1
|
Van Eyndhoven LC, Vreezen CC, Tiemeijer BM, Tel J. Immune quorum sensing dictates IFN-I response dynamics in human plasmacytoid dendritic cells. Eur J Immunol 2024; 54:e2350955. [PMID: 38587967 DOI: 10.1002/eji.202350955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/10/2024]
Abstract
Type I interferons (IFN-Is) are key in fighting viral infections, but also serve major roles beyond antiviral immunity. Crucial is the tight regulation of IFN-I responses, while excessive levels are harmful to the cells. In essence, immune responses are generated by single cells making their own decisions, which are based on the signals they perceive. Additionally, immune cells must anticipate the future state of their environment, thereby weighing the costs and benefits of each possible outcome, in the presence of other potentially competitive decision makers (i.e., IFN-I producing cells). A rather new cellular communication mechanism called quorum sensing describes the effect of cell density on cellular secretory behaviors, which fits well with matching the right amount of IFN-Is produced to fight an infection. More competitive decision makers must contribute relatively less and vice versa. Intrigued by this concept, we assessed the effects of immune quorum sensing in pDCs, specialized immune cells known for their ability to mass produce IFN-Is. Using conventional microwell assays and droplet-based microfluidics assays, we were able the characterize the effect of quorum sensing in human primary immune cells in vitro. These insights open new avenues to manipulate IFN-I response dynamics in pathological conditions affected by aberrant IFN-I signaling.
Collapse
Affiliation(s)
- Laura C Van Eyndhoven
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Cherise C Vreezen
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Bart M Tiemeijer
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Jurjen Tel
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
2
|
Van Eyndhoven LC, Chouri E, Matos CI, Pandit A, Radstake TRDJ, Broen JCA, Singh A, Tel J. Unraveling IFN-I response dynamics and TNF crosstalk in the pathophysiology of systemic lupus erythematosus. Front Immunol 2024; 15:1322814. [PMID: 38596672 PMCID: PMC11002168 DOI: 10.3389/fimmu.2024.1322814] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/08/2024] [Indexed: 04/11/2024] Open
Abstract
Introduction The innate immune system serves the crucial first line of defense against a wide variety of potential threats, during which the production of pro-inflammatory cytokines IFN-I and TNFα are key. This astonishing power to fight invaders, however, comes at the cost of risking IFN-I-related pathologies, such as observed during autoimmune diseases, during which IFN-I and TNFα response dynamics are dysregulated. Therefore, these response dynamics must be tightly regulated, and precisely matched with the potential threat. This regulation is currently far from understood. Methods Using droplet-based microfluidics and ODE modeling, we studied the fundamentals of single-cell decision-making upon TLR signaling in human primary immune cells (n = 23). Next, using biologicals used for treating autoimmune diseases [i.e., anti-TNFα, and JAK inhibitors], we unraveled the crosstalk between IFN-I and TNFα signaling dynamics. Finally, we studied primary immune cells isolated from SLE patients (n = 8) to provide insights into SLE pathophysiology. Results single-cell IFN-I and TNFα response dynamics display remarkable differences, yet both being highly heterogeneous. Blocking TNFα signaling increases the percentage of IFN-I-producing cells, while blocking IFN-I signaling decreases the percentage of TNFα-producing cells. Single-cell decision-making in SLE patients is dysregulated, pointing towards a dysregulated crosstalk between IFN-I and TNFα response dynamics. Discussion We provide a solid droplet-based microfluidic platform to study inherent immune secretory behaviors, substantiated by ODE modeling, which can challenge the conceptualization within and between different immune signaling systems. These insights will build towards an improved fundamental understanding on single-cell decision-making in health and disease.
Collapse
Affiliation(s)
- Laura C. Van Eyndhoven
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| | - Eleni Chouri
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| | - Catarina I. Matos
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| | - Aridaman Pandit
- Center for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Timothy R. D. J. Radstake
- Center for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Jasper C. A. Broen
- Regional Rheumatology Center, Máxima Medical Center, Eindhoven and Veldhoven, Eindhoven, Netherlands
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering, University of Delaware, Newark, DE, United States
| | - Jurjen Tel
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
3
|
Alachkar N, Norton D, Wolkensdorfer Z, Muldoon M, Paszek P. Variability of the innate immune response is globally constrained by transcriptional bursting. Front Mol Biosci 2023; 10:1176107. [PMID: 37441161 PMCID: PMC10333517 DOI: 10.3389/fmolb.2023.1176107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023] Open
Abstract
Transcription of almost all mammalian genes occurs in stochastic bursts, however the fundamental control mechanisms that allow appropriate single-cell responses remain unresolved. Here we utilise single cell genomics data and stochastic models of transcription to perform global analysis of the toll-like receptor (TLR)-induced gene expression variability. Based on analysis of more than 2000 TLR-response genes across multiple experimental conditions we demonstrate that the single-cell, gene-by-gene expression variability can be empirically described by a linear function of the population mean. We show that response heterogeneity of individual genes can be characterised by the slope of the mean-variance line, which captures how cells respond to stimulus and provides insight into evolutionary differences between species. We further demonstrate that linear relationships theoretically determine the underlying transcriptional bursting kinetics, revealing different regulatory modes of TLR response heterogeneity. Stochastic modelling of temporal scRNA-seq count distributions demonstrates that increased response variability is associated with larger and more frequent transcriptional bursts, which emerge via increased complexity of transcriptional regulatory networks between genes and different species. Overall, we provide a methodology relying on inference of empirical mean-variance relationships from single cell data and new insights into control of innate immune response variability.
Collapse
Affiliation(s)
- Nissrin Alachkar
- Division of Immunology, Immunity to Infection and Respiratory Medicine, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Dale Norton
- Division of Immunology, Immunity to Infection and Respiratory Medicine, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Zsofia Wolkensdorfer
- Division of Immunology, Immunity to Infection and Respiratory Medicine, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Mark Muldoon
- Department of Mathematics, University of Manchester, Manchester, United Kingdom
| | - Pawel Paszek
- Division of Immunology, Immunity to Infection and Respiratory Medicine, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
4
|
Griego A, Douché T, Gianetto QG, Matondo M, Manina G. RNase E and HupB dynamics foster mycobacterial cell homeostasis and fitness. iScience 2022; 25:104233. [PMID: 35521527 PMCID: PMC9062218 DOI: 10.1016/j.isci.2022.104233] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/12/2022] [Accepted: 04/07/2022] [Indexed: 12/26/2022] Open
Abstract
RNA turnover is a primary source of gene expression variation, in turn promoting cellular adaptation. Mycobacteria leverage reversible mRNA stabilization to endure hostile conditions. Although RNase E is essential for RNA turnover in several species, its role in mycobacterial single-cell physiology and functional phenotypic diversification remains unexplored. Here, by integrating live-single-cell and quantitative-mass-spectrometry approaches, we show that RNase E forms dynamic foci, which are associated with cellular homeostasis and fate, and we discover a versatile molecular interactome. We show a likely interaction between RNase E and the nucleoid-associated protein HupB, which is particularly pronounced during drug treatment and infection, where phenotypic diversity increases. Disruption of RNase E expression affects HupB levels, impairing Mycobacterium tuberculosis growth homeostasis during treatment, intracellular replication, and host spread. Our work lays the foundation for targeting the RNase E and its partner HupB, aiming to undermine M. tuberculosis cellular balance, diversification capacity, and persistence. Single mycobacterial cells exhibit phenotypic variation in RNase E expression RNase E is implicated in the maintenance of mycobacterial cell growth homeostasis RNase E and HupB show a functional interplay in single mycobacterial cells RNase E-HupB disruption impairs Mycobacterium tuberculosis fate under drug and in macrophages
Collapse
|
5
|
Zhao S, Wu W, Jiang Z, Tang F, Ding L, Xu W, Ruan L. Roles of ARID1A variations in colorectal cancer: a collaborative review. Mol Med 2022; 28:42. [PMID: 35421925 PMCID: PMC9009033 DOI: 10.1186/s10020-022-00469-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/05/2022] [Indexed: 12/24/2022] Open
Abstract
AbstractColorectal cancer (CRC), a common malignancy, is one of the leading cause of cancer death in adults. AT-rich interaction domain 1A (ARID1A), a critical portion of the SWItch/sucrose non-fermentation (SWI/SNF) chromatin remodeling complexes, shows one of the most frequent mutant genes across different human cancer types. Deleterious variations of ARID1A has been recognized to be correlated the tumorigenesis and the poor prognosis of CRC. Here, we summarize recent advances in the clinical implications and molecular pathogenesis of ARID1A variations in CRC. According to independent data of 23 included studies, ARID1A is mutated in 3.6–66.7%. Consistently, all of the 23 relevant studies report that ARID1A functions as a specific tumor suppressor in CRC. Clinically, ARID1A variation status serves as a biomarker for survival prognosis and various therapies for CRC. Mechanistically, the pathophysiologic impacts of ARID1A variations on CRC may be associated with the co-occurrence variations of other genes (i.e., TP53, KRAS, APC, FBXW7, and PIK3CA) and the regulation of several signaling pathways being affected (i.e., WNT signaling, Akt signaling, and MEK/ERK pathway), leading to cell cycle arrest, chromatin remodeling, chromosome organization, and DNA hypermethylation of the cancer cells. The present review highlights ARID1A serving as a potent tumor suppressor and an important prognostic factor in CRC. ARID1A variations hint towards a promising tool for diagnostic tumor profiling and individualized therapeutic targets for CRC in the future.
Collapse
|
6
|
Aydin O, Passaro AP, Raman R, Spellicy SE, Weinberg RP, Kamm RD, Sample M, Truskey GA, Zartman J, Dar RD, Palacios S, Wang J, Tordoff J, Montserrat N, Bashir R, Saif MTA, Weiss R. Principles for the design of multicellular engineered living systems. APL Bioeng 2022; 6:010903. [PMID: 35274072 PMCID: PMC8893975 DOI: 10.1063/5.0076635] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/02/2022] [Indexed: 12/14/2022] Open
Abstract
Remarkable progress in bioengineering over the past two decades has enabled the formulation of fundamental design principles for a variety of medical and non-medical applications. These advancements have laid the foundation for building multicellular engineered living systems (M-CELS) from biological parts, forming functional modules integrated into living machines. These cognizant design principles for living systems encompass novel genetic circuit manipulation, self-assembly, cell-cell/matrix communication, and artificial tissues/organs enabled through systems biology, bioinformatics, computational biology, genetic engineering, and microfluidics. Here, we introduce design principles and a blueprint for forward production of robust and standardized M-CELS, which may undergo variable reiterations through the classic design-build-test-debug cycle. This Review provides practical and theoretical frameworks to forward-design, control, and optimize novel M-CELS. Potential applications include biopharmaceuticals, bioreactor factories, biofuels, environmental bioremediation, cellular computing, biohybrid digital technology, and experimental investigations into mechanisms of multicellular organisms normally hidden inside the "black box" of living cells.
Collapse
Affiliation(s)
| | - Austin P. Passaro
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia 30602, USA
| | - Ritu Raman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | - Robert P. Weinberg
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences, Boston, Massachusetts 02115, USA
| | | | - Matthew Sample
- Center for Ethics and Law in the Life Sciences, Leibniz Universität Hannover, 30167 Hannover, Germany
| | - George A. Truskey
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Jeremiah Zartman
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Roy D. Dar
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Sebastian Palacios
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Jason Wang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Jesse Tordoff
- Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Nuria Montserrat
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | | | - M. Taher A. Saif
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Ron Weiss
- Author to whom correspondence should be addressed:
| |
Collapse
|
7
|
Blanco A, Mahajan T, Coronado RA, Ma K, Demma DR, Dar RD. Synergistic Chromatin-Modifying Treatments Reactivate Latent HIV and Decrease Migration of Multiple Host-Cell Types. Viruses 2021; 13:v13061097. [PMID: 34201394 PMCID: PMC8228244 DOI: 10.3390/v13061097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/29/2021] [Accepted: 06/02/2021] [Indexed: 11/29/2022] Open
Abstract
Upon infection of its host cell, human immunodeficiency virus (HIV) establishes a quiescent and non-productive state capable of spontaneous reactivation. Diverse cell types harboring the provirus form a latent reservoir, constituting a major obstacle to curing HIV. Here, we investigate the effects of latency reversal agents (LRAs) in an HIV-infected THP-1 monocyte cell line in vitro. We demonstrate that leading drug treatments synergize activation of the HIV long terminal repeat (LTR) promoter. We establish a latency model in THP-1 monocytes using a replication incompetent HIV reporter vector with functional Tat, and show that chromatin modifiers synergize with a potent transcriptional activator to enhance HIV reactivation, similar to T-cells. Furthermore, leading reactivation cocktails are shown to differentially affect latency reactivation and surface expression of chemokine receptor type 4 (CXCR4), leading to altered host cell migration. This study investigates the effect of chromatin-modifying LRA treatments on HIV latent reactivation and cell migration in monocytes. As previously reported in T-cells, epigenetic mechanisms in monocytes contribute to controlling the relationship between latent reactivation and cell migration. Ultimately, advanced “Shock and Kill” therapy needs to successfully target and account for all host cell types represented in a complex and composite latency milieu.
Collapse
Affiliation(s)
- Alexandra Blanco
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (A.B.); (T.M.); (R.A.C.); (K.M.); (D.R.D.)
| | - Tarun Mahajan
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (A.B.); (T.M.); (R.A.C.); (K.M.); (D.R.D.)
| | - Robert A. Coronado
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (A.B.); (T.M.); (R.A.C.); (K.M.); (D.R.D.)
| | - Kelly Ma
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (A.B.); (T.M.); (R.A.C.); (K.M.); (D.R.D.)
| | - Dominic R. Demma
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (A.B.); (T.M.); (R.A.C.); (K.M.); (D.R.D.)
| | - Roy D. Dar
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (A.B.); (T.M.); (R.A.C.); (K.M.); (D.R.D.)
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Correspondence: ; Tel.: +1-(217)-265-0708
| |
Collapse
|
8
|
Gene-Specific Linear Trends Constrain Transcriptional Variability of the Toll-like Receptor Signaling. Cell Syst 2020; 11:300-314.e8. [PMID: 32918862 PMCID: PMC7521480 DOI: 10.1016/j.cels.2020.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 04/08/2020] [Accepted: 08/06/2020] [Indexed: 12/13/2022]
Abstract
Single-cell gene expression is inherently variable, but how this variability is controlled in response to stimulation remains unclear. Here, we use single-cell RNA-seq and single-molecule mRNA counting (smFISH) to study inducible gene expression in the immune toll-like receptor system. We show that mRNA counts of tumor necrosis factor α conform to a standard stochastic switch model, while transcription of interleukin-1β involves an additional regulatory step resulting in increased heterogeneity. Despite different modes of regulation, systematic analysis of single-cell data for a range of genes demonstrates that the variability in transcript count is linearly constrained by the mean response over a range of conditions. Mathematical modeling of smFISH counts and experimental perturbation of chromatin state demonstrates that linear constraints emerge through modulation of transcriptional bursting along with gene-specific relationships. Overall, our analyses demonstrate that the variability of the inducible single-cell mRNA response is constrained by transcriptional bursting. Single-cell TNF-α and IL-1β mRNA responses are differentially controlled Variability of TLR-induced responses scale linearly with mean mRNA counts Gene-specific constraints emerge via modulation of transcriptional bursting Chromatin state regulates transcriptional bursting of IL-1β
Collapse
|
9
|
Bohn-Wippert K, Tevonian EN, Lu Y, Huang MY, Megaridis MR, Dar RD. Cell Size-Based Decision-Making of a Viral Gene Circuit. Cell Rep 2019; 25:3844-3857.e5. [PMID: 30590053 PMCID: PMC7050911 DOI: 10.1016/j.celrep.2018.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/23/2018] [Accepted: 11/30/2018] [Indexed: 12/22/2022] Open
Abstract
Latently infected T cells able to reinitiate viral propagation throughout the body remain a major barrier to curing HIV. Distinguishing between latently infected cells and uninfected cells will advance efforts for viral eradication. HIV decision-making between latency and active replication is stochastic, and drug cocktails that increase bursts of viral gene expression enhance reactivation from latency. Here, we show that a larger host-cell size provides a natural cellular mechanism for enhancing burst size of viral expression and is necessary to destabilize the latent state and bias viral decision-making. Latently infected Jurkat and primary CD4+ T cells reactivate exclusively in larger activated cells, while smaller cells remain silent. In addition, reactivation is cell-cycle dependent and can be modulated with cell-cycle-arresting compounds. Cell size and cell-cycle dependent decision-making of viral circuits may guide stochastic design strategies and applications in synthetic biology and may provide important determinants to advance diagnostics and therapies. Bohn-Wippert et al. investigate reactivation of T cells latently infected with HIV. They discover that only larger cells exit latency, while smaller cells remain silent. Viral expression bursts are cell size and cell-cycle dependent, presenting dynamic cell states, capable of active control, as sources of viral fate determination.
Collapse
Affiliation(s)
- Kathrin Bohn-Wippert
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 321 Everitt Laboratory, 1406 West Green Street, Urbana, IL 61801, USA
| | - Erin N Tevonian
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 321 Everitt Laboratory, 1406 West Green Street, Urbana, IL 61801, USA
| | - Yiyang Lu
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 321 Everitt Laboratory, 1406 West Green Street, Urbana, IL 61801, USA
| | - Meng-Yao Huang
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL 61801, USA
| | - Melina R Megaridis
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 321 Everitt Laboratory, 1406 West Green Street, Urbana, IL 61801, USA
| | - Roy D Dar
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 321 Everitt Laboratory, 1406 West Green Street, Urbana, IL 61801, USA; Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 306 North Wright St, Urbana, IL 61801, USA; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA.
| |
Collapse
|
10
|
Guillemin A, Duchesne R, Crauste F, Gonin-Giraud S, Gandrillon O. Drugs modulating stochastic gene expression affect the erythroid differentiation process. PLoS One 2019; 14:e0225166. [PMID: 31751364 PMCID: PMC6872177 DOI: 10.1371/journal.pone.0225166] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 10/30/2019] [Indexed: 12/30/2022] Open
Abstract
To better understand the mechanisms behind cells decision-making to differentiate, we assessed the influence of stochastic gene expression (SGE) modulation on the erythroid differentiation process. It has been suggested that stochastic gene expression has a role in cell fate decision-making which is revealed by single-cell analyses but studies dedicated to demonstrate the consistency of this link are still lacking. Recent observations showed that SGE significantly increased during differentiation and a few showed that an increase of the level of SGE is accompanied by an increase in the differentiation process. However, a consistent relation in both increasing and decreasing directions has never been shown in the same cellular system. Such demonstration would require to be able to experimentally manipulate simultaneously the level of SGE and cell differentiation in order to observe if cell behavior matches with the current theory. We identified three drugs that modulate SGE in primary erythroid progenitor cells. Both Artemisinin and Indomethacin decreased SGE and reduced the amount of differentiated cells. On the contrary, a third component called MB-3 simultaneously increased the level of SGE and the amount of differentiated cells. We then used a dynamical modelling approach which confirmed that differentiation rates were indeed affected by the drug treatment. Using single-cell analysis and modeling tools, we provide experimental evidence that, in a physiologically relevant cellular system, SGE is linked to differentiation.
Collapse
Affiliation(s)
- Anissa Guillemin
- Laboratoire de biologie et modélisation de la cellule. LBMC - Ecole Normale Supérieure - Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique: UMR5239, Institut National de la Santé et de la Recherche Médicale: U1210 - Ecole Normale Supérieure de Lyon 46 allée d’Italie 69007 Lyon, France
| | - Ronan Duchesne
- Laboratoire de biologie et modélisation de la cellule. LBMC - Ecole Normale Supérieure - Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique: UMR5239, Institut National de la Santé et de la Recherche Médicale: U1210 - Ecole Normale Supérieure de Lyon 46 allée d’Italie 69007 Lyon, France
- Inria Dracula, Villeurbanne, France
| | - Fabien Crauste
- Inria Dracula, Villeurbanne, France
- Univ. Bordeaux, CNRS, Bordeaux INP, IMB, UMR 5251, F-33400, Talence, France
| | - Sandrine Gonin-Giraud
- Laboratoire de biologie et modélisation de la cellule. LBMC - Ecole Normale Supérieure - Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique: UMR5239, Institut National de la Santé et de la Recherche Médicale: U1210 - Ecole Normale Supérieure de Lyon 46 allée d’Italie 69007 Lyon, France
| | - Olivier Gandrillon
- Laboratoire de biologie et modélisation de la cellule. LBMC - Ecole Normale Supérieure - Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique: UMR5239, Institut National de la Santé et de la Recherche Médicale: U1210 - Ecole Normale Supérieure de Lyon 46 allée d’Italie 69007 Lyon, France
- Inria Dracula, Villeurbanne, France
| |
Collapse
|
11
|
De P, Dey N. Mutation-Driven Signals of ARID1A and PI3K Pathways in Ovarian Carcinomas: Alteration Is An Opportunity. Int J Mol Sci 2019; 20:ijms20225732. [PMID: 31731647 PMCID: PMC6888220 DOI: 10.3390/ijms20225732] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/08/2019] [Accepted: 11/13/2019] [Indexed: 12/24/2022] Open
Abstract
The chromosome is a functionally dynamic structure. The dynamic nature of chromosome functionally connects it to almost every event within a cell, in health and sickness. Chromatin remodeling system acts in unison with the cell survival pathway in mediating a variety of cellular functions, including mitosis, differentiation, DNA damage repair, and apoptosis. In humans, the 16 SWI/SNF complexes are a class of nucleosome remodelers, and ARID1A, an epigenetic tumor suppressor, is a member of mammalian 17 chromatin remodeling complex, SWI/SNF. Alterations of chromatin remodeling system contribute to tumorigenic events in various cancers, including ovarian cancers. Oncogenic changes of genes of the PI3K pathway are one of the potential genetic determinants of ovarian carcinomas. In this review, we present the data demonstrating the co-occurrence of mutations of ARID1A and the PI3K pathway in our cohort of ovarian cancers from the Avera Cancer Institute (SD, USA). Taking into account data from our cohort and the cBioPortal, we interrogate the opportunity provided by this co-occurrence in the context of mutation-driven signals in the life cycle of a tumor cell and its response to the targeted anti-tumor drugs.
Collapse
Affiliation(s)
- Pradip De
- Translational Oncology Laboratory, Avera Cancer Institute, Sioux Falls, SD 57105, USA;
- Department of Internal Medicine, SSOM, University of South Dakota, Sioux Falls, SD 57105, USA
- VieCure, Greenwood Village, CO 80112, USA
| | - Nandini Dey
- Translational Oncology Laboratory, Avera Cancer Institute, Sioux Falls, SD 57105, USA;
- Department of Internal Medicine, SSOM, University of South Dakota, Sioux Falls, SD 57105, USA
- Correspondence:
| |
Collapse
|
12
|
Stoszko M, Ne E, Abner E, Mahmoudi T. A broad drug arsenal to attack a strenuous latent HIV reservoir. Curr Opin Virol 2019; 38:37-53. [PMID: 31323521 DOI: 10.1016/j.coviro.2019.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/22/2019] [Accepted: 06/02/2019] [Indexed: 02/06/2023]
Abstract
HIV cure is impeded by the persistence of a strenuous reservoir of latent but replication competent infected cells, which remain unsusceptible to c-ART and unrecognized by the immune system for elimination. Ongoing progress in understanding the molecular mechanisms that control HIV transcription and latency has led to the development of strategies to either permanently inactivate the latent HIV infected reservoir of cells or to stimulate the virus to emerge out of latency, coupled to either induction of death in the infected reactivated cell or its clearance by the immune system. This review focuses on the currently explored and non-exclusive pharmacological strategies and their molecular targets that 1. stimulate reversal of HIV latency in infected cells by targeting distinct steps in the HIV-1 gene expression cycle, 2. exploit mechanisms that promote cell death and apoptosis to render the infected cell harboring reactivated virus more susceptible to death and/or elimination by the immune system, and 3. permanently inactivate any remaining latently infected cells such that c-ART can be safely discontinued.
Collapse
Affiliation(s)
- Mateusz Stoszko
- Department of Biochemistry, Erasmus University Medical Center, Ee634 PO Box 2040, 3000CA, Rotterdam, The Netherlands
| | - Enrico Ne
- Department of Biochemistry, Erasmus University Medical Center, Ee634 PO Box 2040, 3000CA, Rotterdam, The Netherlands
| | - Erik Abner
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Tokameh Mahmoudi
- Department of Biochemistry, Erasmus University Medical Center, Ee634 PO Box 2040, 3000CA, Rotterdam, The Netherlands.
| |
Collapse
|
13
|
Marian CA, Stoszko M, Wang L, Leighty MW, de Crignis E, Maschinot CA, Gatchalian J, Carter BC, Chowdhury B, Hargreaves DC, Duvall JR, Crabtree GR, Mahmoudi T, Dykhuizen EC. Small Molecule Targeting of Specific BAF (mSWI/SNF) Complexes for HIV Latency Reversal. Cell Chem Biol 2018; 25:1443-1455.e14. [PMID: 30197195 PMCID: PMC6404985 DOI: 10.1016/j.chembiol.2018.08.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 05/24/2018] [Accepted: 08/06/2018] [Indexed: 12/19/2022]
Abstract
The persistence of a pool of latently HIV-1-infected cells despite combination anti-retroviral therapy treatment is the major roadblock for a cure. The BAF (mammalian SWI/SNF) chromatin remodeling complex is involved in establishing and maintaining viral latency, making it an attractive drug target for HIV-1 latency reversal. Here we report a high-throughput screen for inhibitors of BAF-mediated transcription in cells and the subsequent identification of a 12-membered macrolactam. This compound binds ARID1A-specific BAF complexes, prevents nucleosomal positioning, and relieves transcriptional repression of HIV-1. Through this mechanism, these compounds are able to reverse HIV-1 latency in an in vitro T cell line, an ex vivo primary cell model of HIV-1 latency, and in patient CD4+ T cells without toxicity or T cell activation. These macrolactams represent a class of latency reversal agents with unique mechanism of action, and can be combined with other latency reversal agents to improve reservoir targeting.
Collapse
Affiliation(s)
- Christine A Marian
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 201 S. University St., West Lafayette, IN 47907, USA
| | - Mateusz Stoszko
- Department of Biochemistry, Erasmus University Medical Center, Ee634, P.O. Box 2040, 3000CA Rotterdam, the Netherlands
| | - Lili Wang
- The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA
| | - Matthew W Leighty
- The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA
| | - Elisa de Crignis
- Department of Biochemistry, Erasmus University Medical Center, Ee634, P.O. Box 2040, 3000CA Rotterdam, the Netherlands
| | - Chad A Maschinot
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 201 S. University St., West Lafayette, IN 47907, USA
| | - Jovylyn Gatchalian
- Department of Molecular and Cell Biology, Salk Institute for Biological Studies, 10010 N Torrey Pines Road, La Jolla, CA 92037, USA
| | - Benjamin C Carter
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 201 S. University St., West Lafayette, IN 47907, USA
| | - Basudev Chowdhury
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 201 S. University St., West Lafayette, IN 47907, USA
| | - Diana C Hargreaves
- Department of Molecular and Cell Biology, Salk Institute for Biological Studies, 10010 N Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jeremy R Duvall
- The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA
| | - Gerald R Crabtree
- HHMI and the Departments of Developmental Biology and Pathology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA.
| | - Tokameh Mahmoudi
- Department of Biochemistry, Erasmus University Medical Center, Ee634, P.O. Box 2040, 3000CA Rotterdam, the Netherlands.
| | - Emily C Dykhuizen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 201 S. University St., West Lafayette, IN 47907, USA.
| |
Collapse
|
14
|
Dar RD, Weiss R. Perspective: Engineering noise in biological systems towards predictive stochastic design. APL Bioeng 2018; 2:020901. [PMID: 31069294 PMCID: PMC6481707 DOI: 10.1063/1.5025033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/16/2018] [Indexed: 01/24/2023] Open
Abstract
Significant progress has been made towards engineering both single-cell and multi-cellular systems through a combination of synthetic and systems biology, nanobiotechnology, pharmaceutical science, and computational approaches. However, our ability to engineer systems that begin to approach the complexity of natural pathways is severely limited by important challenges, e.g. due to noise, or the fluctuations in gene expression and molecular species at multiple scales (e.g. both intra- and inter-cellular fluctuations). This barrier to engineering requires that biological noise be recognized as a design element with fundamentals that can be actively controlled. Here we highlight studies of an emerging discipline that collectively strives to engineer noise towards predictive stochastic design using interdisciplinary approaches at multiple-scales in diverse living systems.
Collapse
Affiliation(s)
- Roy D. Dar
- Author to whom correspondence should be addressed:
| | | |
Collapse
|