1
|
Maffei ME, Balestrini R, Costantino P, Lanfranco L, Morgante M, Battistelli A, Del Bianco M. The physiology of plants in the context of space exploration. Commun Biol 2024; 7:1311. [PMID: 39394270 PMCID: PMC11470014 DOI: 10.1038/s42003-024-06989-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 09/30/2024] [Indexed: 10/13/2024] Open
Abstract
The stress that the space environment can induce on plant physiology is of both abiotic and biotic nature. The abiotic space environment is characterized by ionizing radiation and altered gravity, geomagnetic field (GMF), pressure, and light conditions. Biotic interactions include both pathogenic and beneficial interactions. Here, we provide an overall picture of the effects of abiotic and biotic space-related factors on plant physiology. The knowledge required for the success of future space missions will lead to a better understanding of fundamental aspects of plant physiological responses, thus providing useful tools for plant breeding and agricultural practices on Earth.
Collapse
Affiliation(s)
- Massimo E Maffei
- Department of Life Sciences and Systems Biology, Plant Physiology Unit, University of Turin, Via Quarello 15/a, 10135, Turin, Italy
| | - Raffaella Balestrini
- Institute of Biosciences and Bioresources, Via Amendola 165/A, 70126, Bari, Italy
| | - Paolo Costantino
- Department of Biology and Biotechnology "C. Darwin", University of Rome "Sapienza", Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Luisa Lanfranco
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125, Turin, Italy
| | - Michele Morgante
- Institute of Applied Genomics, University of Udine, Via Jacopo Linussio 51, 33100, Udine, Italy
| | - Alberto Battistelli
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council, Viale Guglielmo Marconi 2, 05010, Porano, Italy
| | - Marta Del Bianco
- Italian Space Agency, Viale del Politecnico s.n.c., 00133, Rome, Italy.
- Centre for Space Life Sciences, Viale Regina Elena, 299, 00161, Roma, Italy.
| |
Collapse
|
2
|
Pažėra G, Fay TP, Solov’yov IA, Hore PJ, Gerhards L. Spin Dynamics of Radical Pairs Using the Stochastic Schrödinger Equation in MolSpin. J Chem Theory Comput 2024; 20:8412-8421. [PMID: 39283312 PMCID: PMC11465467 DOI: 10.1021/acs.jctc.4c00361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 10/09/2024]
Abstract
The chemical reactivity of radical pairs is strongly influenced by the interactions of electronic and nuclear spins. A detailed understanding of these effects requires a quantum description of the spin dynamics that considers spin-dependent reaction rates, interactions with external magnetic fields, spin-spin interactions, and the loss of spin coherence caused by coupling to a fluctuating environment. Modeling real chemical and biochemical systems, which frequently involve radicals with multinuclear spin systems, poses a severe computational challenge. Here, we implement a method based on the stochastic Schrödinger equation in the software package MolSpin. Large electron-nuclear spin systems can be simulated efficiently, with asymmetric spin-selective recombination reactions, anisotropic hyperfine interactions, and nonzero exchange and dipolar couplings. Spin-relaxation can be modeled using the stochastic time-dependence of spin interactions determined by molecular dynamics and quantum chemical calculations or by allowing rate coefficients to be explicitly time-dependent. The flexibility afforded by this approach opens new avenues for exploring the effects of complex molecular motions on the spin dynamics of chemical transformations.
Collapse
Affiliation(s)
- Gediminas
Jurgis Pažėra
- Department
of Chemistry, University of Oxford, Physical
and Theoretical Chemistry Laboratory, Oxford OX1 3QZ, United Kingdom
| | - Thomas P. Fay
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Ilia A. Solov’yov
- Institute
of Physics, Carl von Ossietzky Universität
Oldenburg, Carl-von-Ossietzky
Str. 9-11, Oldenburg 26129, Germany
- Research
Center for Neurosensory Science, Carl von
Ossietzky Universität Oldenburg, Oldenburg 26111, Germany
- Center
for Nanoscale Dynamics (CENAD), Carl von
Ossietzky Universität Oldenburg, Institut für Physik, Ammerländer Heerstr. 114-118, Oldenburg 26129, Germany
| | - P. J. Hore
- Department
of Chemistry, University of Oxford, Physical
and Theoretical Chemistry Laboratory, Oxford OX1 3QZ, United Kingdom
| | - Luca Gerhards
- Department
of Chemistry, University of Oxford, Physical
and Theoretical Chemistry Laboratory, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
3
|
Sunaga A. Structure and Excitation Spectra of Third-Row Transition Metal Hexafluorides Based on Multi-Reference Exact Two-Component Theory. Inorg Chem 2024; 63:18355-18364. [PMID: 39283310 DOI: 10.1021/acs.inorgchem.4c02389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The structures and some vertical excitation energies of third-row transition metal hexafluorides (MF6, M = Re, Os, Ir, Pt, Au, Hg) were calculated using the generalized-active-space configuration interaction (GASCI) theory based on the exact two-component (X2C) Hamiltonian. The spin-orbit coupling (SOC) was included at the Hartree-Fock level, enabling us to analyze the SOC at the orbital level (spinor-representation). The excitation spectra were assigned based on the double group, a relativistic group theory applicable to states with the SOC. This study provides a fundamental understanding of the ligand field splitting, including the SOC, that is useful for the photochemistry and spin chemistry involving heavy elements.
Collapse
Affiliation(s)
- Ayaki Sunaga
- ELTE, Eötvös Loránd University, Institute of Chemistry, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
- Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
4
|
Climent C, Schelter EJ, Waldeck DH, Vinogradov SA, Subotnik JE. On the circularly polarized luminescence of individual triplet sublevels. J Chem Phys 2023; 159:134304. [PMID: 37791627 DOI: 10.1063/5.0159932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 09/17/2023] [Indexed: 10/05/2023] Open
Abstract
We discuss the possibility of using circularly polarized luminescence (CPL) as a tool to probe individual triplet spin sublevels that are populated nonadiabatically following photoexcitation. This study is motivated by a mechanism proposed for chirality-induced spin selectivity in which coupled electronic-nuclear dynamics may lead to a non-statistical population of the three triplet sublevels in chiral systems. We find that low-temperature CPL should aid in quantifying the exact spin state/s populated through coupled electronic-nuclear motion in chiral molecules.
Collapse
Affiliation(s)
- Clàudia Climent
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Eric J Schelter
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - David H Waldeck
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Sergei A Vinogradov
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Joseph E Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
5
|
Chuchkova L, Bodenstedt S, Picazo-Frutos R, Eills J, Tretiak O, Hu Y, Barskiy DA, de Santis J, Tayler MCD, Budker D, Sheberstov KF. Magnetometer-Detected Nuclear Magnetic Resonance of Photochemically Hyperpolarized Molecules. J Phys Chem Lett 2023:6814-6822. [PMID: 37486855 DOI: 10.1021/acs.jpclett.3c01310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Photochemically induced dynamic nuclear polarization (photo-CIDNP) enables nuclear spin ordering by irradiating samples with light. Polarized spins are conventionally detected via high-field chemical-shift-resolved NMR (above 0.1 T). In this Letter, we demonstrate in situ low-field photo-CIDNP measurements using a magnetically shielded fast-field-cycling NMR setup detecting Larmor precession via atomic magnetometers. For solutions comprising mM concentrations of the photochemically polarized molecules, hyperpolarized 1H magnetization is detected by pulse-acquired NMR spectroscopy. The observed NMR line widths are about 5 times narrower than normally anticipated in high-field NMR and are systematically affected by light irradiation during the acquisition period, reflecting a reduction of the transverse relaxation time constant, T2*, on the order of 10%. Magnetometer-detected photo-CIDNP spectroscopy enables straightforward observation of spin-chemistry processes in the ambient field range from a few nT to tens of mT. Potential applications of this measuring modality are discussed.
Collapse
Affiliation(s)
- Liubov Chuchkova
- Institut für Physik, Johannes Gutenberg Universität-Mainz, 55128 Mainz, Germany
- Helmholtz-Institut Mainz, GSI Helmholtzzentrum für Schwerionenforschung, 55128 Mainz, Germany
| | - Sven Bodenstedt
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - Román Picazo-Frutos
- Institut für Physik, Johannes Gutenberg Universität-Mainz, 55128 Mainz, Germany
- Helmholtz-Institut Mainz, GSI Helmholtzzentrum für Schwerionenforschung, 55128 Mainz, Germany
| | - James Eills
- Institute for Bioengineering of Catalonia, 08028 Barcelona, Spain
| | - Oleg Tretiak
- Institut für Physik, Johannes Gutenberg Universität-Mainz, 55128 Mainz, Germany
- Helmholtz-Institut Mainz, GSI Helmholtzzentrum für Schwerionenforschung, 55128 Mainz, Germany
| | - Yinan Hu
- Institut für Physik, Johannes Gutenberg Universität-Mainz, 55128 Mainz, Germany
- Helmholtz-Institut Mainz, GSI Helmholtzzentrum für Schwerionenforschung, 55128 Mainz, Germany
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Danila A Barskiy
- Institut für Physik, Johannes Gutenberg Universität-Mainz, 55128 Mainz, Germany
- Helmholtz-Institut Mainz, GSI Helmholtzzentrum für Schwerionenforschung, 55128 Mainz, Germany
| | - Jacopo de Santis
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - Michael C D Tayler
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - Dmitry Budker
- Institut für Physik, Johannes Gutenberg Universität-Mainz, 55128 Mainz, Germany
- Helmholtz-Institut Mainz, GSI Helmholtzzentrum für Schwerionenforschung, 55128 Mainz, Germany
- Department of Physics, University of California, Berkeley, California 94720-7300, United States
| | - Kirill F Sheberstov
- Institut für Physik, Johannes Gutenberg Universität-Mainz, 55128 Mainz, Germany
- Helmholtz-Institut Mainz, GSI Helmholtzzentrum für Schwerionenforschung, 55128 Mainz, Germany
| |
Collapse
|
6
|
Doktorov AB, Lukzen NN. Magnetic Field Effect in Bimolecular Rate Constant of Radical Recombination. Int J Mol Sci 2023; 24:ijms24087555. [PMID: 37108719 PMCID: PMC10139179 DOI: 10.3390/ijms24087555] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The influence of magnetic fields on chemical reactions, including biological ones, has been and still is a topical subject in the field of scientific research. Experimentally discovered and theoretically substantiated magnetic and spin effects in chemical radical reactions form the basis of research in the field of spin chemistry. In the present work, the effect of a magnetic field on the rate constant of the bimolecular spin-selective recombination of radicals in the bulk of a solution is considered theoretically for the first time, taking into account the hyperfine interaction of radical spins with their magnetic nuclei. In addition, the paramagnetic relaxation of unpaired spins of the radicals and the non-equality of their g-factors that also influence the recombination process are taken into account. It is found that the reaction rate constant can vary in magnetic field from a few to half a dozen percent, depending on the relative diffusion coefficient of radicals, which is determined by the solution viscosity. It is shown that the consideration of hyperfine interactions gives rise to the presence of resonances in the dependence of the rate constant on the magnetic field. The magnitudes of the magnetic fields of these resonances are determined by the hyperfine coupling constants and difference in the g-factors of the recombining radicals. Analytical expressions for the reaction rate constant of the bulk recombination for magnetic fields larger than hfi (hyperfine interaction) constants are obtained. In general, it is shown for the first time that accounting for hyperfine interactions of radical spins with magnetic nuclei significantly affects the dependence of the reaction rate constant of the bulk radical recombination on the magnetic field.
Collapse
Affiliation(s)
- Alexander B Doktorov
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, 630090 Novosibirsk, Russia
| | - Nikita N Lukzen
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia
- Physics Faculty, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
7
|
Zhou Z, Wu Y, Bian X, Subotnik JE. Nonadiabatic Dynamics in a Continuous Circularly Polarized Laser Field with Floquet Phase-Space Surface Hopping. J Chem Theory Comput 2023; 19:718-732. [PMID: 36655857 DOI: 10.1021/acs.jctc.2c00948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Nonadiabatic chemical reactions involving continuous circularly polarized light (cw CPL) have not attracted as much attention as dynamics in unpolarized/linearly polarized light. However, including circularly (in contrast to linearly) polarized light allows one to effectively introduce a complex-valued time-dependent Hamiltonian, which offers a new path for control or exploration through the introduction of Berry forces. Here, we investigate several inexpensive semiclassical approaches for modeling such nonadiabatic dynamics in the presence of a time-dependent complex-valued Hamiltonian, beginning with a straightforward instantaneous adiabatic fewest-switches surface hopping (IA-FSSH) approach (where the electronic states depend on position and time), continuing to a standard Floquet fewest switches surface hopping (F-FSSH) approach (where the electronic states depend on position and frequency), and ending with an exotic Floquet phase-space surface hopping (F-PSSH) approach (where the electronic states depend on position, frequency, and momentum). Using a set of model systems with time-dependent complex-valued Hamiltonians, we show that the Floquet phase-space adiabats are the optimal choice of basis as far as accounting for Berry phase effects and delivering accuracy. Thus, the F-PSSH algorithm sets the stage for future modeling of nonadiabatic dynamics under strong externally pumped circular polarization.
Collapse
Affiliation(s)
- Zeyu Zhou
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yanze Wu
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Xuezhi Bian
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Joseph Eli Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
8
|
Lin S, Zhu L, Tang Z, Wang ZL. Spin-selected electron transfer in liquid-solid contact electrification. Nat Commun 2022; 13:5230. [PMID: 36064784 PMCID: PMC9445095 DOI: 10.1038/s41467-022-32984-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/26/2022] [Indexed: 01/12/2023] Open
Abstract
Electron transfer has been proven the dominant charge carrier during contact electrification at the liquid-solid interface. However, the effect of electron spin in contact electrification remains to be investigated. This study examines the charge transfer between different liquids and ferrimagnetic solids in a magnetic field, focusing on the contribution of O2 molecules to the liquid-solid contact electrification. The findings reveal that magnetic fields promote electron transfer at the O2-containing liquid-solid interfaces. Moreover, magnetic field-induced electron transfer increases at higher O2 concentrations in the liquids and decreases at elevated temperatures. The results indicate spin-selected electron transfer at liquid-solid interface. External magnetic fields can modulate the spin conversion of the radical pairs at the O2-containing liquid and ferrimagnetic solid interfaces due to the Zeeman interaction, promoting electron transfer. A spin-selected electron transfer model for liquid-solid contact electrification is further proposed based on the radical pair mechanism, in which the HO2 molecules and the free unpaired electrons from the ferrimagnetic solids are considered radical pairs. The spin conversion of the [HO2• •e-] pairs is affected by magnetic fields, rendering the electron transfer magnetic field-sensitive.
Collapse
Affiliation(s)
- Shiquan Lin
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Laipan Zhu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhen Tang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China. .,School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China. .,School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA.
| |
Collapse
|
9
|
Zadeh-Haghighi H, Simon C. Magnetic field effects in biology from the perspective of the radical pair mechanism. J R Soc Interface 2022; 19:20220325. [PMID: 35919980 PMCID: PMC9346374 DOI: 10.1098/rsif.2022.0325] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/14/2022] [Indexed: 04/07/2023] Open
Abstract
Hundreds of studies have found that weak magnetic fields can significantly influence various biological systems. However, the underlying mechanisms behind these phenomena remain elusive. Remarkably, the magnetic energies implicated in these effects are much smaller than thermal energies. Here, we review these observations, and we suggest an explanation based on the radical pair mechanism, which involves the quantum dynamics of the electron and nuclear spins of transient radical molecules. While the radical pair mechanism has been studied in detail in the context of avian magnetoreception, the studies reviewed here show that magnetosensitivity is widespread throughout biology. We review magnetic field effects on various physiological functions, discussing static, hypomagnetic and oscillating magnetic fields, as well as isotope effects. We then review the radical pair mechanism as a potential unifying model for the described magnetic field effects, and we discuss plausible candidate molecules for the radical pairs. We review recent studies proposing that the radical pair mechanism provides explanations for isotope effects in xenon anaesthesia and lithium treatment of hyperactivity, magnetic field effects on the circadian clock, and hypomagnetic field effects on neurogenesis and microtubule assembly. We conclude by discussing future lines of investigation in this exciting new area of quantum biology.
Collapse
Affiliation(s)
- Hadi Zadeh-Haghighi
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Christoph Simon
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|
10
|
Powell D, Whittaker-Brooks L. Concepts and principles of self-n-doping in perylene diimide chromophores for applications in biochemistry, energy harvesting, energy storage, and catalysis. MATERIALS HORIZONS 2022; 9:2026-2052. [PMID: 35670455 DOI: 10.1039/d2mh00279e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Self-doping is an essential method of increasing carrier concentrations in organic electronics that eliminates the need to tailor host-dopant miscibility, a necessary step when employing molecular dopants. Self-n-doping can be accomplished using amines or ammonium counterions as an electron source, which are being incorporated into an ever-increasingly diverse range of organic materials spanning many applications. Self-n-doped materials have demonstrated exemplary and, in many cases, benchmark performances in a variety of applications. However, an in-depth review of the method is lacking. Perylene diimide (PDI) chromophores are an important mainstay in the semiconductor literature with well-known structure-function characteristics and are also one of the most widely utilized scaffolds for self-n-doping. In this review, we describe the unique properties of self-n-doped PDIs, delineate structure-function relationships, and discuss self-n-doped PDI performance in a range of applications. In particular, the impact of amine/ammonium incorporation into the PDI scaffold on doping efficiency is reviewed with regard to attachment mode, tether distance, counterion selection, and steric encumbrance. Self-n-doped PDIs are a unique set of PDI structural derivatives whose properties are amenable to a broad range of applications such as biochemistry, solar energy conversion, thermoelectric modules, batteries, and photocatalysis. Finally, we discuss challenges and the future outlook of self-n-doping principles.
Collapse
Affiliation(s)
- Daniel Powell
- Department of Chemistry, University of Utah, Salt Lake City, Utah, 84112, USA.
| | | |
Collapse
|
11
|
On the origins of life's homochirality: Inducing enantiomeric excess with spin-polarized electrons. Proc Natl Acad Sci U S A 2022; 119:e2204765119. [PMID: 35787048 PMCID: PMC9282223 DOI: 10.1073/pnas.2204765119] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Life as we know it is homochiral, but the origins of biological homochirality on early Earth remain elusive. Shallow closed-basin lakes are a plausible prebiotic environment on early Earth, and most are expected to have significant sedimentary magnetite deposits. We hypothesize that ultraviolet (200- to 300-nm) irradiation of magnetite deposits could generate hydrated spin-polarized electrons sufficient to induce enantioselective prebiotic chemistry. Such electrons are potent reducing agents that drive reduction reactions where the spin polarization direction can enantioselectively alter the reaction kinetics. Our estimate of this chiral bias is based on the strong effective spin-orbit coupling observed in the chiral-induced spin selectivity (CISS) effect, as applied to energy differences in reduction reactions for different isomers. In the original CISS experiments, spin-selective electron transmission through a monolayer of double-strand DNA molecules is observed at room temperature-indicating a strong coupling between molecular chirality and electron spin. We propose that the chiral symmetry breaking due to the CISS effect, when applied to reduction chemistry, can induce enantioselective synthesis on the prebiotic Earth and thus facilitate the homochiral assembly of life's building blocks.
Collapse
|
12
|
Wu Y, Bian X, Rawlinson JI, Littlejohn RG, Subotnik JE. A phase-space semiclassical approach for modeling nonadiabatic nuclear dynamics with electronic spin. J Chem Phys 2022; 157:011101. [DOI: 10.1063/5.0093345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Chemical relaxation phenomena, including photochemistry and electron transfer processes, form a vigorous area of research in which nonadiabatic dynamics plays a fundamental role. However, for electronic systems with spin degrees of freedom, there are few if any applicable and practical quasiclassical methods. Here, we show that for nonadiabatic dynamics with two electronic states and a complex-valued Hamiltonian that does not obey time-reversal symmetry (as relevant to many coupled nuclear-electronic-spin systems), the optimal semiclassical approach is to generalize Tully’s surface hopping dynamics from coordinate space to phase space. In order to generate the relevant phase-space adiabatic surfaces, one isolates a proper set of diabats, applies a phase gauge transformation, and then diagonalizes the total Hamiltonian (which is now parameterized by both R and P). The resulting algorithm is simple and valid in both the adiabatic and nonadiabatic limits, incorporating all Berry curvature effects. Most importantly, the resulting algorithm allows for the study of semiclassical nonadiabatic dynamics in the presence of spin–orbit coupling and/or external magnetic fields. One expects many simulations to follow as far as modeling cutting-edge experiments with entangled nuclear, electronic, and spin degrees of freedom, e.g., experiments displaying chiral-induced spin selectivity.
Collapse
Affiliation(s)
- Yanze Wu
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Xuezhi Bian
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jonathan I. Rawlinson
- School of Mathematics, The University of Manchester, Oxford Rd., Manchester M13 9PL, United Kingdom
| | - Robert G. Littlejohn
- Department of Physics, University of California, 366 Physics North MC 7300, Berkeley, California 94720-7300, USA
| | - Joseph E. Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
13
|
Bian X, Wu Y, Teh HH, Subotnik JE. Incorporating Berry Force Effects into the Fewest Switches Surface-Hopping Algorithm: Intersystem Crossing and the Case of Electronic Degeneracy. J Chem Theory Comput 2022; 18:2075-2090. [PMID: 35263116 DOI: 10.1021/acs.jctc.1c01103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present a preliminary surface-hopping approach for modeling intersystem crossing (ISC) dynamics between four electronic states: one singlet and one (triply degenerate) triplet. In order to incorporate all Berry force effects, the algorithm requires that, when moving along an adiabatic surface associated with the triplet manifold, one must also keep track of a quasi-diabatic index (akin to a "ms" quantum number) for each trajectory. For a simple model problem, we find that a great deal of new physics can be captured by our algorithm, setting the stage for larger, more realistic (or perhaps even ab initio) simulations in the future.
Collapse
Affiliation(s)
- Xuezhi Bian
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yanze Wu
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Hung-Hsuan Teh
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Joseph E Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
14
|
Maffei ME. Magnetic Fields and Cancer: Epidemiology, Cellular Biology, and Theranostics. Int J Mol Sci 2022; 23:1339. [PMID: 35163262 PMCID: PMC8835851 DOI: 10.3390/ijms23031339] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/22/2022] [Accepted: 01/22/2022] [Indexed: 02/08/2023] Open
Abstract
Humans are exposed to a complex mix of man-made electric and magnetic fields (MFs) at many different frequencies, at home and at work. Epidemiological studies indicate that there is a positive relationship between residential/domestic and occupational exposure to extremely low frequency electromagnetic fields and some types of cancer, although some other studies indicate no relationship. In this review, after an introduction on the MF definition and a description of natural/anthropogenic sources, the epidemiology of residential/domestic and occupational exposure to MFs and cancer is reviewed, with reference to leukemia, brain, and breast cancer. The in vivo and in vitro effects of MFs on cancer are reviewed considering both human and animal cells, with particular reference to the involvement of reactive oxygen species (ROS). MF application on cancer diagnostic and therapy (theranostic) are also reviewed by describing the use of different magnetic resonance imaging (MRI) applications for the detection of several cancers. Finally, the use of magnetic nanoparticles is described in terms of treatment of cancer by nanomedical applications for the precise delivery of anticancer drugs, nanosurgery by magnetomechanic methods, and selective killing of cancer cells by magnetic hyperthermia. The supplementary tables provide quantitative data and methodologies in epidemiological and cell biology studies. Although scientists do not generally agree that there is a cause-effect relationship between exposure to MF and cancer, MFs might not be the direct cause of cancer but may contribute to produce ROS and generate oxidative stress, which could trigger or enhance the expression of oncogenes.
Collapse
Affiliation(s)
- Massimo E Maffei
- Department Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy
| |
Collapse
|
15
|
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- P J Hore
- Department of Chemistry, University of Oxford, Oxford, UK
| |
Collapse
|
16
|
Zhukov I, Fishman N, Kiryutin A, Lukzen N, Steiner UE, Vieth HM, Schäfer J, Lambert C, Yurkovskaya A. Mapping 13C hyperfine couplings and exchange interactions in short-lived charge separated states of rigid donor-bridge-acceptor dyads. J Chem Phys 2021; 155:224201. [PMID: 34911300 DOI: 10.1063/5.0073193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A detailed experimental study on reversible photo-induced intramolecular charge separation is presented based on nuclear magnetic resonance detection of chemically induced dynamic nuclear polarization. From variation of such polarization with the external magnetic field, the coupling constants of isotropic and anisotropic hyperfine interactions at individual 13C sites are measured in the short-lived charge separated state of dyad molecules composed of donor-bridge-acceptor parts. The objects of study were rigid donor-bridge-acceptor dyads, consisting of triarylamine as a donor, naphthalene diimide as an acceptor, and a meta-conjugated diethynylbenzene fragment as a bridge. By systematic variation of side groups in the bridging moiety, their influence on the electron withdrawing strength is traced. In combination with similar data for the 1H positions obtained previously for the same compounds [I. Zhukov et al., J. Chem. Phys. 152, 014203 (2020)], our results provide a reliable basis for the determination of the spin density distribution in the charge separated state of such dyads.
Collapse
Affiliation(s)
- Ivan Zhukov
- International Tomography Center, Institutskaya 3a, 630090 Novosibirsk, Russia
| | - Natalya Fishman
- International Tomography Center, Institutskaya 3a, 630090 Novosibirsk, Russia
| | - Alexey Kiryutin
- International Tomography Center, Institutskaya 3a, 630090 Novosibirsk, Russia
| | - Nikita Lukzen
- International Tomography Center, Institutskaya 3a, 630090 Novosibirsk, Russia
| | - Ulrich E Steiner
- Department of Chemistry, University of Konstanz, Universitätsstraße 14, 78457 Konstanz, Germany
| | - Hans-Martin Vieth
- International Tomography Center, Institutskaya 3a, 630090 Novosibirsk, Russia
| | - Julian Schäfer
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Christoph Lambert
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | | |
Collapse
|
17
|
Zadeh-Haghighi H, Simon C. Entangled radicals may explain lithium effects on hyperactivity. Sci Rep 2021; 11:12121. [PMID: 34108537 PMCID: PMC8190433 DOI: 10.1038/s41598-021-91388-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/26/2021] [Indexed: 02/05/2023] Open
Abstract
It is known that bipolar disorder and its lithium treatment involve the modulation of oxidative stress. Moreover, it has been observed that lithium's effects are isotope-dependent. Based on these findings, here we propose that lithium exerts its effects by influencing the recombination dynamics of a naturally occurring radical pair involving oxygen. We develop a simple model inspired by the radical-pair mechanism in cryptochrome in the context of avian magnetoreception and xenon-induced anesthesia. Our model reproduces the observed isotopic dependence in the lithium treatment of hyperactivity in rats. It predicts a magnetic-field dependence of the effectiveness of lithium, which provides one potential experimental test of our hypothesis. Our findings show that Nature might harness quantum entanglement for the brain's cognitive processes.
Collapse
Affiliation(s)
- Hadi Zadeh-Haghighi
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Quantum Alberta, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| | - Christoph Simon
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Institute for Quantum Science and Technology, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Quantum Alberta, University of Calgary, Calgary, AB, T2N 1N4, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
18
|
Electronic spin separation induced by nuclear motion near conical intersections. Nat Commun 2021; 12:700. [PMID: 33514700 PMCID: PMC7846775 DOI: 10.1038/s41467-020-20831-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/14/2020] [Indexed: 11/23/2022] Open
Abstract
Though the concept of Berry force was proposed thirty years ago, little is known about the practical consequences of this force as far as chemical dynamics are concerned. Here, we report that when molecular dynamics pass near a conical intersection, a massive Berry force can appear as a result of even a small amount of spin-orbit coupling (<10−3 eV), and this Berry force can in turn dramatically change pathway selection. In particular, for a simple radical reaction with two outgoing reaction channels, an exact quantum scattering solution in two dimensions shows that the presence of a significant Berry force can sometimes lead to spin selectivity as large as 100%. Thus, this article opens the door for organic chemists to start designing spintronic devices that use nuclear motion and conical intersections (combined with standard spin-orbit coupling) in order to achieve spin selection. Vice versa, for physical chemists, this article also emphasizes that future semiclassical simulations of intersystem crossing (which have heretofore ignored Berry force) should be corrected to account for the spin polarization that inevitably arises when dynamics pass near conical intersections. Spin polarization is at the basis of quantum information and underlies some natural processes, but many aspects still need to be explored. Here, the authors, by quantum mechanical computations, show that even a weak spin-orbit coupling near a conical intersection can induce large spin selection, with consequences for spin manipulation in photochemical or electrochemical reactions.
Collapse
|
19
|
Naaman R, Paltiel Y, Waldeck DH. Chiral Induced Spin Selectivity Gives a New Twist on Spin-Control in Chemistry. Acc Chem Res 2020; 53:2659-2667. [PMID: 33044813 PMCID: PMC7676290 DOI: 10.1021/acs.accounts.0c00485] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The electron's spin, its intrinsic angular momentum, is a quantum property that plays a critical role in determining the electronic structure of molecules. Despite its importance, it is not used often for controlling chemical processes, photochemistry excluded. The reason is that many organic molecules have a total spin zero, namely, all the electrons are paired. Even for molecules with high spin multiplicity, the spin orientation is usually only weakly coupled to the molecular frame of nuclei and hence to the molecular orientation. Therefore, controlling the spin orientation usually does not provide a handle on controlling the geometry of the molecular species during a reaction. About two decades ago, however, a new phenomenon was discovered that relates the electron's spin to the handedness of chiral molecules and is now known as the chiral induced spin selectivity (CISS) effect. It was established that the efficiency of electron transport through chiral molecules depends on the electron spin and that it changes with the enantiomeric form of a molecule and the direction of the electron's linear momentum. This property means that, for chiral molecules, the electron spin is strongly coupled to the molecular frame. Over the past few years, we and others have shown that this feature can be used to provide spin-control over chemical reactions and to perform enantioseparations with magnetic surfaces.In this Account, we describe the CISS effect and demonstrate spin polarization effects on chemical reactions. Explicitly, we describe a number of processes that can be controlled by the electron's spin, among them the interaction of chiral molecules with ferromagnetic surfaces, the multielectron oxidation of water, and enantiospecific electrochemistry. Interestingly, it has been shown that the effect also takes place in inorganic chiral oxides like copper oxide, aluminum oxide, and cobalt oxide. The CISS effect results from the coupling between the electron linear momentum and its spin in a chiral system. Understanding the implications of this interaction promises to reveal a previously unappreciated role for chirality in biology, where chiral molecules are ubiquitous, and opens a new avenue into spin-controlled processes in chemistry.
Collapse
Affiliation(s)
- Ron Naaman
- Department of Chemical and Biological Physics, Weizmann Institute, Rehovot 76100, Israel
| | - Yossi Paltiel
- Applied Physics Department and the Center for Nano-Science and Nano-Technology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - David H. Waldeck
- Chemistry Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|