität
Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Martin K. Beyer
- Institut für Ionenphysik
und Angewandte Physik, Universität
Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| |
Collapse
|
7
|
Luo Z, Shehzad A. Advances in Naked Metal Clusters for Catalysis. Chemphyschem 2024; 25:e202300715. [PMID: 38450926 DOI: 10.1002/cphc.202300715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/08/2024]
Abstract
The properties of sub-nano metal clusters are governed by quantum confinement and their large surface-to-bulk ratios, atomically precise compositions and geometric/electronic structures. Advances in metal clusters lead to new opportunities in diverse aspects of sciences including chemo-sensing, bio-imaging, photochemistry, and catalysis. Naked metal clusters having synergic multiple active sites and coordinative unsaturation and tunable stability/activity enable researchers to design atomically precise metal catalysts with tailored catalysis for different reactions. Here we summarize the progress of ligand-free naked metal clusters for catalytic applications. It is anticipated that this review helps to better understand the chemistry of small metal clusters and facilitates the design and development of new catalysts for potential applications.
Collapse
Affiliation(s)
- Zhixun Luo
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Aamir Shehzad
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
8
|
Wang T, Zhang Z, Yan W, Jiang S, Li S, Zhuang J, Xie H, Li G, Jiang L. Spectroscopic Characterization of Highly Excited Neutral Chromium Tricarbonyl. J Phys Chem A 2024; 128:3321-3328. [PMID: 38634151 DOI: 10.1021/acs.jpca.4c01120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Spectroscopic characterization of highly excited neutral transition-metal complexes is important for understanding the multifaceted reaction mechanisms between metals and ligands. In this work, the reactions of neutral chromium atoms with carbon monoxide were probed by size-specific infrared spectroscopy. Interestingly, Cr(CO)3 was found to have an unprecedented 7A2″ septet excited state rather than the singlet ground state. A combination of experiment and theory shows that the gas-phase formation of this highly excited Cr(CO)3 is facile both thermodynamically and kinetically. Electronic structure and bonding analyses indicate that the valence electrons of Cr atoms in the septet Cr(CO)3 are in a relatively stable configuration, which facilitate the highly excited structure and the planar geometric shape (D3h symmetry). The observed septet Cr(CO)3 affords a paradigm for exploring the structure, properties, and formation mechanism of a large variety of excited neutral compounds.
Collapse
Affiliation(s)
- Tiantong Wang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaoyan Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenhui Yan
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shangdong Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianxing Zhuang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua Xie
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Gang Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ling Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Hefei National Laboratory, Hefei 230088, China
| |
Collapse
|
9
|
Huber ME, Lewis TWR, Meta M, Ard SG, Liu Y, Sweeny BC, Guo H, Ončák M, Shuman NS, Meyer J. Ta + and Nb + + CO 2: intersystem crossing in ion-molecule reactions. Phys Chem Chem Phys 2024; 26:8670-8680. [PMID: 38437035 DOI: 10.1039/d3cp05549c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
The reactions of Ta+ and Nb+ with CO2 proceed only by a highly efficient oxygen atom transfer reaction to the respective oxide at room temperature in the gas phase. Although the product spin states are not determined, thermochemistry dictates that they must be different from ground state quintet Ta+ and Nb+, implying that intersystem crossing (ISC) has occurred. Recent reactive scattering experiments found dominant indirect dynamics for the reaction with Ta+ hinting at a bottleneck along the reaction path. The question on the nature of the bottleneck, whether it involves a crossing point or a transition state, could not be finally answered because theory located both close to each other. Here, we aim at shedding further light onto the impact of intersystem crossing on the reaction dynamics and ultimately the reactivity of transition metal ion reactions in the gas phase. We employ a combination of thermal kinetics for Ta+ and Nb+ with CO2 using a selected-ion flow tube (SIFT) apparatus and differential scattering cross sections for Nb+ + CO2 from crossed-beam velocity map imaging. The reaction with niobium again shows dominant indirect dynamics and in general very similar dynamics compared to Ta+ + CO2. At thermal energies, both reactions show sub-collisional rate constants with small negative temperature dependencies. Experiments are complemented by high level quantum chemical calculations of the minimum energy pathway. Statistical modelling well-reproduces the experimental thermal rate constants, and suggests that the Nb+ reaction is rate-limited by the intersystem crossing at thermal energies.
Collapse
Affiliation(s)
- Maximilian E Huber
- RPTU Kaiserslautern-Landau, Fachbereich Chemie und Forschungszentrum OPTIMAS, Erwin-Schrödinger Str. 52, 67663 Kaiserslautern, Germany.
| | - Tucker W R Lewis
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117, USA.
| | - Marcel Meta
- RPTU Kaiserslautern-Landau, Fachbereich Chemie und Forschungszentrum OPTIMAS, Erwin-Schrödinger Str. 52, 67663 Kaiserslautern, Germany.
| | - Shaun G Ard
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117, USA.
| | - Yang Liu
- Department of Chemistry and Chemical Biology, Center for Computational Chemistry, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Brendan C Sweeny
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117, USA.
| | - Hua Guo
- Department of Chemistry and Chemical Biology, Center for Computational Chemistry, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Milan Ončák
- Universität Innsbruck, Institut für Ionenenphysik und Angewandte Physik, Technikerstra. 25, 6020 Innsbruck, Austria
| | - Nicholas S Shuman
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117, USA.
| | - Jennifer Meyer
- RPTU Kaiserslautern-Landau, Fachbereich Chemie und Forschungszentrum OPTIMAS, Erwin-Schrödinger Str. 52, 67663 Kaiserslautern, Germany.
| |
Collapse
|
10
|
Wu H, Jia Y, Zhao X, Geng L, Lin S, Li SD, Luo Z. To What Extent Do Iodomethane and Bromomethane Undergo Analogous Reactions? J Phys Chem A 2024; 128:1274-1279. [PMID: 38334079 DOI: 10.1021/acs.jpca.3c08337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Iodomethane and bromomethane (CH3I/CH3Br) are common chemicals, but their chemistry on nanometals is not fully understood. Here, we analyze the reactivity of Rhn+ (n = 3-30) clusters with halomethanes and unveil the spin effect and concentration dependence in the C-H and C-X bond activation. It is found that the reactions under halomethane-rich conditions differ from those under metal-rich conditions. Both CH3I and CH3Br undergo similar dehydrogenation on the Rhn+ clusters in the presence of small quantity reactants; however, different reactions are observed in the presence of sufficient CH3I/CH3Br, showing dominant Rh(CH3Br)x+ (x = 1-4) products but a series of RhnCxHyIz+ species (x = 1-4, y = 1-12, and z = 1-5) pertaining to H2, HI, or CH4 removal. Density functional theory calculations reveal that the dehydrogenation and demethanation of CH3Br are relatively less exothermic and will be deactivated by sufficient gas collisions if helium cooling takes away energy immediately; instead, the successive adsorption of CH3Br gives rise to a series of Rh(CH3Br)x+ species with accidental C-Br bond dissociation.
Collapse
Affiliation(s)
- Haiming Wu
- Beijing National Laboratory for Molecular Science (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yuhan Jia
- Beijing National Laboratory for Molecular Science (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaoyun Zhao
- Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
- Department of Applied Chemistry, Yuncheng University, Yuncheng 044000, China
| | - Lijun Geng
- Beijing National Laboratory for Molecular Science (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Shiquan Lin
- Beijing National Laboratory for Molecular Science (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Si-Dian Li
- Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Zhixun Luo
- Beijing National Laboratory for Molecular Science (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Juanes M, Jin S, Saragi RT, van der Linde C, Ebenbichler A, Przybilla N, Ončák M, Beyer MK. Iron Complexes as Potential Carriers of Diffuse Interstellar Bands: The Photodissociation Spectrum of Fe +(H 2O) at Optical Wavelengths. J Phys Chem A 2024; 128:1306-1312. [PMID: 38347749 PMCID: PMC10895653 DOI: 10.1021/acs.jpca.4c00148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/23/2024]
Abstract
The fullerene ion C60+ is the only carrier of diffuse interstellar bands (DIBs) identified so far. Transition-metal compounds feature electronic transitions in the visible and near-infrared regions, making them potential DIB carriers. Since iron is the most abundant transition metal in the cosmos, we here test this idea with Fe+(H2O). Laboratory spectra were obtained by photodissociation spectroscopy at 80 K. Spectra were modeled with the reflection principle. A high-resolution spectrum of the DIB standard star HD 183143 served as an observational reference. Two broad bands were observed from 4120 to 6800 Å. The 4120-4800 Å band has sharp features emerging from the background, which have the width of DIBs but do not match the band positions of the reference spectrum. Calculations show that the spectrum arises from a d-d transition at the iron center. While no match was found for Fe+(H2O) with known DIBs, the observation of structured bands with line widths typical for DIBs shows that small molecules or molecular ions containing iron are promising candidates for DIB carriers.
Collapse
Affiliation(s)
- Marcos Juanes
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, Innsbruck 6020, Austria
- Dept.
Química Física y Química Inorgánica, University of Valladolid, Paseo de Belén 7, Valladolid 47011, Spain
| | - Shan Jin
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, Innsbruck 6020, Austria
| | - Rizalina T. Saragi
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, Innsbruck 6020, Austria
| | - Christian van der Linde
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, Innsbruck 6020, Austria
| | - Alexander Ebenbichler
- Institut
für Astro- und Teilchenphysik, Universität
Innsbruck, Technikerstr.
25/8, Innsbruck 6020, Austria
| | - Norbert Przybilla
- Institut
für Astro- und Teilchenphysik, Universität
Innsbruck, Technikerstr.
25/8, Innsbruck 6020, Austria
| | - Milan Ončák
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, Innsbruck 6020, Austria
| | - Martin K. Beyer
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, Innsbruck 6020, Austria
| |
Collapse
|
12
|
Dietrich F, Becherer M, Bellaire D, Martínez-Rodríguez P, Gerhards M. Investigating cooperative effects in small cobalt and cobalt-nickel alloy clusters with attached ethanol. Phys Chem Chem Phys 2023; 25:31077-31089. [PMID: 37946573 DOI: 10.1039/d3cp02448b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Small cationic cobalt, and cobalt-nickel alloy clusters with ethanol attached are generated in a pulsed molecular beam experiment using a laser ablation source. While the metal center is successively varied with respect to size and composition, a full-size study of these transition metal clusters is possible. The clusters are investigated via IR photodissociation spectroscopy in the region of OH- and CH-stretching vibrations. The results are compared with theoretical data obtained from DFT calculations. Both frequency shifts and structural changes according to cluster size and composition are identified and discussed in detail, also with respect to cooperative effects. Trimeric metal clusters with an uneven number of nickel atoms show evidence for C-O cleavage of the ethanol molecule. This result is elucidated by further calculations concerning the reactivity, charge and energetic distributions.
Collapse
Affiliation(s)
- Fabian Dietrich
- Departamento de Ciencias Físicas, Universidad de La Frontera, Temuco, Chile.
- Research Center Optimas & Department of Chemistry, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| | - Markus Becherer
- Research Center Optimas & Department of Chemistry, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| | - Daniel Bellaire
- Research Center Optimas & Department of Chemistry, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| | | | - Markus Gerhards
- Research Center Optimas & Department of Chemistry, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| |
Collapse
|
13
|
Jia Y, Xu CQ, Cui C, Geng L, Zhang H, Zhang YY, Lin S, Yao J, Luo Z, Li J. Rh 19-: A high-spin super-octahedron cluster. SCIENCE ADVANCES 2023; 9:eadi0214. [PMID: 37585530 PMCID: PMC10431703 DOI: 10.1126/sciadv.adi0214] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/17/2023] [Indexed: 08/18/2023]
Abstract
Probing atomic clusters with magic numbers is of supreme importance but challenging in cluster science. Pronounced stability of a metal cluster often arises from coincident geometric and electronic shell closures. However, transition metal clusters do not simply abide by this constraint. Here, we report the finding of a magic-number cluster Rh19- with prominent inertness in the sufficient gas-collision reactions. Photoelectron spectroscopy experiments and global-minimum structure search have determined the geometry of Rh19- to be a regular Oh‑[Rh@Rh12@Rh6]- with unusual high-spin electronic configuration. The distinct stability of such a strongly magnetic cluster Rh19- consisting of a nonmagnetic element is fully unveiled on the basis of its unique bonding nature and superatomic states. The 1-nanometer-sized Oh-Rh19- cluster corresponds to a fragment of the face-centered cubic lattice of bulk rhodium but with altered magnetism and electronic property. This cluster features exceptional electron-spin state isomers confirmed in photoelectron spectra and suggests potential applications in atomically precise manufacturing involving spintronics and quantum computing.
Collapse
Affiliation(s)
- Yuhan Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cong-Qiao Xu
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chaonan Cui
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lijun Geng
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hanyu Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yang-Yang Zhang
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Shiquan Lin
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiannian Yao
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhixun Luo
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Li
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| |
Collapse
|
14
|
Mackie CJ, Lu W, Liang J, Kostko O, Bandyopadhyay B, Gupta I, Ahmed M, Head-Gordon M. Magic Numbers and Stabilities of Photoionized Water Clusters: Computational and Experimental Characterization of the Nanosolvated Hydronium Ion. J Phys Chem A 2023. [PMID: 37441795 DOI: 10.1021/acs.jpca.3c02230] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
The stability and distributions of small water clusters generated in a supersonic beam expansion are interrogated by tunable vacuum ultraviolet (VUV) radiation generated at a synchrotron. Time-of-flight mass spectrometry reveals enhanced population of various protonated water clusters (H+(H2O)n) based upon ionization energy and photoionization distance from source, suggesting there are "magic" numbers below the traditional n = 21 that predominates in the literature. These intensity distributions suggest that VUV threshold photoionization (11.0-11.5 eV) of neutral water clusters close to the nozzle exit leads to a different nonequilibrium state compared to a skimmed molecular beam. This results in the appearance of a new magic number at 14. Metadynamics conformer searches coupled with modern density functional calculations are used to identify the global minimum energy structures of protonated water clusters between n = 2 and 21, as well as the manifold of low-lying metastable minima. New lowest energy structures are reported for the cases of n = 5, 6, 11, 12, 16, and 18, and special stability is identified by several measures. These theoretical results are in agreement with the experiments performed in this work in that n = 14 is shown to exhibit additional stability, based on the computed second-order stabilization energy relative to most cluster sizes, though not to the extent of the well-known n = 21 cluster. Other cluster sizes that show some additional energetic stability are n = 7, 9, 12, 17, and 19. To gain insight into the balance between ion-water and water-water interactions as a function of the cluster size, an analysis of the effective two-body interactions (which sum exactly to the total interaction energy) was performed. This analysis reveals a crossover as a function of cluster size between a water-hydronium-dominated regime for small clusters and a water-water-dominated regime for larger clusters around n = 17.
Collapse
Affiliation(s)
- Cameron J Mackie
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Wenchao Lu
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jiashu Liang
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Oleg Kostko
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Biswajit Bandyopadhyay
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Ishan Gupta
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Musahid Ahmed
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Martin Head-Gordon
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
15
|
Batchelor AG, Marks JH, Ward TB, Duncan MA. Pt +(C 2H 2) n Complexes Studied with Selected-Ion Infrared Spectroscopy. J Phys Chem A 2023. [PMID: 37369010 DOI: 10.1021/acs.jpca.3c02734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Platinum cation complexes with multiple acetylene molecules are studied with mass spectrometry and infrared laser spectroscopy. Complexes of the form Pt+(C2H2)n are produced in a molecular beam by laser vaporization, analyzed with a time-of-flight mass spectrometer, and selected by mass for studies of their vibrational spectroscopy. Photodissociation action spectra in the C-H stretching region are compared to the spectra predicted for different structural isomers using density functional theory. The comparison between experiment and theory demonstrates that platinum forms cation-π complexes with up to three acetylene molecules, producing an unanticipated asymmetric structure for the three-ligand complex. Additional acetylenes form solvation structures around this three-ligand core. Reacted structures that couple acetylene molecules (e.g., to form benzene) are found by theory to be energetically favorable, but their formation is inhibited under the conditions of these experiments by large activation barriers.
Collapse
Affiliation(s)
- Anna G Batchelor
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Joshua H Marks
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Timothy B Ward
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Michael A Duncan
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
16
|
Meta M, Huber ME, Michaelsen T, Ayasli A, Ončák M, Wester R, Meyer J. Dynamics of the Oxygen Atom Transfer Reaction between Carbon Dioxide and the Tantalum Cation. J Phys Chem Lett 2023:5524-5530. [PMID: 37290113 DOI: 10.1021/acs.jpclett.3c01078] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The understanding of fundamental atomic-level processes often requires well-defined model systems. The oxygen atom transfer from CO2 to a transition metal cation in the gas phase presents such a model system. We investigate the reaction of Ta+ + CO2 for which the formation of TaO+ is highly efficient and attributed to multistate reactivity. Here, we study the atomistic dynamics of the oxygen atom transfer reaction by recording experimental energy and angle differential cross sections by crossed beam velocity map imaging supported by ab initio quantum chemical calculations. Product ion velocity distributions are dominated by signatures for indirect dynamics, despite the reaction being highly exothermic. Product kinetic energy distributions show little dependence on additional collision energy even with only four atoms involved, which hints at dynamical trapping behind a submerged barrier.
Collapse
Affiliation(s)
- Marcel Meta
- Fachbereich Chemie und Forschungszentrum OPTIMAS, RPTU Kaiserslautern-Landau, Erwin-Schrödinger Straße 52, 67663 Kaiserslautern, Germany
| | - Maximilian E Huber
- Fachbereich Chemie und Forschungszentrum OPTIMAS, RPTU Kaiserslautern-Landau, Erwin-Schrödinger Straße 52, 67663 Kaiserslautern, Germany
| | - Tim Michaelsen
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Atilay Ayasli
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Roland Wester
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Jennifer Meyer
- Fachbereich Chemie und Forschungszentrum OPTIMAS, RPTU Kaiserslautern-Landau, Erwin-Schrödinger Straße 52, 67663 Kaiserslautern, Germany
| |
Collapse
|
17
|
Haraguchi N, Ogiwara N, Kumabe Y, Kikkawa S, Yamazoe S, Tachikawa T, Uchida S. Size-Controlled Synthesis of Luminescent Few-Atom Silver Clusters via Electron Transfer in Isostructural Redox-Active Porous Ionic Crystals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300743. [PMID: 36828792 DOI: 10.1002/smll.202300743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Indexed: 06/08/2023]
Abstract
Ag clusters with a controlled number of atoms have received significant interest because they show size-dependent catalytic, optical, electronic, or magnetic properties. However, the synthesis of size-controlled, ligand-free, and air-stable Ag clusters with high yields has not been well-established. Herein, it is shown that isostructural porous ionic crystals (PICs) with redox-active polyoxometalates (POMs) can be used to synthesize Ag clusters via electron transfer from POMs to Ag+ . Ag clusters with average numbers of three, four, or six atoms emitting blue, green, or red colors, respectively, are formed and stabilized in the PICs under ambient conditions without any protecting ligands. The cluster size solely correlates with the degree of electron transfer, which is controlled by the reduction time and types of ions or elements of the PICs. Thus, advantages have been taken of POMs as electron sources and PICs as scaffolds to demonstrate a convenient method to obtain few-atom Ag clusters.
Collapse
Affiliation(s)
- Naoya Haraguchi
- Department of Basic Science, School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Naoki Ogiwara
- Department of Basic Science, School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Yoshitaka Kumabe
- Molecular Photoscience Research Center, Kobe University, Rokkodaicho, Nada-ku, Kobe, 657-8501, Japan
| | - Soichi Kikkawa
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Seiji Yamazoe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Takashi Tachikawa
- Molecular Photoscience Research Center, Kobe University, Rokkodaicho, Nada-ku, Kobe, 657-8501, Japan
| | - Sayaka Uchida
- Department of Basic Science, School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| |
Collapse
|
18
|
Fielicke A. Probing the binding and activation of small molecules by gas-phase transition metal clusters via IR spectroscopy. Chem Soc Rev 2023. [PMID: 37162518 DOI: 10.1039/d2cs00104g] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Isolated transition metal clusters have been established as useful models for extended metal surfaces or deposited metal particles, to improve the understanding of their surface chemistry and of catalytic reactions. For this objective, an important milestone has been the development of experimental methods for the size-specific structural characterization of clusters and cluster complexes in the gas phase. This review focusses on the characterization of molecular ligands, their binding and activation by small transition metal clusters, using cluster-size specific infrared action spectroscopy. A comprehensive overview and a critical discussion of the experimental data available to date is provided, reaching from the initial results obtained using line-tuneable CO2 lasers to present-day studies applying infrared free electron lasers as well as other intense and broadly tuneable IR laser sources.
Collapse
Affiliation(s)
- André Fielicke
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195 Berlin, Germany.
- Institut für Optik und Atomare Physik, Technische Universität Berlin, 10623 Berlin, Germany
| |
Collapse
|
19
|
Nakajima Y, Latif MA, Nagata T, Ohshimo K, Misaizu F. Size-Dependent Geometrical Structures of Platinum Oxide Cluster Cations Studied by Ion Mobility-Mass Spectrometry. J Phys Chem A 2023; 127:3570-3576. [PMID: 37058573 DOI: 10.1021/acs.jpca.2c09017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Structures of platinum oxide cluster cations (PtnOm+) were studied by ion mobility-mass spectrometry in combination with theoretical calculations. Structures of oxygen-equivalent PtnOn+ (n = 3-7) clusters were discussed from the comparison between their collision cross sections (CCSs) obtained by mobility measurement and simulated CCSs of their structural candidates from structural optimization calculations. Assigned structures of PtnOn+ were found to be composed of Pt frameworks and bridging O atoms, which follows the previous theoretical prediction on the neutral clusters. The structures change from planar (n = 3 and 4) to three-dimensional (n = 5-7) with increasing cluster size by deforming platinum frameworks. Comparison with other group-10 metal oxide cluster cations (MnOn+; M = Ni and Pd) showed that the PtnOn+ structures have a similar tendency to PdnOn+ rather than NinOn+.
Collapse
Affiliation(s)
- Yuto Nakajima
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - M Abdul Latif
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Toshiaki Nagata
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Keijiro Ohshimo
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Fuminori Misaizu
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
20
|
Zheng H, Jiang S, Yan W, Wang T, Li S, Xie H, Li G, Yang X, Jiang L. Size-Specific Infrared Spectroscopic Study of the Reactions between Water Molecules and Neutral Vanadium Dimer: Evidence for Water Splitting. J Phys Chem Lett 2023; 14:3878-3883. [PMID: 37068164 DOI: 10.1021/acs.jpclett.3c00637] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Investigation of the reactions between water molecules and neutral metal clusters is important in water splitting but is very challenging due to the inherent difficulty of size selection. Here, we report a size-specific infrared-vacuum ultraviolet spectroscopic study on the reactions of water with neutral vanadium dimer. The V2O3H4 and V2O4H6 products were characterized to have unexpected V2(μ2-OH)(μ2-H)(η1-OH)2 and V2(μ2-OH)2(η1-H)2(η1-OH)2 structures, indicative of a water decomposition. A combination of theory and experiment reveals that the water splitting by V2 is both thermodynamically exothermic and kinetically facile in the gas phase. The present system serves as a model for clarifying the pivotal roles played by neutral metal clusters in water decomposition and also opens new avenues toward systematic understanding of water splitting by a large variety of single-cluster catalysts.
Collapse
Affiliation(s)
- Huijun Zheng
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wenhui Yan
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tiantong Wang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shangdong Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua Xie
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Gang Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Hefei National Laboratory, Hefei 230088, China
- Department of Chemistry and Shenzhen Key Laboratory of Energy Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ling Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Hefei National Laboratory, Hefei 230088, China
| |
Collapse
|
21
|
Salzburger M, Saragi RT, Wensink FJ, Cunningham EM, Beyer MK, Bakker JM, Ončák M, van der Linde C. Carbon Dioxide and Water Activation by Niobium Trioxide Anions in the Gas Phase. J Phys Chem A 2023; 127:3402-3411. [PMID: 37040467 PMCID: PMC10123662 DOI: 10.1021/acs.jpca.3c01394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Transition metals are important in various industrial applications including catalysis. Due to the current concentration of CO2 in the atmosphere, various ways for its capture and utilization are investigated. Here, we study the activation of CO2 and H2O at [NbO3]- in the gas phase using a combination of infrared multiple photon dissociation spectroscopy and density functional theory calculations. In the experiments, Fourier-transform ion cyclotron resonance mass spectrometry is combined with tunable IR laser light provided by the intracavity free-electron laser FELICE or optical parametric oscillator-based table-top laser systems. We present spectra of [NbO3]-, [NbO2(OH)2]-, [NbO2(OH)2]-(H2O) and [NbO(OH)2(CO3)]- in the 240-4000 cm-1 range. The measured spectra and observed dissociation channels together with quantum chemical calculations confirm that upon interaction with a water molecule, [NbO3]- is transformed to [NbO2(OH)2]- via a barrierless reaction. Reaction of this product with CO2 leads to [NbO(OH)2(CO3)]- with the formation of a [CO3] moiety.
Collapse
Affiliation(s)
- Magdalena Salzburger
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Rizalina T Saragi
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Frank J Wensink
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Ethan M Cunningham
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Martin K Beyer
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Joost M Bakker
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Christian van der Linde
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| |
Collapse
|
22
|
Chinnabathini VC, Dingenen F, Borah R, Abbas I, van der Tol J, Zarkua Z, D'Acapito F, Nguyen THT, Lievens P, Grandjean D, Verbruggen SW, Janssens E. Gas phase deposition of well-defined bimetallic gold-silver clusters for photocatalytic applications. NANOSCALE 2023; 15:6696-6708. [PMID: 36938628 DOI: 10.1039/d2nr07287d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Cluster beam deposition is employed for fabricating well-defined bimetallic plasmonic photocatalysts to enhance their activity while facilitating a more fundamental understanding of their properties. AuxAg1-x clusters with compositions (x = 0, 0.1, 0.3, 0.5, 0.7, 0.9 and 1) spanning the metals' miscibility range were produced in the gas-phase and soft-landed on TiO2 P25-coated silicon wafers with an optimal coverage of 4 atomic monolayer equivalents. Electron microscopy images show that at this coverage most clusters remain well dispersed whereas EXAFS data are in agreement with the finding that the deposited clusters have an average size of ca. 5 nm and feature the same composition as the ablated alloy targets. A composition-dependant electron transfer from Au to Ag that is likely to impart chemical stability to the bimetallic clusters and protect Ag atoms against oxidation is additionally evidenced by XPS and XANES. Under simulated solar light, AuxAg1-x clusters show a remarkable composition-dependent volcano-type enhancement of their photocatalytic activity towards degradation of stearic acid, a model compound for organic fouling on surfaces. The Formal Quantum Efficiency (FQE) is peaking at the Au0.3Ag0.7 composition with a value that is twice as high as that of the pristine TiO2 P25 under solar simulator. Under UV the FQE of all compositions remains similar to that of pristine TiO2. A classical electromagnetic simulation study confirms that among all compositions Au0.3Ag0.7 features the largest near-field enhancement in the wavelength range of maximal solar light intensity, as well as sufficient individual photon energy resulting in a better photocatalytic self-cleaning activity. This allows ascribing the mechanism for photocatalysis mostly to the plasmonic effect of the bimetallic clusters through direct electron injection and near-field enhancement from the resonant cluster towards the conduction band of TiO2. These results not only demonstrate the added value of using well-defined bimetallic nanocatalysts to enhance their photocatalytic activity but also highlights the potential of the cluster beam deposition to design tailored noble metal modified photocatalytic surfaces with controlled compositions and sizes without involving potentially hazardous chemical agents.
Collapse
Affiliation(s)
- Vana Chinnappa Chinnabathini
- Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Belgium.
- Sustainable Energy, Air & Water Technology (DuEL), University of Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerpen, Groenenborgerlaan 171, 2020, Antwerpen, Belgium
| | - Fons Dingenen
- Sustainable Energy, Air & Water Technology (DuEL), University of Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerpen, Groenenborgerlaan 171, 2020, Antwerpen, Belgium
| | - Rituraj Borah
- Sustainable Energy, Air & Water Technology (DuEL), University of Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerpen, Groenenborgerlaan 171, 2020, Antwerpen, Belgium
| | - Imran Abbas
- Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Belgium.
| | - Johan van der Tol
- Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Belgium.
| | - Zviadi Zarkua
- Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Belgium.
| | | | - Thi Hong Trang Nguyen
- Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Belgium.
| | - Peter Lievens
- Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Belgium.
| | - Didier Grandjean
- Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Belgium.
| | - Sammy W Verbruggen
- Sustainable Energy, Air & Water Technology (DuEL), University of Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerpen, Groenenborgerlaan 171, 2020, Antwerpen, Belgium
| | - Ewald Janssens
- Quantum Solid-State Physics, Department of Physics and Astronomy, KU Leuven, Belgium.
| |
Collapse
|
23
|
Colley J, Dynak NJ, Blais JRC, Duncan MA. Photodissociation Spectroscopy and Photofragment Imaging to Probe Fe +(Benzene) 1,2 Dissociation Energies. J Phys Chem A 2023; 127:2795-2804. [PMID: 36920853 PMCID: PMC10068738 DOI: 10.1021/acs.jpca.3c00735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/03/2023] [Indexed: 03/16/2023]
Abstract
Tunable laser photodissociation spectroscopy measurements and photofragment imaging experiments are employed to investigate the dissociation energy of the Fe+(benzene) ion-molecule complex. Additional spectroscopy measurements determine the dissociation energy of Fe+(benzene)2. The dissociation energies for Fe+(benzene) determined from the threshold for the appearance of the Fe+ fragment (48.4 ± 0.2 kcal/mol) and photofragment imaging (≤49.3 ± 3.2 kcal/mol) agree nicely with each other and with the value determined previously by collision-induced dissociation (49.5 ± 2.9 kcal/mol), but they are lower than the values produced by computational chemistry at the density functional theory level using different functionals recommended for transition-metal chemistry. The threshold measurement for Fe+(benzene)2 (43.0 ± 0.2 kcal/mol) likewise agrees with the value (44.7 ± 3.8 kcal/mol) from previous collision-induced dissociation measurements.
Collapse
Affiliation(s)
- Jason
E. Colley
- Department of Chemistry, University
of Georgia, Athens, Georgia 30602, United States
| | - Nathan J. Dynak
- Department of Chemistry, University
of Georgia, Athens, Georgia 30602, United States
| | - John R. C. Blais
- Department of Chemistry, University
of Georgia, Athens, Georgia 30602, United States
| | - Michael A. Duncan
- Department of Chemistry, University
of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
24
|
Jiang S, Zheng H, Yan W, Wang T, Wang C, Li S, Xie H, Li G, Zheng X, Fan H, Yang X, Jiang L. Capturing Hydrogen Radicals by Neutral Metal Hydroxides. J Phys Chem Lett 2023; 14:2481-2486. [PMID: 36867598 DOI: 10.1021/acs.jpclett.3c00079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Capturing the hydrogen radical is of central importance in various systems ranging from catalysis to biology to astronomy, but it has been proven to be challenging experimentally because of its high reactivity and short lifetime. Here, neutral MO3H4 (M = Sc, Y, La) complexes were characterized by size-specific infrared-vacuum ultraviolet spectroscopy. All these products were determined to be the hydrogen radical adducts in the form of H•M(OH)3. The results indicate that the addition of the hydrogen radical to the M(OH)3 complex is both thermodynamically exothermic and kinetically facile in the gas phase. Moreover, the soft collisions in the cluster growth channel with the helium expansion were found to be demanded for the formation of H•M(OH)3. This work highlights the pivotal roles played by the soft collisions in the formation of hydrogen radical adducts and also opens new avenues toward the design and chemical control of compounds.
Collapse
Affiliation(s)
- Shuai Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Huijun Zheng
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenhui Yan
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tiantong Wang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chong Wang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shangdong Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua Xie
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Gang Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiucheng Zheng
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Hongjun Fan
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Department of Chemistry and Shenzhen Key Laboratory of Energy Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Hefei National Laboratory, Hefei 230088, China
| | - Ling Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Hefei National Laboratory, Hefei 230088, China
| |
Collapse
|
25
|
Chen B, He K, Dai W, Gutsev GL, Lu C. Geometric and electronic diversity of metal doped boron clusters. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:183002. [PMID: 36827740 DOI: 10.1088/1361-648x/acbf18] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Being intermediate between small compounds and bulk materials, nanoparticles possess unique properties different from those of atoms, molecules, and bulk matter. In the past two decades, a combination of cluster structure prediction algorithms and experimental spectroscopy techniques was successfully used for exploration of the ground-state structures of pure and metal-doped boron clusters. The fruitfulness of this dual approach is well illustrated by the discovery of intriguing microstructures and unique physicochemical properties such as aromaticity and bond fluxionality for both boron and metal-doped boron clusters. Our review starts with an overview of geometrical configurations of pure boron clusters Bn, which are presented by planar, nanotube, bilayer, fullerene-like and core-shell structures, in a wide range ofnvalues. We consider next recent advances in studies of boron clusters doped with metal atoms paying close and thoughtful attention to modifications of geometric and electronic structures of pure boron clusters by heteroatoms. Finally, we discuss the possibility of constructing boron-based nanomaterials with specific functions from metal-boron clusters. Despite a variety of fruitful results obtained in numerous studies of boron clusters, the exploration of boron-based chemistry has not yet reached its peak. The intensive research continues in this area, and it should be expected that it brings exciting discoveries of intriguing new structures.
Collapse
Affiliation(s)
- Bole Chen
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, People's Republic of China
| | - Kaihua He
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, People's Republic of China
| | - Wei Dai
- School of Mathematics and Physics, Jingchu University of Technology, Hubei 448000, People's Republic of China
| | - Gennady L Gutsev
- Department of Physics, Florida A&M University, Tallahassee, FL 32307, United States of America
| | - Cheng Lu
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, People's Republic of China
| |
Collapse
|
26
|
Moreno-Vicente A, Roselló Y, Chen N, Echegoyen L, Dunk PW, Rodríguez-Fortea A, de Graaf C, Poblet JM. Are U-U Bonds Inside Fullerenes Really Unwilling Bonds? J Am Chem Soc 2023; 145:6710-6718. [PMID: 36872864 PMCID: PMC10064334 DOI: 10.1021/jacs.2c12346] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Previous characterizations of diactinide endohedral metallofullerenes (EMFs) Th2@C80 and U2@C80 have shown that although the two Th3+ ions form a strong covalent bond within the carbon cage, the interaction between the U3+ ions is weaker and described as an "unwilling" bond. To evaluate the feasibility of covalent U-U bonds, which are neglected in classical actinide chemistry, we have first investigated the formation of smaller diuranium EMFs by laser ablation using mass spectrometric detection of dimetallic U2@C2n species with 2n ≥ 50. DFT, CASPT2 calculations, and MD simulations for several fullerenes of different sizes and symmetries showed that thanks to the formation of strong U(5f3)-U(5f3) triple bonds, two U3+ ions can be incarcerated inside the fullerene. The formation of U-U bonds competes with U-cage interactions that tend to separate the U ions, hindering the observation of short U-U distances in the crystalline structures of diuranium endofullerenes as in U2@C80. Smaller cages like C60 exhibit the two interactions, and a strong triple U-U bond with an effective bond order higher than 2 is observed. Although 5f-5f interactions are responsible for the covalent interactions at distances close to 2.5 Å, overlap between 7s6d orbitals is still detected above 4 Å. In general, metal ions within fullerenes should be regarded as templates in cage formation, not as statistically confined units that have little chance of being observed.
Collapse
Affiliation(s)
- Antonio Moreno-Vicente
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel·lí Domingo 1, Tarragona 43007, Spain
| | - Yannick Roselló
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel·lí Domingo 1, Tarragona 43007, Spain
| | - Ning Chen
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Luis Echegoyen
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
| | - Paul W Dunk
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Antonio Rodríguez-Fortea
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel·lí Domingo 1, Tarragona 43007, Spain
| | - Coen de Graaf
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel·lí Domingo 1, Tarragona 43007, Spain.,ICREA, Pg. Lluis Companys 23, Barcelona 08010, Spain
| | - Josep M Poblet
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel·lí Domingo 1, Tarragona 43007, Spain
| |
Collapse
|
27
|
Sweeny BC, Long BA, Maffucci D, Zuo J, Guo H, Viggiano AA, Ard SG, Shuman NS. Activation of Methane by Zr +: A Deep-Dive into the Potential Surface via Pressure- and Temperature-Dependent Kinetics with Statistical Modeling. J Phys Chem A 2023; 127:1818-1830. [PMID: 36802591 DOI: 10.1021/acs.jpca.2c07584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The kinetics of Zr+ + CH4 are measured using a selected-ion flow tube apparatus over the temperature range 300-600 K and the pressure range 0.25-0.60 Torr. Measured rate constants are small, never exceeding 5% of the Langevin capture value. Both collisionally stabilized ZrCH4+ and bimolecular ZrCH2+ products are observed. A stochastic statistical modeling of the calculated reaction coordinate is used to fit the experimental results. The modeling indicates that an intersystem crossing from the entrance well, necessary for the bimolecular product to be formed, occurs faster than competing isomerization and dissociation processes. That sets an upper limit on the lifetime of the entrance complex to crossing of 10-11 s. The endothermicity of the bimolecular reaction is derived to be 0.09 ± 0.05 eV, in agreement with a literature value. The observed ZrCH4+ association product is determined to be primarily HZrCH3+ not Zr+(CH4), indicating that bond activation has occurred at thermal energies. The energy of HZrCH3+ relative to separated reactants is determined to be -0.80 ± 0.25 eV. Inspection of the statistical modeling results under best-fit conditions reveals reaction dependences on impact parameter, translation energy, internal energy, and angular momentum. Reaction outcomes are heavily affected by angular momentum conservation. Additionally, product energy distributions are predicted.
Collapse
Affiliation(s)
- Brendan C Sweeny
- Boston College Institute for Scientific Research, Boston, Massachusetts 02549, United States
| | - Bryan A Long
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117, United States
| | - Dominique Maffucci
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117, United States
| | - Junxiang Zuo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Albert A Viggiano
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117, United States
| | - Shaun G Ard
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117, United States
| | - Nicholas S Shuman
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117, United States
| |
Collapse
|
28
|
Sweeny BC, Ard SG, Viggiano AA, Shuman NS. Electron withdrawing ligands inhibit oxygen transport by Al +: temperature-dependent kinetics of AlO +/(O 2)AlO + + H 2/CH 4. Mol Phys 2023. [DOI: 10.1080/00268976.2023.2174362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
| | - Shaun G. Ard
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, Albuquerque, NM, USA
| | - Albert A. Viggiano
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, Albuquerque, NM, USA
| | - Nicholas S. Shuman
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, Albuquerque, NM, USA
| |
Collapse
|
29
|
Colley JE, Dynak NJ, Blais JRC, Duncan MA. Photodissociation Spectroscopy and Photofragment Imaging of the Fe +(Acetylene) Complex. J Phys Chem A 2023; 127:1244-1251. [PMID: 36701377 DOI: 10.1021/acs.jpca.2c08456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Tunable laser photodissociation spectroscopy in the 700-400 nm region and photofragment imaging experiments are employed to investigate the Fe+(acetylene) ion-molecule complex. At energies above a threshold at 679 nm, continuous dissociation is detected throughout the visible wavelength region, with regions of broad structure. Comparison to the spectrum predicted by time-dependent density functional theory (TD-DFT) indicates that the complex has a quartet ground state. The dissociation threshold for Fe+(acetylene) at 679 nm provides the dissociation energy on the quartet potential energy surface. Correction for the atomic quartet-sextet spin state energy difference provides an adiabatic dissociation energy of 36.8 ± 0.2 kcal/mol. Photofragment imaging of the Fe+ photoproduct produced at 603.5 nm produces significant kinetic energy release (KER). The photon energy and the maximum value of the KER provide an upper limit on the dissociation energy of D0 ≤ 34.6 ± 3.2 kcal/mol. The dissociation energies determined from the spectroscopy and photofragment imaging experiments agree nicely with the value determined previously by collision-induced dissociation (38.0 ± 2.6 kcal/mol). However, both values are significantly lower than those produced by computational chemistry at the DFT level using different functionals recommended for transition-metal chemistry.
Collapse
Affiliation(s)
- Jason E Colley
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Nathan J Dynak
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - John R C Blais
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Michael A Duncan
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
30
|
Atom hybridization of metallic elements: Emergence of subnano metallurgy for the post-nanotechnology. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
31
|
Brathwaite AD, Marks JH, Webster IJ, Batchelor AG, Ward TD, Duncan MA. Coordination and Spin States in Fe +(C 2H 2) n Complexes Studied with Selected-Ion Infrared Spectroscopy. J Phys Chem A 2022; 126:9680-9690. [PMID: 36517042 DOI: 10.1021/acs.jpca.2c07556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Fe+(acetylene)n ion-molecule complexes are produced in a supersonic molecular beam with pulsed laser vaporization. These ions are mass selected and studied with infrared photodissociation spectroscopy in the C-H stretching region, complemented by computational chemistry calculations. All C-H stretch vibrations are shifted to frequencies lower than the vibrations of isolated acetylene because of the charge transfer that occurs between the metal ion and the molecules. Complexes in the size range of n = 1-4 are found to have structures with individual acetylene molecules bound to the core metal ion via cation-π interactions. The coordination is completed with four ligands in a structure close to a distorted tetrahedron. Larger complexes in the range of n = 5-8 have external acetylene molecules solvating this n = 4 core ion via CH-π bonding to inner-shell ligands. DFT computations predict that quartet spin states are more stable for all complex sizes, but infrared spectra for quartet and doublet spin states are quite similar, precluding definitive determination of the spin states. There is no evidence for any of these complexes having acetylenes coupled into reacted structures. This is consistent with computed thermochemistry, which finds significant activation barriers to such reactions.
Collapse
Affiliation(s)
- Antonio D Brathwaite
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Joshua H Marks
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Ian J Webster
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Anna G Batchelor
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Timothy D Ward
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Michael A Duncan
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
32
|
Dramatic Size‐dependence of Rh
n
+
Clusters in Reacting with Small Hydrocarbons: Rh
3
+
Cluster Catalysis for Dehydrogenation. ChemistrySelect 2022. [DOI: 10.1002/slct.202203632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
33
|
Konermann L, Haidar Y. Mechanism of Magic Number NaCl Cluster Formation from Electrosprayed Water Nanodroplets. Anal Chem 2022; 94:16491-16501. [DOI: 10.1021/acs.analchem.2c04141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Yousef Haidar
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
34
|
Huang B, Wu H, Yang M, Luo Z. An integrated instrument of a tandem quadrupole mass spectrometer for cluster reaction and soft-landing deposition. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:113307. [PMID: 36461460 DOI: 10.1063/5.0112401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/11/2022] [Indexed: 06/17/2023]
Abstract
We have developed an integrated instrument system of a multiple-ion laminar flow tube (MIFT) reactor combined with a tandem quadrupole mass spectrometer (TQMS) and soft-landing deposition (SD) apparatus. A customized water-cooling magnetron sputtering (MagS) source is designed, by which we are able to attain a highly efficient preparation of metal clusters of 1-30 atoms with tunable size distributions. Following the MagS source, a laminar flow tube reactor is designed, allowing for sufficient gas-collision reactions of the as-prepared metal clusters, which is advantageous for probing magic clusters and minimizing wall effects when probing the reaction dynamics of such clusters. The customized TQMS analyzer involves a conical octupole, two linear octupoles, a quadruple ion deflector, and a 19 mm quadruple mass analyzer, allowing to decrease the pressure stepwise (from ∼5 to ∼10-9 Torr), thus ensuring high sensitivity and high resolution of the mass spectrometry analysis. In addition, we have designed a dual SD apparatus for the mass-selected deposition of clusters and their reaction products. For the whole system, abbreviated as MagS-MIFT-TQMS-SD, we have performed a detailed ions-fly simulation and quantitatively estimated the ions transfer efficiency under vacuum conditions determined by real experiments. Taking these advantages, well-resolved Pbn +, Agn +, and Nbn + clusters have been produced, allowing for meticulous studies of cluster reactions under sufficient gas-phase collisions free of electric field trapping. Also, we have tested the efficiency of the dual SD.
Collapse
Affiliation(s)
- Benben Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Haiming Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Mengzhou Yang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhixun Luo
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
35
|
Brewer EI, Green AE, Gentleman AS, Beardsmore PW, Pearcy PAJ, Meizyte G, Pickering J, Mackenzie SR. An infrared study of CO 2 activation by holmium ions, Ho + and HoO . Phys Chem Chem Phys 2022; 24:22716-22723. [PMID: 36106954 DOI: 10.1039/d2cp02862j] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a combined experimental and computational study of carbon dioxide activation at gas-phase Ho+ and HoO+ centres. Infrared action spectra of Ho(CO2)n+ and [HoO(CO2)n]+ ion-molecule complexes have been recorded in the spectral region 1700-2400 cm-1 and assigned by comparison with simulated spectra of energetically low-lying structures determined by density functional theory. Little by way of activation is observed in Ho(CO2)n+ complexes with CO2 binding end-on to the Ho+ ion. By contrast, all [HoO(CO2)n]+ complexes n ≥ 3 show unambiguous evidence for formation of a carbonate radical anion moiety, . The signature of this structure, a new vibrational band observed around 1840 cm-1 for n = 3, continues to red-shift monotonically with each successive CO2 ligand binding with net charge transfer from the ligand rather than the metal centre.
Collapse
Affiliation(s)
- Edward I Brewer
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, UK.
| | - Alice E Green
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, UK.
| | - Alexander S Gentleman
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, UK.
| | - Peter W Beardsmore
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, UK.
| | - Philip A J Pearcy
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, UK.
| | - Gabriele Meizyte
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, UK.
| | - Jack Pickering
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, UK.
| | - Stuart R Mackenzie
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, UK.
| |
Collapse
|
36
|
Colley JE, Orr DS, Duncan MA. Electronic Transition of the l-C6+ Cation at 417 nm. J Chem Phys 2022; 157:121102. [DOI: 10.1063/5.0106183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A new electronic transition is reported for the linear C6+ cation with an origin at 416.8 nm. This spectrum can be compared to the matrix isolation spectra at lower energies reported previously by Fulara et al. (J. Chem. Phys. 123, 044305 (2005)), which assigned linear and cyclic isomers, and to the gas phase spectrum reported previously by Campbell and Dunk (Rev. Sci. Instrum. 90, 103101 (2019)), which detected the same cyclic-isomer spectrum reported by Fulara. Comparisons to electronically excited states and vibrations predicted by various forms of theory allow assignment of the spectrum to a new electronic state of linear C6+. The spectrum consists of a strong origin band, two vibronic progression members at higher energy and four hotbands at lower energies. The hotbands provide the first gas phase information on ground state vibrational frequencies. The vibronic structure of this excited state of C6+ provides a severe challenge to computational chemistry.
Collapse
Affiliation(s)
| | | | - Michael A. Duncan
- Department of Chemistry, University of Georgia, United States of America
| |
Collapse
|
37
|
Rittgers BM, Marks J, Kellar DJ, Duncan MA. Photoinduced Charge Transfer in the Zn-Methanol Cation Studied with Selected-Ion Photofragment Imaging. J Chem Phys 2022; 157:114302. [DOI: 10.1063/5.0108467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Zn+(methanol) ion molecule complex produced by laser vaporization is studied with photofragment imaging at 280 and 266 nm. Photodissociation produces the methanol cation CH3OH+ via excitation of a charge-transfer excited state. Surprisingly, excitation of bound excited states produces the same fragment via a curve crossing prior to separation of products. Significant kinetic energy release is detected at both wavelengths with isotropic angular distributions. Similar experiments are conducted on the perdeuterated methanol complex. The Zn+ cation is a minor product channel that also exhibits significant kinetic energy release. An energetic cycle using the ionization potentials of zinc and methanol together with the kinetic energy release produces an upper limit on the Zn+-methanol bond energy of 33.7 {plus minus} 4.2 kcal/mol (1.46 {plus minus} 0.18 eV).
Collapse
Affiliation(s)
| | | | | | - Michael A. Duncan
- Department of Chemistry, University of Georgia, United States of America
| |
Collapse
|
38
|
Horio T, Minamikawa K, Nishizato T, Hashimoto H, Matsumoto K, Arakawa M, Terasaki A. Photoelectron imaging of size-selected metal cluster anions in a quasi-continuous mode. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:083302. [PMID: 36050112 DOI: 10.1063/5.0097968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
We present a novel high-repetition-rate photoelectron imaging (PEI) apparatus for exploring electronic structures of metal cluster anions. A continuous beam of mass-selected metal cluster anions, generated by a magnetron-sputtering cluster-ion source coupled with a quadrupole mass filter, is chopped into sub-megahertz ion bunches using a high-voltage pulser. The quasi-continuous anion beam is introduced into a PEI spectrometer, where the anions are photodetached using a 404 nm (3.07 eV) continuous-wave laser diode. As a demonstration, we acquire photoelectron images for size-selected Ag cluster anions, AgN - (N = 3, 7, 14), and show that each image can be obtained in a short accumulation time (50 s) with a kinetic energy resolution (ΔE/E) of 4% at E = 1.77 eV. The quasi-continuous PEI technique enables high-count-rate, space-charge-free acquisition of photoelectron spectra and angular distributions not only from size-selected metal cluster anions but also from anions prepared by other continuous ion sources, such as electrospray ionization.
Collapse
Affiliation(s)
- Takuya Horio
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kento Minamikawa
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tasuku Nishizato
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Haruki Hashimoto
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kazuaki Matsumoto
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masashi Arakawa
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Akira Terasaki
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
39
|
Viggiano AA, Ard SG, Shuman NS. Temperature and energy dependences of ion-molecule reactions: Studies inspired by Diethard Böhme. MASS SPECTROMETRY REVIEWS 2022; 41:568-592. [PMID: 34159628 DOI: 10.1002/mas.21700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 06/13/2023]
Abstract
Diethard Böhme has had a long career covering many topics in ion-molecule reactivity. In this review, we describe the work done at the Air Force Research Laboratory (and its variously named preceding organizations) that was inspired by his studies. These fall into two main areas: nucleophilic displacement (SN 2) and metal cation chemistry. In SN 2 chemistry, we revisited many of the reactions Diethard pioneered and studied them in more detail. We found nonstatistical behavior, both competition and noncompetition between multiple channels. New channels were found as hydration occurred, with more solution-like behavior occurring as only a few ligands were added. Temperature-dependent studies revealed details that were not observable at room temperature. These and other highlights will be discussed. In metal cation reactions, Diethard's use of an inductively coupled ion source allowed him to systematically study the periodic table of elements with a number of simple neutrals. We have taken the most interesting of these and studied them in greater detail. In doing so, we were able to identify curve crossing rates, in a few instances information about product states, and the importance of multiple entrance channels.
Collapse
Affiliation(s)
- Albert A Viggiano
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, Albuquerque, New Mexico, USA
| | - Shaun G Ard
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, Albuquerque, New Mexico, USA
| | - Nicholas S Shuman
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, Albuquerque, New Mexico, USA
| |
Collapse
|
40
|
Jin S, Heller J, van der Linde C, Ončák M, Beyer MK. Toward Detection of FeH + in the Interstellar Medium: Infrared Multiple Photon Dissociation Spectroscopy of Ar 2FeH . J Phys Chem Lett 2022; 13:5867-5872. [PMID: 35728268 PMCID: PMC9251756 DOI: 10.1021/acs.jpclett.2c01511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/15/2022] [Indexed: 06/10/2023]
Abstract
The iron hydride molecular cation FeH+ is expected to be present in the interstellar medium. Because of the lack of laboratory data, it is yet to be identified in spectrally resolved astronomic observations. As a benchmark for computational predictions and to guide an experimental search for the ro-vibrational lines of FeH+, we performed infrared multiple photon dissociation (IRMPD) spectroscopy of FeH+ tagged with two argon atoms. The Fe-H stretching mode in Ar2FeH+ is observed at 1860 cm-1. Combination bands of the Fe-H stretch with the two Fe-H bending and the asymmetric Fe-Ar stretching modes are observed at 2012 cm-1, 2054 cm-1, and 2078 cm-1. Quantum chemical calculations show that the molecule has C2v symmetry. The Ar-Fe-Ar bending mode at 46 cm-1 is significantly populated at the temperature of the experiment, causing thermal broadening of the Fe-H stretch and its redshift with increasing internal energy.
Collapse
|
41
|
Marks JH, Batchelor AG, Blais JRC, Duncan MA. Cation Complexes of Uranium and Thorium with Cyclooctatetraene: Photochemistry and Decomposition Products. J Phys Chem A 2022; 126:4230-4240. [PMID: 35749286 DOI: 10.1021/acs.jpca.2c03035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ion-molecule complexes of uranium or thorium singly-charged positive ions bound to cyclooctatetraene (COT), i.e., M+(COT)1,2, are produced by laser ablation and studied with UV laser photodissociation. The ions are selected by mass and excited at 355 or 532 nm, and the ionized dissociation products are detected using a reflectron time-of-flight mass spectrometer. The abundant fragments M+(C6H6), M+(C4H4), and M+(C2H2) occur for complexes of both metals, whereas the M+(C4H2), M+(C3H3), and M+(C5H5) fragments are prominent for uranium complexes but not for thorium. Additional experiments investigate the dissociation of M+(benzene)1,2 ions which may be intermediates in the fragmentation of the COT ions. The experiments are complemented by computational quantum chemistry to investigate the structures and energetics of fragment ions. Various cation-π and metallacycle structures are indicated for different fragment ions. The metal ion-ligand bond energies for corresponding complex ions are systematically greater for the thorium species. The computed thermochemistry makes it possible to explain the mechanistic details of the photochemical fragmentation processes and to reveal new actinide organometallic structures.
Collapse
Affiliation(s)
- Joshua H Marks
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Anna G Batchelor
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - John R C Blais
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Michael A Duncan
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
42
|
Dynak NJ, Rittgers BM, Colley JE, Kellar DJ, Duncan MA. Photofragment Imaging of Carbon Cluster Cations: Explosive Ring Rupture. J Phys Chem Lett 2022; 13:4786-4793. [PMID: 35613312 DOI: 10.1021/acs.jpclett.2c00950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Carbon cluster cations (Cn+) produced by laser vaporization are mass selected and photodissociated at 355 nm. Multiphoton dissociation of smaller ions leads to the elimination of neutral C3, as in previous work, whereas larger clusters exhibit more varied fragmentation channels. Photofragment velocity-map imaging detects significant kinetic energy release (KER) in the various n - 3 cation fragments. Small cations (n = 6 or 7) with linear structures produce moderate KER, whereas larger cations (n = 10, 11, 12, 15, or 20) having monocyclic ring structures produce much higher KER values. Such high KER values are unanticipated, as optical excitation should produce a wide distribution of internal energies. These carbon clusters have a surprising ability to absorb multiple photons of ultraviolet radiation, achieving a state of extreme excitation prior to dissociation. The remarkable nonstatistical distribution of energy is apparently influenced by the significant ring strain that can be released upon photodissociation.
Collapse
Affiliation(s)
- Nathan J Dynak
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Brandon M Rittgers
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Jason E Colley
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Douglas J Kellar
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Michael A Duncan
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
43
|
Ferrari P, Delgado-Callico L, Lushchikova OV, Bejide M, Wensink FJ, Bakker JM, Baletto F, Janssens E. Bonding Nature between Noble Gases and Small Gold Clusters. J Phys Chem Lett 2022; 13:4309-4314. [PMID: 35533018 DOI: 10.1021/acs.jpclett.2c00738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Noble gases are usually seen as utterly inert, likewise gold, which is typically conceived as the noblest of all metals. While one may expect that noble gases bind to gold via dispersion interactions only, strong bonds can be formed between noble gas atoms and small gold clusters. We combine mass spectrometry, infrared spectroscopy, and density functional theory calculations to address the bonding nature between Aun+ (n ≤ 4) clusters and Ar, Kr, and Xe. We unambiguously determine the geometries and quantitatively uncover the bonding nature in AunNgm+ (Ng = Ar, Kr, Xe) complexes. Each Au cluster can form covalent bonds with atop bound noble gas atoms, with strengths that increase with the noble gas atomic radius. This is demonstrated by calculated adsorption energies, Bader electron charges, and analysis of the electron density. The covalent bonding character, however, is limited to the atop-coordinated Ng atoms.
Collapse
Affiliation(s)
- Piero Ferrari
- Quantum Solid-State Physics, KU Leuven, Celestijnenlaan 200d, 3001 Leuven, Belgium
| | | | - Olga V Lushchikova
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, 6525 ED Nijmegen, Netherlands
| | - Matias Bejide
- Quantum Solid-State Physics, KU Leuven, Celestijnenlaan 200d, 3001 Leuven, Belgium
| | - Frank J Wensink
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, 6525 ED Nijmegen, Netherlands
| | - Joost M Bakker
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, 6525 ED Nijmegen, Netherlands
| | - Francesca Baletto
- Department of Physics, King's College London, London WC2R 2LS, U.K
- Department of Physics, University of Milan, Via Celoria 16, I-20133 Milano, Italy
| | - Ewald Janssens
- Quantum Solid-State Physics, KU Leuven, Celestijnenlaan 200d, 3001 Leuven, Belgium
| |
Collapse
|
44
|
In-situ generation and global property profiling of metal nanoclusters by ultraviolet laser dissociation-mass spectrometry. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1267-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
45
|
Heller J, Cunningham EM, van der Linde C, Ončák M, Beyer MK. Infrared Multiple Photon Dissociation Spectroscopy Confirms Reversible Water Activation in Mn +(H 2O) n, n ≤ 8. J Phys Chem Lett 2022; 13:3269-3275. [PMID: 35389219 PMCID: PMC9014459 DOI: 10.1021/acs.jpclett.2c00394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Controlled activation of water molecules is the key to efficient water splitting. Hydrated singly charged manganese ions Mn+(H2O)n exhibit a size-dependent insertion reaction, which is probed by infrared multiple photon dissociation spectroscopy (IRMPD) and FT-ICR mass spectrometry. The noninserted isomer of Mn+(H2O)4 is formed directly in the laser vaporization ion source, while its inserted counterpart HMnOH+(H2O)3 is selectively prepared by gentle removal of water molecules from larger clusters. The IRMPD spectra in the O-H stretch region of both systems are markedly different, and correlate very well with quantum chemical calculations of the respective species at the CCSD(T)/aug-cc-pVDZ//BHandHLYP/aug-cc-pVDZ level of theory. The calculated potential energy surface for water loss from HMnOH+(H2O)3 shows that this cluster ion is metastable. During IRMPD, the system rearranges back to the noninserted Mn+(H2O)3 structure, indicating that the inserted structure requires stabilization by hydration. The studied system serves as an atomically defined single-atom redox-center for reversible metal insertion into the O-H bond, a key step in metal-centered water activation.
Collapse
|
46
|
Bakker JM, Mafuné F. Zooming in on the initial steps of catalytic NO reduction using metal clusters. Phys Chem Chem Phys 2022; 24:7595-7610. [PMID: 35297928 PMCID: PMC8966623 DOI: 10.1039/d1cp05760j] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The study of reactions relevant to heterogeneous catalysis on the surface of well-defined metal clusters with full control over the number of consituent atoms and elemental composition can lead to a detailed insight into the interactions between metal and reactants. We here review experimental and theoretical studies involving the adsorption of NO molecules on mostly rhodium-based clusters under near-thermal conditions in a molecular beam. We show how IR spectrosopic characterization can give information on the binding nature of NO to the clusters for at least the first three NO molecules. The complementary technique of thermal desorption spectrometry reveals at what temperatures multiple NO molecules on the cluster surface desorb or combine to form rhodium oxides followed by N2 elimination. Variation of the cluster elemental composition can be a powerful method to identify how the propensity of the critical first step of NO dissociation can be increased. The testing of such concepts with atomic detail can be of great help in guiding the choices in rational catalyst design. The study of reactions relevant to heterogeneous catalysis on metal clusters with full control over the number of constituent atoms and elemental composition can lead to a detailed insight into the interactions governing catalytic functionality.![]()
Collapse
Affiliation(s)
- Joost M Bakker
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands.
| | - Fumitaka Mafuné
- Department of Basic Science, School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan.
| |
Collapse
|
47
|
Pei W, Wang P, Zhou S, Zhao J. Inverse Design of Nanoclusters for Light-Controlled CO 2-HCOOH Interconversion. J Phys Chem Lett 2022; 13:2523-2532. [PMID: 35285226 DOI: 10.1021/acs.jpclett.2c00472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
With global push of hydrogen economy, efficient scenarios for hydrogen storage, transportation, and generation are indispensable. Here we devise a strategy for controllable hydrogen fuel storage and retrieval via light-switched CO2-to-HCOOH interconversion. To realize it, palladium sulfide nanocluster catalysts with multiple specific functionalities are directly searched by our home-developed inverse design approach based on genetic algorithm (IDOGA) and ab initio calculations. Over 500 low-energy PdxSy (x + y ≤ 30) clusters are sieved through a multiobjective function combining stability, activity, optical absorption, and reduction capability of photocarriers. The structure-property relationships and key factors governing the trade-off among these stringent criteria are disclosed. Finally, 14 candidate PdxSy clusters with proper sulfidation degree and high stability in an aqueous environment have been screened. Our IDOGA program provides a general approach for inverse search of nanoclusters with any designated elemental compositions and functionalities for any device applications.
Collapse
Affiliation(s)
- Wei Pei
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| | - Pengju Wang
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| | - Si Zhou
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| | - Jijun Zhao
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| |
Collapse
|
48
|
Müller F, Sauer J, Song X, Asmis KR. The Chemical Nature of Ti 4O 10-: Vibrational Predissociation Spectroscopy Combined with Global Structure Optimization. J Phys Chem A 2021; 125:9571-9577. [PMID: 34709822 DOI: 10.1021/acs.jpca.1c05552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The gas-phase infrared spectrum of Ti4O10- is studied in the spectral range from 400 cm-1 to 1250 cm-1 using cryogenic ion trap vibrational spectroscopy, in combination with density functional theory (DFT). The infrared photodissociation (IRPD) spectrum of D2-tagged Ti4O10- provides evidence for a structure of lower symmetry that contains a superoxo group (1121 cm-1) and two terminal Ti=O moieties. DFT combined with a genetic algorithm for global structure optimization predicts two isomers which feature a superoxo group: the Cs symmetric global minimum-energy structure and a similar isomer (C1) that is slightly higher in energy. Coupled cluster calculations confirm the relative stability. Comparison of the harmonic DFT spectra (different functionals) with the IRPD spectrum suggests that both of these isomers contribute. Earlier assignments to the adamantane-like C3v isomer with three terminal Ti-O• - groups in a quartet state are not confirmed. They were based on the infrared multiple photon photodissociation (IRMPD) spectrum of bare Ti4O10- and local DFT structure optimizations.
Collapse
Affiliation(s)
- Fabian Müller
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstr. 2, 04103 Leipzig, Germany.,Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Joachim Sauer
- Institut für Chemie, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| | - Xiaowei Song
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Knut R Asmis
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstr. 2, 04103 Leipzig, Germany
| |
Collapse
|
49
|
Kolesniková L, León I, Alonso ER, Mata S, Alonso JL. An Innovative Approach for the Generation of Species of the Interstellar Medium. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Lucie Kolesniková
- Department of Analytical Chemistry University of Chemistry and Technology Technická 5 16628 Prague 6 Czech Republic
| | - Iker León
- Grupo de Espectroscopia Molecular (GEM) Edificio Quifima Área de Química-Física Laboratorios de Espectroscopia y, Bioespectroscopia Parque Científico UVa Unidad Asociada CSIC Universidad de Valladolid 47011 Valladolid Spain
| | - Elena R. Alonso
- Instituto Biofisika (UPV/EHU, CSIC) University of the Basque Country 48940 Leioa Spain
- Departamento de Química Física Facultad de Ciencia y Tecnología Universidad del País Vasco Barrio Sarriena s/n 48940 Leioa Spain
| | - Santiago Mata
- Grupo de Espectroscopia Molecular (GEM) Edificio Quifima Área de Química-Física Laboratorios de Espectroscopia y, Bioespectroscopia Parque Científico UVa Unidad Asociada CSIC Universidad de Valladolid 47011 Valladolid Spain
| | - Jose Luis Alonso
- Grupo de Espectroscopia Molecular (GEM) Edificio Quifima Área de Química-Física Laboratorios de Espectroscopia y, Bioespectroscopia Parque Científico UVa Unidad Asociada CSIC Universidad de Valladolid 47011 Valladolid Spain
| |
Collapse
|
50
|
Kolesniková L, León I, Alonso ER, Mata S, Alonso JL. An Innovative Approach for the Generation of Species of the Interstellar Medium. Angew Chem Int Ed Engl 2021; 60:24461-24466. [PMID: 34496111 PMCID: PMC8597129 DOI: 10.1002/anie.202110325] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/02/2021] [Indexed: 11/16/2022]
Abstract
The large amount of unstable species in the realm of interstellar chemistry drives an urgent need to develop efficient methods for the in situ generations of molecules that enable their spectroscopic characterizations. Such laboratory experiments are fundamental to decode the molecular universe by matching the interstellar and terrestrial spectra. We propose an approach based on laser ablation of nonvolatile solid organic precursors. The generated chemical species are cooled in a supersonic expansion and probed by high‐resolution microwave spectroscopy. We present a proof of concept through a simultaneous formation of interstellar compounds and the first generation of aminocyanoacetylene using diaminomaleonitrile as a prototypical precursor. With this micro‐laboratory, we open the door to generation of unsuspected species using precursors not typically accessible to traditional techniques such as electric discharge and pyrolysis.
Collapse
Affiliation(s)
- Lucie Kolesniková
- Department of Analytical Chemistry, University of Chemistry and Technology, Technická 5, 16628, Prague 6, Czech Republic
| | - Iker León
- Grupo de Espectroscopia Molecular (GEM), Edificio Quifima, Área de Química-Física, Laboratorios de Espectroscopia y, Bioespectroscopia, Parque Científico UVa, Unidad Asociada CSIC, Universidad de Valladolid, 47011, Valladolid, Spain
| | - Elena R Alonso
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, 48940, Leioa, Spain.,Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Santiago Mata
- Grupo de Espectroscopia Molecular (GEM), Edificio Quifima, Área de Química-Física, Laboratorios de Espectroscopia y, Bioespectroscopia, Parque Científico UVa, Unidad Asociada CSIC, Universidad de Valladolid, 47011, Valladolid, Spain
| | - Jose Luis Alonso
- Grupo de Espectroscopia Molecular (GEM), Edificio Quifima, Área de Química-Física, Laboratorios de Espectroscopia y, Bioespectroscopia, Parque Científico UVa, Unidad Asociada CSIC, Universidad de Valladolid, 47011, Valladolid, Spain
| |
Collapse
|