1
|
Colaizzi L, Ryabchuk S, Månsson EP, Saraswathula K, Wanie V, Trabattoni A, González-Vázquez J, Martín F, Calegari F. Few-femtosecond time-resolved study of the UV-induced dissociative dynamics of iodomethane. Nat Commun 2024; 15:9196. [PMID: 39455555 PMCID: PMC11511850 DOI: 10.1038/s41467-024-53183-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Ultraviolet (UV) light that penetrates our atmosphere initiates various photochemical and photobiological processes. However, the absence of extremely short UV pulses has so far hindered our ability to fully capture the mechanisms at the very early stages of such processes. This is important because the concerted motion of electrons and nuclei in the first few femtoseconds often determines molecular reactivity. Here we investigate the dissociative dynamics of iodomethane following UV photoexcitation, utilizing mass spectrometry with a 5 fs time resolution. The short duration of the UV pump pulse (4.2 fs) allows the ultrafast dynamics to be investigated in the absence of any external field, from well before any significant vibrational displacement occurs until dissociation has taken place. The experimental results combined with semi-classical trajectory calculations provide the identification of the main dissociation channels and indirectly reveal the signature of a conical intersection in the time-dependent yield of the iodine ion. Furthermore, we demonstrate that the UV-induced breakage of the C-I bond can be prevented when the molecule is ionized by the probe pulse within 5 fs after the UV excitation, showcasing an ultrafast stabilization scheme against dissociation.
Collapse
Affiliation(s)
- Lorenzo Colaizzi
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
- Physics Department, Universität Hamburg, Hamburg, Germany.
| | - Sergey Ryabchuk
- Physics Department, Universität Hamburg, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Hamburg, Germany
| | - Erik P Månsson
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Krishna Saraswathula
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Vincent Wanie
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Andrea Trabattoni
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- Institute of Quantum Optics, Leibniz Universität Hannover, Hannover, Germany
| | - Jesús González-Vázquez
- Departamento de Química, Universidad Autonoma de Madrid, Madrid, Spain.
- IADCHEM, Universidad Autónoma de Madrid, Madrid, Spain.
| | - Fernando Martín
- Departamento de Química, Universidad Autonoma de Madrid, Madrid, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanoscience), Madrid, Spain
| | - Francesca Calegari
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
- Physics Department, Universität Hamburg, Hamburg, Germany.
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Hamburg, Germany.
| |
Collapse
|
2
|
Ding Y, Greenman L, Rolles D. Surface hopping molecular dynamics simulation of ultrafast methyl iodide photodissociation mapped by Coulomb explosion imaging. Phys Chem Chem Phys 2024; 26:22423-22432. [PMID: 39140357 DOI: 10.1039/d4cp01679c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
We present a highly efficient approach to directly and reliably simulate photodissociation followed by Coulomb explosion of methyl iodide. In order to achieve statistical reliability, more than 40 000 trajectories are calculated on accurate potential energy surfaces of both the neutral molecule and the doubly charged cation. Non-adiabatic effects during photodissociation are treated using a Landau-Zener surface hopping algorithm. The simulation is performed analogous to a recent pump-probe experiment using coincident ion momentum imaging [Ziaee et al., Phys. Chem. Chem. Phys., 2023, 25, 9999-10010]. At large pump-probe delays, the simulated delay-dependent kinetic energy release signals show overall good agreement with the experiment, with two major dissociation channels leading to I(2P3/2) and I*(2P1/2) products. At short pump-probe delays, the simulated kinetic energy release differs significantly from the values obtained by a purely Coulombic approximation or a one-dimensional description of the dicationic potential energy surfaces, and shows a clear bifurcation near 12 fs, owing to non-adiabatic transitions through a conical intersection. The proposed approach is particularly suitable and efficient in simulating processes that highly rely on statistics or for identifying rare reaction channels.
Collapse
Affiliation(s)
- Yijue Ding
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506, USA.
| | - Loren Greenman
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506, USA.
| | - Daniel Rolles
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
3
|
Garg D, Chopra P, Lee JWL, Tikhonov DS, Kumar S, Akcaalan O, Allum F, Boll R, Butler AA, Erk B, Gougoula E, Gruet SP, He L, Heathcote D, Jones E, Kazemi MM, Lahl J, Lemmens AK, Liu Z, Loru D, Maclot S, Mason R, Merrick J, Müller E, Mullins T, Papadopoulou CC, Passow C, Peschel J, Plach M, Ramm D, Robertson P, Rompotis D, Simao A, Steber AL, Tajalli A, Tul-Noor A, Vadassery N, Vinklárek IS, Techert S, Küpper J, Rijs AM, Rolles D, Brouard M, Bari S, Eng-Johnsson P, Vallance C, Burt M, Manschwetus B, Schnell M. Ultrafast dynamics of fluorene initiated by highly intense laser fields. Phys Chem Chem Phys 2024. [PMID: 38958416 DOI: 10.1039/d3cp05063g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
We present an investigation of the ultrafast dynamics of the polycyclic aromatic hydrocarbon fluorene initiated by an intense femtosecond near-infrared laser pulse (810 nm) and probed by a weak visible pulse (405 nm). Using a multichannel detection scheme (mass spectra, electron and ion velocity-map imaging), we provide a full disentanglement of the complex dynamics of the vibronically excited parent molecule, its excited ionic states, and fragments. We observed various channels resulting from the strong-field ionization regime. In particular, we observed the formation of the unstable tetracation of fluorene, above-threshold ionization features in the photoelectron spectra, and evidence of ubiquitous secondary fragmentation. We produced a global fit of all observed time-dependent photoelectron and photoion channels. This global fit includes four parent ions extracted from the mass spectra, 15 kinetic-energy-resolved ionic fragments extracted from ion velocity map imaging, and five photoelectron channels obtained from electron velocity map imaging. The fit allowed for the extraction of 60 lifetimes of various metastable photoinduced intermediates.
Collapse
Affiliation(s)
- Diksha Garg
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
- Department of Physics, Universität Hamburg, Hamburg, Germany
| | - Pragya Chopra
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
- Institute of Physical Chemistry, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Jason W L Lee
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | | | - Sonu Kumar
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
- Department of Physics, Universität Hamburg, Hamburg, Germany
| | | | - Felix Allum
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | | | - Alexander A Butler
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Benjamin Erk
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
| | - Eva Gougoula
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
| | | | - Lanhai He
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Germany
| | - David Heathcote
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Ellen Jones
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Mehdi M Kazemi
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
| | - Jan Lahl
- Department of Physics, Lund University, Lund, Sweden
| | - Alexander K Lemmens
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
- FELIX Laboratory, Radboud University, Nijmegen, The Netherlands
| | - Zhihao Liu
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Donatella Loru
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
| | | | - Robert Mason
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - James Merrick
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Erland Müller
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
| | - Terry Mullins
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Germany
- European XFEL, Schenefeld, Germany
| | | | | | | | - Marius Plach
- Department of Physics, Lund University, Lund, Sweden
| | - Daniel Ramm
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
| | - Patrick Robertson
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Dimitrios Rompotis
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
- European XFEL, Schenefeld, Germany
| | - Alcides Simao
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
| | | | - Ayhan Tajalli
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
| | - Atia Tul-Noor
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
| | - Nidin Vadassery
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Germany
- Department of Chemistry, Universität Hamburg, Hamburg, Germany
| | - Ivo S Vinklárek
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Germany
| | - Simone Techert
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
| | - Jochen Küpper
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Germany
- Department of Physics, Universität Hamburg, Hamburg, Germany
- Center for Ultrafast Imaging, Universität Hamburg, Hamburg, Germany
- Department of Chemistry, Universität Hamburg, Hamburg, Germany
| | - Anouk M Rijs
- Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Daniel Rolles
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS, USA
| | - Mark Brouard
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Sadia Bari
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | | | - Claire Vallance
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Michael Burt
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | | | - Melanie Schnell
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
- Institute of Physical Chemistry, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
4
|
McManus JW, Allum F, Featherstone J, Lam CS, Brouard M. Two-Dimensional Projected-Momentum Covariance Mapping for Coulomb Explosion Imaging. J Phys Chem A 2024; 128:3220-3229. [PMID: 38607425 PMCID: PMC11056990 DOI: 10.1021/acs.jpca.4c01084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/13/2024]
Abstract
We introduce projected-momentum covariance mapping, an extension of recoil-frame covariance mapping for 2D ion imaging studies. By considering the two-dimensional projection of the ion momenta as recorded by the detector, one opens the door to a complex suite of analysis tools adapted from three-dimensional momentum imaging studies. This includes the use of different frames of reference to unravel the dynamics of fragmentation and the application of fragment momentum constraints to isolate specific fragmentation channels. The technique is demonstrated on data from a two-dimensional ion imaging study of the Coulomb explosion of the cis and trans isomers of 1,2-dichloroethene, following strong-field ionization by an intense near-infrared femtosecond laser pulse. Classical simulations are used to guide the interpretation of projected-momentum covariance maps. The results offer a detailed insight into the distinct Coulomb explosion dynamics for this pair of isomers and lay the groundwork for future time-resolved studies of photoisomerization dynamics in this molecular system.
Collapse
Affiliation(s)
- Joseph W. McManus
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| | | | - Josh Featherstone
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| | - Chow-Shing Lam
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| | - Mark Brouard
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| |
Collapse
|
5
|
Walmsley T, Unwin J, Allum F, Bari S, Boll R, Borne K, Brouard M, Bucksbaum P, Ekanayake N, Erk B, Forbes R, Howard AJ, Eng-Johnsson P, Lee JWL, Liu Z, Manschwetus B, Mason R, Passow C, Peschel J, Rivas D, Rolles D, Rörig A, Rouzée A, Vallance C, Ziaee F, Burt M. Characterizing the multi-dimensional reaction dynamics of dihalomethanes using XUV-induced Coulomb explosion imaging. J Chem Phys 2023; 159:144302. [PMID: 37823458 DOI: 10.1063/5.0172749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023] Open
Abstract
Site-selective probing of iodine 4d orbitals at 13.1 nm was used to characterize the photolysis of CH2I2 and CH2BrI initiated at 202.5 nm. Time-dependent fragment ion momenta were recorded using Coulomb explosion imaging mass spectrometry and used to determine the structural dynamics of the dissociating molecules. Correlations between these fragment momenta, as well as the onset times of electron transfer reactions between them, indicate that each molecule can undergo neutral three-body photolysis. For CH2I2, the structural evolution of the neutral molecule was simultaneously characterized along the C-I and I-C-I coordinates, demonstrating the sensitivity of these measurements to nuclear motion along multiple degrees of freedom.
Collapse
Affiliation(s)
- T Walmsley
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - J Unwin
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - F Allum
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - S Bari
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - R Boll
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - K Borne
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - M Brouard
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - P Bucksbaum
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - N Ekanayake
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - B Erk
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - R Forbes
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - A J Howard
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - P Eng-Johnsson
- Department of Physics, Lund University, 22100 Lund, Sweden
| | - J W L Lee
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Z Liu
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - B Manschwetus
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - R Mason
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - C Passow
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - J Peschel
- Department of Physics, Lund University, 22100 Lund, Sweden
| | - D Rivas
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - D Rolles
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - A Rörig
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - A Rouzée
- Max-Born-Institute, Max-Born-Straße 2A, 12489 Berlin, Germany
| | - C Vallance
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - F Ziaee
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - M Burt
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
6
|
Crane SW, Lee JWL, Ashfold MNR, Rolles D. Molecular photodissociation dynamics revealed by Coulomb explosion imaging. Phys Chem Chem Phys 2023. [PMID: 37335247 DOI: 10.1039/d3cp01740k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Coulomb explosion imaging (CEI) methods are finding ever-growing use as a means of exploring and distinguishing the static stereo-configurations of small quantum systems (molecules, clusters, etc). CEI experiments initiated by ultrafast (femtosecond-duration) laser pulses also allow opportunities to track the time-evolution of molecular structures, and thereby advance understanding of molecular fragmentation processes. This Perspective illustrates two emerging families of dynamical studies. 'One-colour' studies (employing strong field ionisation driven by intense near infrared or single X-ray or extreme ultraviolet laser pulses) afford routes to preparing multiply charged molecular cations and exploring how their fragmentation progresses from valence-dominated to Coulomb-dominated dynamics with increasing charge and how this evolution varies with molecular size and composition. 'Two-colour' studies use one ultrashort laser pulse to create electronically excited neutral molecules (or monocations), whose structural evolution is then probed as a function of pump-probe delay using an ultrafast ionisation pulse along with time and position-sensitive detection methods. This latter type of experiment has the potential to return new insights into not just molecular fragmentation processes but also charge transfer processes between moieties separating with much better defined stereochemical control than in contemporary ion-atom and ion-molecule charge transfer studies.
Collapse
Affiliation(s)
- Stuart W Crane
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK.
| | - Jason W L Lee
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | | | - Daniel Rolles
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
7
|
Cheng C, Frasinski LJ, Moğol G, Allum F, Howard AJ, Rolles D, Bucksbaum PH, Brouard M, Forbes R, Weinacht T. Multiparticle Cumulant Mapping for Coulomb Explosion Imaging. PHYSICAL REVIEW LETTERS 2023; 130:093001. [PMID: 36930921 DOI: 10.1103/physrevlett.130.093001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
We extend covariance velocity map ion imaging to four particles, establishing cumulant mapping and allowing for measurements that provide insights usually associated with coincidence detection, but at much higher count rates. Without correction, a fourfold covariance analysis is contaminated by the pairwise correlations of uncorrelated events, but we have addressed this with the calculation of a full cumulant, which subtracts pairwise correlations. We demonstrate the approach on the four-body breakup of formaldehyde following strong field multiple ionization in few-cycle laser pulses. We compare Coulomb explosion imaging for two different pulse durations (30 and 6 fs), highlighting the dynamics that can take place on ultrafast timescales. These results have important implications for Coulomb explosion imaging as a tool for studying ultrafast structural changes in molecules, a capability that is especially desirable for high-count-rate x-ray free-electron laser experiments.
Collapse
Affiliation(s)
- Chuan Cheng
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, USA
| | - Leszek J Frasinski
- Department of Physics, Imperial College London, Prince Consort Road, London SW7 2AZ, United Kingdom
| | - Gönenç Moğol
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, USA
| | - Felix Allum
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Andrew J Howard
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| | - Daniel Rolles
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - Philip H Bucksbaum
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Mark Brouard
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Ruaridh Forbes
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Thomas Weinacht
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, USA
| |
Collapse
|
8
|
Kukk E, Pihlava L, Kooser K, Stråhlman C, Maclot S, Kivimäki A. Energy-dependent timescales in the dissociation of diiodothiophene dication. Phys Chem Chem Phys 2023; 25:5795-5807. [PMID: 36744651 DOI: 10.1039/d2cp05309h] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Photodissociation molecular dynamics of gas-phase 2,5-diiodothiophene molecules was studied in an electron-energy-resolved electron-multi-ion coincidence experiment performed at the FinEstBeAMS beamline of MAX IV synchrotron. Following the photoionization of the iodine 4d subshell and the Auger decay, the dissociation landscape of the molecular dication was investigated as a function of the Auger electron energy. Concentrating on an major dissociation pathway, C4H2I2S2+ → C4H2S+ + I+ + I, and accessing the timescales of the process via ion momentum correlation analysis, it was revealed how this three-body process changes depending on the available internal energy. Using a generalized secondary dissociation model, the process was shown to evolve from secondary dissociation regime towards concerted dissociation as the available energy increased, with the secondary dissociation time constant changing from 1.5 ps to 129 fs. The experimental results were compared with simulations using a stochastic charge-hopping molecular mechanics model. It represented the observed trend and also gave a fair quantitative agreement with the experiment.
Collapse
Affiliation(s)
- Edwin Kukk
- Department of Physics and Astronomy, University of Turku, FI-20014 Turku, Finland. .,CNRS, Laboratoire de Chimie Physique - Matière et Rayonnement, 4 Pl. Jussieu, 75005, Paris, France
| | - Lassi Pihlava
- Department of Physics and Astronomy, University of Turku, FI-20014 Turku, Finland.
| | - Kuno Kooser
- Department of Physics and Astronomy, University of Turku, FI-20014 Turku, Finland. .,Institute of Physics, University of Tartu, W. Ostwaldi 1, EE-50411 Tartu, Estonia
| | - Christian Stråhlman
- Department of Materials Science and Applied Mathematics, Malmö University, SE-20506 Malmö, Sweden
| | - Sylvain Maclot
- Department of Physics, Gothenburg University, Box 100, SE-40530 Gothenburg, Sweden
| | - Antti Kivimäki
- MAX IV Laboratory, Lund University, SE-22100 Lund, Sweden
| |
Collapse
|
9
|
Allum F, McManus J, Denby O, Burt M, Brouard M. Photoionization and Photofragmentation Dynamics of I 2 in Intense Laser Fields: A Velocity-Map Imaging Study. J Phys Chem A 2022; 126:8577-8587. [PMID: 36351075 PMCID: PMC9706571 DOI: 10.1021/acs.jpca.2c04379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/21/2022] [Indexed: 11/10/2022]
Abstract
The photoionization and photofragmentation dynamics of I2 in intense femtosecond near-infrared laser fields were studied using velocity-map imaging of cations, electrons, and anions. A series of photofragmentation pathways originating from different cationic electronic states were observed following single ionization, leading to I+ fragments with distinct kinetic energies, which could not be resolved in previous studies. Photoelectron spectra indicate that these high-lying dissociative states are primarily produced through nonresonant ionization from several molecular orbitals (MO) of the neutral. The photoelectron spectra also show clear signatures of resonant ionization pathways (Freeman resonances) to low-lying bound ionic states via Rydberg states of the neutral moiety. To investigate the role of these Rydberg states further, we imaged anionic products (I-) formed through ion-pair dissociations of neutral molecules excited to these Rydberg states by the intense femtosecond laser pulse. Collectively, these results shed significant new light on the complex dynamics of I2 molecules in intense laser fields and on the important role of neutral Rydberg states in a full description of strong-field phenomena in molecules.
Collapse
Affiliation(s)
| | - Joseph McManus
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| | - Oskar Denby
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| | - Michael Burt
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| | - Mark Brouard
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
| |
Collapse
|
10
|
Nam Y, Cho D, Gu B, Rouxel JR, Keefer D, Govind N, Mukamel S. Time-Evolving Chirality Loss in Molecular Photodissociation Monitored by X-ray Circular Dichroism Spectroscopy. J Am Chem Soc 2022; 144:20400-20410. [DOI: 10.1021/jacs.2c08458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Yeonsig Nam
- Department of Chemistry, University of California, Irvine, Irvine, California92697, United States
| | - Daeheum Cho
- Departments of Chemistry, Kyungpook National University, Daegu41566, South Korea
| | - Bing Gu
- Department of Chemistry, University of California, Irvine, Irvine, California92697, United States
| | - Jérémy R. Rouxel
- UJM-Saint-Étienne, CNRS, Graduate School Optics Institute, Laboratoire Hubert Curien UMR 5516, University Lyon, Saint-Étienne42023, France
| | - Daniel Keefer
- Department of Chemistry, University of California, Irvine, Irvine, California92697, United States
| | - Niranjan Govind
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington99354, United States
| | - Shaul Mukamel
- Department of Chemistry, University of California, Irvine, Irvine, California92697, United States
| |
Collapse
|
11
|
Lee JWL, Tikhonov DS, Allum F, Boll R, Chopra P, Erk B, Gruet S, He L, Heathcote D, Kazemi MM, Lahl J, Lemmens AK, Loru D, Maclot S, Mason R, Müller E, Mullins T, Passow C, Peschel J, Ramm D, Steber AL, Bari S, Brouard M, Burt M, Küpper J, Eng-Johnsson P, Rijs AM, Rolles D, Vallance C, Manschwetus B, Schnell M. The kinetic energy of PAH dication and trication dissociation determined by recoil-frame covariance map imaging. Phys Chem Chem Phys 2022; 24:23096-23105. [PMID: 35876592 PMCID: PMC9533308 DOI: 10.1039/d2cp02252d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/16/2022] [Indexed: 11/24/2022]
Abstract
We investigated the dissociation of dications and trications of three polycyclic aromatic hydrocarbons (PAHs), fluorene, phenanthrene, and pyrene. PAHs are a family of molecules ubiquitous in space and involved in much of the chemistry of the interstellar medium. In our experiments, ions are formed by interaction with 30.3 nm extreme ultraviolet (XUV) photons, and their velocity map images are recorded using a PImMS2 multi-mass imaging sensor. Application of recoil-frame covariance analysis allows the total kinetic energy release (TKER) associated with multiple fragmentation channels to be determined to high precision, ranging 1.94-2.60 eV and 2.95-5.29 eV for the dications and trications, respectively. Experimental measurements are supported by Born-Oppenheimer molecular dynamics (BOMD) simulations.
Collapse
Affiliation(s)
- Jason W L Lee
- Deutsches Elektronen-Synchrotron DESY, Germany.
- Department of Chemistry, University of Oxford, UK.
| | - Denis S Tikhonov
- Deutsches Elektronen-Synchrotron DESY, Germany.
- Institute of Physical Chemistry, Christian-Albrechts-Universität zu Kiel, Germany
| | - Felix Allum
- Department of Chemistry, University of Oxford, UK.
| | | | - Pragya Chopra
- Deutsches Elektronen-Synchrotron DESY, Germany.
- Institute of Physical Chemistry, Christian-Albrechts-Universität zu Kiel, Germany
| | | | | | - Lanhai He
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Germany
| | | | | | - Jan Lahl
- Department of Physics, Lund University, Sweden
| | - Alexander K Lemmens
- Radboud University, FELIX Laboratory, The Netherlands
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, The Netherlands
| | | | - Sylvain Maclot
- KTH Royal Institute of Technology, Sweden
- Physics Department, University of Gothenburg, Sweden
| | - Robert Mason
- Department of Chemistry, University of Oxford, UK.
| | | | - Terry Mullins
- Center for Ultrafast Imaging, Universität Hamburg, Germany
| | | | | | - Daniel Ramm
- Deutsches Elektronen-Synchrotron DESY, Germany.
| | - Amanda L Steber
- Deutsches Elektronen-Synchrotron DESY, Germany.
- Institute of Physical Chemistry, Christian-Albrechts-Universität zu Kiel, Germany
- Center for Ultrafast Imaging, Universität Hamburg, Germany
| | - Sadia Bari
- Deutsches Elektronen-Synchrotron DESY, Germany.
| | - Mark Brouard
- Department of Chemistry, University of Oxford, UK.
| | - Michael Burt
- Department of Chemistry, University of Oxford, UK.
| | - Jochen Küpper
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Germany
- Center for Ultrafast Imaging, Universität Hamburg, Germany
- Department of Physics, Universität Hamburg, Germany
| | | | - Anouk M Rijs
- Radboud University, FELIX Laboratory, The Netherlands
| | - Daniel Rolles
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, KS, USA
| | | | | | | |
Collapse
|
12
|
Cheng C, Singh V, Matsika S, Weinacht T. Strong Field Double Ionization of Formaldehyde Investigated Using Momentum Resolved Covariance Imaging and Trajectory Surface Hopping. J Phys Chem A 2022; 126:7399-7406. [PMID: 36178987 DOI: 10.1021/acs.jpca.2c04650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We use covariance velocity map imaging of fragment ions from the strong field double ionization of formaldehyde in conjunction with trajectory surface hopping calculations to determine the ionization yields to different singlet and triplet states of the dication. The calculated kinetic energy release for trajectories initiated on different electronic states is compared with the experimental values based on momentum resolved covariance measurements. We determine the state resolved double ionization yields as a function of laser intensity and pulse duration down to 6 fs (two optical cycles).
Collapse
Affiliation(s)
- Chuan Cheng
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York11794-3800, United States
| | - Vaibhav Singh
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania19122, United States
| | - Spiridoula Matsika
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania19122, United States
| | - Thomas Weinacht
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York11794-3800, United States
| |
Collapse
|
13
|
Step-by-step state-selective tracking of fragmentation dynamics of water dications by momentum imaging. Nat Commun 2022; 13:5146. [PMID: 36050308 PMCID: PMC9437093 DOI: 10.1038/s41467-022-32836-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/17/2022] [Indexed: 11/22/2022] Open
Abstract
The double photoionization of a molecule by one photon ejects two electrons and typically creates an unstable dication. Observing the subsequent fragmentation products in coincidence can reveal a surprisingly detailed picture of the dynamics. Determining the time evolution and quantum mechanical states involved leads to deeper understanding of molecular dynamics. Here in a combined experimental and theoretical study, we unambiguously separate the sequential breakup via D+ + OD+ intermediates, from other processes leading to the same D+ + D+ + O final products of double ionization of water by a single photon. Moreover, we experimentally identify, separate, and follow step by step, two pathways involving the b 1Σ+ and a 1Δ electronic states of the intermediate OD+ ion. Our classical trajectory calculations on the relevant potential energy surfaces reproduce well the measured data and, combined with the experiment, enable the determination of the internal energy and angular momentum distribution of the OD+ intermediate. Determining the time evolution of reactions at the quantum mechanical level improves our understanding of molecular dynamics. Here, authors separate the breakup of water, one bond at a time, from other processes leading to the same final products and experimentally identify, separate, and follow step by step two breakup paths of the transient OD+ fragment.
Collapse
|
14
|
Bhattacharyya S, Borne K, Ziaee F, Pathak S, Wang E, Venkatachalam AS, Li X, Marshall N, Carnes KD, Fehrenbach CW, Severt T, Ben-Itzhak I, Rudenko A, Rolles D. Strong-Field-Induced Coulomb Explosion Imaging of Tribromomethane. J Phys Chem Lett 2022; 13:5845-5853. [PMID: 35727076 PMCID: PMC9252187 DOI: 10.1021/acs.jpclett.2c01007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
The Coulomb explosion of tribromomethane (bromoform, CHBr3) induced by 28 fs near-infrared laser pulses is investigated by three-dimensional coincidence ion momentum imaging. We focus on the fragmentation into three, four, and five ionic fragments measured in coincidence and present different ways of visualizing the three-dimensional momentum correlations. We show that the experimentally observed momentum correlations for 4- and 5-fold coincidences are well reproduced by classical Coulomb explosion simulations and contain information about the structure of the parent molecule that could be used to differentiate structural isomers formed, for example, in a pump-probe experiment. Our results thus provide a clear path toward visualizing structural dynamics in polyatomic molecules by strong-field-induced Coulomb explosion imaging.
Collapse
|
15
|
Allum F, Music V, Inhester L, Boll R, Erk B, Schmidt P, Baumann TM, Brenner G, Burt M, Demekhin PV, Dörner S, Ehresmann A, Galler A, Grychtol P, Heathcote D, Kargin D, Larsson M, Lee JWL, Li Z, Manschwetus B, Marder L, Mason R, Meyer M, Otto H, Passow C, Pietschnig R, Ramm D, Schubert K, Schwob L, Thomas RD, Vallance C, Vidanović I, von Korff Schmising C, Wagner R, Walter P, Zhaunerchyk V, Rolles D, Bari S, Brouard M, Ilchen M. A localized view on molecular dissociation via electron-ion partial covariance. Commun Chem 2022; 5:42. [PMID: 36697752 PMCID: PMC9814695 DOI: 10.1038/s42004-022-00656-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/21/2022] [Indexed: 02/01/2023] Open
Abstract
Inner-shell photoelectron spectroscopy provides an element-specific probe of molecular structure, as core-electron binding energies are sensitive to the chemical environment. Short-wavelength femtosecond light sources, such as Free-Electron Lasers (FELs), even enable time-resolved site-specific investigations of molecular photochemistry. Here, we study the ultraviolet photodissociation of the prototypical chiral molecule 1-iodo-2-methylbutane, probed by extreme-ultraviolet (XUV) pulses from the Free-electron LASer in Hamburg (FLASH) through the ultrafast evolution of the iodine 4d binding energy. Methodologically, we employ electron-ion partial covariance imaging as a technique to isolate otherwise elusive features in a two-dimensional photoelectron spectrum arising from different photofragmentation pathways. The experimental and theoretical results for the time-resolved electron spectra of the 4d3/2 and 4d5/2 atomic and molecular levels that are disentangled by this method provide a key step towards studying structural and chemical changes from a specific spectator site.
Collapse
Affiliation(s)
- Felix Allum
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK.
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA.
| | - Valerija Music
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, D-34132, Kassel, Germany
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Ludger Inhester
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany.
| | - Rebecca Boll
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Benjamin Erk
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Philipp Schmidt
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, D-34132, Kassel, Germany
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | | | - Günter Brenner
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Michael Burt
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Philipp V Demekhin
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, D-34132, Kassel, Germany
| | - Simon Dörner
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Arno Ehresmann
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, D-34132, Kassel, Germany
| | | | | | - David Heathcote
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Denis Kargin
- Institut für Chemie, Universität Kassel, Heinrich-Plett-Straße 40, D-34132, Kassel, Germany
| | - Mats Larsson
- Stockholm University, AlbaNova University Center, 114 21, Stockholm, Sweden
| | - Jason W L Lee
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Zheng Li
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Bastian Manschwetus
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Lutz Marder
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, D-34132, Kassel, Germany
| | - Robert Mason
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Michael Meyer
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Huda Otto
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, D-34132, Kassel, Germany
| | - Christopher Passow
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Rudolf Pietschnig
- Institut für Chemie, Universität Kassel, Heinrich-Plett-Straße 40, D-34132, Kassel, Germany
| | - Daniel Ramm
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Kaja Schubert
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Lucas Schwob
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Richard D Thomas
- Stockholm University, AlbaNova University Center, 114 21, Stockholm, Sweden
| | - Claire Vallance
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Igor Vidanović
- Institut für Chemie, Universität Kassel, Heinrich-Plett-Straße 40, D-34132, Kassel, Germany
| | | | - René Wagner
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Peter Walter
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | | | - Daniel Rolles
- J. R. Macdonald Laboratory, Physics Department, Kansas State University, 1228 Martin Luther King Jr. Dr., Manhattan, KS, 66506, USA
| | - Sadia Bari
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Mark Brouard
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Markus Ilchen
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, D-34132, Kassel, Germany.
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany.
| |
Collapse
|
16
|
Barreiro-Lage D, Nicolafrancesco C, Kočišek J, Luna A, Kopyra J, Alcamí M, Huber BA, Martín F, Domaracka A, Rousseau P, Díaz-Tendero S. Controlling the diversity of ion-induced fragmentation pathways by N-methylation of amino acids. Phys Chem Chem Phys 2022; 24:941-954. [PMID: 34913940 DOI: 10.1039/d1cp04097a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We present a combined experimental and theoretical study of the fragmentation of singly and doubly N-methylated glycine (sarcosine and N,N-dimethyl glycine, respectively) induced by low-energy (keV) O6+ ions. Multicoincidence mass spectrometry techniques and quantum chemistry simulations (ab initio molecular dynamics and density functional theory) allow us to characterise different fragmentation pathways as well as the associated mechanisms. We focus on the fragmentation of doubly ionised species, for which coincidence measurements provide unambiguous information on the origin of the various charged fragments. We have found that single N-methylation leads to a larger variety of fragmentation channels than in no methylation of glycine, while double N-methylation effectively closes many of these fragmentation channels, including some of those appearing in pristine glycine. Importantly, the closure of fragmentation channels in the latter case does not imply a protective effect by the methyl group.
Collapse
Affiliation(s)
- Darío Barreiro-Lage
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, Madrid 28049, Spain.
| | - Chiara Nicolafrancesco
- Normandie Univ, ENSICAEN, UNICAEN, CEA, CNRS, CIMAP, Caen 14000, France. .,Synchrotron SOLEIL, LOrme des Merisiers, St Aubin, BP 48, Gif sur Yvette Cedex 91192, France
| | - Jaroslav Kočišek
- J. Heyrovsky Institute of Physical Chemistry v.v.i., The Czech Academy of Sciences, Dolejskova 3, Prague 18223, Czech Republic
| | - Alberto Luna
- Centro de Computación Científica, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Janina Kopyra
- Faculty of Exact and Natural Sciences, Siedlce University of Natural Sciences and Humanities, 3 Maja 54, Siedlce 08-110, Poland
| | - Manuel Alcamí
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, Madrid 28049, Spain. .,Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nano), Campus de Cantoblanco, Madrid 28049, Spain.,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Bernd A Huber
- Normandie Univ, ENSICAEN, UNICAEN, CEA, CNRS, CIMAP, Caen 14000, France.
| | - Fernando Martín
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, Madrid 28049, Spain. .,Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nano), Campus de Cantoblanco, Madrid 28049, Spain.,Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Alicja Domaracka
- Normandie Univ, ENSICAEN, UNICAEN, CEA, CNRS, CIMAP, Caen 14000, France.
| | - Patrick Rousseau
- Normandie Univ, ENSICAEN, UNICAEN, CEA, CNRS, CIMAP, Caen 14000, France.
| | - Sergio Díaz-Tendero
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, Madrid 28049, Spain. .,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain.,Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid 28049, Spain
| |
Collapse
|
17
|
Crane SW, Ge L, Cooper GA, Carwithen BP, Bain M, Smith JA, Hansen CS, Ashfold MNR. Nonadiabatic Coupling Effects in the 800 nm Strong-Field Ionization-Induced Coulomb Explosion of Methyl Iodide Revealed by Multimass Velocity Map Imaging and Ab Initio Simulation Studies. J Phys Chem A 2021; 125:9594-9608. [PMID: 34709807 DOI: 10.1021/acs.jpca.1c06346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Coulomb explosion (CE) of jet-cooled CH3I molecules using ultrashort (40 fs), nonresonant 805 nm strong-field ionization at three peak intensities (260, 650, and 1300 TW cm-2) has been investigated by multimass velocity map imaging, revealing an array of discernible fragment ions, that is, Iq+ (q ≤ 6), CHn+ (n = 0-3), CHn2+ (n = 0, 2), C3+, H+, H2+, and H3+. Complementary ab initio trajectory calculations of the CE of CH3IZ+ cations with Z ≤ 14 identify a range of behaviors. The CE of parent cations with Z = 2 and 3 can be well-described using a diatomic-like representation (as found previously) but the CE dynamics of all higher CH3IZ+ cations require a multidimensional description. The ab initio predicted Iq+ (q ≥ 3) fragment ion velocities are all at the high end of the velocity distributions measured for the corresponding Iq+ products. These mismatches are proposed as providing some of the clearest insights yet into the roles of nonadiabatic effects (and intramolecular charge transfer) in the CE of highly charged molecular cations.
Collapse
Affiliation(s)
- Stuart W Crane
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Lingfeng Ge
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Graham A Cooper
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Ben P Carwithen
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Matthew Bain
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - James A Smith
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Christopher S Hansen
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Michael N R Ashfold
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| |
Collapse
|
18
|
Sofikitis D. Wavelength dependence of the angular distribution of the Coulomb explosion in the femtosecond ionisation of methyl iodide. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1995063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Dimitris Sofikitis
- Department of Physics, Atomic and Molecular Physics Laboratory, University of Ioannina, Ioannina, Greece
| |
Collapse
|
19
|
Lee JWL, Tikhonov DS, Chopra P, Maclot S, Steber AL, Gruet S, Allum F, Boll R, Cheng X, Düsterer S, Erk B, Garg D, He L, Heathcote D, Johny M, Kazemi MM, Köckert H, Lahl J, Lemmens AK, Loru D, Mason R, Müller E, Mullins T, Olshin P, Passow C, Peschel J, Ramm D, Rompotis D, Schirmel N, Trippel S, Wiese J, Ziaee F, Bari S, Burt M, Küpper J, Rijs AM, Rolles D, Techert S, Eng-Johnsson P, Brouard M, Vallance C, Manschwetus B, Schnell M. Time-resolved relaxation and fragmentation of polycyclic aromatic hydrocarbons investigated in the ultrafast XUV-IR regime. Nat Commun 2021; 12:6107. [PMID: 34671016 PMCID: PMC8528970 DOI: 10.1038/s41467-021-26193-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 09/17/2021] [Indexed: 11/18/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) play an important role in interstellar chemistry and are subject to high energy photons that can induce excitation, ionization, and fragmentation. Previous studies have demonstrated electronic relaxation of parent PAH monocations over 10-100 femtoseconds as a result of beyond-Born-Oppenheimer coupling between the electronic and nuclear dynamics. Here, we investigate three PAH molecules: fluorene, phenanthrene, and pyrene, using ultrafast XUV and IR laser pulses. Simultaneous measurements of the ion yields, ion momenta, and electron momenta as a function of laser pulse delay allow a detailed insight into the various molecular processes. We report relaxation times for the electronically excited PAH*, PAH+* and PAH2+* states, and show the time-dependent conversion between fragmentation pathways. Additionally, using recoil-frame covariance analysis between ion images, we demonstrate that the dissociation of the PAH2+ ions favors reaction pathways involving two-body breakup and/or loss of neutral fragments totaling an even number of carbon atoms.
Collapse
Affiliation(s)
- J. W. L. Lee
- grid.7683.a0000 0004 0492 0453Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany ,grid.4991.50000 0004 1936 8948The Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - D. S. Tikhonov
- grid.7683.a0000 0004 0492 0453Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany ,grid.9764.c0000 0001 2153 9986Institute of Physical Chemistry, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - P. Chopra
- grid.7683.a0000 0004 0492 0453Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany ,grid.9764.c0000 0001 2153 9986Institute of Physical Chemistry, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - S. Maclot
- grid.4514.40000 0001 0930 2361Department of Physics, Lund University, Lund, Sweden ,grid.8761.80000 0000 9919 9582Physics Department, University of Gothenburg, Gothenburg, Sweden
| | - A. L. Steber
- grid.7683.a0000 0004 0492 0453Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany ,grid.9764.c0000 0001 2153 9986Institute of Physical Chemistry, Christian-Albrechts-Universität zu Kiel, Kiel, Germany ,grid.9026.d0000 0001 2287 2617Center for Ultrafast Imaging, Universität Hamburg, Hamburg, Germany
| | - S. Gruet
- grid.7683.a0000 0004 0492 0453Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - F. Allum
- grid.4991.50000 0004 1936 8948The Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - R. Boll
- grid.434729.f0000 0004 0590 2900European XFEL, Schenefeld, Germany
| | - X. Cheng
- grid.7683.a0000 0004 0492 0453Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - S. Düsterer
- grid.7683.a0000 0004 0492 0453Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - B. Erk
- grid.7683.a0000 0004 0492 0453Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - D. Garg
- grid.7683.a0000 0004 0492 0453Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany ,grid.9026.d0000 0001 2287 2617Department of Physics, Universität Hamburg, Hamburg, Germany
| | - L. He
- grid.7683.a0000 0004 0492 0453Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - D. Heathcote
- grid.4991.50000 0004 1936 8948The Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - M. Johny
- grid.7683.a0000 0004 0492 0453Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - M. M. Kazemi
- grid.7683.a0000 0004 0492 0453Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - H. Köckert
- grid.4991.50000 0004 1936 8948The Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - J. Lahl
- grid.4514.40000 0001 0930 2361Department of Physics, Lund University, Lund, Sweden
| | - A. K. Lemmens
- grid.5590.90000000122931605Radboud University, FELIX Laboratory, Nijmegen, The Netherlands ,grid.7177.60000000084992262Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - D. Loru
- grid.7683.a0000 0004 0492 0453Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany ,grid.9764.c0000 0001 2153 9986Institute of Physical Chemistry, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - R. Mason
- grid.4991.50000 0004 1936 8948The Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - E. Müller
- grid.7683.a0000 0004 0492 0453Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - T. Mullins
- grid.7683.a0000 0004 0492 0453Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - P. Olshin
- grid.15447.330000 0001 2289 6897Saint Petersburg State University, Saint Petersburg, Russia
| | - C. Passow
- grid.7683.a0000 0004 0492 0453Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - J. Peschel
- grid.4514.40000 0001 0930 2361Department of Physics, Lund University, Lund, Sweden
| | - D. Ramm
- grid.7683.a0000 0004 0492 0453Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - D. Rompotis
- grid.7683.a0000 0004 0492 0453Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany ,grid.434729.f0000 0004 0590 2900European XFEL, Schenefeld, Germany
| | - N. Schirmel
- grid.7683.a0000 0004 0492 0453Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - S. Trippel
- grid.9026.d0000 0001 2287 2617Center for Ultrafast Imaging, Universität Hamburg, Hamburg, Germany ,grid.7683.a0000 0004 0492 0453Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - J. Wiese
- grid.7683.a0000 0004 0492 0453Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany ,grid.9026.d0000 0001 2287 2617Department of Chemistry, Universität Hamburg, Hamburg, Germany
| | - F. Ziaee
- grid.36567.310000 0001 0737 1259J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS USA
| | - S. Bari
- grid.7683.a0000 0004 0492 0453Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - M. Burt
- grid.4991.50000 0004 1936 8948The Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - J. Küpper
- grid.9026.d0000 0001 2287 2617Center for Ultrafast Imaging, Universität Hamburg, Hamburg, Germany ,grid.9026.d0000 0001 2287 2617Department of Physics, Universität Hamburg, Hamburg, Germany ,grid.7683.a0000 0004 0492 0453Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany ,grid.9026.d0000 0001 2287 2617Department of Chemistry, Universität Hamburg, Hamburg, Germany
| | - A. M. Rijs
- grid.5590.90000000122931605Radboud University, FELIX Laboratory, Nijmegen, The Netherlands ,grid.12380.380000 0004 1754 9227Division of BioAnalytical Chemistry, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - D. Rolles
- grid.36567.310000 0001 0737 1259J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS USA
| | - S. Techert
- grid.7683.a0000 0004 0492 0453Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany ,grid.7450.60000 0001 2364 4210Institute for X-Ray Physics, Georg-August-Universität, Göttingen, Germany
| | - P. Eng-Johnsson
- grid.4514.40000 0001 0930 2361Department of Physics, Lund University, Lund, Sweden
| | - M. Brouard
- grid.4991.50000 0004 1936 8948The Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - C. Vallance
- grid.4991.50000 0004 1936 8948The Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - B. Manschwetus
- grid.7683.a0000 0004 0492 0453Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - M. Schnell
- grid.7683.a0000 0004 0492 0453Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany ,grid.9764.c0000 0001 2153 9986Institute of Physical Chemistry, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
20
|
Tahereh Alavi S, Cooper GA, Suits AG. Coulomb explosion dynamics of methoxycarbonylsulfenyl chloride by 3D multimass imaging. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1988170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- S. Tahereh Alavi
- Department of Chemistry, University of Missouri, Columbia, MO, USA
| | - Graham A. Cooper
- Department of Chemistry, University of Missouri, Columbia, MO, USA
| | - Arthur G. Suits
- Department of Chemistry, University of Missouri, Columbia, MO, USA
| |
Collapse
|
21
|
Rousseau P, González-Vázquez J, Piekarski DG, Kopyra J, Domaracka A, Alcamí M, Adoui L, Huber BA, Díaz-Tendero S, Martín F. Timing of charge migration in betaine by impact of fast atomic ions. SCIENCE ADVANCES 2021; 7:eabg9080. [PMID: 34597129 PMCID: PMC10938492 DOI: 10.1126/sciadv.abg9080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
The way molecules break after ion bombardment is intimately related to the early electron dynamics generated in the system, in particular, charge (or electron) migration. We exploit the natural positive-negative charge splitting in the zwitterionic molecule betaine to selectively induce double electron removal from its negatively charged side by impact of fast O6+ ions. The loss of two electrons in this localized region of the molecular skeleton triggers a competition between direct Coulomb explosion and charge migration that is examined to obtain temporal information from ion-ion coincident measurements and nonadiabatic molecular dynamics calculations. We find a charge migration time, from one end of the molecule to the other, of approximately 20 to 40 femtoseconds. This migration time is longer than that observed in molecules irradiated by ultrashort light pulses and is the consequence of charge migration being driven by adiabatic nuclear dynamics in the ground state of the molecular dication.
Collapse
Affiliation(s)
- Patrick Rousseau
- Normandie Univ, ENSICAEN, UNICAEN, CEA, CNRS, CIMAP, 14000 Caen, France
| | - Jesús González-Vázquez
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Dariusz G. Piekarski
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Janina Kopyra
- Faculty of Exact and Natural Sciences, Siedlce University of Natural Sciences and Humanities, 3 Maja 54, 08-110 Siedlce, Poland
| | - Alicja Domaracka
- Normandie Univ, ENSICAEN, UNICAEN, CEA, CNRS, CIMAP, 14000 Caen, France
| | - Manuel Alcamí
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nano), Cantoblanco, 28049 Madrid, Spain
| | - Lamri Adoui
- Normandie Univ, ENSICAEN, UNICAEN, CEA, CNRS, CIMAP, 14000 Caen, France
| | - Bernd A. Huber
- Normandie Univ, ENSICAEN, UNICAEN, CEA, CNRS, CIMAP, 14000 Caen, France
| | - Sergio Díaz-Tendero
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Fernando Martín
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nano), Cantoblanco, 28049 Madrid, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
22
|
Allum F, Cheng C, Howard AJ, Bucksbaum PH, Brouard M, Weinacht T, Forbes R. Multi-Particle Three-Dimensional Covariance Imaging: "Coincidence" Insights into the Many-Body Fragmentation of Strong-Field Ionized D 2O. J Phys Chem Lett 2021; 12:8302-8308. [PMID: 34428066 DOI: 10.1021/acs.jpclett.1c02481] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We demonstrate the applicability of covariance analysis to three-dimensional velocity-map imaging experiments using a fast time stamping detector. Studying the photofragmentation of strong-field doubly ionized D2O molecules, we show that combining high count rate measurements with covariance analysis yields the same level of information typically limited to the "gold standard" of true, low count rate coincidence experiments, when averaging over a large ensemble of photofragmentation events. This increases the effective data acquisition rate by approximately 2 orders of magnitude, enabling a new class of experimental studies. This is illustrated through an investigation into the dependence of three-body D2O2+ dissociation on the intensity of the ionizing laser, revealing mechanistic insights into the nuclear dynamics driven during the laser pulse. The experimental methodology laid out, with its drastic reduction in acquisition time, is expected to be of great benefit to future photofragment imaging studies.
Collapse
Affiliation(s)
- Felix Allum
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Chuan Cheng
- Department of Physics, Stony Brook University, Stony Brook, New York 11794, United States
| | - Andrew J Howard
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Philip H Bucksbaum
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Mark Brouard
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Thomas Weinacht
- Department of Physics, Stony Brook University, Stony Brook, New York 11794, United States
| | - Ruaridh Forbes
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
23
|
Cooper GA, Alavi ST, Li W, Lee SK, Suits AG. Coulomb Explosion Dynamics of Chlorocarbonylsulfenyl Chloride. J Phys Chem A 2021; 125:5481-5489. [PMID: 34138560 DOI: 10.1021/acs.jpca.1c02332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Coulomb explosion dynamics following strong field ionization of chlorocarbonylsulfenyl chloride was studied using multimass coincidence detection and covariance imaging analysis, supported by density functional theory calculations. These results show evidence of multiple dissociation channels from various charge states. Double ionization to low-lying electronic states leads to a dominant C-S cleavage channel, while higher states can alternatively correlate to the loss of Cl+. Triple ionization leads to a double dissociation channel, the observation of which is confirmed via three-body covariance analysis, while further ionization leads primarily to atomic or diatomic fragments whose relative momenta depend strongly on the starting structure of the molecule.
Collapse
Affiliation(s)
- Graham A Cooper
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - S Tahereh Alavi
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Wen Li
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Suk Kyoung Lee
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Arthur G Suits
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
24
|
Vallance C, Heathcote D, Lee JWL. Covariance-Map Imaging: A Powerful Tool for Chemical Dynamics Studies. J Phys Chem A 2021; 125:1117-1133. [DOI: 10.1021/acs.jpca.0c10038] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Claire Vallance
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - David Heathcote
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Jason W. L. Lee
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
25
|
Allum F, Anders N, Brouard M, Bucksbaum P, Burt M, Downes-Ward B, Grundmann S, Harries J, Ishimura Y, Iwayama H, Kaiser L, Kukk E, Lee J, Liu X, Minns RS, Nagaya K, Niozu A, Niskanen J, O'Neal J, Owada S, Pickering J, Rolles D, Rudenko A, Saito S, Ueda K, Vallance C, Werby N, Woodhouse J, You D, Ziaee F, Driver T, Forbes R. Multi-channel photodissociation and XUV-induced charge transfer dynamics in strong-field-ionized methyl iodide studied with time-resolved recoil-frame covariance imaging. Faraday Discuss 2021; 228:571-596. [PMID: 33629700 DOI: 10.1039/d0fd00115e] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photodissociation dynamics of strong-field ionized methyl iodide (CH3I) were probed using intense extreme ultraviolet (XUV) radiation produced by the SPring-8 Angstrom Compact free electron LAser (SACLA). Strong-field ionization and subsequent fragmentation of CH3I was initiated by an intense femtosecond infrared (IR) pulse. The ensuing fragmentation and charge transfer processes following multiple ionization by the XUV pulse at a range of pump-probe delays were followed in a multi-mass ion velocity-map imaging (VMI) experiment. Simultaneous imaging of a wide range of resultant ions allowed for additional insight into the complex dynamics by elucidating correlations between the momenta of different fragment ions using time-resolved recoil-frame covariance imaging analysis. The comprehensive picture of the photodynamics that can be extracted provides promising evidence that the techniques described here could be applied to study ultrafast photochemistry in a range of molecular systems at high count rates using state-of-the-art advanced light sources.
Collapse
Affiliation(s)
- Felix Allum
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Nils Anders
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany
| | - Mark Brouard
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Philip Bucksbaum
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA.
| | - Michael Burt
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Briony Downes-Ward
- Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - Sven Grundmann
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany
| | - James Harries
- QST, SPring-8, Kouto 1-1-1, Sayo, Hyogo 679-5148, Japan
| | - Yudai Ishimura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577, Japan
| | - Hiroshi Iwayama
- UVSOR Synchrotron Facility, Institute for Molecular Science, Okazaki 444-8585, Japan
| | - Leon Kaiser
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany
| | - Edwin Kukk
- Department of Physics and Astronomy, University of Turku, Turku, FI-20014, Finland
| | - Jason Lee
- Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany
| | - Xiaojing Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Russell S Minns
- Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - Kiyonobu Nagaya
- Department of Physics, Kyoto University, Kyoto, 606-8502, Japan
| | - Akinobu Niozu
- Department of Physics, Kyoto University, Kyoto, 606-8502, Japan
| | - Johannes Niskanen
- Department of Physics and Astronomy, University of Turku, Turku, FI-20014, Finland
| | - Jordan O'Neal
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA.
| | | | - James Pickering
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Daniel Rolles
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506, USA
| | - Artem Rudenko
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506, USA
| | - Shu Saito
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577, Japan
| | - Kiyoshi Ueda
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577, Japan
| | - Claire Vallance
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Nicholas Werby
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA.
| | - Joanne Woodhouse
- Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - Daehyun You
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577, Japan
| | - Farzaneh Ziaee
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506, USA
| | - Taran Driver
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA.
| | - Ruaridh Forbes
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA.
| |
Collapse
|
26
|
Zhou W, Ge L, Cooper GA, Crane SW, Evans MH, Ashfold MNR, Vallance C. Coulomb explosion imaging for gas-phase molecular structure determination: An ab initio trajectory simulation study. J Chem Phys 2020; 153:184201. [PMID: 33187401 DOI: 10.1063/5.0024833] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Coulomb explosion velocity-map imaging is a new and potentially universal probe for gas-phase chemical dynamics studies, capable of yielding direct information on (time-evolving) molecular structure. The approach relies on a detailed understanding of the mapping between the initial atomic positions within the molecular structure of interest and the final velocities of the fragments formed via Coulomb explosion. Comprehensive on-the-fly ab initio trajectory studies of the Coulomb explosion dynamics are presented for two prototypical small molecules, formyl chloride and cis-1,2-dichloroethene, in order to explore conditions under which reliable structural information can be extracted from fragment velocity-map images. It is shown that for low parent ion charge states, the mapping from initial atomic positions to final fragment velocities is complex and very sensitive to the parent ion charge state as well as many other experimental and simulation parameters. For high-charge states, however, the mapping is much more straightforward and dominated by Coulombic interactions (moderated, if appropriate, by the requirements of overall spin conservation). This study proposes minimum requirements for the high-charge regime, highlights the need to work in this regime in order to obtain robust structural information from fragment velocity-map images, and suggests how quantitative structural information may be extracted from experimental data.
Collapse
Affiliation(s)
- Weiwei Zhou
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Rd., Oxford OX1 3TA, United Kingdom
| | - Lingfeng Ge
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Graham A Cooper
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Stuart W Crane
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Michael H Evans
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Michael N R Ashfold
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Claire Vallance
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Rd., Oxford OX1 3TA, United Kingdom
| |
Collapse
|
27
|
Allum F, Mason R, Burt M, Slater CS, Squires E, Winter B, Brouard M. Post extraction inversion slice imaging for 3D velocity map imaging experiments. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1842531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Felix Allum
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Robert Mason
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Michael Burt
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Craig S. Slater
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Eleanor Squires
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Benjamin Winter
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Mark Brouard
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| |
Collapse
|
28
|
Howell RW. Advancements in the use of Auger electrons in science and medicine during the period 2015-2019. Int J Radiat Biol 2020; 99:2-27. [PMID: 33021416 PMCID: PMC8062591 DOI: 10.1080/09553002.2020.1831706] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/01/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
Auger electrons can be highly radiotoxic when they are used to irradiate specific molecular sites. This has spurred basic science investigations of their radiobiological effects and clinical investigations of their potential for therapy. Focused symposia on the biophysical aspects of Auger processes have been held quadrennially. This 9th International Symposium on Physical, Molecular, Cellular, and Medical Aspects of Auger Processes at Oxford University brought together scientists from many different fields to review past findings, discuss the latest studies, and plot the future work to be done. This review article examines the research in this field that was published during the years 2015-2019 which corresponds to the period since the last meeting in Japan. In addition, this article points to future work yet to be done. There have been a plethora of advancements in our understanding of Auger processes. These advancements range from basic atomic and molecular physics to new ways to implement Auger electron emitters in radiopharmaceutical therapy. The highly localized doses of radiation that are deposited within a 10 nm of the decay site make them precision tools for discovery across the physical, chemical, biological, and medical sciences.
Collapse
Affiliation(s)
- Roger W Howell
- Division of Radiation Research, Department of Radiology, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| |
Collapse
|
29
|
Köckert H, Heathcote D, Lee JWL, Vallance C. Covariance-map imaging study into the fragmentation dynamics of multiply charged CF3I formed in electron-molecule collisions. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1811909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Hansjochen Köckert
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK
| | - David Heathcote
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK
| | - Jason W. L. Lee
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK
| | - Claire Vallance
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK
| |
Collapse
|
30
|
Three-dimensional covariance-map imaging of molecular structure and dynamics on the ultrafast timescale. Commun Chem 2020; 3:72. [PMID: 36703470 PMCID: PMC9814411 DOI: 10.1038/s42004-020-0320-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 05/15/2020] [Indexed: 01/29/2023] Open
Abstract
Ultrafast laser pump-probe methods allow chemical reactions to be followed in real time, and have provided unprecedented insight into fundamental aspects of chemical reactivity. While evolution of the electronic structure of the system under study is evident from changes in the observed spectral signatures, information on rearrangement of the nuclear framework is generally obtained indirectly. Disentangling contributions to the signal arising from competing photochemical pathways can also be challenging. Here we introduce the new technique of three-dimensional covariance-map Coulomb explosion imaging, which has the potential to provide complete three-dimensional information on molecular structure and dynamics as they evolve in real time during a gas-phase chemical reaction. We present first proof-of-concept data from recent measurements on CF3I. Our approach allows the contributions from competing fragmentation pathways to be isolated and characterised unambiguously, and is a promising route to enabling the recording of 'molecular movies' for a wide variety of gas-phase chemical processes.
Collapse
|
31
|
Warne EM, Downes-Ward B, Woodhouse J, Parkes MA, Springate E, Pearcy PAJ, Zhang Y, Karras G, Wyatt AS, Chapman RT, Minns RS. Photodissociation dynamics of methyl iodide probed using femtosecond extreme ultraviolet photoelectron spectroscopy. Phys Chem Chem Phys 2020; 22:25695-25703. [DOI: 10.1039/d0cp03478a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Femtosecond pump–probe photoelectron spectroscopy measurements using an extreme ultraviolet probe have been made on the photodissociation dynamics of UV (269 nm) excited CH3I.
Collapse
Affiliation(s)
- Emily M. Warne
- School of Chemistry
- University of Southampton
- Southampton SO17 1BJ
- UK
| | | | - Joanne Woodhouse
- School of Chemistry
- University of Southampton
- Southampton SO17 1BJ
- UK
| | | | - Emma Springate
- Central Laser Facility
- STFC Rutherford Appleton Laboratory
- Didcot
- UK
| | | | - Yu Zhang
- Central Laser Facility
- STFC Rutherford Appleton Laboratory
- Didcot
- UK
| | - Gabriel Karras
- Central Laser Facility
- STFC Rutherford Appleton Laboratory
- Didcot
- UK
| | - Adam S. Wyatt
- Central Laser Facility
- STFC Rutherford Appleton Laboratory
- Didcot
- UK
| | | | - Russell S. Minns
- School of Chemistry
- University of Southampton
- Southampton SO17 1BJ
- UK
| |
Collapse
|
32
|
Ding X, Forbes R, Kübel M, Lee KF, Spanner M, Naumov AY, Villeneuve DM, Stolow A, Corkum PB, Staudte A. Threshold photodissociation dynamics of NO2 studied by time-resolved cold target recoil ion momentum spectroscopy. J Chem Phys 2019; 151:174301. [DOI: 10.1063/1.5095430] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Xiaoyan Ding
- Joint Attosecond Science Laboratory, National Research Council of Canada and University of Ottawa, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
- Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- National Research Council Canada, 100 Sussex Dr., Ottawa, Ontario K1A 0R6, Canada
| | - R. Forbes
- Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- National Research Council Canada, 100 Sussex Dr., Ottawa, Ontario K1A 0R6, Canada
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - M. Kübel
- Joint Attosecond Science Laboratory, National Research Council of Canada and University of Ottawa, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
- Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- National Research Council Canada, 100 Sussex Dr., Ottawa, Ontario K1A 0R6, Canada
| | - Kevin F. Lee
- Joint Attosecond Science Laboratory, National Research Council of Canada and University of Ottawa, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
- Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- National Research Council Canada, 100 Sussex Dr., Ottawa, Ontario K1A 0R6, Canada
| | - M. Spanner
- National Research Council Canada, 100 Sussex Dr., Ottawa, Ontario K1A 0R6, Canada
| | - A. Yu. Naumov
- Joint Attosecond Science Laboratory, National Research Council of Canada and University of Ottawa, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
- National Research Council Canada, 100 Sussex Dr., Ottawa, Ontario K1A 0R6, Canada
| | - D. M. Villeneuve
- Joint Attosecond Science Laboratory, National Research Council of Canada and University of Ottawa, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
- Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- National Research Council Canada, 100 Sussex Dr., Ottawa, Ontario K1A 0R6, Canada
| | - A. Stolow
- Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- National Research Council Canada, 100 Sussex Dr., Ottawa, Ontario K1A 0R6, Canada
- Department of Chemistry, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - P. B. Corkum
- Joint Attosecond Science Laboratory, National Research Council of Canada and University of Ottawa, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
- Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- National Research Council Canada, 100 Sussex Dr., Ottawa, Ontario K1A 0R6, Canada
| | - A. Staudte
- Joint Attosecond Science Laboratory, National Research Council of Canada and University of Ottawa, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
- Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- National Research Council Canada, 100 Sussex Dr., Ottawa, Ontario K1A 0R6, Canada
| |
Collapse
|
33
|
Corrales ME, González-Vázquez J, de Nalda R, Bañares L. Coulomb Explosion Imaging for the Visualization of a Conical Intersection. J Phys Chem Lett 2019; 10:138-143. [PMID: 30561209 DOI: 10.1021/acs.jpclett.8b03726] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Coulomb explosion imaging is proposed as a method to directly map the presence of conical intersections encountered by a propagating wave packet in a molecular system. The case of choice is the nonadiabatic coupling between two dissociative surfaces in the methyl iodide molecule, probed by Coulomb explosion with short, intense near-infrared pulses causing multiple ionization. On-the-fly multidimensional trajectory calculations with surface hopping using perturbation theory and including spin-orbit coupling are performed to visualize the dynamics through the conical intersection and compare with experimental results. The possibilities and limitations of the technique are examined and discussed.
Collapse
Affiliation(s)
- M E Corrales
- Departamento de Química Física (Unidad Asociada I+D+i al CSIC) , Facultad de Ciencias Químicas, Universidad Complutense de Madrid , 28040 Madrid , Spain
- Centro de Láseres Ultrarrápidos , Facultad de Ciencias Químicas, Universidad Complutense de Madrid , 28040 Madrid , Spain
| | - J González-Vázquez
- Departamento de Química and Institute for Advanced Research in Chemical Sciences (IAdChem), Módulo 13 , Facultad de Ciencias, Universidad Autónoma de Madrid , 28049 Madrid , Spain
| | - R de Nalda
- Instituto de Química Física Rocasolano, CSIC , C/Serrano 119 , 28006 Madrid , Spain
| | - L Bañares
- Departamento de Química Física (Unidad Asociada I+D+i al CSIC) , Facultad de Ciencias Químicas, Universidad Complutense de Madrid , 28040 Madrid , Spain
| |
Collapse
|
34
|
Malakar Y, Pearson WL, Zohrabi M, Kaderiya B, P. KR, Ziaee F, Xue S, Le AT, Ben-Itzhak I, Rolles D, Rudenko A. Time-resolved imaging of bound and dissociating nuclear wave packets in strong-field ionized iodomethane. Phys Chem Chem Phys 2019; 21:14090-14102. [DOI: 10.1039/c8cp07032f] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the results of a time-resolved coincident ion momentum imaging experiment probing nuclear wave packet dynamics in the strong-field ionization and dissociation of iodomethane (CH3I).
Collapse
|
35
|
Warne EM, Downes-Ward B, Woodhouse J, Parkes MA, Bellshaw D, Springate E, Majchrzak P, Zhang Y, Karras G, Wyatt AS, Chapman RT, Kirrander A, Minns RS. Photodissociation dynamics of CH3I probed via multiphoton ionisation photoelectron spectroscopy. Phys Chem Chem Phys 2019; 21:11142-11149. [DOI: 10.1039/c9cp01477b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Femtosecond photoelectron spectroscopy measurements of dissociation CH3I show complex dynamics in the high energy region of absorption band A.
Collapse
|
36
|
Vallance C. Multi-mass velocity-map imaging studies of photoinduced and electron-induced chemistry. Chem Commun (Camb) 2019; 55:6336-6352. [PMID: 31099379 DOI: 10.1039/c9cc02426c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multi-mass velocity-map imaging (VMI) is becoming established as a promising method for probing the dynamics of a variety of gas-phase chemical processes. We provide an overview of velocity-map imaging and multi-mass velocity-map imaging techniques, highlighting examples in which these approaches have been used to provide mechanistic insights into a range of photoinduced and electron-induced chemical processes. Multi-mass detection capabilities have also led to the development of two new tools for the chemical dynamics toolbox, in the form of Coulomb-explosion imaging and covariance-map imaging. These allow details of molecular structure to be followed in real time over the course of a chemical reaction, offering the tantalising prospect of recording real-time 'molecular movies' of chemical dynamics. As these new methods become established within the reaction dynamics community, they promise new mechanistic insights into chemistry relevant to fields ranging from atmospheric chemistry and astrochemistry through to synthetic organic photochemistry and biology.
Collapse
Affiliation(s)
- Claire Vallance
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Rd, Oxford OX1 3TA, UK.
| |
Collapse
|