1
|
Bu S, Sonker M, Koh D, Ros A. On the behavior of sub-micrometer polystyrene particles subjected to AC insulator-based dielectrophoresis. Electrophoresis 2024; 45:1065-1079. [PMID: 38195843 DOI: 10.1002/elps.202300184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/20/2023] [Accepted: 12/24/2023] [Indexed: 01/11/2024]
Abstract
Polymer beads, especially polystyrene particles, have been extensively used as model species in insulator-based dielectrophoresis (iDEP) studies. Their use in alternating current iDEP (AC-iDEP) is less explored; however, an assessment in the low-frequency regime (≤10 kHz) allows to link surface conduction effects with the surface properties of polymer particles. Here, we provide a case study for various experimental conditions assessing sub-micrometer polystyrene particles with AC-iDEP and link to accepted surface conduction theory to predict and experimentally verify the observed AC-iDEP trapping behavior based on apparent zeta potential and solution conductivity. We find excellent agreement with the theoretical predictions, but also the occurrence of concentration polarization electroosmotic flow under the studied conditions, which have the potential to confound acting dielectrophoresis conditions. Furthermore, we study a case relevant to the assessment of microplastics in human and animal body fluids by mimicking the protein adsorption of high abundant proteins in blood by coating polystyrene beads with bovine serum albumin, a highly abundant protein in blood. Theoretical predictions and experimental observations confirm a difference in observed AC-iDEP behavior between coated and non-coated particles, which might be exploited for future studies of microplastics in blood to assess their exposure to humans and animals.
Collapse
Affiliation(s)
- Shulin Bu
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Mukul Sonker
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Domin Koh
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Alexandra Ros
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
2
|
Koh D, Sonker M, Arriaga E, Ros A. Numerical modeling reveals improved organelle separation for dielectrophoretic ratchet migration. Electrophoresis 2023; 44:1826-1836. [PMID: 37622551 PMCID: PMC10905386 DOI: 10.1002/elps.202300091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
Organelle size varies with normal and abnormal cell function. Thus, size-based particle separation techniques are key to assessing the properties of organelle subpopulations differing in size. Recently, insulator-based dielectrophoresis (iDEP) has gained significant interest as a technique to manipulate sub-micrometer-sized particles enabling the assessment of organelle subpopulations. Based on iDEP, we recently reported a ratchet device that successfully demonstrated size-based particle fractionation in combination with continuous flow sample injection. Here, we used a numerical model to optimize the performance with flow rates a factor of three higher than previously and increased the channel volume to improve throughput. We evaluated the amplitude and duration of applied low-frequency DC-biased AC potentials improving separation efficiency. A separation efficiency of nearly 0.99 was achieved with the optimization of key parameters-improved from 0.80 in previous studies (Ortiz et al. Electrophoresis, 2022;43;1283-1296)-demonstrating that fine-tuning the periodical driving forces initiating the ratchet migration under continuous flow conditions can significantly improve the fractionation of organelles of different sizes.
Collapse
Affiliation(s)
- Domin Koh
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, United States
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States
| | - Mukul Sonker
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, United States
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States
| | - Edgar Arriaga
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Alexandra Ros
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, United States
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States
| |
Collapse
|
3
|
Ortiz R, Koh D, Kim DH, Rabbani MT, Anguaya Velasquez C, Sonker M, Arriaga EA, Ros A. Continuous organelle separation in an insulator-based dielectrophoretic device. Electrophoresis 2022; 43:1283-1296. [PMID: 34964147 PMCID: PMC10905415 DOI: 10.1002/elps.202100326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/30/2021] [Accepted: 12/13/2021] [Indexed: 11/06/2022]
Abstract
Heterogeneity in organelle size has been associated with devastating human maladies such as neurodegenerative diseases or cancer. Therefore, assessing the size-based subpopulation of organelles is imperative to understand the biomolecular foundations of these diseases. Here, we demonstrated a ratchet migration mechanism using insulator-based dielectrophoresis in conjunction with a continuous flow component that allows the size-based separation of submicrometer particles. The ratchet mechanism was realized in a microfluidic device exhibiting an array of insulating posts, tailoring electrokinetic and dielectrophoretic transport. A numerical model was developed to elucidate the particle migration and the size-based separation in various conditions. Experimentally, the size-based separation of a mixture of polystyrene beads (0.28 and 0.87 μ $\umu $ m) was accomplished demonstrating good agreement with the numerical model. Furthermore, the size-based separation of mitochondria was investigated using a mitochondria mixture isolated from HepG2 cells and HepG2 cells carrying the gene Mfn-1 knocked out, indicating distinct size-related migration behavior. With the presented continuous flow separation device, larger amounts of fractionated organelles can be collected in the future allowing access to the biomolecular signature of mitochondria subpopulations differing in size.
Collapse
Affiliation(s)
- Ricardo Ortiz
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Domin Koh
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Dai Hyun Kim
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Mohammad Towshif Rabbani
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Cesar Anguaya Velasquez
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Department of Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Mukul Sonker
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Edgar A Arriaga
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Department of Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Alexandra Ros
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
4
|
Stanke S, Wenger C, Bier FF, Hölzel R. AC electrokinetic immobilization of influenza virus. Electrophoresis 2022; 43:1309-1321. [DOI: 10.1002/elps.202100324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/26/2021] [Accepted: 01/06/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Sandra Stanke
- Fraunhofer Institute for Cell Therapy and Immunology Branch Bioanalytics and Bioprocesses (IZI‐BB) Potsdam‐Golm Germany
- Institute of Biochemistry and Biology University of Potsdam Potsdam‐Golm Germany
| | - Christian Wenger
- IHP – Leibnizinstitut für innovative Mikroelektronik Frankfurt/Oder Germany
- Brandenburg University of Technology Cottbus–Senftenberg Cottbus Germany
| | - Frank F. Bier
- Institute of Biochemistry and Biology University of Potsdam Potsdam‐Golm Germany
| | - Ralph Hölzel
- Fraunhofer Institute for Cell Therapy and Immunology Branch Bioanalytics and Bioprocesses (IZI‐BB) Potsdam‐Golm Germany
| |
Collapse
|
5
|
Shi L, Esfandiari L. Emerging on-chip electrokinetic based technologies for purification of circulating cancer biomarkers towards liquid biopsy: A review. Electrophoresis 2021; 43:288-308. [PMID: 34791687 DOI: 10.1002/elps.202100234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 12/11/2022]
Abstract
Early detection of cancer can significantly reduce mortality and save lives. However, the current cancer diagnosis is highly dependent on costly, complex, and invasive procedures. Thus, a great deal of effort has been devoted to exploring new technologies based on liquid biopsy. Since liquid biopsy relies on detection of circulating biomarkers from biofluids, it is critical to isolate highly purified cancer-related biomarkers, including circulating tumor cells (CTCs), cell-free nucleic acids (cell-free DNA and cell-free RNA), small extracellular vesicles (exosomes), and proteins. The current clinical purification techniques are facing a number of drawbacks including low purity, long processing time, high cost, and difficulties in standardization. Here, we review a promising solution, on-chip electrokinetic-based methods, that have the advantage of small sample volume requirement, minimal damage to the biomarkers, rapid, and label-free criteria. We have also discussed the existing challenges of current on-chip electrokinetic technologies and suggested potential solutions that may be worthy of future studies.
Collapse
Affiliation(s)
- Leilei Shi
- Department of Electrical Engineering and Computer Science, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio, USA
| | - Leyla Esfandiari
- Department of Electrical Engineering and Computer Science, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio, USA.,Department of Biomedical Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
6
|
Zaman MA, Padhy P, Ren W, Wu M, Hesselink L. Microparticle transport along a planar electrode array using moving dielectrophoresis. JOURNAL OF APPLIED PHYSICS 2021; 130:034902. [PMID: 34334807 PMCID: PMC8294858 DOI: 10.1063/5.0049126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/03/2021] [Indexed: 05/05/2023]
Abstract
We present a device that can achieve controlled transport of colloidal microparticles using an array of micro-electrodes. By exciting the micro-electrodes in regular sequence with an AC voltage, a time-varying moving dielectrophoretic force-field is created. This force propels colloidal microparticles along the electrode array. Using this method, we demonstrate bidirectional transport of polystyrene micro-spheres. Electromagnetic simulation of the device is performed, and the dielectrophoretic force profile around the electrode array is mapped. We develop a Brownian dynamics model of the trajectory of a particle under the influence of the time-varying force-field. Numerical and experimental results showing controlled particle transport are presented. The numerical model is found to be in good agreement with experimental data. The developed numerical framework can be useful in designing and modeling lab-on-a-chip devices that employ external non-contact forces for micro-/nanoparticle manipulation.
Collapse
Affiliation(s)
- Mohammad Asif Zaman
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA
- Author to whom correspondence should be addressed:
| | - Punnag Padhy
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA
| | - Wei Ren
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA
| | - Mo Wu
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA
| | - Lambertus Hesselink
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
7
|
Perez‐Gonzalez VH. Particle trapping in electrically driven insulator-based microfluidics: Dielectrophoresis and induced-charge electrokinetics. Electrophoresis 2021; 42:2445-2464. [PMID: 34081787 PMCID: PMC9291494 DOI: 10.1002/elps.202100123] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 12/31/2022]
Abstract
Electrokinetically driven insulator‐based microfluidic devices represent an attractive option to manipulate particle suspensions. These devices can filtrate, concentrate, separate, or characterize micro and nanoparticles of interest. Two decades ago, inspired by electrode‐based dielectrophoresis, the concept of insulator‐based dielectrophoresis (iDEP) was born. In these microfluidic devices, insulating structures (i.e., posts, membranes, obstacles, or constrictions) built within the channel are used to deform the spatial distribution of an externally generated electric field. As a result, particles suspended in solution experience dielectrophoresis (DEP). Since then, it has been assumed that DEP is responsible for particle trapping in these devices, regardless of the type of voltage being applied to generate the electric field—direct current (DC) or alternating current. Recent findings challenge this assumption by demonstrating particle trapping and even particle flow reversal in devices that prevent DEP from occurring (i.e., unobstructed long straight channels stimulated with a DC voltage and featuring a uniform electric field). The theory introduced to explain those unexpected observations was then applied to conventional “DC‐iDEP” devices, demonstrating better prediction accuracy than that achieved with the conventional DEP‐centered theory. This contribution summarizes contributions made during the last two decades, comparing both theories to explain particle trapping and highlighting challenges to address in the near future.
Collapse
|
8
|
Lapizco-Encinas BH. Microscale nonlinear electrokinetics for the analysis of cellular materials in clinical applications: a review. Mikrochim Acta 2021; 188:104. [PMID: 33651196 DOI: 10.1007/s00604-021-04748-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/06/2021] [Indexed: 12/16/2022]
Abstract
This review article presents a discussion of some of the latest advancements in the field of microscale electrokinetics for the analysis of cells and subcellular materials in clinical applications. The introduction presents an overview on the use of electric fields, i.e., electrokinetics, in microfluidics devices and discusses the potential of electrokinetic-based methods for the analysis of liquid biopsies in clinical and point-of-care applications. This is followed by four comprehensive sections that present some of the newest findings on the analysis of circulating tumor cells, blood (red blood cells, white blood cells, and platelets), stem cells, and subcellular particles (extracellular vesicles and mitochondria). The valuable contributions discussed here (with 131 references) were mainly published during the last 3 to 4 years, providing the reader with an overview of the state-of-the-art in the use of microscale electrokinetic methods in clinical analysis. Finally, the conclusions summarize the main advancements and discuss the future prospects.
Collapse
Affiliation(s)
- Blanca H Lapizco-Encinas
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, Institute Hall (Bldg. 73), Room 3103, 160 Lomb Memorial Drive, Rochester, NY, 14623-5604, USA.
| |
Collapse
|
9
|
Pesch GR, Du F. A review of dielectrophoretic separation and classification of non-biological particles. Electrophoresis 2020; 42:134-152. [PMID: 32667696 DOI: 10.1002/elps.202000137] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/08/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023]
Abstract
Dielectrophoresis (DEP) is a selective electrokinetic particle manipulation technology that is applied for almost 100 years and currently finds most applications in biomedical research using microfluidic devices operating at moderate to low throughput. This paper reviews DEP separators capable of high-throughput operation and research addressing separation and analysis of non-biological particle systems. Apart from discussing particle polarization mechanisms, this review summarizes the early applications of DEP for dielectric sorting of minerals and lists contemporary applications in solid/liquid, liquid/liquid, and solid/air separation, for example, DEP filtration or airborne fiber length classification; the review also summarizes developments in DEP fouling suppression, gives a brief overview of electrocoalescence and addresses current problems in high-throughput DEP separation. We aim to provide inspiration for DEP application schemes outside of the biomedical sector, for example, for the recovery of precious metal from scrap or for extraction of metal from low-grade ore.
Collapse
Affiliation(s)
- Georg R Pesch
- Faculty of Production Engineering, Chemical Process Engineering Group, University of Bremen, Bremen, Germany
| | - Fei Du
- Faculty of Production Engineering, Chemical Process Engineering Group, University of Bremen, Bremen, Germany
| |
Collapse
|
10
|
Rabbani MT, Schmidt CF, Ros A. Length-Selective Dielectrophoretic Manipulation of Single-Walled Carbon Nanotubes. Anal Chem 2020; 92:8901-8908. [PMID: 32447955 DOI: 10.1021/acs.analchem.0c00794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Single-walled carbon nanotubes (SWNTs) possess unique physical, optical, and electrical properties with great potential for future nanoscale device applications. Common synthesis procedures yield SWNTs with large length polydispersity and varying chirality. Electrical and optical applications of SWNTs often require specific lengths, but the preparation of SWNTs with the desired length is still challenging. Insulator-based dielectrophoresis (iDEP) integrated into a microfluidic device has the potential to separate SWNTs by length. Semiconducting SWNTs of varying length suspended with sodium deoxycholate (NaDOC) show unique dielectrophoretic properties at low frequencies (<1 kHz) that were exploited here using an iDEP-based microfluidic constriction sorter device for length-based sorting. Specific migration directions in the constriction sorter were induced for long SWNTs (≥1000 nm) with negative dielectrophoretic properties compared to short (≤300 nm) SWNTs with positive dielectrophoretic properties. We report continuous fractionation conditions for length-based iDEP migration of SWNTs, and we characterize the dynamics of migration of SWNTs in the microdevice using a finite element model. Based on the length and dielectrophoretic characteristics, sorting efficiencies for long and short SWNTs recovered from separate channels of the constriction sorter amounted to >90% and were in excellent agreement with a numerical model for the sorting process.
Collapse
Affiliation(s)
- Mohammad T Rabbani
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States.,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States.,Third Institute of Physics - Biophysics, Department of Physics, University of Göttingen, Göttingen, Germany
| | - Christoph F Schmidt
- Third Institute of Physics - Biophysics, Department of Physics, University of Göttingen, Göttingen, Germany.,Department of Physics and Soft Matter Center, Duke University, Durham, North Carolina 27708, United States
| | - Alexandra Ros
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States.,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
11
|
Wu Y, Fu A, Yossifon G. Active Particle Based Selective Transport and Release of Cell Organelles and Mechanical Probing of a Single Nucleus. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906682. [PMID: 32363783 DOI: 10.1002/smll.201906682] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
Self-propelling micromotors are emerging as a promising microscale tool for single-cell analysis. The authors have recently shown that the field gradients necessary to manipulate matter via dielectrophoresis can be induced at the surface of a polarizable active ("self-propelling") metallo-dielectric Janus particle (JP) under an externally applied electric field, acting essentially as a mobile floating microelectrode. Here, the application of the mobile floating microelectrode to trap and transport cell organelles in a selective and releasable manner is successfully extended. This selectivity is driven by the different dielectrophoretic (DEP) potential wells on the JP surface that is controlled by the frequency of the electric field, along with the hydrodynamic shearing and size of the trapped organelles. Such selective and directed loading enables purification of targeted organelles of interest from a mixed biological sample while their dynamic release enables their harvesting for further analysis such as gene/RNA sequencing or proteomics. Moreover, the electro-deformation of the trapped nucleus is shown to be in correlation with the DEP force and hence, can act as a promising label-free biomechanical marker. Hence, the active carrier constitutes an important and novel ex vivo platform for manipulation and mechanical probing of subcellular components of potential for single cell analysis.
Collapse
Affiliation(s)
- Yue Wu
- Faculty of Mechanical Engineering, Micro- and Nano-Fluidics Laboratory, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Afu Fu
- Technion Integrated Cancer Center, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, 3525433, Israel
| | - Gilad Yossifon
- Faculty of Mechanical Engineering, Micro- and Nano-Fluidics Laboratory, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| |
Collapse
|
12
|
Crowther CV, Hilton SH, Kemp L, Hayes MA. Isolation and identification of Listeria monocytogenes utilizing DC insulator-based dielectrophoresis. Anal Chim Acta 2019; 1068:41-51. [PMID: 31072476 DOI: 10.1016/j.aca.2019.03.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 03/04/2019] [Accepted: 03/08/2019] [Indexed: 02/06/2023]
Abstract
Foodborne pathogens pose one of the greatest challenges facing public health in the modern day. One important pathogen, Listeria monocytogenes, is known to be challenging to detect and identify. Three serovars cause most of the Listeria related food-borne illnesses, which the Centers for Disease Control currently utilizes a combination of pulsed-field gel electrophoresis and whole genome sequencing for identification and the determination of clusters and outbreaks. There is a potential method for rapid collection of epidemiological information by exploiting the electrokinetic and dielectrophoretic properties of the L. monocytogenes serovars. Using dielectrophoresis, the three most commonly identified serovars of L. monocytogenes can be distinguished from each other. The electrokinetic and dielectrophoretic mobilities of each serovar was determined through a combination of electrokinetic velocity and dielectrophoretic trapping assessments, in conjunction with finite element multi-physics modeling. A mathematical model of the data, which defines the various factors of dielectrophoretic trapping, is utilized and verified based on the behavior of L. monocytogenes in the microchannel. The trapping condition for the serovars were evaluated as 2.8±0.2×109, 2.2±0.2×109, and 2.2±0.3×109Vm-2 and the electrokinetic mobility was assessed to be 19±0.7, 17±0.7, and for the L. monocytogenes serovars 1/2a, 1/2b, and 4b, respectively.
Collapse
Affiliation(s)
- Claire V Crowther
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | | | - LaKeta Kemp
- Phoenix Research Institute, Phoenix, AZ, USA
| | - Mark A Hayes
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
13
|
Kim D, Sonker M, Ros A. Dielectrophoresis: From Molecular to Micrometer-Scale Analytes. Anal Chem 2018; 91:277-295. [DOI: 10.1021/acs.analchem.8b05454] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Daihyun Kim
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Mukul Sonker
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Alexandra Ros
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
14
|
Lapizco-Encinas BH. On the recent developments of insulator-based dielectrophoresis: A review. Electrophoresis 2018; 40:358-375. [PMID: 30112789 DOI: 10.1002/elps.201800285] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 01/26/2023]
Abstract
Insulator-based dielectrophoresis (iDEP), also known as electrodeless DEP, has become a well-known dielectrophoretic technique, no longer viewed as a new methodology. Significant advances on iDEP have been reported during the last 15 years. This review article aims to summarize some of the most important findings on iDEP organized by the type of dielectrophoretic mode: streaming and trapping iDEP. The former is primarily used for particle sorting, while the latter has great capability for particle enrichment. The characteristics of a wide array of devices are discussed for each type of dielectrophoretic mode in order to present an overview of the distinct designs and applications developed with iDEP. A short section on Joule heating effects and electrothermal flow is also included to highlight some of the challenges in the utilization of iDEP systems. The significant progress on iDEP illustrates its potential for a large number of applications, ranging from bioanalysis to clinical and biomedical assessments. The present article discusses the work on iDEP by numerous research groups around the world, with the aim of proving the reader with an overview of the state-of-the-art in iDEP microfluidic systems.
Collapse
|
15
|
Abstract
The ability to separate analytes with increasingly similar properties drives the field of separation science. One way to achieve such separations is using trapping and streaming dielectrophoresis (DEP), which directly exploits the subtle differences in the electrophysical properties of analytes. The non-uniform fields necessary for DEP can be formed using various insulator shapes in microchannels. Current insulator shapes include triangles, diamonds, circles, and rectangles. However, all of these insulators pose problems for trapping, streaming, and sorting (deflection) as the induced fields/gradients are not behaviorally consistent across the lateral dimension. This leads to analytes experiencing different forces depending on their pathline in the microchannel and result in low resolution separations. Based on an iterative process that explored approximately 40 different insulator shapes, a design was chosen that indicated improved particle streamlines, better trapping efficiency, and consistent electrical environments across the lateral dimension. The design was assessed by simulations where the electric field, gradient of the electric field squared, and the ratio of the two were plotted. The improved design includes a unique new multi-length scale element. The multi-length scale structure streamlines the analyte(s) and improves homogeneity in the lateral dimension, while still achieving high gradients necessary for analyte separation using DEP. The design is calculated to keep analytes on the centerline which should improve resolution, and eliminate extraneous trapping zones. Behaviors consistent with the features of the simulations were observed in proof of principle experiments using representative test probes.
Collapse
Affiliation(s)
- Claire V Crowther
- Arizona State University, School of Molecular Sciences, Mail Stop 1604, Tempe, AZ 85287, USA.
| | | |
Collapse
|
16
|
Shi L, Rana A, Esfandiari L. A low voltage nanopipette dielectrophoretic device for rapid entrapment of nanoparticles and exosomes extracted from plasma of healthy donors. Sci Rep 2018; 8:6751. [PMID: 29712935 PMCID: PMC5928082 DOI: 10.1038/s41598-018-25026-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/13/2018] [Indexed: 12/15/2022] Open
Abstract
An insulator-based dielectrophoresis (iDEP) is a label-free method that has been extensively utilized for manipulation of nanoparticles, cells, and biomolecules. Here, we present a new iDEP approach that can rapidly trap nanoparticles at the close proximity of a glass nanopipette’s tip by applying 10 V/cm direct current (DC) across the pipette’s length. The trapping mechanism was systemically studied using both numerical modeling and experimental observations. The results showed that the particle trapping was determined to be controlled by three dominant electrokinetic forces including dielectrophoretic, electrophoretic and electroosmotic force. Furthermore, the effect of the ionic strength, the pipette’s geometry, and the applied electric field on the entrapment efficiency was investigated. To show the application of our device in biomedical sciences, we demonstrated the successful entrapment of fluorescently tagged liposomes and unlabeled plasma-driven exosomes from the PBS solution. Also, to illustrate the selective entrapment capability of our device, 100 nm liposomes were extracted from the PBS solution containing 500 nm polystyrene particles at the tip of the pipette as the voltage polarity was reversed.
Collapse
Affiliation(s)
- Leilei Shi
- Department of Electrical Engineering and Computer Science, College of Engineering and Applied Science, University of Cincinnati, Ohio, 45221, United States
| | - Ankit Rana
- Department of Electrical Engineering and Computer Science, College of Engineering and Applied Science, University of Cincinnati, Ohio, 45221, United States
| | - Leyla Esfandiari
- Department of Electrical Engineering and Computer Science, College of Engineering and Applied Science, University of Cincinnati, Ohio, 45221, United States. .,Department of Biomedical Engineering, College of Engineering and Applied Science, University of Cincinnati, Ohio, 45221, United States.
| |
Collapse
|
17
|
Kim D, Luo J, Arriaga EA, Ros A. Deterministic Ratchet for Sub-micrometer (Bio)particle Separation. Anal Chem 2018; 90:4370-4379. [PMID: 29506379 DOI: 10.1021/acs.analchem.7b03774] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Resolving the heterogeneity of particle populations by size is important when the particle size is a signature of abnormal biological properties leading to disease. Accessing size heterogeneity in the sub-micrometer regime is particularly important to resolve populations of subcellular species or diagnostically relevant bioparticles. Here, we demonstrate a ratchet migration mechanism capable of separating sub-micrometer sized species by size and apply it to biological particles. The phenomenon is based on a deterministic ratchet effect, is realized in a microfluidic device, and exhibits fast migration allowing separation in tens of seconds. We characterize this phenomenon extensively with the aid of a numerical model allowing one to predict the speed and resolution of this method. We further demonstrate the deterministic ratchet migration with two sub-micrometer sized beads as model system experimentally as well as size-heterogeneous mouse liver mitochondria and liposomes as model system for other organelles. We demonstrate excellent agreement between experimentally observed migration and the numerical model.
Collapse
Affiliation(s)
- Daihyun Kim
- School of Molecular Sciences , Arizona State University , Tempe , Arizona 85287 , United States.,Center for Applied Structural Discovery, The Biodesign Institute , Arizona State University , Tempe , Arizona 85281 , United States
| | - Jinghui Luo
- School of Molecular Sciences , Arizona State University , Tempe , Arizona 85287 , United States.,Center for Applied Structural Discovery, The Biodesign Institute , Arizona State University , Tempe , Arizona 85281 , United States
| | - Edgar A Arriaga
- Department of Biochemistry, Molecular Biology and Biophysics , University of Minnesota , Minneapolis , Minnesota 55455 , United States.,Department of Chemistry , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Alexandra Ros
- School of Molecular Sciences , Arizona State University , Tempe , Arizona 85287 , United States.,Center for Applied Structural Discovery, The Biodesign Institute , Arizona State University , Tempe , Arizona 85281 , United States
| |
Collapse
|
18
|
Perez-Gonzalez VH, Gallo-Villanueva RC, Cardenas-Benitez B, Martinez-Chapa SO, Lapizco-Encinas BH. Simple Approach to Reducing Particle Trapping Voltage in Insulator-Based Dielectrophoretic Systems. Anal Chem 2018. [DOI: 10.1021/acs.analchem.8b00139] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Victor H. Perez-Gonzalez
- School of Engineering and Sciences, Sensors and Devices Research Group, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64849, Mexico
| | - Roberto C. Gallo-Villanueva
- School of Engineering and Sciences, Sensors and Devices Research Group, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64849, Mexico
| | - Braulio Cardenas-Benitez
- School of Engineering and Sciences, Sensors and Devices Research Group, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64849, Mexico
| | - Sergio O. Martinez-Chapa
- School of Engineering and Sciences, Sensors and Devices Research Group, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64849, Mexico
| | - Blanca H. Lapizco-Encinas
- Microscale Bioseparations Laboratory, Rochester Institute of Technology, Rochester, New York 14623, United States
| |
Collapse
|
19
|
Lewpiriyawong N, Xu G, Yang C. Enhanced cell trapping throughput using DC-biased AC electric field in a dielectrophoresis-based fluidic device with densely packed silica beads. Electrophoresis 2018; 39:878-886. [DOI: 10.1002/elps.201700395] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/13/2017] [Accepted: 12/13/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Nuttawut Lewpiriyawong
- School of Mechanical and Aerospace Engineering; Nanyang Technological University; Singapore
| | - Guolin Xu
- Institute of Bioengineering and Nanotechnology; Singapore
| | - Chun Yang
- School of Mechanical and Aerospace Engineering; Nanyang Technological University; Singapore
| |
Collapse
|
20
|
Romero-Creel MF, Goodrich E, Polniak DV, Lapizco-Encinas BH. Assessment of Sub-Micron Particles by Exploiting Charge Differences with Dielectrophoresis. MICROMACHINES 2017; 8:E239. [PMID: 30400429 PMCID: PMC6190034 DOI: 10.3390/mi8080239] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 07/30/2017] [Accepted: 07/30/2017] [Indexed: 11/16/2022]
Abstract
The analysis, separation, and enrichment of submicron particles are critical steps in many applications, ranging from bio-sensing to disease diagnostics. Microfluidic electrokinetic techniques, such as dielectrophoresis (DEP) have proved to be excellent platforms for assessment of submicron particles. DEP is the motion of polarizable particles under the presence of a non-uniform electric field. In this work, the polarization and dielectrophoretic behavior of polystyrene particles with diameters ranging for 100 nm to 1 μm were studied employing microchannels for insulator based DEP (iDEP) and low frequency (<1000 Hz) AC and DC electric potentials. In particular, the effects of particle surface charge, in terms of magnitude and type of functionalization, were examined. It was found that the magnitude of particle surface charge has a significant impact on the polarization and dielectrophoretic response of the particles, allowing for successful particle assessment. Traditionally, charge differences are exploited employing electrophoretic techniques and particle separation is achieved by differential migration. The present study demonstrates that differences in the particle's surface charge can also be exploited by means of iDEP; and that distinct types of nanoparticles can be identified by their polarization and dielectrophoretic behavior. These findings open the possibility for iDEP to be employed as a technique for the analysis of submicron biological particles, where subtle differences in surface charge could allow for rapid particle identification and separation.
Collapse
Affiliation(s)
- Maria F Romero-Creel
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, Rochester, NY 14623, USA.
| | - Eric Goodrich
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, Rochester, NY 14623, USA.
| | - Danielle V Polniak
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, Rochester, NY 14623, USA.
| | - Blanca H Lapizco-Encinas
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, Rochester, NY 14623, USA.
| |
Collapse
|
21
|
Luo J, Muratore KA, Arriaga EA, Ros A. Deterministic Absolute Negative Mobility for Micro- and Submicrometer Particles Induced in a Microfluidic Device. Anal Chem 2016; 88:5920-7. [PMID: 27149097 PMCID: PMC5316477 DOI: 10.1021/acs.analchem.6b00837] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Efficient separations of particles with micron and submicron dimensions are extremely useful in preparation and analysis of materials for nanotechnological and biological applications. Here, we demonstrate a nonintuitive, yet efficient, separation mechanism for μm and subμm colloidal particles and organelles, taking advantage of particle transport in a nonlinear post array in a microfluidic device under the periodic action of electrokinetic and dielectrophoretic forces. We reveal regimes in which deterministic particle migration opposite to the average applied force occurs for a larger particle, a typical signature of deterministic absolute negative mobility (dANM), whereas normal response is obtained for smaller particles. The coexistence of dANM and normal migration was characterized and optimized in numerical modeling and subsequently implemented in a microfluidic device demonstrating at least 2 orders of magnitude higher migration speeds as compared to previous ANM systems. We also induce dANM for mouse liver mitochondria and envision that the separation mechanisms described here provide size selectivity required in future separations of organelles, nanoparticles, and protein nanocrystals.
Collapse
Affiliation(s)
- Jinghui Luo
- School of Molecular Sciences, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Katherine A. Muratore
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Edgar A. Arriaga
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Alexandra Ros
- School of Molecular Sciences, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
22
|
Yao J, Obara H, Sapkota A, Takei M. Development of three-dimensional integrated microchannel-electrode system to understand the particles' movement with electrokinetics. BIOMICROFLUIDICS 2016; 10:024105. [PMID: 27042247 PMCID: PMC4798993 DOI: 10.1063/1.4943859] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 02/29/2016] [Indexed: 06/05/2023]
Abstract
An optical transparent 3-D Integrated Microchannel-Electrode System (3-DIMES) has been developed to understand the particles' movement with electrokinetics in the microchannel. In this system, 40 multilayered electrodes are embedded at the 2 opposite sides along the 5 square cross-sections of the microchannel by using Micro Electro-Mechanical Systems technology in order to achieve the optical transparency at the other 2 opposite sides. The concept of the 3-DIMES is that the particles are driven by electrokinetic forces which are dielectrophoretic force, thermal buoyancy, electrothermal force, and electroosmotic force in a three-dimensional scope by selecting the excitation multilayered electrodes. As a first step to understand the particles' movement driven by electrokinetic forces in high conductive fluid (phosphate buffer saline (PBS)) with the 3-DIMES, the velocities of particles' movement with one pair of the electrodes are measured three dimensionally by Particle Image Velocimetry technique in PBS; meanwhile, low conductive fluid (deionized water) is used as a reference. Then, the particles' movement driven by the electrokinetic forces is discussed theoretically to estimate dominant forces exerting on the particles. Finally, from the theoretical estimation, the particles' movement mainly results from the dominant forces which are thermal buoyancy and electrothermal force, while the velocity vortex formed at the 2 edges of the electrodes is because of the electroosmotic force. The conclusions suggest that the 3-DIMES with PBS as high conductive fluid helps to understand the three-dimensional advantageous flow structures for cell manipulation in biomedical applications.
Collapse
Affiliation(s)
- J Yao
- Department of Mechanical Engineering, Chiba University , Chiba 263-0022, Japan
| | - H Obara
- Department of Mechanical Engineering, Tokyo Metropolitan University , Tokyo 192-0397, Japan
| | - A Sapkota
- Department of Information and Computer Engineering, National Institute of Technology , Kisarazu College, Chiba 292-0041, Japan
| | - M Takei
- Department of Mechanical Engineering, Chiba University , Chiba 263-0022, Japan
| |
Collapse
|
23
|
Kumar S, Wolken GG, Wittenberg NJ, Arriaga EA, Oh SH. Nanohole Array-Directed Trapping of Mammalian Mitochondria Enabling Single Organelle Analysis. Anal Chem 2015; 87:11973-7. [PMID: 26593329 PMCID: PMC4809531 DOI: 10.1021/acs.analchem.5b03604] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We present periodic nanohole arrays fabricated in free-standing metal-coated nitride films as a platform for trapping and analyzing single organelles. When a microliter-scale droplet containing mitochondria is dispensed above the nanohole array, the combination of evaporation and capillary flow directs individual mitochondria to the nanoholes. Mammalian mitochondria arrays were rapidly formed on chip using this technique without any surface modification steps, microfluidic interconnects, or external power sources. The trapped mitochondria were depolarized on chip using an ionophore with results showing that the organelle viability and behavior were preserved during the on-chip assembly process. Fluorescence signal related to mitochondrial membrane potential was obtained from single mitochondria trapped in individual nanoholes revealing statistical differences between the behavior of polarized vs depolarized mammalian mitochondria. This technique provides a fast and stable route for droplet-based directed localization of organelles-on-a-chip with minimal limitations and complexity, as well as promotes integration with other optical or electrochemical detection techniques.
Collapse
Affiliation(s)
- Shailabh Kumar
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, United States
| | - Gregory G. Wolken
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| | - Nathan J. Wittenberg
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States
| | - Edgar A. Arriaga
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, United States
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| | - Sang-Hyun Oh
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, United States
| |
Collapse
|
24
|
Saucedo-Espinosa MA, LaLonde A, Gencoglu A, Romero-Creel MF, Dolas JR, Lapizco-Encinas BH. Dielectrophoretic manipulation of particle mixtures employing asymmetric insulating posts. Electrophoresis 2015; 37:282-90. [DOI: 10.1002/elps.201500195] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 09/12/2015] [Accepted: 10/09/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Mario A. Saucedo-Espinosa
- Biomedical Engineering Department; Microscale Bioseparations Laboratory, Rochester Institute of Technology; Rochester NY USA
| | - Alexandra LaLonde
- Biomedical Engineering Department; Microscale Bioseparations Laboratory, Rochester Institute of Technology; Rochester NY USA
| | - Aytug Gencoglu
- Biomedical Engineering Department; Microscale Bioseparations Laboratory, Rochester Institute of Technology; Rochester NY USA
| | - Maria F. Romero-Creel
- Biomedical Engineering Department; Microscale Bioseparations Laboratory, Rochester Institute of Technology; Rochester NY USA
| | - Jay R. Dolas
- Biomedical Engineering Department; Microscale Bioseparations Laboratory, Rochester Institute of Technology; Rochester NY USA
| | - Blanca H. Lapizco-Encinas
- Biomedical Engineering Department; Microscale Bioseparations Laboratory, Rochester Institute of Technology; Rochester NY USA
| |
Collapse
|
25
|
LaLonde A, Romero-Creel MF, Saucedo-Espinosa MA, Lapizco-Encinas BH. Isolation and enrichment of low abundant particles with insulator-based dielectrophoresis. BIOMICROFLUIDICS 2015; 9:064113. [PMID: 26674134 PMCID: PMC4676780 DOI: 10.1063/1.4936371] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/12/2015] [Indexed: 05/12/2023]
Abstract
Isolation and enrichment of low-abundant particles are essential steps in many bio-analytical and clinical applications. In this work, the capability of an insulator-based dielectrophoresis (iDEP) device for the detection and stable capture of low abundant polystyrene particles and yeast cells was evaluated. Binary and tertiary mixtures of particles and cells were tested, where the low-abundant particles had concentration ratios on the order of 1:10 000 000 compared to the other particles present in the mixture. The results demonstrated successful and stable capture and enrichment of rare particles and cells (trapping efficiencies over 99%), where particles remained trapped in a stable manner for up to 4 min. A device with four reservoirs was employed for the separation and enrichment of rare particles, where the particles of interest were first selectively concentrated and then effectively directed to a side port for future collection and analysis. The present study demonstrates that simple iDEP devices have appropriate screening capacity and can be used for handling samples containing rare particles; achieving both enrichment and isolation of low-abundant particles and cells.
Collapse
Affiliation(s)
- Alexandra LaLonde
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology , Rochester, New York 14623, USA
| | - Maria F Romero-Creel
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology , Rochester, New York 14623, USA
| | - Mario A Saucedo-Espinosa
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology , Rochester, New York 14623, USA
| | - Blanca H Lapizco-Encinas
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology , Rochester, New York 14623, USA
| |
Collapse
|
26
|
Abdallah BG, Zatsepin NA, Roy-Chowdhury S, Coe J, Conrad CE, Dörner K, Sierra RG, Stevenson HP, Camacho-Alanis F, Grant TD, Nelson G, James D, Calero G, Wachter RM, Spence JCH, Weierstall U, Fromme P, Ros A. Microfluidic sorting of protein nanocrystals by size for X-ray free-electron laser diffraction. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2015; 2:041719. [PMID: 26798818 PMCID: PMC4711642 DOI: 10.1063/1.4928688] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 08/05/2015] [Indexed: 05/23/2023]
Abstract
The advent and application of the X-ray free-electron laser (XFEL) has uncovered the structures of proteins that could not previously be solved using traditional crystallography. While this new technology is powerful, optimization of the process is still needed to improve data quality and analysis efficiency. One area is sample heterogeneity, where variations in crystal size (among other factors) lead to the requirement of large data sets (and thus 10-100 mg of protein) for determining accurate structure factors. To decrease sample dispersity, we developed a high-throughput microfluidic sorter operating on the principle of dielectrophoresis, whereby polydisperse particles can be transported into various fluid streams for size fractionation. Using this microsorter, we isolated several milliliters of photosystem I nanocrystal fractions ranging from 200 to 600 nm in size as characterized by dynamic light scattering, nanoparticle tracking, and electron microscopy. Sorted nanocrystals were delivered in a liquid jet via the gas dynamic virtual nozzle into the path of the XFEL at the Linac Coherent Light Source. We obtained diffraction to ∼4 Å resolution, indicating that the small crystals were not damaged by the sorting process. We also observed the shape transforms of photosystem I nanocrystals, demonstrating that our device can optimize data collection for the shape transform-based phasing method. Using simulations, we show that narrow crystal size distributions can significantly improve merged data quality in serial crystallography. From this proof-of-concept work, we expect that the automated size-sorting of protein crystals will become an important step for sample production by reducing the amount of protein needed for a high quality final structure and the development of novel phasing methods that exploit inter-Bragg reflection intensities or use variations in beam intensity for radiation damage-induced phasing. This method will also permit an analysis of the dependence of crystal quality on crystal size.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Raymond G Sierra
- Stanford PULSE Institute, SLAC National Accelerator Laboratory , Menlo Park, California 94025, USA
| | - Hilary P Stevenson
- Department of Structural Biology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15261, USA
| | - Fernanda Camacho-Alanis
- Department of Chemistry and Biochemistry, Arizona State University , Tempe, Arizona 85287, USA
| | - Thomas D Grant
- Hauptman-Woodward Medical Research Institute, University at Buffalo , Buffalo, New York 14203, USA
| | | | | | - Guillermo Calero
- Department of Structural Biology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15261, USA
| | - Rebekka M Wachter
- Department of Chemistry and Biochemistry, Arizona State University , Tempe, Arizona 85287, USA
| | | | | | | | | |
Collapse
|
27
|
Yao J, Kodera T, Obara H, Sugawara M, Takei M. Spatial concentration distribution analysis of cells in electrode-multilayered microchannel by dielectric property measurement. BIOMICROFLUIDICS 2015; 9:044129. [PMID: 26392831 PMCID: PMC4560722 DOI: 10.1063/1.4929824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 08/14/2015] [Indexed: 05/04/2023]
Abstract
The spatial concentration distribution of cells in a microchannel is measured by combining the dielectric properties of cells with the specific structure of the electrode-multilayered microchannel. The dielectric properties of cells obtained with the impedance spectroscopy method includes the cell permittivity and dielectric relaxation, which corresponds to the cell concentration and structure. The electrode-multilayered microchannel is constructed by 5 cross-sections, and each cross-section contains 5 electrode-layers embedded with 16 micro electrodes. In the experiment, the dielectric properties of cell suspensions with different volume concentrations are measured with different electrode-combinations corresponding to different electric field distributions. The dielectric relaxations of different cell concentrations are compared and discussed with the Maxwell-Wagner dispersion theory, and the relaxation frequencies are analysed by a cell polarization model established based on the Hanai cell model. Moreover, a significant linear relationship with AC frequency dependency between relative permittivity and cell concentration was found, which provides a promising way to on-line estimate cell concentration in microchannel. Finally, cell distribution in 1 cross-section of the microchannel (X and Y directions) was measured with different electrode-combinations using the dielectric properties of cell suspensions, and cell concentration distribution along the microchannel (Z direction) was visualized at flowing state. The present cell spatial sensing study provides a new approach for 3 dimensional non-invasive online cell sensing for biological industry.
Collapse
Affiliation(s)
- Jiafeng Yao
- Department of Mechanical Engineering, Chiba University , Chiba 263-0022, Japan
| | - Tatsuya Kodera
- Department of Mechanical Engineering, Chiba University , Chiba 263-0022, Japan
| | - Hiromichi Obara
- Department of Mechanical Engineering, Tokyo Metropolitan University , Tokyo 192-0397, Japan
| | - Michiko Sugawara
- Department of Mechanical Engineering, Chiba University , Chiba 263-0022, Japan
| | - Masahiro Takei
- Department of Mechanical Engineering, Chiba University , Chiba 263-0022, Japan
| |
Collapse
|
28
|
Abdallah BG, Roy-Chowdhury S, Coe J, Fromme P, Ros A. High throughput protein nanocrystal fractionation in a microfluidic sorter. Anal Chem 2015; 87:4159-67. [PMID: 25794348 DOI: 10.1021/acs.analchem.5b00589] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Protein crystallography is transitioning into a new generation with the introduction of the X-ray free electron laser, which can be used to solve the structures of complex proteins via serial femtosecond crystallography. Sample characteristics play a critical role in successful implementation of this new technology, whereby a small, narrow protein crystal size distribution is desired to provide high quality diffraction data. To provide such a sample, we developed a microfluidic device that facilitates dielectrophoretic sorting of heterogeneous particle mixtures into various size fractions. The first generation device demonstrated great potential and success toward this endeavor; thus, in this work, we present a comprehensive optimization study to improve throughput and control over sorting outcomes. First, device geometry was designed considering a variety of criteria, and applied potentials were modeled to determine the scheme achieving the largest sorting efficiency for isolating nanoparticles from microparticles. Further, to investigate sorting efficiency within the nanoparticle regime, critical geometrical dimensions and input parameters were optimized to achieve high sorting efficiencies. Experiments revealed fractionation of nanobeads from microbeads in the optimized device with high sorting efficiencies, and protein crystals were sorted into submicrometer size fractions as desired for future serial femtosecond crystallography experiments.
Collapse
Affiliation(s)
- Bahige G Abdallah
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, United States.,Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Shatabdi Roy-Chowdhury
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, United States.,Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Jesse Coe
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, United States.,Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Petra Fromme
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, United States.,Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Alexandra Ros
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, United States.,Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
29
|
Nakidde D, Zellner P, Alemi MM, Shake T, Hosseini Y, Riquelme MV, Pruden A, Agah M. Three dimensional passivated-electrode insulator-based dielectrophoresis. BIOMICROFLUIDICS 2015; 9:014125. [PMID: 25784964 PMCID: PMC4344466 DOI: 10.1063/1.4913497] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/12/2015] [Indexed: 05/14/2023]
Abstract
In this study, a 3D passivated-electrode, insulator-based dielectrophoresis microchip (3D πDEP) is presented. This technology combines the benefits of electrode-based DEP, insulator-based DEP, and three dimensional insulating features with the goal of improving trapping efficiency of biological species at low applied signals and fostering wide frequency range operation of the microfluidic device. The 3D πDEP chips were fabricated by making 3D structures in silicon using reactive ion etching. The reusable electrodes are deposited on second glass substrate and then aligned to the microfluidic channel to capacitively couple the electric signal through a 100 μm glass slide. The 3D insulating structures generate high electric field gradients, which ultimately increases the DEP force. To demonstrate the capabilities of 3D πDEP, Staphylococcus aureus was trapped from water samples under varied electrical environments. Trapping efficiencies of 100% were obtained at flow rates as high as 350 μl/h and 70% at flow rates as high as 750 μl/h. Additionally, for live bacteria samples, 100% trapping was demonstrated over a wide frequency range from 50 to 400 kHz with an amplitude applied signal of 200 Vpp. 20% trapping of bacteria was observed at applied voltages as low as 50 Vpp. We demonstrate selective trapping of live and dead bacteria at frequencies ranging from 30 to 60 kHz at 400 Vpp with over 90% of the live bacteria trapped while most of the dead bacteria escape.
Collapse
Affiliation(s)
- Diana Nakidde
- VT MEMS - Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24060 , USA
| | - Phillip Zellner
- VT MEMS - Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24060 , USA
| | | | - Tyler Shake
- VT MEMS - Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24060 , USA
| | - Yahya Hosseini
- VT MEMS - Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24060 , USA
| | - Maria V Riquelme
- Pruden Lab - Department of Civil and Environmental Engineering , Virginia Tech, Blacksburg, Virginia 24060, USA
| | - Amy Pruden
- Pruden Lab - Department of Civil and Environmental Engineering , Virginia Tech, Blacksburg, Virginia 24060, USA
| | - Masoud Agah
- VT MEMS - Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24060 , USA
| |
Collapse
|
30
|
Abstract
There is a growing interest in protein dielectrophoresis (DEP) for biotechnological and pharmaceutical applications. However, the DEP behavior of proteins is still not well understood which is important for successful protein manipulation. In this paper, we elucidate the information gained in dielectric spectroscopy (DS) and electrochemical impedance spectroscopy (EIS) and how these techniques may be of importance for future protein DEP manipulation. EIS and DS can be used to determine the dielectric properties of proteins predicting their DEP behavior. Basic principles of EIS and DS are discussed and related to protein DEP through examples from previous studies. Challenges of performing DS measurements as well as potential designs to incorporate EIS and DS measurements in DEP experiments are also discussed.
Collapse
Affiliation(s)
| | - Alexandra Ros
- Department of Chemistry & Biochemistry, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
31
|
Nakano A, Luo J, Ros A. Temporal and spatial temperature measurement in insulator-based dielectrophoretic devices. Anal Chem 2014; 86:6516-24. [PMID: 24889741 PMCID: PMC4082381 DOI: 10.1021/ac501083h] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 06/03/2014] [Indexed: 01/31/2023]
Abstract
Insulator-based dielectrophoresis is a relatively new analytical technique with a large potential for a number of applications, such as sorting, separation, purification, fractionation, and preconcentration. The application of insulator-based dielectrophoresis (iDEP) for biological samples, however, requires the precise control of the microenvironment with temporal and spatial resolution. Temperature variations during an iDEP experiment are a critical aspect in iDEP since Joule heating could lead to various detrimental effects hampering reproducibility. Additionally, Joule heating can potentially induce thermal flow and more importantly can degrade biomolecules and other biological species. Here, we investigate temperature variations in iDEP devices experimentally employing the thermosensitive dye Rhodamin B (RhB) and compare the measured results with numerical simulations. We performed the temperature measurement experiments at a relevant buffer conductivity range commonly used for iDEP applications under applied electric potentials. To this aim, we employed an in-channel measurement method and an alternative method employing a thin film located slightly below the iDEP channel. We found that the temperature does not deviate significantly from room temperature at 100 μS/cm up to 3000 V applied such as in protein iDEP experiments. At a conductivity of 300 μS/cm, such as previously used for mitochondria iDEP experiments at 3000 V, the temperature never exceeds 34 °C. This observation suggests that temperature effects for iDEP of proteins and mitochondria under these conditions are marginal. However, at larger conductivities (1 mS/cm) and only at 3000 V applied, temperature increases were significant, reaching a regime in which degradation is likely to occur. Moreover, the thin layer method resulted in lower temperature enhancement which was also confirmed with numerical simulations. We thus conclude that the thin film method is preferable providing closer agreement with numerical simulations and further since it does not depend on the iDEP channel material. Overall, our study provides a thorough comparison of two experimental techniques for direct temperature measurement, which can be adapted to a variety of iDEP applications in the future. The good agreement between simulation and experiment will also allow one to assess temperature variations for iDEP devices prior to experiments.
Collapse
Affiliation(s)
- Asuka Nakano
- Department of Chemistry and
Biochemistry, Arizona State University, Tempe, Arizona 85287, United States
| | - Jinghui Luo
- Department of Chemistry and
Biochemistry, Arizona State University, Tempe, Arizona 85287, United States
| | - Alexandra Ros
- Department of Chemistry and
Biochemistry, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
32
|
Luo J, Abdallah BG, Wolken GG, Arriaga EA, Ros A. Insulator-based dielectrophoresis of mitochondria. BIOMICROFLUIDICS 2014; 8:021801. [PMID: 24959306 PMCID: PMC4056684 DOI: 10.1063/1.4866852] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 01/28/2014] [Indexed: 05/03/2023]
Abstract
Isolated mitochondria display a wide range of sizes plausibly resulting from the coexistence of subpopulations, some of which may be associated with disease or aging. Strategies to separate subpopulations are needed to study the importance of these organelles in cellular functions. Here, insulator-based dielectrophoresis (iDEP) was exploited to provide a new dimension of organelle separation. The dielectrophoretic properties of isolated Fischer 344 (F344) rat semimembranosus muscle mitochondria and C57BL/6 mouse hepatic mitochondria in low conductivity buffer (0.025-0.030 S/m) at physiological pH (7.2-7.4) were studied using polydimethylsiloxane (PDMS) microfluidic devices. First, direct current (DC) and alternating current (AC) of 0-50 kHz with potentials of 0-3000 V applied over a channel length of 1 cm were separately employed to generate inhomogeneous electric fields and establish that mitochondria exhibit negative DEP (nDEP). DEP trapping potential thresholds at 0-50 kHz were also determined to be weakly dependent on applied frequency and were generally above 200 V. Second, we demonstrated a separation scheme using DC potentials <100 V to perform the first size-based iDEP sorting of mitochondria. Samples of isolated mitochondria with heterogeneous sizes (150 nm-2 μm diameters) were successfully separated into sub-micron fractions, indicating the ability to isolate mitochondria into populations based on their size.
Collapse
Affiliation(s)
- Jinghui Luo
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, USA
| | - Bahige G Abdallah
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, USA
| | - Gregory G Wolken
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Edgar A Arriaga
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Alexandra Ros
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, USA
| |
Collapse
|