1
|
Ma H, Chen M, Xu J, Yang Y, Zhao Y, Liu Y. An Omni-Mesoscope for multiscale high-throughput quantitative phase imaging of cellular dynamics and high-content molecular characterization. SCIENCE ADVANCES 2024; 10:eadq5009. [PMID: 39413179 PMCID: PMC11482309 DOI: 10.1126/sciadv.adq5009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/12/2024] [Indexed: 10/18/2024]
Abstract
The mesoscope has emerged as a powerful imaging tool in biomedical research, yet its high cost and low resolution have limited its broader application. Here, we introduce the Omni-Mesoscope, a high-spatial-temporal and multimodal mesoscopic imaging platform built from cost-efficient off-the-shelf components. This system uniquely merges the capabilities of label-free quantitative phase microscopy to capture live-cell morphodynamics across thousands of cells with highly multiplexed fluorescence imaging for comprehensive molecular characterization. This Omni-Mesoscope offers a mesoscale field of view of ~5 square millimeters with a high spatial resolution down to 700 nanometers, enabling the capture of detailed subcellular features. We demonstrate its capability in delineating molecular characteristics underlying rare morphodynamic cellular phenomena, including cancer cell responses to chemotherapy and the emergence of polyploidy in drug-resistant cells. We also integrate expansion technique to enhance three-dimensional volumetric super-resolution imaging of thicker tissues, opening the avenues for biological exploration at unprecedented scales and resolutions.
Collapse
Affiliation(s)
- Hongqiang Ma
- Departments of Medicine and Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Bioengineering, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Maomao Chen
- Departments of Medicine and Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jianquan Xu
- Departments of Medicine and Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yaxin Yang
- Department of Bioengineering, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Yongxin Zhao
- Departments of Biological Sciences and Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Viron Molecular Medicine Institute, Boston, MA 02201, USA
| | - Yang Liu
- Departments of Medicine and Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Bioengineering, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Departments of Bioengineering and Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
2
|
Ma H, Chen M, Xu J, Zhao Y, Liu Y. An Omni-Mesoscope for multiscale high-throughput quantitative phase imaging of cellular dynamics and high-content molecular characterization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.18.604137. [PMID: 39071371 PMCID: PMC11275778 DOI: 10.1101/2024.07.18.604137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The mesoscope has emerged as a powerful imaging tool in biomedical research, yet its high cost and low resolution have limited its broader application. Here, we introduce the Omni-Mesoscope, a cost-effective high-spatial-temporal, multimodal, and multiplex mesoscopic imaging platform built from cost-efficient off-the-shelf components. This system uniquely merges the capabilities of quantitative phase microscopy to capture live-cell dynamics over a large cell population with highly multiplexed fluorescence imaging for comprehensive molecular characterization. This integration facilitates simultaneous tracking of live-cell morphodynamics across thousands of cells, alongside high-content molecular analysis at the single-cell level. Furthermore, the Omni-Mesoscope offers a mesoscale field of view of approximately 5 mm 2 with a high spatial resolution down to 700 nm, enabling the capture of information-rich images with detailed sub-cellular features. We demonstrate such capability in delineating molecular characteristics underlying rare dynamic cellular phenomena, such as cancer cell responses to chemotherapy and the emergence of polyploidy in drug-resistant cells. Moreover, the cost-effectiveness and the simplicity of our Omni-Mesoscope democratizes mesoscopic imaging, making it accessible across diverse biomedical research fields. To further demonstrate its versatility, we integrate expansion microscopy to enhance 3D volumetric super-resolution imaging of thicker tissues, opening new avenues for biological exploration at unprecedented scales and resolutions.
Collapse
|
3
|
Zhang YP, Lobanova E, Dworkin A, Furlepa M, Yang WS, Burke M, Meng JX, Potter N, Sala RL, Kahanawita L, Layburn F, Scherman OA, Williams-Gray CH, Klenerman D. Improved Imaging Surface for Quantitative Single-Molecule Microscopy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37255-37264. [PMID: 38979642 PMCID: PMC11261557 DOI: 10.1021/acsami.4c06512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
Preventing nonspecific binding is essential for sensitive surface-based quantitative single-molecule microscopy. Here we report a much-simplified RainX-F127 (RF-127) surface with improved passivation. This surface achieves up to 100-fold less nonspecific binding from protein aggregates compared to commonly used polyethylene glycol (PEG) surfaces. The method is compatible with common single-molecule techniques including single-molecule pull-down (SiMPull), super-resolution imaging, antibody-binding screening and single exosome visualization. This method is also able to specifically detect alpha-synuclein (α-syn) and tau aggregates from a wide range of biofluids including human serum, brain extracts, cerebrospinal fluid (CSF) and saliva. The simplicity of this method further allows the functionalization of microplates for robot-assisted high-throughput single-molecule experiments. Overall, this simple but improved surface offers a versatile platform for quantitative single-molecule microscopy without the need for specialized equipment or personnel.
Collapse
Affiliation(s)
- Yu P. Zhang
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- UK
Dementia Research Institute at Cambridge, Cambridge CB2 0XY, U.K.
| | - Evgeniia Lobanova
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- UK
Dementia Research Institute at Cambridge, Cambridge CB2 0XY, U.K.
| | - Asher Dworkin
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- UK
Dementia Research Institute at Cambridge, Cambridge CB2 0XY, U.K.
| | - Martin Furlepa
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- Department
of Clinical Neurosciences, University of
Cambridge, Cambridge CB2 0PY, U.K.
| | - Woo Suk Yang
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- UK
Dementia Research Institute at Cambridge, Cambridge CB2 0XY, U.K.
| | - Melanie Burke
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- UK
Dementia Research Institute at Cambridge, Cambridge CB2 0XY, U.K.
| | - Jonathan X. Meng
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Natalie Potter
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Renata Lang Sala
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Lakmini Kahanawita
- Department
of Clinical Neurosciences, University of
Cambridge, Cambridge CB2 0PY, U.K.
| | - Florence Layburn
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- UK
Dementia Research Institute at Cambridge, Cambridge CB2 0XY, U.K.
| | - Oren A. Scherman
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | | | - David Klenerman
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- UK
Dementia Research Institute at Cambridge, Cambridge CB2 0XY, U.K.
| |
Collapse
|
4
|
Liu J, Li Y, Chen T, Zhang F, Xu F. Machine Learning for Single-Molecule Localization Microscopy: From Data Analysis to Quantification. Anal Chem 2024; 96:11103-11114. [PMID: 38946062 DOI: 10.1021/acs.analchem.3c05857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Single-molecule localization microscopy (SMLM) is a versatile tool for realizing nanoscale imaging with visible light and providing unprecedented opportunities to observe bioprocesses. The integration of machine learning with SMLM enhances data analysis by improving efficiency and accuracy. This tutorial aims to provide a comprehensive overview of the data analysis process and theoretical aspects of SMLM, while also highlighting the typical applications of machine learning in this field. By leveraging advanced analytical techniques, SMLM is becoming a powerful quantitative analysis tool for biological research.
Collapse
Affiliation(s)
- Jianli Liu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Yumian Li
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
| | - Tailong Chen
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
| | - Fa Zhang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Fan Xu
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
5
|
Ma H, Chen M, Nguyen P, Liu Y. Toward drift-free high-throughput nanoscopy through adaptive intersection maximization. SCIENCE ADVANCES 2024; 10:eadm7765. [PMID: 38781327 PMCID: PMC11114195 DOI: 10.1126/sciadv.adm7765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/18/2024] [Indexed: 05/25/2024]
Abstract
Single-molecule localization microscopy (SMLM) often suffers from suboptimal resolution due to imperfect drift correction. Existing marker-free drift correction algorithms often struggle to reliably track high-frequency drift and lack the computational efficiency to manage large, high-throughput localization datasets. We present an adaptive intersection maximization-based method (AIM) that leverages the entire dataset's information content to minimize drift correction errors, particularly addressing high-frequency drift, thereby enhancing the resolution of existing SMLM systems. We demonstrate that AIM can robustly and efficiently achieve an angstrom-level tracking precision for high-throughput SMLM datasets under various imaging conditions, resulting in an optimal resolution in simulated and biological experimental datasets. We offer AIM as one simple, model-free software for instant resolution enhancement with standard CPU devices.
Collapse
Affiliation(s)
- Hongqiang Ma
- Department of Medicine, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Bioengineering, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Maomao Chen
- Department of Medicine, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Phuong Nguyen
- Department of Medicine, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Bioengineering, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Yang Liu
- Department of Medicine, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Bioengineering, Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
6
|
Pelicci S, Furia L, Pelicci PG, Faretta M. From Cell Populations to Molecular Complexes: Multiplexed Multimodal Microscopy to Explore p53-53BP1 Molecular Interaction. Int J Mol Sci 2024; 25:4672. [PMID: 38731890 PMCID: PMC11083188 DOI: 10.3390/ijms25094672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Surpassing the diffraction barrier revolutionized modern fluorescence microscopy. However, intrinsic limitations in statistical sampling, the number of simultaneously analyzable channels, hardware requirements, and sample preparation procedures still represent an obstacle to its widespread diffusion in applicative biomedical research. Here, we present a novel pipeline based on automated multimodal microscopy and super-resolution techniques employing easily available materials and instruments and completed with open-source image-analysis software developed in our laboratory. The results show the potential impact of single-molecule localization microscopy (SMLM) on the study of biomolecules' interactions and the localization of macromolecular complexes. As a demonstrative application, we explored the basis of p53-53BP1 interactions, showing the formation of a putative macromolecular complex between the two proteins and the basal transcription machinery in situ, thus providing visual proof of the direct role of 53BP1 in sustaining p53 transactivation function. Moreover, high-content SMLM provided evidence of the presence of a 53BP1 complex on the cell cytoskeleton and in the mitochondrial space, thus suggesting the existence of novel alternative 53BP1 functions to support p53 activity.
Collapse
Affiliation(s)
- Simone Pelicci
- Department of Experimental Oncology, European Institute of Oncology IRCCS, 20139 Milan, Italy; (S.P.); (L.F.); (P.G.P.)
| | - Laura Furia
- Department of Experimental Oncology, European Institute of Oncology IRCCS, 20139 Milan, Italy; (S.P.); (L.F.); (P.G.P.)
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, European Institute of Oncology IRCCS, 20139 Milan, Italy; (S.P.); (L.F.); (P.G.P.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Mario Faretta
- Department of Experimental Oncology, European Institute of Oncology IRCCS, 20139 Milan, Italy; (S.P.); (L.F.); (P.G.P.)
| |
Collapse
|
7
|
Bian J, Su X, Yuan X, Zhang Y, Lin J, Li X. Endoplasmic reticulum membrane contact sites: cross-talk between membrane-bound organelles in plant cells. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2956-2967. [PMID: 36847172 DOI: 10.1093/jxb/erad068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/20/2023] [Indexed: 05/21/2023]
Abstract
Eukaryotic cells contain organelles surrounded by monolayer or bilayer membranes. Organelles take part in highly dynamic and organized interactions at membrane contact sites, which play vital roles during development and response to stress. The endoplasmic reticulum extends throughout the cell and acts as an architectural scaffold to maintain the spatial distribution of other membrane-bound organelles. In this review, we highlight the structural organization, dynamics, and physiological functions of membrane contact sites between the endoplasmic reticulum and various membrane-bound organelles, especially recent advances in plants. We briefly introduce how the combined use of dynamic and static imaging techniques can enable monitoring of the cross-talk between organelles via membrane contact sites. Finally, we discuss future directions for research fields related to membrane contact.
Collapse
Affiliation(s)
- Jiahui Bian
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiao Su
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiaoyan Yuan
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yuan Zhang
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jinxing Lin
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Botany, Chinese Academy of Sciences, Beijing 100083, China
| | - Xiaojuan Li
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
8
|
Shi W, Fu S, Li Y. High-throughput single-molecule localization microscopy: Potential clinical applications. Clin Transl Med 2023; 13:e1251. [PMID: 37095641 PMCID: PMC10126310 DOI: 10.1002/ctm2.1251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/26/2023] Open
Affiliation(s)
- Wei Shi
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Shuang Fu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Yiming Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
9
|
Heo SJ, Thakur S, Chen X, Loebel C, Xia B, McBeath R, Burdick JA, Shenoy VB, Mauck RL, Lakadamyali M. Aberrant chromatin reorganization in cells from diseased fibrous connective tissue in response to altered chemomechanical cues. Nat Biomed Eng 2023; 7:177-191. [PMID: 35996026 PMCID: PMC10053755 DOI: 10.1038/s41551-022-00910-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 06/14/2022] [Indexed: 11/09/2022]
Abstract
Changes in the micro-environment of fibrous connective tissue can lead to alterations in the phenotypes of tissue-resident cells, yet the underlying mechanisms are poorly understood. Here, by visualizing the dynamics of histone spatial reorganization in tenocytes and mesenchymal stromal cells from fibrous tissue of human donors via super-resolution microscopy, we show that physiological and pathological chemomechanical cues can directly regulate the spatial nanoscale organization and density of chromatin in these tissue-resident cell populations. Specifically, changes in substrate stiffness, altered oxygen tension and the presence of inflammatory signals drive chromatin relocalization and compaction into the nuclear boundary, mediated by the activity of the histone methyltransferase EZH2 and an intact cytoskeleton. In healthy cells, chemomechanically triggered changes in the spatial organization and density of chromatin are reversible and can be attenuated by dynamically stiffening the substrate. In diseased human cells, however, the link between mechanical or chemical inputs and chromatin remodelling is abrogated. Our findings suggest that aberrant chromatin organization in fibrous connective tissue may be a hallmark of disease progression that could be leveraged for therapeutic intervention.
Collapse
Affiliation(s)
- Su-Jin Heo
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Shreyasi Thakur
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xingyu Chen
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Materials Science Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Claudia Loebel
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Boao Xia
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Rowena McBeath
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jason A Burdick
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
- BioFrontiers Institute and Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Vivek B Shenoy
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Materials Science Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert L Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA.
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA.
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA.
| | - Melike Lakadamyali
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Riera R, Archontakis E, Cremers G, de Greef T, Zijlstra P, Albertazzi L. Precision and Accuracy of Receptor Quantification on Synthetic and Biological Surfaces Using DNA-PAINT. ACS Sens 2023; 8:80-93. [PMID: 36655822 PMCID: PMC9887648 DOI: 10.1021/acssensors.2c01736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Characterization of the number and distribution of biological molecules on 2D surfaces is of foremost importance in biology and biomedicine. Synthetic surfaces bearing recognition motifs are a cornerstone of biosensors, while receptors on the cell surface are critical/vital targets for the treatment of diseases. However, the techniques used to quantify their abundance are qualitative or semi-quantitative and usually lack sensitivity, accuracy, or precision. Detailed herein a simple and versatile workflow based on super-resolution microscopy (DNA-PAINT) was standardized to improve the quantification of the density and distribution of molecules on synthetic substrates and cell membranes. A detailed analysis of accuracy and precision of receptor quantification is presented, based on simulated and experimental data. We demonstrate enhanced accuracy and sensitivity by filtering out non-specific interactions and artifacts. While optimizing the workflow to provide faithful counting over a broad range of receptor densities. We validated the workflow by specifically quantifying the density of docking strands on a synthetic sensor surface and the densities of PD1 and EGF receptors (EGFR) on two cellular models.
Collapse
Affiliation(s)
- Roger Riera
- Department
of Biomedical Engineering, Institute for Complex Molecular Systems
(ICMS), Eindhoven University of Technology, P.O. Box 513, Eindhoven5600 MB, Netherlands
| | - Emmanouil Archontakis
- Department
of Biomedical Engineering, Institute for Complex Molecular Systems
(ICMS), Eindhoven University of Technology, P.O. Box 513, Eindhoven5600 MB, Netherlands
| | - Glenn Cremers
- Laboratory
of Chemical Biology and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven5600 MB, The Netherlands,Computational
Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology,
P.O. Box 513, Eindhoven5600 MB, The Netherlands
| | - Tom de Greef
- Laboratory
of Chemical Biology and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven5600 MB, The Netherlands,Computational
Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology,
P.O. Box 513, Eindhoven5600 MB, The Netherlands,Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, AJ Nijmegen6525, The Netherlands
| | - Peter Zijlstra
- Department
of Applied Physics and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven5600 MB, The Netherlands,
| | - Lorenzo Albertazzi
- Department
of Biomedical Engineering, Institute for Complex Molecular Systems
(ICMS), Eindhoven University of Technology, P.O. Box 513, Eindhoven5600 MB, Netherlands,Nanoscopy
for Nanomedicine, Institute for Bioengineering
of Catalonia, Barcelona08028, Spain,
| |
Collapse
|
11
|
Zhou Z, Kuang W, Wang Z, Huang ZL. ResNet-based image inpainting method for enhancing the imaging speed of single molecule localization microscopy. OPTICS EXPRESS 2022; 30:31766-31784. [PMID: 36242252 DOI: 10.1364/oe.467574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/01/2022] [Indexed: 05/25/2023]
Abstract
Single molecule localization microscopy (SMLM) is a mainstream method in the field of super-resolution fluorescence microscopy that can achieve a spatial resolution of 20∼30 nm through a simple optical system. SMLM usually requires thousands of raw images to reconstruct a super-resolution image, and thus suffers from a slow imaging speed. Recently, several methods based on image inpainting have been developed to enhance the imaging speed of SMLM. However, these image inpainting methods may also produce erroneous local features (or called image artifacts), for example, incorrectly joined or split filaments. In this study, we use the ResNet generator, a network with strong local feature extraction capability, to replace the popularly-used U-Net generator to minimize the image artifact problem in current image inpainting methods, and develop an image inpainting method called DI-STORM. We validate our method using both simulated and experimental data, and demonstrate that DI-STORM has the best acceleration capability and produces the least artifacts in the repaired images, as compared with VDSR (the simplest CNN-based image inpainting method in SMLM) and ANNA-PALM (the best GAN-based image inpainting method in SMLM). We believe that DI-STORM could facilitate the application of deep learning-based image inpainting methods for SMLM.
Collapse
|
12
|
Dhiman S, Andrian T, Gonzalez BS, Tholen MME, Wang Y, Albertazzi L. Can super-resolution microscopy become a standard characterization technique for materials chemistry? Chem Sci 2022; 13:2152-2166. [PMID: 35310478 PMCID: PMC8864713 DOI: 10.1039/d1sc05506b] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/01/2021] [Indexed: 12/20/2022] Open
Abstract
The characterization of newly synthesized materials is a cornerstone of all chemistry and nanotechnology laboratories. For this purpose, a wide array of analytical techniques have been standardized and are used routinely by laboratories across the globe. With these methods we can understand the structure, dynamics and function of novel molecular architectures and their relations with the desired performance, guiding the development of the next generation of materials. Moreover, one of the challenges in materials chemistry is the lack of reproducibility due to improper publishing of the sample preparation protocol. In this context, the recent adoption of the reporting standard MIRIBEL (Minimum Information Reporting in Bio-Nano Experimental Literature) for material characterization and details of experimental protocols aims to provide complete, reproducible and reliable sample preparation for the scientific community. Thus, MIRIBEL should be immediately adopted in publications by scientific journals to overcome this challenge. Besides current standard spectroscopy and microscopy techniques, there is a constant development of novel technologies that aim to help chemists unveil the structure of complex materials. Among them super-resolution microscopy (SRM), an optical technique that bypasses the diffraction limit of light, has facilitated the study of synthetic materials with multicolor ability and minimal invasiveness at nanometric resolution. Although still in its infancy, the potential of SRM to unveil the structure, dynamics and function of complex synthetic architectures has been highlighted in pioneering reports during the last few years. Currently, SRM is a sophisticated technique with many challenges in sample preparation, data analysis, environmental control and automation, and moreover the instrumentation is still expensive. Therefore, SRM is currently limited to expert users and is not implemented in characterization routines. This perspective discusses the potential of SRM to transition from a niche technique to a standard routine method for material characterization. We propose a roadmap for the necessary developments required for this purpose based on a collaborative effort from scientists and engineers across disciplines.
Collapse
Affiliation(s)
- Shikha Dhiman
- Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology P. O. Box 513 5600 MB Eindhoven The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology P. O. Box 513 5600 MB Eindhoven The Netherlands
| | - Teodora Andrian
- Institute of Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology Barcelona Spain
| | - Beatriz Santiago Gonzalez
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology Eindhoven The Netherlands
| | - Marrit M E Tholen
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology Eindhoven The Netherlands
| | - Yuyang Wang
- Institute for Complex Molecular Systems, Eindhoven University of Technology P. O. Box 513 5600 MB Eindhoven The Netherlands
- Department of Applied Physics, Eindhoven University of Technology Postbus 513 5600 MB Eindhoven The Netherlands
| | - Lorenzo Albertazzi
- Institute of Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology Barcelona Spain
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology Eindhoven The Netherlands
| |
Collapse
|
13
|
Ma H, Liu Y. Robust emitter localization with enhanced harmonic analysis. OPTICS LETTERS 2021; 46:5798-5801. [PMID: 34851893 PMCID: PMC8640370 DOI: 10.1364/ol.437409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
We present a non-iterative and model-free algorithm for three-dimensional (3D) single emitter localization. Our algorithm decodes the axial position and the emitter width via the ratio of the first and second Fourier harmonic. The retrieved width information is further used for dynamic extraction of the proper region of interest to robustly eliminate the outer noisy background, thus improving the localization precision over existing non-iterative algorithms. Using simulated and experimental datasets, we demonstrate that our algorithm achieves localization precision approaching the state-of-the-art iterative fitting-based methods in all three dimensions at two orders of magnitude faster speed, applicable in various 3D single-molecule localization techniques.
Collapse
|
14
|
Gui D, Chen Y, Kuang W, Shang M, Wang Z, Huang ZL. Accelerating multi-emitter localization in super-resolution localization microscopy with FPGA-GPU cooperative computation. OPTICS EXPRESS 2021; 29:35247-35260. [PMID: 34808963 DOI: 10.1364/oe.439976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
The real-time multi-emitter localization method is essential for advancing high-throughput super-resolution localization microscopy (HT-SRLM). In the past decade, the graphics processing unit (GPU) computation has been dominantly used to accelerate the execution speed of the multi-emitter localization method. However, if HT-SRLM is combined with a scientific complementary metal-oxide-semiconductor (sCMOS) camera working at full frame rate, real-time image processing is still difficult to achieve using this acceleration approach, thus resulting in a massive data storage challenge and even system crash. Here we take advantage of the cooperative acceleration power of field programming gate array (FPGA) computation and GPU computation, and propose a method called HCP-STORM to enable real-time multi-emitter localization. Using simulated images, we verified that HCP-STORM is capable of providing real-time image processing for raw images from a representative Hamamatsu Flash 4 V3 sCMOS camera working at full frame rate (that is, 2048×2048 pixels @ 10 ms exposure time). Using experimental images, we prove that HCP-STORM is 25 times faster than QC-STORM and 295 times faster than ThunderSTORM, with a small but acceptable degradation in image quality. This study shows the potential of FPGA-GPU cooperative computation in accelerating multi-emitter localization, and pushes a significant step toward the maturity of HT-SRLM technology.
Collapse
|
15
|
Ma H, Liu Y. Embedded nanometer position tracking based on enhanced phasor analysis. OPTICS LETTERS 2021; 46:3825-3828. [PMID: 34388751 PMCID: PMC8622170 DOI: 10.1364/ol.433740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
We present an embedded real-time 1D position tracking device at a nanometer precision. The embedded algorithm extracts the most appropriate region of the signal without manual intervention and estimates the position based on the phase shift from the signal's first Fourier harmonic. Using simulated datasets, we demonstrate that the proposed approach can achieve a similar precision to the state-of-the-art maximum likelihood fitting-based method while executing over four orders of magnitude faster. We further implemented this algorithm on a low-power microprocessor and developed a simple, compact, and low-cost embedded position tracking device. We demonstrate nanometer tracking precision in real-time drift tracking experiments.
Collapse
Affiliation(s)
- Hongqiang Ma
- Biomedical Optical Imaging Laboratory, Departments of Medicine and Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Yang Liu
- Biomedical Optical Imaging Laboratory, Departments of Medicine and Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
16
|
Xu J, Liu Y. Probing Chromatin Compaction and Its Epigenetic States in situ With Single-Molecule Localization-Based Super-Resolution Microscopy. Front Cell Dev Biol 2021; 9:653077. [PMID: 34178982 PMCID: PMC8222792 DOI: 10.3389/fcell.2021.653077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/18/2021] [Indexed: 11/13/2022] Open
Abstract
Chromatin organization play a vital role in gene regulation and genome maintenance in normal biological processes and in response to environmental insults. Disruption of chromatin organization imposes a significant effect on many cellular processes and is often associated with a range of pathological processes such as aging and cancer. Extensive attention has been attracted to understand the structural and functional studies of chromatin architecture. Biochemical assays coupled with the state-of-the-art genomic technologies have been traditionally used to probe chromatin architecture. Recent advances in single molecule localization microscopy (SMLM) open up new opportunities to directly visualize higher-order chromatin architecture, its compaction status and its functional states at nanometer resolution in the intact cells or tissue. In this review, we will first discuss the recent technical advantages and challenges of using SMLM to image chromatin architecture. Next, we will focus on the recent applications of SMLM for structural and functional studies to probe chromatin architecture in key cellular processes. Finally, we will provide our perspectives on the recent development and potential applications of super-resolution imaging of chromatin architecture in improving our understanding in diseases.
Collapse
Affiliation(s)
- Jianquan Xu
- Biomedical Optical Imaging Laboratory, Department of Medicine and Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yang Liu
- Biomedical Optical Imaging Laboratory, Department of Medicine and Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
- University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA, United States
| |
Collapse
|
17
|
Lee S, Batjikh I, Kang SH. Toward Sub-Diffraction Imaging of Single-DNA Molecule Sensors Based on Stochastic Switching Localization Microscopy. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6667. [PMID: 33233370 PMCID: PMC7700606 DOI: 10.3390/s20226667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/14/2020] [Accepted: 11/20/2020] [Indexed: 12/27/2022]
Abstract
The natural characteristics of deoxyribonucleic acid (DNA) enable its advanced applications in nanotechnology as a special tool that can be detected by high-resolution imaging with precise localization. Super-resolution (SR) microscopy enables the examination of nanoscale molecules beyond the diffraction limit. With the development of SR microscopy methods, DNA nanostructures can now be optically assessed. Using the specific binding of fluorophores with their target molecules, advanced single-molecule localization microscopy (SMLM) has been expanded into different fields, allowing wide-range detection at the single-molecule level. This review discusses the recent progress in the SR imaging of DNA nano-objects using SMLM techniques, such as direct stochastic optical reconstruction microscopy, binding-activated localization microscopy, and point accumulation for imaging nanoscale topography. Furthermore, we discuss their advantages and limitations, present applications, and future perspectives.
Collapse
Affiliation(s)
| | | | - Seong Ho Kang
- Department of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Korea; (S.L.); (I.B.)
| |
Collapse
|
18
|
Calabrase W, Bishop LDC, Dutta C, Misiura A, Landes CF, Kisley L. Transforming Separation Science with Single-Molecule Methods. Anal Chem 2020; 92:13622-13629. [PMID: 32936608 DOI: 10.1021/acs.analchem.0c02572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Empirical optimization of the multiscale parameters underlying chromatographic and membrane separations leads to enormous resource waste and production costs. A bottom-up approach to understand the physical phenomena underlying challenges in separations is possible with single-molecule observations of solute-stationary phase interactions. We outline single-molecule fluorescence techniques that can identify key interactions under ambient conditions. Next, we describe how studying increasingly complex samples heightens the relevance of single-molecule results to industrial applications. Finally, we illustrate how separation methods that have not been studied at the single-molecule scale can be advanced, using chiral chromatography as an example case. We hope new research directions based on a molecular approach to separations will emerge based on the ideas, technologies, and open scientific questions presented in this Perspective.
Collapse
Affiliation(s)
- William Calabrase
- Department of Physics, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Logan D C Bishop
- Department of Chemistry, Rice University, Houston, Texas 77251, United States
| | - Chayan Dutta
- Department of Chemistry, Rice University, Houston, Texas 77251, United States
| | - Anastasiia Misiura
- Department of Chemistry, Rice University, Houston, Texas 77251, United States
| | - Christy F Landes
- Department of Chemistry, Rice University, Houston, Texas 77251, United States.,Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77251, United States.,Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77251, United States.,Smalley-Curl Institute, Rice University, Houston, Texas 77251, United States
| | - Lydia Kisley
- Department of Physics, Case Western Reserve University, Cleveland, Ohio 44106, United States.,Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|