1
|
Tomko JA, Aryana K, Wu Y, Zhou G, Zhang Q, Wongwiset P, Wheeler V, Prezhdo OV, Hopkins PE. Ultrafast Charge Carrier Dynamics in Vanadium Dioxide, VO 2: Nonequilibrium Contributions to the Photoinduced Phase Transitions. J Phys Chem Lett 2025; 16:1312-1319. [PMID: 39873343 PMCID: PMC11808786 DOI: 10.1021/acs.jpclett.4c02951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/11/2025] [Accepted: 01/15/2025] [Indexed: 01/30/2025]
Abstract
Vanadium oxide (VO2) is an exotic phase-change material with diverse applications ranging from thermochromic smart windows to thermal sensors, neuromorphic computing, and tunable metasurfaces. Nonetheless, the mechanism responsible for its metal-insulator phase transition remains a subject of vigorous debate. Here, we investigate the ultrafast dynamics of the photoinduced phase transition in VO2 under low perturbation conditions. By experimentally examining carrier relaxation dynamics at energy levels near the VO2 band gap (0.6-0.92 eV), we note that numerous optical features do not correspond to the first-order phase transition. Previous studies indeed induced such a phase transition, but they relied on fluences at least an order of magnitude higher, leading to temperature increases well above the transition threshold (340 K). Instead, for excitation fluences that correspond to lattice temperatures only in slight excess of the phase transition (absolute temperatures < 500 K), we find that the marked changes in optical properties are dominated by a shift in the electronic density of states/Fermi level. We find that this effect is a lattice-driven process and does not occur until sufficient energy has been transferred from the excited electrons into the phonon subsystem.
Collapse
Affiliation(s)
- John A. Tomko
- Department
of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Kiumars Aryana
- Department
of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Yifan Wu
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Guoqing Zhou
- Department
of Physics and Astronomy, University of
Southern California, Los Angeles, California 90089, United States
| | - Qiyan Zhang
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Pat Wongwiset
- Department
of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Virginia Wheeler
- U.S.
Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Oleg V. Prezhdo
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- Department
of Physics and Astronomy, University of
Southern California, Los Angeles, California 90089, United States
| | - Patrick E. Hopkins
- Department
of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
- Department
of Materials Science and Engineering, University
of Virginia, Charlottesville, Virginia 22904, United States
- Department
of Physics, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
2
|
Park TJ, Deng S, Manna S, Islam ANMN, Yu H, Yuan Y, Fong DD, Chubykin AA, Sengupta A, Sankaranarayanan SKRS, Ramanathan S. Complex Oxides for Brain-Inspired Computing: A Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203352. [PMID: 35723973 DOI: 10.1002/adma.202203352] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/02/2022] [Indexed: 06/15/2023]
Abstract
The fields of brain-inspired computing, robotics, and, more broadly, artificial intelligence (AI) seek to implement knowledge gleaned from the natural world into human-designed electronics and machines. In this review, the opportunities presented by complex oxides, a class of electronic ceramic materials whose properties can be elegantly tuned by doping, electron interactions, and a variety of external stimuli near room temperature, are discussed. The review begins with a discussion of natural intelligence at the elementary level in the nervous system, followed by collective intelligence and learning at the animal colony level mediated by social interactions. An important aspect highlighted is the vast spatial and temporal scales involved in learning and memory. The focus then turns to collective phenomena, such as metal-to-insulator transitions (MITs), ferroelectricity, and related examples, to highlight recent demonstrations of artificial neurons, synapses, and circuits and their learning. First-principles theoretical treatments of the electronic structure, and in situ synchrotron spectroscopy of operating devices are then discussed. The implementation of the experimental characteristics into neural networks and algorithm design is then revewed. Finally, outstanding materials challenges that require a microscopic understanding of the physical mechanisms, which will be essential for advancing the frontiers of neuromorphic computing, are highlighted.
Collapse
Affiliation(s)
- Tae Joon Park
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Sunbin Deng
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Sukriti Manna
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - A N M Nafiul Islam
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Haoming Yu
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Yifan Yuan
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Dillon D Fong
- Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Alexander A Chubykin
- Department of Biological Sciences, Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Abhronil Sengupta
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Subramanian K R S Sankaranarayanan
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL, 60439, USA
- Department of Mechanical and Industrial Engineering, University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Shriram Ramanathan
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
3
|
Matos R, Pala N. A Review of Phase-Change Materials and Their Potential for Reconfigurable Intelligent Surfaces. MICROMACHINES 2023; 14:1259. [PMID: 37374844 DOI: 10.3390/mi14061259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
Phase-change materials (PCMs) and metal-insulator transition (MIT) materials have the unique feature of changing their material phase through external excitations such as conductive heating, optical stimulation, or the application of electric or magnetic fields, which, in turn, results in changes to their electrical and optical properties. This feature can find applications in many fields, particularly in reconfigurable electrical and optical structures. Among these applications, the reconfigurable intelligent surface (RIS) has emerged as a promising platform for both wireless RF applications as well as optical ones. This paper reviews the current, state-of-the-art PCMs within the context of RIS, their material properties, their performance metrics, some applications found in the literature, and how they can impact the future of RIS.
Collapse
Affiliation(s)
- Randy Matos
- Department of Electrical & Computer Engineering, Florida International University, Miami, FL 33174, USA
| | - Nezih Pala
- Department of Electrical & Computer Engineering, Florida International University, Miami, FL 33174, USA
| |
Collapse
|
4
|
Kim YJ, Nho HW, Ji S, Lee H, Ko H, Weissenrieder J, Kwon OH. Femtosecond-resolved imaging of a single-particle phase transition in energy-filtered ultrafast electron microscopy. SCIENCE ADVANCES 2023; 9:eadd5375. [PMID: 36706188 PMCID: PMC9882981 DOI: 10.1126/sciadv.add5375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
Using an energy filter in transmission electron microscopy has enabled elemental mapping at the atomic scale and improved the precision of structural determination by gating inelastic and elastic imaging electrons, respectively. Here, we use an energy filter in ultrafast electron microscopy to enhance the temporal resolution toward the domain of atomic motion. Visualizing transient structures with femtosecond temporal precision was achieved by selecting imaging electrons in a narrow energy distribution from dense chirped photoelectron packets with broad longitudinal momentum distributions and thus typically exhibiting picosecond durations. In this study, the heterogeneous ultrafast phase transitions of vanadium dioxide (VO2) nanoparticles, a representative strongly correlated system, were filmed and attributed to the emergence of a transient, low-symmetry metallic phase caused by different local strains. Our approach enables electron microscopy to access the time scale of elementary nuclear motion to visualize the onset of the structural dynamics of matter at the nanoscale.
Collapse
Affiliation(s)
- Ye-Jin Kim
- Department of Chemistry, College of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
- Center for Soft and Living Matter, Institute for Basic Science, 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Hak-Won Nho
- Department of Chemistry, College of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
- Center for Soft and Living Matter, Institute for Basic Science, 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Shaozheng Ji
- Materials and Nano Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Hyejin Lee
- School of Energy and Chemical Engineering, UNIST, 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Hyunhyub Ko
- School of Energy and Chemical Engineering, UNIST, 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Jonas Weissenrieder
- Materials and Nano Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Oh-Hoon Kwon
- Department of Chemistry, College of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
- Center for Soft and Living Matter, Institute for Basic Science, 50 UNIST-gil, Ulsan 44919, Republic of Korea
| |
Collapse
|
5
|
VO 2-based ultra-reconfigurable intelligent reflective surface for 5G applications. Sci Rep 2022; 12:4497. [PMID: 35296735 PMCID: PMC8927477 DOI: 10.1038/s41598-022-08458-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/08/2022] [Indexed: 11/21/2022] Open
Abstract
As demand for higher capacity wireless communications increases, new approaches are needed to improve capacity. The lack of configurable radio platforms and power consumed to create new signals are some of the limitations preventing further advancements. To address these limitations, we propose an Ultra-Reconfigurable Intelligent Surface (URIS) platform based on the metal-to-insulator transition property of VO2. A VO2 layer is placed on a high-density micro-heater matrix consisting of pixels that can be electronically switched on. With this manner of control, heat can be transferred to selected areas of the VO2 layer and convert it to highly conductive metallic phase. This technique allows dynamically changing the shape of the reflection surface with high speed. We numerically investigated the heat activated switching and RF reflection characteristics of a reflectarray designed for potential 5G applications operating at 32 GHz. It consists of heating pixels with the size of 40 × 40 μm which can generate metallic VO2 patches or arbitrary shapes with ~ 100 × 100 μm spatial resolution. Our analyses resulted in large phase range of ~ 300° and approximate losses of −2 dB. The proposed device can serve as a novel platform for ultra-reconfigurable reflectarrays, other IRSs, and various wide spectral range RF applications.
Collapse
|
6
|
Yang J, Gurung S, Bej S, Ni P, Howard Lee HW. Active optical metasurfaces: comprehensive review on physics, mechanisms, and prospective applications. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:036101. [PMID: 35244609 DOI: 10.1088/1361-6633/ac2aaf] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 09/28/2021] [Indexed: 06/14/2023]
Abstract
Optical metasurfaces with subwavelength thickness hold considerable promise for future advances in fundamental optics and novel optical applications due to their unprecedented ability to control the phase, amplitude, and polarization of transmitted, reflected, and diffracted light. Introducing active functionalities to optical metasurfaces is an essential step to the development of next-generation flat optical components and devices. During the last few years, many attempts have been made to develop tunable optical metasurfaces with dynamic control of optical properties (e.g., amplitude, phase, polarization, spatial/spectral/temporal responses) and early-stage device functions (e.g., beam steering, tunable focusing, tunable color filters/absorber, dynamic hologram, etc) based on a variety of novel active materials and tunable mechanisms. These recently-developed active metasurfaces show significant promise for practical applications, but significant challenges still remain. In this review, a comprehensive overview of recently-reported tunable metasurfaces is provided which focuses on the ten major tunable metasurface mechanisms. For each type of mechanism, the performance metrics on the reported tunable metasurface are outlined, and the capabilities/limitations of each mechanism and its potential for various photonic applications are compared and summarized. This review concludes with discussion of several prospective applications, emerging technologies, and research directions based on the use of tunable optical metasurfaces. We anticipate significant new advances when the tunable mechanisms are further developed in the coming years.
Collapse
Affiliation(s)
- Jingyi Yang
- Department of Physics & Astronomy, University of California, Irvine, CA 92697, United States of America
- Department of Physics, Baylor University, Waco, TX 76798, United States of America
| | - Sudip Gurung
- Department of Physics & Astronomy, University of California, Irvine, CA 92697, United States of America
- Department of Physics, Baylor University, Waco, TX 76798, United States of America
| | - Subhajit Bej
- Department of Physics, Baylor University, Waco, TX 76798, United States of America
| | - Peinan Ni
- Department of Physics, Baylor University, Waco, TX 76798, United States of America
| | - Ho Wai Howard Lee
- Department of Physics & Astronomy, University of California, Irvine, CA 92697, United States of America
- Department of Physics, Baylor University, Waco, TX 76798, United States of America
| |
Collapse
|
7
|
Nanoscale-femtosecond dielectric response of Mott insulators captured by two-color near-field ultrafast electron microscopy. Nat Commun 2020; 11:5770. [PMID: 33188192 PMCID: PMC7666229 DOI: 10.1038/s41467-020-19636-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/26/2020] [Indexed: 11/09/2022] Open
Abstract
Characterizing and controlling the out-of-equilibrium state of nanostructured Mott insulators hold great promises for emerging quantum technologies while providing an exciting playground for investigating fundamental physics of strongly-correlated systems. Here, we use two-color near-field ultrafast electron microscopy to photo-induce the insulator-to-metal transition in a single VO2 nanowire and probe the ensuing electronic dynamics with combined nanometer-femtosecond resolution (10−21 m ∙ s). We take advantage of a femtosecond temporal gating of the electron pulse mediated by an infrared laser pulse, and exploit the sensitivity of inelastic electron-light scattering to changes in the material dielectric function. By spatially mapping the near-field dynamics of an individual nanowire of VO2, we observe that ultrafast photo-doping drives the system into a metallic state on a timescale of ~150 fs without yet perturbing the crystalline lattice. Due to the high versatility and sensitivity of the electron probe, our method would allow capturing the electronic dynamics of a wide range of nanoscale materials with ultimate spatiotemporal resolution. The fs control of an insulator-to-metal transition down to a few nanometers and its real-time/real space observation remain a challenge. Here, the authors demonstrate a method based on ultrafast electron microscopy to provide a nm/fs resolved view of the electronic dynamics in a single VO2 nanowire.
Collapse
|
8
|
Mogunov IA, Lysenko S, Fedianin AE, Fernández FE, Rúa A, Kent AJ, Akimov AV, Kalashnikova AM. Large non-thermal contribution to picosecond strain pulse generation using the photo-induced phase transition in VO 2. Nat Commun 2020; 11:1690. [PMID: 32245951 PMCID: PMC7125085 DOI: 10.1038/s41467-020-15372-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/05/2020] [Indexed: 11/10/2022] Open
Abstract
Picosecond strain pulses are a versatile tool for investigation of mechanical properties of meso- and nano-scale objects with high temporal and spatial resolutions. Generation of such pulses is traditionally realized via ultrafast laser excitation of a light-to-strain transducer involving thermoelastic, deformation potential, or inverse piezoelectric effects. These approaches unavoidably lead to heat dissipation and a temperature rise, which can modify delicate specimens, like biological tissues, and ultimately destroy the transducer itself limiting the amplitude of generated picosecond strain. Here we propose a non-thermal mechanism for generating picosecond strain pulses via ultrafast photo-induced first-order phase transitions (PIPTs). We perform experiments on vanadium dioxide VO2 films, which exhibit a first-order PIPT accompanied by a lattice change. We demonstrate that during femtosecond optical excitation of VO2 the PIPT alone contributes to ultrafast expansion of this material as large as 0.45%, which is not accompanied by heat dissipation, and, for excitation density of 8 mJ cm−2, exceeds the contribution from thermoelastic effect by a factor of five. Ultrafast driving of vanadium dioxide can induce a large structural phase transition, which can be used to generate picosecond strain pulses. Here the authors show that the photo-induced phase transition can contribute 0.45% strain without causing undesirable heating.
Collapse
Affiliation(s)
| | - Sergiy Lysenko
- Department of Physics, University of Puerto Rico, Mayaguez, PR, 00681, USA
| | | | - Félix E Fernández
- Department of Physics, University of Puerto Rico, Mayaguez, PR, 00681, USA
| | - Armando Rúa
- Department of Physics, University of Puerto Rico, Mayaguez, PR, 00681, USA
| | - Anthony J Kent
- School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Andrey V Akimov
- School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
| | | |
Collapse
|
9
|
Andrews JL, Santos DA, Meyyappan M, Williams RS, Banerjee S. Building Brain-Inspired Logic Circuits from Dynamically Switchable Transition-Metal Oxides. TRENDS IN CHEMISTRY 2019. [DOI: 10.1016/j.trechm.2019.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
10
|
Khakurel KP, Angelov B, Andreasson J. Macromolecular Nanocrystal Structural Analysis with Electron and X-Rays: A Comparative Review. Molecules 2019; 24:E3490. [PMID: 31561479 PMCID: PMC6804143 DOI: 10.3390/molecules24193490] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 01/10/2023] Open
Abstract
Crystallography has long been the unrivaled method that can provide the atomistic structural models of macromolecules, using either X-rays or electrons as probes. The methodology has gone through several revolutionary periods, driven by the development of new sources, detectors, and other instrumentation. Novel sources of both X-ray and electrons are constantly emerging. The increase in brightness of these sources, complemented by the advanced detection techniques, has relaxed the traditionally strict need for large, high quality, crystals. Recent reports suggest high-quality diffraction datasets from crystals as small as a few hundreds of nanometers can be routinely obtained. This has resulted in the genesis of a new field of macromolecular nanocrystal crystallography. Here we will make a brief comparative review of this growing field focusing on the use of X-rays and electrons sources.
Collapse
Affiliation(s)
- Krishna P Khakurel
- Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, Na Slovance 2, CZ-18221 Prague, Czech Republic.
| | - Borislav Angelov
- Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, Na Slovance 2, CZ-18221 Prague, Czech Republic.
| | - Jakob Andreasson
- Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, Na Slovance 2, CZ-18221 Prague, Czech Republic.
- Department of Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden.
| |
Collapse
|
11
|
VandenBussche EJ, Flannigan DJ. Sources of error in Debye-Waller-effect measurements relevant to studies of photoinduced structural dynamics. Ultramicroscopy 2018; 196:111-120. [PMID: 30352384 DOI: 10.1016/j.ultramic.2018.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 09/23/2018] [Accepted: 10/04/2018] [Indexed: 10/28/2022]
Abstract
We identify and quantify several practical effects likely to be present in both static and ultrafast electron-scattering experiments that may interfere with the Debye-Waller (DW) effect. Using 120-nm thick, small-grained, polycrystalline aluminum foils as a test system, we illustrate the impact of specimen tilting, in-plane translation, and changes in z height on Debye-Scherrer-ring intensities. We find that tilting by less than one degree can result in statistically-significant changes in diffracted-beam intensities for large specimen regions containing > 105 nanocrystalline grains. We demonstrate that, in addition to effective changes in the field of view with tilting, slight texturing of the film can result in deviations from expected DW-effect behavior. Further, we find that in-plane translations of as little as 20 nm also produce statistically-significant intensity changes, while normalization to total image counts eliminates such effects arising from changes in z height. The results indicate that the use of polycrystalline films in ultrafast electron-scattering experiments can greatly reduce the negative impacts of these effects as compared to single-crystal specimens, though it does not entirely eliminate them. Thus, it is important to account for such effects when studying thin-foil specimens having relatively short reciprocal-lattice rods.
Collapse
Affiliation(s)
- Elisah J VandenBussche
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. SE, Minneapolis, MN 55455, United States
| | - David J Flannigan
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. SE, Minneapolis, MN 55455, United States.
| |
Collapse
|
12
|
Photoinduced Strain Release and Phase Transition Dynamics of Solid-Supported Ultrathin Vanadium Dioxide. Sci Rep 2017; 7:10045. [PMID: 28855670 PMCID: PMC5577108 DOI: 10.1038/s41598-017-10217-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/04/2017] [Indexed: 11/22/2022] Open
Abstract
The complex phase transitions of vanadium dioxide (VO2) have drawn continual attention for more than five decades. Dynamically, ultrafast electron diffraction (UED) with atomic-scale spatiotemporal resolution has been employed to study the reaction pathway in the photoinduced transition of VO2, using bulk and strain-free specimens. Here, we report the UED results from 10-nm-thick crystalline VO2 supported on Al2O3(0001) and examine the influence of surface stress on the photoinduced structural transformation. An ultrafast release of the compressive strain along the surface-normal direction is observed at early times following the photoexcitation, accompanied by faster motions of vanadium dimers that are more complex than simple dilation or bond tilting. Diffraction simulations indicate that the reaction intermediate involved on picosecond times may not be a single state, which implies non-concerted atomic motions on a multidimensional energy landscape. At longer times, a laser fluence multiple times higher than the thermodynamic enthalpy threshold is required for complete conversion from the initial monoclinic structure to the tetragonal lattice. For certain crystalline domains, the structural transformation is not seen even on nanosecond times following an intense photoexcitation. These results signify a time-dependent energy distribution among various degrees of freedom and reveal the nature of and the impact of strain on the photoinduced transition of VO2.
Collapse
|
13
|
Chergui M, Collet E. Photoinduced Structural Dynamics of Molecular Systems Mapped by Time-Resolved X-ray Methods. Chem Rev 2017; 117:11025-11065. [DOI: 10.1021/acs.chemrev.6b00831] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Majed Chergui
- Laboratoire
de Spectroscopie Ultrarapide (LSU), ISIC, and Lausanne Centre for
Ultrafast Science (LACUS), Faculté des Sciences de Base, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Eric Collet
- Univ Rennes 1, CNRS, Institut de Physique de Rennes, UMR 6251, UBL, Rennes F-35042, France
| |
Collapse
|
14
|
Pennacchio F, Vanacore GM, Mancini GF, Oppermann M, Jayaraman R, Musumeci P, Baum P, Carbone F. Design and implementation of an optimal laser pulse front tilting scheme for ultrafast electron diffraction in reflection geometry with high temporal resolution. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:044032. [PMID: 28713841 PMCID: PMC5491388 DOI: 10.1063/1.4991483] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/21/2017] [Indexed: 06/07/2023]
Abstract
Ultrafast electron diffraction is a powerful technique to investigate out-of-equilibrium atomic dynamics in solids with high temporal resolution. When diffraction is performed in reflection geometry, the main limitation is the mismatch in group velocity between the overlapping pump light and the electron probe pulses, which affects the overall temporal resolution of the experiment. A solution already available in the literature involved pulse front tilt of the pump beam at the sample, providing a sub-picosecond time resolution. However, in the reported optical scheme, the tilted pulse is characterized by a temporal chirp of about 1 ps at 1 mm away from the centre of the beam, which limits the investigation of surface dynamics in large crystals. In this paper, we propose an optimal tilting scheme designed for a radio-frequency-compressed ultrafast electron diffraction setup working in reflection geometry with 30 keV electron pulses containing up to 105 electrons/pulse. To characterize our scheme, we performed optical cross-correlation measurements, obtaining an average temporal width of the tilted pulse lower than 250 fs. The calibration of the electron-laser temporal overlap was obtained by monitoring the spatial profile of the electron beam when interacting with the plasma optically induced at the apex of a copper needle (plasma lensing effect). Finally, we report the first time-resolved results obtained on graphite, where the electron-phonon coupling dynamics is observed, showing an overall temporal resolution in the sub-500 fs regime. The successful implementation of this configuration opens the way to directly probe structural dynamics of low-dimensional systems in the sub-picosecond regime, with pulsed electrons.
Collapse
Affiliation(s)
- Francesco Pennacchio
- Laboratory for Ultrafast Microscopy and Electron Scattering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Giovanni M Vanacore
- Laboratory for Ultrafast Microscopy and Electron Scattering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Giulia F Mancini
- JILA, University of Colorado, 440 UCB, Boulder, Colorado 80309-0440, USA
| | - Malte Oppermann
- Laboratory of Ultrafast Spectroscopy, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Rajeswari Jayaraman
- Laboratory for Ultrafast Microscopy and Electron Scattering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Pietro Musumeci
- Particle Beam Physics Laboratory, Department of Physics and Astronomy, UCLA, Los Angeles, California 90095, USA
| | - Peter Baum
- Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching, Germany
| | - Fabrizio Carbone
- Laboratory for Ultrafast Microscopy and Electron Scattering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
15
|
Petruk AA, Pichugin K, Sciaini G. Shaped cathodes for the production of ultra-short multi-electron pulses. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:044005. [PMID: 28191483 PMCID: PMC5272824 DOI: 10.1063/1.4974779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/11/2017] [Indexed: 06/02/2023]
Abstract
An electrostatic electron source design capable of producing sub-20 femtoseconds (rms) multi-electron pulses is presented. The photoelectron gun concept builds upon geometrical electric field enhancement at the cathode surface. Particle tracer simulations indicate the generation of extremely short bunches even beyond 40 cm of propagation. Comparisons with compact electron sources commonly used for femtosecond electron diffraction are made.
Collapse
Affiliation(s)
- Ariel Alcides Petruk
- Department of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Kostyantyn Pichugin
- Department of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Germán Sciaini
- Department of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
16
|
Fullagar WK, Uhlig J, Mandal U, Kurunthu D, El Nahhas A, Tatsuno H, Honarfar A, Parnefjord Gustafsson F, Sundström V, Palosaari MRJ, Kinnunen KM, Maasilta IJ, Miaja-Avila L, O'Neil GC, Joe YI, Swetz DS, Ullom JN. Beating Darwin-Bragg losses in lab-based ultrafast x-ray experiments. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:044011. [PMID: 28396880 PMCID: PMC5367090 DOI: 10.1063/1.4978742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/06/2017] [Indexed: 06/07/2023]
Abstract
The use of low temperature thermal detectors for avoiding Darwin-Bragg losses in lab-based ultrafast experiments has begun. An outline of the background of this new development is offered, showing the relevant history and initiative taken by this work.
Collapse
Affiliation(s)
| | - Jens Uhlig
- Department of Chemical Physics, Lund University , Box 124, Lund SE-22100, Sweden
| | | | | | - Amal El Nahhas
- Department of Chemical Physics, Lund University , Box 124, Lund SE-22100, Sweden
| | - Hideyuki Tatsuno
- Department of Chemical Physics, Lund University , Box 124, Lund SE-22100, Sweden
| | - Alireza Honarfar
- Department of Chemical Physics, Lund University , Box 124, Lund SE-22100, Sweden
| | | | - Villy Sundström
- Department of Chemical Physics, Lund University , Box 124, Lund SE-22100, Sweden
| | - Mikko R J Palosaari
- Nanoscience Center, Department of Physics, University of Jyväskylä , P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Kimmo M Kinnunen
- Nanoscience Center, Department of Physics, University of Jyväskylä , P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Ilari J Maasilta
- Nanoscience Center, Department of Physics, University of Jyväskylä , P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Luis Miaja-Avila
- National Institute of Standards and Technology , Boulder, Colorado 80305, USA
| | - Galen C O'Neil
- National Institute of Standards and Technology , Boulder, Colorado 80305, USA
| | - Young Il Joe
- National Institute of Standards and Technology , Boulder, Colorado 80305, USA
| | - Daniel S Swetz
- National Institute of Standards and Technology , Boulder, Colorado 80305, USA
| | - Joel N Ullom
- National Institute of Standards and Technology , Boulder, Colorado 80305, USA
| |
Collapse
|
17
|
Lee YM, Kim YJ, Kim YJ, Kwon OH. Ultrafast electron microscopy integrated with a direct electron detection camera. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:044023. [PMID: 28529964 PMCID: PMC5422204 DOI: 10.1063/1.4983226] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/27/2017] [Indexed: 05/14/2023]
Abstract
In the past decade, we have witnessed the rapid growth of the field of ultrafast electron microscopy (UEM), which provides intuitive means to watch atomic and molecular motions of matter. Yet, because of the limited current of the pulsed electron beam resulting from space-charge effects, observations have been mainly made to periodic motions of the crystalline structure of hundreds of nanometers or higher by stroboscopic imaging at high repetition rates. Here, we develop an advanced UEM with robust capabilities for circumventing the present limitations by integrating a direct electron detection camera for the first time which allows for imaging at low repetition rates. This approach is expected to promote UEM to a more powerful platform to visualize molecular and collective motions and dissect fundamental physical, chemical, and materials phenomena in space and time.
Collapse
Affiliation(s)
- Young Min Lee
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, South Korea
| | | | | | | |
Collapse
|
18
|
Cremons DR, Plemmons DA, Flannigan DJ. Defect-mediated phonon dynamics in TaS 2 and WSe 2. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:044019. [PMID: 28503630 PMCID: PMC5411267 DOI: 10.1063/1.4982817] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 04/19/2017] [Indexed: 05/22/2023]
Abstract
We report correlative crystallographic and morphological studies of defect-dependent phonon dynamics in single flakes of 1T-TaS2 and 2H-WSe2 using selected-area diffraction and bright-field imaging in an ultrafast electron microscope. In both materials, we observe in-plane speed-of-sound acoustic-phonon wave trains, the dynamics of which (i.e., emergence, propagation, and interference) are strongly dependent upon discrete interfacial features (e.g., vacuum/crystal and crystal/crystal interfaces). In TaS2, we observe cross-propagating in-plane acoustic-phonon wave trains of differing frequencies that undergo coherent interference approximately 200 ps after initial emergence from distinct interfacial regions. With ultrafast bright-field imaging, the properties of the interfering wave trains are observed to correspond to the beat frequency of the individual oscillations, while intensity oscillations of Bragg spots generated from selected areas within the region of interest match well with the real-space dynamics. In WSe2, distinct acoustic-phonon dynamics are observed emanating and propagating away from structurally dissimilar morphological discontinuities (vacuum/crystal interface and crystal terrace), and results of ultrafast selected-area diffraction reveal thickness-dependent phonon frequencies. The overall observed dynamics are well-described using finite element analysis and time-dependent linear-elastic continuum mechanics.
Collapse
Affiliation(s)
- Daniel R Cremons
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, USA
| | - Dayne A Plemmons
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, USA
| | - David J Flannigan
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
19
|
Affiliation(s)
- Majed Chergui
- Laboratory of Ultrafast Spectroscopy (LSU), Lausanne Centre for
Ultrafast Science (LACUS), Ecole Polytechnique
Fédérale de Lausanne, ISIC, FSB, Station 6, CH-1015 Lausanne,
Switzerland
| |
Collapse
|