1
|
Antonacci G, Vanna R, Ventura M, Schiavone ML, Sobacchi C, Behrouzitabar M, Polli D, Manzoni C, Cerullo G. Birefringence-induced phase delay enables Brillouin mechanical imaging in turbid media. Nat Commun 2024; 15:5202. [PMID: 38898004 PMCID: PMC11187154 DOI: 10.1038/s41467-024-49419-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
Acoustic vibrations of matter convey fundamental viscoelastic information that can be optically retrieved by hyperfine spectral analysis of the inelastic Brillouin scattered light. Increasing evidence of the central role of the viscoelastic properties in biological processes has stimulated the rise of non-contact Brillouin microscopy, yet this method faces challenges in turbid samples due to overwhelming elastic background light. Here, we introduce a common-path Birefringence-Induced Phase Delay (BIPD) filter to disentangle the polarization states of the Brillouin and Rayleigh signals, enabling the rejection of the background light using a polarizer. We demonstrate a 65 dB extinction ratio in a single optical pass collecting Brillouin spectra in extremely scattering environments and across highly reflective interfaces. We further employ the BIPD filter to image bone tissues from a mouse model of osteopetrosis, highlighting altered biomechanical properties compared to the healthy control. Results herald new opportunities in mechanobiology where turbid biological samples remain poorly characterized.
Collapse
Affiliation(s)
| | - Renzo Vanna
- CNR-Istituto di Fotonica e Nanotecnologie, CNR-IFN, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Marco Ventura
- CNR-Istituto di Fotonica e Nanotecnologie, CNR-IFN, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | | | - Cristina Sobacchi
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089, Rozzano (Milano), Italy
- CNR-Istituto di Ricerca Genetica e Biomedica (CNR-IRGB), UOS di Milano, via Fantoli 16/15, 20138, Milano, Italy
| | - Morteza Behrouzitabar
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Dario Polli
- Specto Photonics, Via Giulio e Corrado Venini 18, 20127, Milano, Italy
- CNR-Istituto di Fotonica e Nanotecnologie, CNR-IFN, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Cristian Manzoni
- CNR-Istituto di Fotonica e Nanotecnologie, CNR-IFN, Piazza Leonardo da Vinci 32, 20133, Milano, Italy.
| | - Giulio Cerullo
- CNR-Istituto di Fotonica e Nanotecnologie, CNR-IFN, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| |
Collapse
|
2
|
Hutchins R, Schumacher J, Frank E, Ambekar YS, Zanini G, Scarcelli G. Brillouin spectroscopy via an atomic line monochromator. OPTICS EXPRESS 2024; 32:18572-18581. [PMID: 38859010 PMCID: PMC11239171 DOI: 10.1364/oe.521427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/22/2024] [Indexed: 06/12/2024]
Abstract
Brillouin spectrometers, used for characterizing material mechanical properties, traditionally employ etalons such as Fabry-Pérot interferometers and virtually imaged phased arrays (VIPA) that use spatial dispersion of the spectrum for measurement. Here, we introduce what we believe to be a novel approach to Brillouin spectroscopy using hot atomic vapors. Using laser induced circular dichroism of the rubidium D2 line in a ladder-type configuration, we developed a narrow-band monochromator for Brillouin analysis. Unlike etalon-based spectrometers, atomic line monochromators operate in free-space, facilitating Brillouin spectroscopy integration with microscopy instruments. We report the transmission and spectral resolution performances of the spectrometer and demonstrate Brillouin spectra measurements in liquids.
Collapse
|
3
|
Coker ZN, Troyanova-Wood M, Steelman ZA, Ibey BL, Bixler JN, Scully MO, Yakovlev VV. Brillouin microscopy monitors rapid responses in subcellular compartments. PHOTONIX 2024; 5:9. [PMID: 38618142 PMCID: PMC11006764 DOI: 10.1186/s43074-024-00123-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/12/2024] [Accepted: 03/11/2024] [Indexed: 04/16/2024]
Abstract
Measurements and imaging of the mechanical response of biological cells are critical for understanding the mechanisms of many diseases, and for fundamental studies of energy, signal and force transduction. The recent emergence of Brillouin microscopy as a powerful non-contact, label-free way to non-invasively and non-destructively assess local viscoelastic properties provides an opportunity to expand the scope of biomechanical research to the sub-cellular level. Brillouin spectroscopy has recently been validated through static measurements of cell viscoelastic properties, however, fast (sub-second) measurements of sub-cellular cytomechanical changes have yet to be reported. In this report, we utilize a custom multimodal spectroscopy system to monitor for the very first time the rapid viscoelastic response of cells and subcellular structures to a short-duration electrical impulse. The cytomechanical response of three subcellular structures - cytoplasm, nucleoplasm, and nucleoli - were monitored, showing distinct mechanical changes despite an identical stimulus. Through this pioneering transformative study, we demonstrate the capability of Brillouin spectroscopy to measure rapid, real-time biomechanical changes within distinct subcellular compartments. Our results support the promising future of Brillouin spectroscopy within the broad scope of cellular biomechanics.
Collapse
Affiliation(s)
- Zachary N. Coker
- Department of Physics & Astronomy, Texas A&M University, 4242 TAMU, College Station, TX 77843 USA
- SAIC, Fort Sam Houston, TX 78234 USA
| | | | - Zachary A. Steelman
- Air Force Research Laboratory, JBSA Fort Sam Houston, Fort Sam Houston, TX 78234 USA
| | - Bennett L. Ibey
- Air Force Research Laboratory, JBSA Fort Sam Houston, Fort Sam Houston, TX 78234 USA
| | - Joel N. Bixler
- Air Force Research Laboratory, JBSA Fort Sam Houston, Fort Sam Houston, TX 78234 USA
| | - Marlan O. Scully
- Department of Physics & Astronomy, Texas A&M University, 4242 TAMU, College Station, TX 77843 USA
- Institute for Quantum Science and Engineering, Texas A&M University, College Station, TX 77843 USA
| | - Vladislav V. Yakovlev
- Department of Physics & Astronomy, Texas A&M University, 4242 TAMU, College Station, TX 77843 USA
- Institute for Quantum Science and Engineering, Texas A&M University, College Station, TX 77843 USA
- Department of Biomedical Engineering, Texas A&M University, 3120 TAMU, 101 Bizzell Street, College Station, TX 77843 USA
| |
Collapse
|
4
|
Kabakova I, Zhang J, Xiang Y, Caponi S, Bilenca A, Guck J, Scarcelli G. Brillouin microscopy. NATURE REVIEWS. METHODS PRIMERS 2024; 4:8. [PMID: 39391288 PMCID: PMC11465583 DOI: 10.1038/s43586-023-00286-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/30/2023] [Indexed: 10/12/2024]
Abstract
The field of Brillouin microscopy and imaging was established approximately 20 years ago, thanks to the development of non-scanning high-resolution optical spectrometers. Since then, the field has experienced rapid expansion, incorporating technologies from telecommunications, astrophotonics, multiplexed microscopy, quantum optics and machine learning. Consequently, these advancements have led to much-needed improvements in imaging speed, spectral resolution and sensitivity. The progress in Brillouin microscopy is driven by a strong demand for label-free and contact-free methods to characterize the mechanical properties of biomaterials at the cellular and subcellular scales. Understanding the local biomechanics of cells and tissues has become crucial in predicting cellular fate and tissue pathogenesis. This Primer aims to provide a comprehensive overview of the methods and applications of Brillouin microscopy. It includes key demonstrations of Brillouin microscopy and imaging that can serve as a reference for the existing research community and new adopters of this technology. The article concludes with an outlook, presenting the authors' vision for future developments in this vibrant field. The Primer also highlights specific examples where Brillouin microscopy can have a transformative impact on biology and biomedicine.
Collapse
Affiliation(s)
- Irina Kabakova
- School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Jitao Zhang
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | - Yuchen Xiang
- Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
| | - Silvia Caponi
- Istituto Officina dei Materiali–National Research Council (IOM-CNR)–Research Unit in Perugia, c/o Department of Physics and Geology, University of Perugia, Perugia, Italy
| | - Alberto Bilenca
- Biomedical Engineering Department, Ben-Gurion University of the Negev, Be’er-Sheva, Israel
| | - Jochen Guck
- Max Planck Institute for the Science of Light, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Giuliano Scarcelli
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Maryland Biophysics Program, University of Maryland, College Park, MD, USA
| |
Collapse
|
5
|
Leartprapun N, Adie SG. Recent advances in optical elastography and emerging opportunities in the basic sciences and translational medicine [Invited]. BIOMEDICAL OPTICS EXPRESS 2023; 14:208-248. [PMID: 36698669 PMCID: PMC9842001 DOI: 10.1364/boe.468932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 05/28/2023]
Abstract
Optical elastography offers a rich body of imaging capabilities that can serve as a bridge between organ-level medical elastography and single-molecule biophysics. We review the methodologies and recent developments in optical coherence elastography, Brillouin microscopy, optical microrheology, and photoacoustic elastography. With an outlook toward maximizing the basic science and translational clinical impact of optical elastography technologies, we discuss potential ways that these techniques can integrate not only with each other, but also with supporting technologies and capabilities in other biomedical fields. By embracing cross-modality and cross-disciplinary interactions with these parallel fields, optical elastography can greatly increase its potential to drive new discoveries in the biomedical sciences as well as the development of novel biomechanics-based clinical diagnostics and therapeutics.
Collapse
Affiliation(s)
- Nichaluk Leartprapun
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
- Present affiliation: Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Steven G. Adie
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
6
|
Rix J, Uckermann O, Kirsche K, Schackert G, Koch E, Kirsch M, Galli R. Correlation of biomechanics and cancer cell phenotype by combined Brillouin and Raman spectroscopy of U87-MG glioblastoma cells. JOURNAL OF THE ROYAL SOCIETY, INTERFACE 2022; 19:20220209. [PMID: 35857926 DOI: 10.1098/rsif.2022.0209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The elucidation of biomechanics furthers our understanding of brain tumour biology. Brillouin spectroscopy is a new optical method that addresses viscoelastic properties down to subcellular resolution in a contact-free manner. Moreover, it can be combined with Raman spectroscopy to obtain co-localized biochemical information. Here, we applied co-registered Brillouin and Raman spectroscopy to U87-MG human glioblastoma cells in vitro. Using two-dimensional and three-dimensional cultures, we related biomechanical properties to local biochemical composition at the subcellular level, as well as the cell phenotype. Brillouin and Raman mapping of adherent cells showed that the nucleus and nucleoli are stiffer than the perinuclear region and the cytoplasm. The biomechanics of the cell cytoplasm is affected by culturing conditions, i.e. cells grown as spheroids are stiffer than adherent cells. Inside the spheroids, the presence of lipid droplets as assessed by Raman spectroscopy revealed higher Brillouin shifts that are not related to a local increase in stiffness, but are due to a higher refractive index combined with a lower mass density. This highlights the importance of locally defined biochemical reference data for a correct interpretation of the Brillouin shift of cells and tissues in future studies investigating the biomechanics of brain tumour models by Brillouin spectroscopy.
Collapse
Affiliation(s)
- Jan Rix
- Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, D-01307 Dresden, Germany
| | - Ortrud Uckermann
- Neurosurgery, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, D-01307 Dresden, Germany.,Division of Medical Biology, Department of Psychiatry, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, D-01307 Dresden, Germany
| | - Katrin Kirsche
- Neurosurgery, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, D-01307 Dresden, Germany
| | - Gabriele Schackert
- Neurosurgery, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, D-01307 Dresden, Germany
| | - Edmund Koch
- Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, D-01307 Dresden, Germany
| | - Matthias Kirsch
- Neurosurgery, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, D-01307 Dresden, Germany.,Klinik für Neurochirurgie, Asklepios Kliniken Schildautal, Karl-Herold-Strasse 1, D-38723 Seesen, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Fetscherstrasse 74, D-01307 Dresden, Germany
| | - Roberta Galli
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, D-01307 Dresden, Germany
| |
Collapse
|
7
|
Troyanova-Wood MA, Yakovlev VV. Multi-wavelength excitation Brillouin spectroscopy. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2021; 27. [PMID: 34177217 DOI: 10.1109/jstqe.2021.3071955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We propose and demonstrate, first on simulated spectra and then experimentally, a novel approach to correct the undesired background distortions in the Brillouin spectra caused by molecular filter's absorption, fluorescent emission, ambient room light or any other constant contaminant. The developed multi-wavelength excitation Brillouin spectroscopy method computationally reconstructs the pure Brillouin component of the signal from multiple Brillouin spectra acquired using different excitation wavelengths. By removing the baseline distortions, the approach improves the goodness of fit of the Brillouin peaks, enabling accurate Brillouin shift and linewidth measurements from a wide range of challenging samples. In the present report, we explain the principle behind the method on a set of simulated spectra and present experimental application on an intentionally strongly-distorted spectrum. Utilizing the multi-excitation Brillouin spectroscopy approach, we successfully reconstruct Brillouin spectra of a highly-scattering sample, initially rendered not analyzable by excessive iodine absorption and contamination by out-of-focus light.
Collapse
Affiliation(s)
- Maria A Troyanova-Wood
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843 USA. She is now in Air Force Science and Technology Fellowship Program (formerly National Research Council Research Associateship Program) at Air Force Research Laboratory, JBSA Fort Sam Houston, Texas 78234 USA
| | - Vladislav V Yakovlev
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843 USA
| |
Collapse
|
8
|
Fiore A, Scarcelli G. Multipass etalon cascade for high-resolution parallel spectroscopy. OPTICS LETTERS 2021; 46:781-784. [PMID: 33577513 PMCID: PMC8607433 DOI: 10.1364/ol.418090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Spectral contrast, the ability to measure frequency components of vastly different intensity, is critical in optical spectroscopy. For high spectral contrast at high spectral resolution, scanning etalons are generally used, as they allow cascading multiple dispersive elements. However, scanning instruments are inherently limited in terms of acquisition speed. Here we report a single-shot cascaded spectrometer design, in which light is dispersed along a single dispersion direction at every stage and thus can be recirculated in the same etalon multiple times. Using this design principle, we demonstrate single-shot spectral measurements at sub-gigahertz resolution and unprecedented spectral contrast (∼80dB).
Collapse
Affiliation(s)
- Antonio Fiore
- Fischell Department of Bioengineering, University of Maryland —8278 Paint Branch Drive, College Park, MD 20742, USA
| | - Giuliano Scarcelli
- Fischell Department of Bioengineering, University of Maryland —8278 Paint Branch Drive, College Park, MD 20742, USA
| |
Collapse
|
9
|
Zhang J, Scarcelli G. Mapping mechanical properties of biological materials via an add-on Brillouin module to confocal microscopes. Nat Protoc 2021; 16:1251-1275. [PMID: 33452504 PMCID: PMC8218248 DOI: 10.1038/s41596-020-00457-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/04/2020] [Indexed: 01/29/2023]
Abstract
Several techniques have been developed over the past few decades to assess the mechanical properties of biological samples, which has fueled a rapid growth in the fields of biophysics, bioengineering, and mechanobiology. In this context, Brillouin optical spectroscopy has long been known as an intriguing modality for noncontact material characterization. However, limited by speed and sample damage, it had not translated into a viable imaging modality for biomedically relevant materials. Recently, based on a novel spectroscopy strategy that substantially improves the speed of Brillouin measurement, confocal Brillouin microscopy has emerged as a unique complementary tool to traditional methods as it allows noncontact, nonperturbative, label-free measurements of material mechanical properties. The feasibility and potential of this innovative technique at both the cell and tissue level have been extensively demonstrated over the past decade. As Brillouin technology is rapidly recognized, a standard approach for building and operating Brillouin microscopes is required to facilitate the widespread adoption of this technology. In this protocol, we aim to establish a robust approach for instrumentation, and data acquisition and analysis. By carefully following this protocol, we expect that a Brillouin instrument can be built in 5-9 days by a person with basic optics knowledge and alignment experience; the data acquisition as well as postprocessing can be accomplished within 2-8 h.
Collapse
Affiliation(s)
- Jitao Zhang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
| | - Giuliano Scarcelli
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
| |
Collapse
|
10
|
A VIPA Spectrograph with Ultra-high Resolution and Wavelength Calibration for Astronomical Applications. ACTA ACUST UNITED AC 2020. [DOI: 10.3847/1538-3881/aba836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
11
|
Brillouin microscopy: an emerging tool for mechanobiology. Nat Methods 2019; 16:969-977. [PMID: 31548707 DOI: 10.1038/s41592-019-0543-3] [Citation(s) in RCA: 205] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 07/29/2019] [Indexed: 12/14/2022]
Abstract
The role and importance of mechanical properties of cells and tissues in cellular function, development and disease has widely been acknowledged, however standard techniques currently used to assess them exhibit intrinsic limitations. Recently, Brillouin microscopy, a type of optical elastography, has emerged as a non-destructive, label- and contact-free method that can probe the viscoelastic properties of biological samples with diffraction-limited resolution in 3D. This led to increased attention amongst the biological and medical research communities, but it also sparked debates about the interpretation and relevance of the measured physical quantities. Here, we review this emerging technology by describing the underlying biophysical principles and discussing the interpretation of Brillouin spectra arising from heterogeneous biological matter. We further elaborate on the technique's limitations, as well as its potential for gaining insights in biology, in order to guide interested researchers from various fields.
Collapse
|
12
|
Krug B, Koukourakis N, Czarske JW. Impulsive stimulated Brillouin microscopy for non-contact, fast mechanical investigations of hydrogels. OPTICS EXPRESS 2019; 27:26910-26923. [PMID: 31674562 DOI: 10.1364/oe.27.026910] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The mechanical properties of tissues and cells are increasingly recognized as an important feature for the understanding of pathological processes and as a diagnostic tool in biomedicine. Impulsive stimulated Brillouin scattering (ISBS) is promising to overcome shortcomings of other measurement methods such as invasiveness, low spatial resolution and long acquisition time. In this paper, we present for the first time ISBS measurements of hydrogels, which are model materials for biological samples. We demonstrate ISBS measurements discriminating hydrogels of different stiffness. ISBS measurements with lateral resolution close to cellular level are presented. These results underline that ISBS microscopy has a high potential for biomedical applications.
Collapse
|
13
|
Abstract
Brillouin spectroscopy and imaging are emerging techniques in analytical science, biophotonics, and biomedicine. They are based on Brillouin light scattering from acoustic waves or phonons in the GHz range, providing a nondestructive contactless probe of the mechanics on a microscale. Novel approaches and applications of these techniques to the field of biomedical sciences are discussed, highlighting the theoretical foundations and experimental methods that have been developed to date. Acknowledging that this is a fast moving field, a comprehensive account of the relevant literature is critically assessed here.
Collapse
Affiliation(s)
- Francesca Palombo
- School
of Physics and Astronomy, University of
Exeter, Stocker Road, EX4 4QL Exeter, U.K.
| | - Daniele Fioretto
- Department
of Physics and Geology, University of Perugia, via Alessandro Pascoli, I-06123 Perugia, Italy
| |
Collapse
|
14
|
Fiore A, Scarcelli G. Single etalon design for two-stage cross-axis VIPA spectroscopy. BIOMEDICAL OPTICS EXPRESS 2019; 10:1475-1481. [PMID: 30891361 PMCID: PMC6420281 DOI: 10.1364/boe.10.001475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/08/2019] [Accepted: 02/08/2019] [Indexed: 05/15/2023]
Abstract
Two-stage cross axis VIPA spectrometers have been widely used in Brillouin microscopy since they provide single shot spectral measurements at high throughput and extinction. However, this spectrometer configuration presents challenges such as size, cost and alignment difficulties between the two cascaded etalons. Here, we present a cross-axis VIPA spectrometer that implements a single etalon, using a light recirculation architecture to achieve the multistage configuration.
Collapse
Affiliation(s)
- Antonio Fiore
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD 20742, USA
| | - Giuliano Scarcelli
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD 20742, USA
| |
Collapse
|
15
|
Singaraju AB, Bahl D, Stevens LL. Brillouin Light Scattering: Development of a Near Century-Old Technique for Characterizing the Mechanical Properties of Materials. AAPS PharmSciTech 2019; 20:109. [PMID: 30746575 DOI: 10.1208/s12249-019-1311-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 01/15/2019] [Indexed: 11/30/2022] Open
Abstract
Brillouin light scattering (BLS), a technique theoretically described nearly a century back by the French physicist Léon Brillouin in 1922, is a light-scattering method for determining the mechanical properties of materials. This inelastic scattering method is described by the Bragg diffraction of light from a propagating fluctuation in the local dielectric. These fluctuations arise spontaneously from thermally populated sound waves intrinsic to all materials, and thus BLS may be broadly applied to transparent samples of any phase. This review begins with a brief historical overview of the development of BLS, from its theoretical prediction to the current state of the art, and notes specific technological advancements that enabled the development of BLS. Despite the broad utility of BLS, no commercial spectrometer is currently available for purchase, but rather individual components are assembled to suit a specific application. Central to any BLS spectrometer is the interferometer, and its performance characteristics-scanning or non-scanning, multi-passing, and stabilization-are critical considerations for spectrometer design. Consistent with any light-scattering method, the frequency shift is a key observable in BLS, and we summarize the connection of this measurement to evaluate the mechanical properties of materials. With emphasis toward pharmaceutical materials analysis, we introduce the traditional BLS approach for single-crystal elasticity, and this is followed by a discussion of more recent developments in powder BLS. We conclude our review with a perspective on future developments in BLS that may enable BLS as a novel addition to the current catalog of process analytical technologies.
Collapse
|
16
|
Noninvasive Imaging: Brillouin Confocal Microscopy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1092:351-364. [DOI: 10.1007/978-3-319-95294-9_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
17
|
Antonacci G, de Turris V, Rosa A, Ruocco G. Background-deflection Brillouin microscopy reveals altered biomechanics of intracellular stress granules by ALS protein FUS. Commun Biol 2018; 1:139. [PMID: 30272018 PMCID: PMC6131551 DOI: 10.1038/s42003-018-0148-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/14/2018] [Indexed: 01/01/2023] Open
Abstract
Altered cellular biomechanics have been implicated as key photogenic triggers in age-related diseases. An aberrant liquid-to-solid phase transition, observed in in vitro reconstituted droplets of FUS protein, has been recently proposed as a possible pathogenic mechanism for amyotrophic lateral sclerosis (ALS). Whether such transition occurs in cell environments is currently unknown as a consequence of the limited measuring capability of the existing techniques, which are invasive or lack of subcellular resolution. Here we developed a non-contact and label-free imaging method, named background-deflection Brillouin microscopy, to investigate the three-dimensional intracellular biomechanics at a sub-micron resolution. Our method exploits diffraction to achieve an unprecedented 10,000-fold enhancement in the spectral contrast of single-stage spectrometers, enabling, to the best of our knowledge, the first direct biomechanical analysis on intracellular stress granules containing ALS mutant FUS protein in fixed cells. Our findings provide fundamental insights on the critical aggregation step underlying the neurodegenerative ALS disease.
Collapse
Affiliation(s)
- Giuseppe Antonacci
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy.
| | - Valeria de Turris
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Alessandro Rosa
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
- Department of Biology and Biotechnology Charles Darwin, University of Rome"Sapienza", Rome, Italy
| | - Giancarlo Ruocco
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
- Department of Physics, University of Rome "Sapienza", Rome, Italy
| |
Collapse
|
18
|
Corezzi S, Comez L, Zanatta M. A simple analysis of Brillouin spectra from opaque liquids and its application to aqueous suspensions of poly-N-isopropylacrylamide microgel particles. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.06.072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
19
|
Edrei E, Scarcelli G. Brillouin micro-spectroscopy through aberrations via sensorless adaptive optics. APPLIED PHYSICS LETTERS 2018; 112:163701. [PMID: 29713091 PMCID: PMC5902333 DOI: 10.1063/1.5027838] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 03/30/2018] [Indexed: 05/04/2023]
Abstract
Brillouin spectroscopy is a powerful optical technique for non-contact viscoelastic characterizations which has recently found applications in three-dimensional mapping of biological samples. Brillouin spectroscopy performances are rapidly degraded by optical aberrations and have therefore been limited to homogenous transparent samples. In this work, we developed an adaptive optics (AO) configuration designed for Brillouin scattering spectroscopy to engineer the incident wavefront and correct for aberrations. Our configuration does not require direct wavefront sensing and the injection of a "guide-star"; hence, it can be implemented without the need for sample pre-treatment. We used our AO-Brillouin spectrometer in aberrated phantoms and biological samples and obtained improved precision and resolution of Brillouin spectral analysis; we demonstrated 2.5-fold enhancement in Brillouin signal strength and 1.4-fold improvement in axial resolution because of the correction of optical aberrations.
Collapse
Affiliation(s)
- Eitan Edrei
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA
| | - Giuliano Scarcelli
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
20
|
Coker Z, Troyanova-Wood M, Traverso AJ, Yakupov T, Utegulov ZN, Yakovlev VV. Assessing performance of modern Brillouin spectrometers. OPTICS EXPRESS 2018; 26:2400-2409. [PMID: 29401780 DOI: 10.1364/oe.26.002400] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Brillouin spectroscopy and imaging has experienced a renaissance in recent years seeing vast improvements in methodology and increasing number of applications. With this resurgence has come the development of new spontaneous Brillouin instruments that often tout superior performance compared to established conventional systems such as tandem Fabry-Perot interferometers (TFPI). The performance of these new systems cannot always be thoroughly examined beyond the scope of the intended application, as applications often take precedence in reports. We therefore present evaluation of three modern Brillouin spectrometers: two VIPA-based spectrometers with wavelength-specific notch filters, and one scanning 6-pass TFPI. Performance analysis is presented along with a discussion about the dependence of measurements on excitation laser source and the various susceptibilities of each system.
Collapse
|
21
|
Weber IP, Yun SH, Scarcelli G, Franze K. The role of cell body density in ruminant retina mechanics assessed by atomic force and Brillouin microscopy. Phys Biol 2017; 14:065006. [PMID: 28406094 DOI: 10.1088/1478-3975/aa6d18] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cells in the central nervous system (CNS) respond to the stiffness of their environment. CNS tissue is mechanically highly heterogeneous, thus providing motile cells with region-specific mechanical signals. While CNS mechanics has been measured with a variety of techniques, reported values of tissue stiffness vary greatly, and the morphological structures underlying spatial changes in tissue stiffness remain poorly understood. We here exploited two complementary techniques, contact-based atomic force microscopy and contact-free Brillouin microscopy, to determine the mechanical properties of ruminant retinae, which are built up by different tissue layers. As in all vertebrate retinae, layers of high cell body densities ('nuclear layers') alternate with layers of low cell body densities ('plexiform layers'). Different tissue layers varied significantly in their mechanical properties, with the photoreceptor layer being the stiffest region of the retina, and the inner plexiform layer belonging to the softest regions. As both techniques yielded similar results, our measurements allowed us to calibrate the Brillouin microscopy measurements and convert the Brillouin shift into a quantitative assessment of elastic tissue stiffness with optical resolution. Similar as in the mouse spinal cord and the developing Xenopus brain, we found a strong correlation between nuclear densities and tissue stiffness. Hence, the cellular composition of retinae appears to strongly contribute to local tissue stiffness, and Brillouin microscopy shows a great potential for the application in vivo to measure the mechanical properties of transparent tissues.
Collapse
Affiliation(s)
- Isabell P Weber
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | | | | | | |
Collapse
|
22
|
Remer I, Cohen L, Bilenca A. High-speed Continuous-wave Stimulated Brillouin Scattering Spectrometer for Material Analysis. J Vis Exp 2017. [PMID: 28994794 DOI: 10.3791/55527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Recent years have witnessed a significant increase in the use of spontaneous Brillouin spectrometers for non-contact analysis of soft matter, such as aqueous solutions and biomaterials, with fast acquisition times. Here, we discuss the assembly and operation of a Brillouin spectrometer that uses stimulated Brillouin scattering (SBS) to measure stimulated Brillouin gain (SBG) spectra of water and lipid emulsion-based tissue-like samples in transmission mode with <10 MHz spectral-resolution and <35 MHz Brillouin-shift measurement precision at <100 ms. The spectrometer consists of two nearly counter-propagating continuous-wave (CW) narrow-linewidth lasers at 780 nm whose frequency detuning is scanned through the material Brillouin shift. By using an ultra-narrowband hot rubidium-85 vapor notch filter and a phase-sensitive detector, the signal-to-noise-ratio of the SBG signal is significantly enhanced compared to that obtained with existing CW-SBS spectrometers. This improvement enables measurement of SBG spectra with up to 100-fold faster acquisition times, thereby facilitating high spectral-resolution and high-precision Brillouin analysis of soft materials at high speed.
Collapse
Affiliation(s)
- Itay Remer
- Biomedical Engineering Department, Ben-Gurion University of the Negev
| | - Lear Cohen
- Biomedical Engineering Department, Ben-Gurion University of the Negev
| | - Alberto Bilenca
- Biomedical Engineering Department, Ben-Gurion University of the Negev; Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev;
| |
Collapse
|
23
|
Karampatzakis A, Song CZ, Allsopp LP, Filloux A, Rice SA, Cohen Y, Wohland T, Török P. Probing the internal micromechanical properties of Pseudomonas aeruginosa biofilms by Brillouin imaging. NPJ Biofilms Microbiomes 2017; 3:20. [PMID: 28900539 PMCID: PMC5591272 DOI: 10.1038/s41522-017-0028-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 08/03/2017] [Accepted: 08/08/2017] [Indexed: 12/17/2022] Open
Abstract
Biofilms are organised aggregates of bacteria that adhere to each other or surfaces. The matrix of extracellular polymeric substances that holds the cells together provides the mechanical stability of the biofilm. In this study, we have applied Brillouin microscopy, a technique that is capable of measuring mechanical properties of specimens on a micrometre scale based on the shift in frequency of light incident upon a sample due to thermal fluctuations, to investigate the micromechanical properties of an active, live Pseudomonas aeruginosa biofilm. Using this non-contact and label-free technique, we have extracted information about the internal stiffness of biofilms under continuous flow. No correlation with colony size was found when comparing the averages of Brillouin shifts of two-dimensional cross-sections of randomly selected colonies. However, when focusing on single colonies, we observed two distinct spatial patterns: in smaller colonies, stiffness increased towards their interior, indicating a more compact structure of the centre of the colony, whereas, larger (over 45 μm) colonies were found to have less stiff interiors. A specialized microscopy technique can monitor biofilm stiffness in a non-destructive manner, yielding insights into biofilm structure and development. The technique, called Brillouin imaging, uses changes in the frequency of light interacting with a substance to reveal fine detail about the material’s mechanical properties. Peter Török and colleagues at Imperial College London, with co-workers in Singapore, used Brillouin imaging to study biofilms of Pseudomonas aeruginosa bacteria at different stages in their life cycle. In young colonies, stiffness increased towards the interior of the biofilm, while mature colonies had less stiff interiors. The older biofilms may therefore have hollow interiors or may have been moving towards a phase of bacterial dispersal from the biofilm state. This non-disruptive method to study mechanical variations within and between living biofilms may help efforts to combat biofilms in clinical, environmental and industrial situations.
Collapse
Affiliation(s)
- A Karampatzakis
- Centre for BioImaging Sciences, National University of Singapore, Singapore, 117557 Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, 117557 Singapore.,Blackett Laboratory, Department of Physics, Imperial College London, Prince Consort Road, London, SW7 2BZ United Kingdom
| | - C Z Song
- Blackett Laboratory, Department of Physics, Imperial College London, Prince Consort Road, London, SW7 2BZ United Kingdom
| | - L P Allsopp
- Imperial College London, Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, South Kensington Campus, Flowers Building, SW7 2AZ London, United Kingdom
| | - A Filloux
- Imperial College London, Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, South Kensington Campus, Flowers Building, SW7 2AZ London, United Kingdom
| | - S A Rice
- Singapore Centre for Environmental Life Sciences Engineering and the School of Biological Sciences, Nanyang Technological University Singapore, Singapore, 637551 Singapore
| | - Y Cohen
- Singapore Centre for Environmental Life Sciences Engineering and the School of Biological Sciences, Nanyang Technological University Singapore, Singapore, 637551 Singapore
| | - T Wohland
- Centre for BioImaging Sciences, National University of Singapore, Singapore, 117557 Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, 117557 Singapore.,Department of Biological Sciences and Department of Chemistry, National University of Singapore, Singapore, 117346 Singapore
| | - P Török
- Blackett Laboratory, Department of Physics, Imperial College London, Prince Consort Road, London, SW7 2BZ United Kingdom
| |
Collapse
|
24
|
Edrei E, Gather MC, Scarcelli G. Integration of spectral coronagraphy within VIPA-based spectrometers for high extinction Brillouin imaging. OPTICS EXPRESS 2017; 25:6895-6903. [PMID: 28381031 PMCID: PMC5772426 DOI: 10.1364/oe.25.006895] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
VIPA (virtually imaged phase array) spectrometers have enabled rapid Brillouin spectrum measurements and current designs of multi-stage VIPA spectrometers offer enough spectral extinction to probe transparent tissue, cells and biomaterials. However, in highly scattering media or in the presence of strong back-reflections, such as at interfaces between materials of different refractive indices, VIPA-based Brillouin spectral measurements are limited. While several approaches to address this issue have recently been pursued, important challenges remain. Here we have adapted the design of coronagraphs used for exosolar planet imaging to the spectral domain and integrated it in a double-stage VIPA spectrometer. We demonstrate that this yields an increase in extinction up to 20 dB, with nearly no added insertion loss. The power of this improvement is vividly demonstrated by Brillouin imaging close to reflecting interfaces without index matching or sample tilting.
Collapse
Affiliation(s)
- Eitan Edrei
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA
| | - Malte C. Gather
- SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS, Scotland, UK
| | - Giuliano Scarcelli
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
25
|
Line-scanning Brillouin microscopy for rapid non-invasive mechanical imaging. Sci Rep 2016; 6:35398. [PMID: 27739499 PMCID: PMC5064313 DOI: 10.1038/srep35398] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/28/2016] [Indexed: 11/09/2022] Open
Abstract
Brillouin spectroscopy probes the mechanical properties of material by measuring the optical frequency shift induced by photon-phonon scattering interactions. In traditional configurations, Brillouin spectrometers measure only one point of the sample at a time. This results in long acquisition times for mechanical imaging of large areas. In this work, we demonstrate a parallel detection configuration where the Brillouin shift of hundreds of points in a line can be measured simultaneously. In mm-sized samples, this novel configuration effectively shortens the acquisition time of two-dimensional Brillouin imaging from hours to tens of seconds, thus making it a powerful technology for label-free mechanical characterization of tissue and biomaterials.
Collapse
|
26
|
Shao P, Besner S, Zhang J, Scarcelli G, Yun SH. Etalon filters for Brillouin microscopy of highly scattering tissues. OPTICS EXPRESS 2016; 24:22232-8. [PMID: 27661957 PMCID: PMC5234497 DOI: 10.1364/oe.24.022232] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Brillouin imaging of turbid biological tissues requires an effective rejection of the background noise due to elastic scattering of probe laser light. We have developed a narrowband spectral notch filter based on a pair of a free-space Fabry-Perot etalon and a mirror. The etalon filter in a 4-pass configuration is able to suppress elastically-scattered laser light with a high extinction ratio of > 40 dB and transmit inelastically-scattered light in a frequency shift range of 2-14 GHz with only 2 dB insertion loss. We also describe a simple etalon that enables us to use semiconductor diode laser sources for Brillouin microscopy by removing spontaneous emission noise. Using a clinically-viable Brillouin microscope employing these filters, we demonstrate the first Brillouin confocal imaging of the sclera and conjunctiva of the porcine eye.
Collapse
Affiliation(s)
- Peng Shao
- Wellman Center for Photomedcine, Massachusetts General Hospital and Havard Medical School, 50 Blossom Street, Boston, MA, 02114, USA
| | - Sebastien Besner
- Wellman Center for Photomedcine, Massachusetts General Hospital and Havard Medical School, 50 Blossom Street, Boston, MA, 02114, USA
| | - Jitao Zhang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Giuliano Scarcelli
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Seok-Hyun Yun
- Wellman Center for Photomedcine, Massachusetts General Hospital and Havard Medical School, 50 Blossom Street, Boston, MA, 02114, USA
- Harvard-MIT Health Sciences and Technology, Cambridge, MA 02139, USA
| |
Collapse
|