1
|
Han S, Liu J, Pérez-Jiménez AI, Lei Z, Yan P, Zhang Y, Guo X, Bai R, Hu S, Wu X, Zhang DW, Sun Q, Akinwande D, Yu ET, Ji L. Visualizing and Controlling of Photogenerated Electron-Hole Pair Separation in Monolayer WS 2 Nanobubbles under Piezoelectric Field. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36735-36744. [PMID: 38952105 DOI: 10.1021/acsami.4c00092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The piezoelectric properties of two-dimensional semiconductor nanobubbles present remarkable potential for application in flexible optoelectronic devices, and the piezoelectric field has emerged as an efficacious pathway for both the separation and migration of photogenerated electron-hole pairs, along with inhibition of recombination. However, the comprehension and control of photogenerated carrier dynamics within nanobubbles still remain inadequate. Hence, this study is dedicated to underscore the importance of in situ detection and detailed characterization of photogenerated electron-hole pairs in nanobubbles to enrich understanding and strategic manipulation in two-dimensional semiconductor materials. Utilizing frequency modulation kelvin probe force microscopy (FM-KPFM) and strain gradient distribution techniques, the existence of a piezoelectric field in monolayer WS2 nanobubbles was confirmed. Combining w/o and with illumination FM-KPFM, second-order capacitance gradient technique and in situ nanoscale tip-enhanced photoluminescence characterization techniques, the interrelationships among the piezoelectric effect, interlayer carrier transfer, and the funneling effect for photocarrier dynamics process across various nanobubble sizes were revealed. Notably, for a WS2/graphene bubble height of 15.45 nm, a 0 mV surface potential difference was recorded in the bubble region w/o and with illumination, indicating a mutual offset of piezoelectric effect, interlayer carrier transfer, and the funneling effect. This phenomenon is prevalent in transition metal dichalcogenides materials exhibiting inversion symmetry breaking. The implication of our study is profound for advancing the understanding of the dynamics of photogenerated electron-hole pair in nonuniform strain piezoelectric systems, and offers a reliable framework for the separation and modulation of photogenerated electron-hole pair in flexible optoelectronic devices and photocatalytic applications.
Collapse
Affiliation(s)
- Sheng Han
- School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Jiong Liu
- School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Ana I Pérez-Jiménez
- Technology Innovation Institute, 9639, Masdar City, Abu Dhabi, United Arab Emirates
| | - Zhou Lei
- School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Pei Yan
- School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Yu Zhang
- School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Xiangyu Guo
- School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Rongxu Bai
- School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Shen Hu
- School of Microelectronics, Fudan University, Shanghai 200433, China
- Jiashan Fudan Institute, Jiaxing 314110, China
| | - Xuefeng Wu
- School of Microelectronics, Fudan University, Shanghai 200433, China
- Shanghai Integrated Circuit Manufacturing Innovation Center, Shanghai 201210, China
| | - David W Zhang
- School of Microelectronics, Fudan University, Shanghai 200433, China
- Shanghai Integrated Circuit Manufacturing Innovation Center, Shanghai 201210, China
- Jiashan Fudan Institute, Jiaxing 314110, China
- Hubei Yangtze Memory Laboratories, Wuhan 430205, China
| | - Qingqing Sun
- School of Microelectronics, Fudan University, Shanghai 200433, China
- Shanghai Integrated Circuit Manufacturing Innovation Center, Shanghai 201210, China
- Jiashan Fudan Institute, Jiaxing 314110, China
| | - Deji Akinwande
- Microelectronic Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin 78758, United States
| | - Edward T Yu
- Microelectronic Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin 78758, United States
| | - Li Ji
- School of Microelectronics, Fudan University, Shanghai 200433, China
- Shanghai Integrated Circuit Manufacturing Innovation Center, Shanghai 201210, China
- Jiashan Fudan Institute, Jiaxing 314110, China
- Hubei Yangtze Memory Laboratories, Wuhan 430205, China
| |
Collapse
|
2
|
Yu C, Cao J, Zhu S, Dai Z. Preparation and Modeling of Graphene Bubbles to Obtain Strain-Induced Pseudomagnetic Fields. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2889. [PMID: 38930258 PMCID: PMC11204662 DOI: 10.3390/ma17122889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
It has been both theoretically predicted and experimentally demonstrated that strain can effectively modulate the electronic states of graphene sheets through the creation of a pseudomagnetic field (PMF). Pressurizing graphene sheets into bubble-like structures has been considered a viable approach for the strain engineering of PMFs. However, the bubbling technique currently faces limitations such as long manufacturing time, low durability, and challenges in precise control over the size and shape of the pressurized bubble. Here, we propose a rapid bubbling method based on an oxygen plasma chemical reaction to achieve rapid induction of out-of-plane deflections and in-plane strains in graphene sheets. We introduce a numerical scheme capable of accurately resolving the strain field and resulting PMFs within the pressurized graphene bubbles, even in cases where the bubble shape deviates from perfect spherical symmetry. The results provide not only insights into the strain engineering of PMFs in graphene but also a platform that may facilitate the exploration of the strain-mediated electronic behaviors of a variety of other 2D materials.
Collapse
Affiliation(s)
- Chuanli Yu
- Department of Mechanics and Engineering Science, State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing 100871, China; (C.Y.); (J.C.)
| | - Jiacong Cao
- Department of Mechanics and Engineering Science, State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing 100871, China; (C.Y.); (J.C.)
| | - Shuze Zhu
- Center for X-Mechanics, Department of Engineering Mechanics, Institute of Applied Mechanics, Zhejiang University, Hangzhou 310000, China;
| | - Zhaohe Dai
- Department of Mechanics and Engineering Science, State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing 100871, China; (C.Y.); (J.C.)
| |
Collapse
|
3
|
Xu DD, Vong AF, Utama MIB, Lebedev D, Ananth R, Hersam MC, Weiss EA, Mirkin CA. Sub-Diffraction Correlation of Quantum Emitters and Local Strain Fields in Strain-Engineered WSe 2 Monolayers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314242. [PMID: 38346232 DOI: 10.1002/adma.202314242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Indexed: 03/27/2024]
Abstract
Strain-engineering in atomically thin metal dichalcogenides is a useful method for realizing single-photon emitters (SPEs) for quantum technologies. Correlating SPE position with local strain topography is challenging due to localization inaccuracies from the diffraction limit. Currently, SPEs are assumed to be positioned at the highest strained location and are typically identified by randomly screening narrow-linewidth emitters, of which only a few are spectrally pure. In this work, hyperspectral quantum emitter localization microscopy is used to locate 33 SPEs in nanoparticle-strained WSe2 monolayers with sub-diffraction-limit resolution (≈30 nm) and correlate their positions with the underlying strain field via image registration. In this system, spectrally pure emitters are not concentrated at the highest strain location due to spectral contamination; instead, isolable SPEs are distributed away from points of peak strain with an average displacement of 240 nm. These observations point toward a need for a change in the design rules for strain-engineered SPEs and constitute a key step toward realizing next-generation quantum optical architectures.
Collapse
Affiliation(s)
- David D Xu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Albert F Vong
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL, 60208, USA
| | - M Iqbal Bakti Utama
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL, 60208, USA
| | - Dmitry Lebedev
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL, 60208, USA
| | - Riddhi Ananth
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Mark C Hersam
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL, 60208, USA
- Department of Electrical and Computer Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Emily A Weiss
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL, 60208, USA
| | - Chad A Mirkin
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL, 60208, USA
| |
Collapse
|
4
|
Jo K, Stevens CE, Choi B, El-Khoury PZ, Hendrickson JR, Jariwala D. Core/Shell-Like Localized Emission at Atomically Thin Semiconductor-Au Interface. NANO LETTERS 2024. [PMID: 38593418 DOI: 10.1021/acs.nanolett.3c03790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Localized emission in atomically thin semiconductors has sparked significant interest as single-photon sources. Despite comprehensive studies into the correlation between localized strain and exciton emission, the impacts of charge transfer on nanobubble emission remains elusive. Here, we report the observation of core/shell-like localized emission from monolayer WSe2 nanobubbles at room temperature through near-field studies. By altering the electronic junction between monolayer WSe2 and the Au substrate, one can effectively adjust the semiconductor to metal junction from a Schottky to an Ohmic junction. Through concurrent analysis of topography, potential, tip-enhanced photoluminescence, and a piezo response force microscope, we attribute the core/shell-like emissions to strong piezoelectric potential aided by induced polarity at the WSe2-Au Schottky interface which results in spatial confinement of the excitons. Our findings present a new approach for manipulating charge confinement and engineering localized emission within atomically thin semiconductor nanobubbles. These insights hold implications for advancing the nano and quantum photonics with low-dimensional semiconductors.
Collapse
Affiliation(s)
- Kiyoung Jo
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Christopher E Stevens
- KBR Inc., Beavercreek, Ohio 45431, United States
- Sensors Directorate, Air Force Research Laboratory, Wright-Patterson AFB Ohio 45433, United States
| | - Bongjun Choi
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Patrick Z El-Khoury
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Joshua R Hendrickson
- Sensors Directorate, Air Force Research Laboratory, Wright-Patterson AFB Ohio 45433, United States
| | - Deep Jariwala
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
5
|
Yanev ES, Darlington TP, Ladyzhets SA, Strasbourg MC, Trovatello C, Liu S, Rhodes DA, Hall K, Sinha A, Borys NJ, Hone JC, Schuck PJ. Programmable nanowrinkle-induced room-temperature exciton localization in monolayer WSe 2. Nat Commun 2024; 15:1543. [PMID: 38378789 PMCID: PMC10879107 DOI: 10.1038/s41467-024-45936-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 02/08/2024] [Indexed: 02/22/2024] Open
Abstract
Localized states in two-dimensional (2D) transition metal dichalcogenides (TMDCs) have been the subject of intense study, driven by potential applications in quantum information science. Despite the rapidly growing knowledge surrounding these emitters, their microscopic nature is still not fully understood, limiting their production and application. Motivated by this challenge, and by recent theoretical and experimental evidence showing that nanowrinkles generate strain-localized room-temperature emitters, we demonstrate a method to intentionally induce wrinkles with collections of stressors, showing that long-range wrinkle direction and position are controllable with patterned array design. Nano-photoluminescence (nano-PL) imaging combined with detailed strain modeling based on measured wrinkle topography establishes a correlation between wrinkle properties, particularly shear strain, and localized exciton emission. Beyond the array-induced wrinkles, nano-PL spatial maps further reveal that the strain environment around individual stressors is heterogeneous due to the presence of fine wrinkles that are less deterministic. At cryogenic temperatures, antibunched emission is observed, confirming that the nanocone-induced strain is sufficiently large for the formation of quantum emitters. At 300 K, detailed nanoscale hyperspectral images uncover a wide range of low-energy emission peaks originating from the fine wrinkles, and show that the states can be tightly confined to regions <10 nm, even in ambient conditions. These results establish a promising potential route towards realizing room temperature quantum emission in 2D TMDC systems.
Collapse
Affiliation(s)
- Emanuil S Yanev
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Thomas P Darlington
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Sophia A Ladyzhets
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | | | - Chiara Trovatello
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Song Liu
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Daniel A Rhodes
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Kobi Hall
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Aditya Sinha
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Nicholas J Borys
- Department of Physics, Montana State University, Bozeman, MT, USA.
| | - James C Hone
- Department of Mechanical Engineering, Columbia University, New York, NY, USA.
| | - P James Schuck
- Department of Mechanical Engineering, Columbia University, New York, NY, USA.
| |
Collapse
|
6
|
De Palma AC, Peng X, Arash S, Gao FY, Baldini E, Li X, Yu ET. Elucidating Piezoelectricity and Strain in Monolayer MoS 2 at the Nanoscale Using Kelvin Probe Force Microscopy. NANO LETTERS 2024; 24:1835-1842. [PMID: 38315833 DOI: 10.1021/acs.nanolett.3c03100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Strain engineering modifies the optical and electronic properties of atomically thin transition metal dichalcogenides. Highly inhomogeneous strain distributions in two-dimensional materials can be easily realized, enabling control of properties on the nanoscale; however, methods for probing strain on the nanoscale remain challenging. In this work, we characterize inhomogeneously strained monolayer MoS2 via Kelvin probe force microscopy and electrostatic gating, isolating the contributions of strain from other electrostatic effects and enabling the measurement of all components of the two-dimensional strain tensor on length scales less than 100 nm. The combination of these methods is used to calculate the spatial distribution of the electrostatic potential resulting from piezoelectricity, presenting a powerful way to characterize inhomogeneous strain and piezoelectricity that can be extended toward a variety of 2D materials.
Collapse
Affiliation(s)
- Alex C De Palma
- Materials Science and Engineering Program, Texas Materials Institute, University of Texas at Austin, Austin, Texas 78712, United States
| | - Xinyue Peng
- Department of Physics and Center for Complex Quantum Systems, University of Texas at Austin, Austin, Texas 78712, United States
| | - Saba Arash
- Department of Physics and Center for Complex Quantum Systems, University of Texas at Austin, Austin, Texas 78712, United States
| | - Frank Y Gao
- Department of Physics and Center for Complex Quantum Systems, University of Texas at Austin, Austin, Texas 78712, United States
| | - Edoardo Baldini
- Department of Physics and Center for Complex Quantum Systems, University of Texas at Austin, Austin, Texas 78712, United States
| | - Xiaoqin Li
- Department of Physics and Center for Complex Quantum Systems, University of Texas at Austin, Austin, Texas 78712, United States
| | - Edward T Yu
- Materials Science and Engineering Program, Texas Materials Institute, University of Texas at Austin, Austin, Texas 78712, United States
- Microelectronics Research Center, Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, Texas 78758, United States
| |
Collapse
|
7
|
Jo K, Marino E, Lynch J, Jiang Z, Gogotsi N, Darlington TP, Soroush M, Schuck PJ, Borys NJ, Murray CB, Jariwala D. Direct nano-imaging of light-matter interactions in nanoscale excitonic emitters. Nat Commun 2023; 14:2649. [PMID: 37156799 PMCID: PMC10167231 DOI: 10.1038/s41467-023-38189-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 04/12/2023] [Indexed: 05/10/2023] Open
Abstract
Strong light-matter interactions in localized nano-emitters placed near metallic mirrors have been widely reported via spectroscopic studies in the optical far-field. Here, we report a near-field nano-spectroscopic study of localized nanoscale emitters on a flat Au substrate. Using quasi 2-dimensional CdSe/CdxZn1-xS nanoplatelets, we observe directional propagation on the Au substrate of surface plasmon polaritons launched from the excitons of the nanoplatelets as wave-like fringe patterns in the near-field photoluminescence maps. These fringe patterns were confirmed via extensive electromagnetic wave simulations to be standing-waves formed between the tip and the edge-up assembled nano-emitters on the substrate plane. We further report that both light confinement and in-plane emission can be engineered by tuning the surrounding dielectric environment of the nanoplatelets. Our results lead to renewed understanding of in-plane, near-field electromagnetic signal transduction from the localized nano-emitters with profound implications in nano and quantum photonics as well as resonant optoelectronics.
Collapse
Affiliation(s)
- Kiyoung Jo
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Emanuele Marino
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Via Archirafi 36, 90123, Palermo, Italy
| | - Jason Lynch
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Zhiqiao Jiang
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Natalie Gogotsi
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Thomas P Darlington
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA
| | - Mohammad Soroush
- Departement of Physics, Montana State University, Bozeman, MT, 59717, USA
| | - P James Schuck
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA
| | - Nicholas J Borys
- Departement of Physics, Montana State University, Bozeman, MT, 59717, USA
| | - Christopher B Murray
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Deep Jariwala
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
8
|
Hasz K, Hu Z, Park KD, Raschke MB. Tip-Enhanced Dark Exciton Nanoimaging and Local Strain Control in Monolayer WSe 2. NANO LETTERS 2023; 23:198-204. [PMID: 36538369 DOI: 10.1021/acs.nanolett.2c03959] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Dark excitons in transition-metal dichalcogenides, with their long lifetimes and strong binding energies, provide potential platforms from photonic and optoelectronic applications to quantum information science even at room temperature. However, their spatial heterogeneity and sensitivity to strain is not yet understood. Here, we combine tip-enhanced photoluminescence spectroscopy with atomic force induced strain control to nanoimage dark excitons in WSe2 and their response to local strain. Dark exciton emission is facilitated by out-of-plane picocavity Purcell enhancement giving rise to spatially highly localized emission, providing for higher spatial resolution compared to bright exciton nanoimaging. Further, tip-antenna-induced dark exciton emission is enhanced in areas of higher strain associated with bubbles. In addition, active force control shows dark exciton emission to be more sensitive to strain with both compressive and tensile lattice deformation facilitating emission. This interplay between localized strain and Purcell effects provides novel pathways for nanomechanical exciton emission control.
Collapse
Affiliation(s)
- Kathryn Hasz
- Department of Physics and JILA, University of Colorado, Boulder, Colorado 80309, United States
- Department of Physics, Carthage College, Kenosha, Wisconsin 53140, United States
| | - Zuocheng Hu
- Department of Physics and JILA, University of Colorado, Boulder, Colorado 80309, United States
| | - Kyoung-Duck Park
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Markus B Raschke
- Department of Physics and JILA, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
9
|
Kato R, Moriyama T, Umakoshi T, Yano TA, Verma P. Ultrastable tip-enhanced hyperspectral optical nanoimaging for defect analysis of large-sized WS 2 layers. SCIENCE ADVANCES 2022; 8:eabo4021. [PMID: 35857514 PMCID: PMC9286508 DOI: 10.1126/sciadv.abo4021] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/03/2022] [Indexed: 05/25/2023]
Abstract
Optical nanoimaging techniques, such as tip-enhanced Raman spectroscopy (TERS), are nowadays indispensable for chemical and optical characterization in the entire field of nanotechnology and have been extensively used for various applications, such as visualization of nanoscale defects in two-dimensional (2D) materials. However, it is still challenging to investigate micrometer-sized sample with nanoscale spatial resolution because of severe limitation of measurement time due to drift of the experimental system. Here, we achieved long-duration TERS imaging of a micrometer-sized WS2 sample for 6 hours in a reproducible manner. Our ultrastable TERS system enabled to reveal the defect density on the surface of tungsten disulfide layers in large area equivalent to the device scale. It also helped us to detect rare defect-related optical signals from the sample. The present study paves ways to evaluate nanoscale defects of 2D materials in large area and to unveil remarkable optical and chemical properties of large-sized nanostructured materials.
Collapse
Affiliation(s)
- Ryo Kato
- Department of Applied Physics, Osaka University, Suita, Osaka 565-0871, Japan
- Institute of Post-LED Photonics, Tokushima University, 2-1 Minamijosanjima, Tokushima, Tokushima 770-8506, Japan
| | - Toki Moriyama
- Department of Applied Physics, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takayuki Umakoshi
- Department of Applied Physics, Osaka University, Suita, Osaka 565-0871, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, Suita, Osaka 565-0871, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Taka-aki Yano
- Institute of Post-LED Photonics, Tokushima University, 2-1 Minamijosanjima, Tokushima, Tokushima 770-8506, Japan
| | - Prabhat Verma
- Department of Applied Physics, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
10
|
Rodriguez A, Krayev A, Velický M, Frank O, El-Khoury PZ. Nano-optical Visualization of Interlayer Interactions in WSe 2/WS 2 Heterostructures. J Phys Chem Lett 2022; 13:5854-5859. [PMID: 35727212 PMCID: PMC9335877 DOI: 10.1021/acs.jpclett.2c01250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The interplay between excitons and phonons governs the optical and electronic properties of transition metal dichalcogenides (TMDs). Even though a number of linear and nonlinear optical-, electron-, and photoelectron-based approaches have been developed and/or adopted to characterize excitons and phonons in single/few-layer TMDs and their heterostructures, no existing method is capable of directly probing ultralow-frequency and interlayer phonons on the nanoscale. To this end, we developed ultralow-frequency tip-enhanced Raman spectroscopy, which allows spectrally and spatially resolved chemical and structural nanoimaging of WSe2/WS2 heterostructures. In this work, we apply this method to analyze phonons in nanobubbles that are sustained in these heterobilayers. Our method is capable of directly probing interlayer (de)coupling using our novel structurally sensitive nano-optical probe and the interplay between excitons and interlayer/intralayer phonons through correlation analysis of the recorded spectral images.
Collapse
Affiliation(s)
- Alvaro Rodriguez
- J.
Heyrovský Institute of Physical Chemistry, Czech Academy of
Sciences, Dolejškova 2155/3, 182 23 Prague, Czech Republic
| | - Andrey Krayev
- Horiba
Instruments, Inc., 359 Bel Marin Keys Boulevard, Suite 18, Novato, California 94949, United States
| | - Matěj Velický
- J.
Heyrovský Institute of Physical Chemistry, Czech Academy of
Sciences, Dolejškova 2155/3, 182 23 Prague, Czech Republic
| | - Otakar Frank
- J.
Heyrovský Institute of Physical Chemistry, Czech Academy of
Sciences, Dolejškova 2155/3, 182 23 Prague, Czech Republic
| | - Patrick Z. El-Khoury
- Physical
Sciences Division, Pacific Northwest National
Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| |
Collapse
|
11
|
Sarycheva A, Shanmugasundaram M, Krayev A, Gogotsi Y. Tip-Enhanced Raman Scattering Imaging of Single- to Few-Layer Ti 3C 2T x MXene. ACS NANO 2022; 16:6858-6865. [PMID: 35404582 DOI: 10.1021/acsnano.2c01868] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
MXenes are among the most widely researched materials due to a unique combination of high electronic conductivity and hydrophilic surface, confined in a 2D structure. Therefore, comprehensive characterization of individual MXene flakes is of great importance. Here we report on nanoscale Raman imaging of single-layer and few-layer flakes of Ti3C2Tx MXene deposited on a gold substrate using tip-enhanced Raman scattering (TERS). TERS spectra of MXene monolayers are dominated by an intense peak at around 201 cm-1 and two well-defined peaks at around 126 and 725 cm-1. Absolute intensities of these peaks decrease with increasing number of layers, though the relative intensity of the 126 and 725 cm-1 bands as compared to the 201 cm-1 band increases. The peak positions of the main MXene bands do not significantly change in flakes of different number of layers, suggesting weak coupling between the MXene layers. In addition, we observed stiffening of the 201 cm-1 vibration over the wrinkles in MXene flakes. Using TERS for nanoscale spectroscopic characterization of Ti3C2Tx allows fast Raman mapping with deep subdiffraction resolution at the laser power density on the sample about an order of magnitude lower as compared to confocal Raman measurements. Finally, we demonstrate very high environmental stability of stoichiometric single-layer MXenes and show that the intensity of TERS response from the single- and few-layer flakes of Ti3C2Tx can be used to track early stages of degradation, well before significant morphological changes appear.
Collapse
Affiliation(s)
- Asia Sarycheva
- A. J. Drexel Nanomaterials Institute, and Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | | | - Andrey Krayev
- HORIBA Scientific 20 Knightsbridge Road, Piscataway, New Jersey 08854, United States
| | - Yury Gogotsi
- A. J. Drexel Nanomaterials Institute, and Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
12
|
Chand SB, Woods JM, Mejia E, Taniguchi T, Watanabe K, Grosso G. Visualization of Dark Excitons in Semiconductor Monolayers for High-Sensitivity Strain Sensing. NANO LETTERS 2022; 22:3087-3094. [PMID: 35290068 DOI: 10.1021/acs.nanolett.2c00436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Transition-metal dichalcogenides (TMDs) are layered materials that have a semiconducting phase with many advantageous optoelectronic properties, including tightly bound excitons and spin-valley locking. In tungsten-based TMDs, spin- and momentum-forbidden transitions give rise to dark excitons that typically are optically inaccessible but represent the lowest excitonic states of the system. Dark excitons can deeply affect the transport, dynamics, and coherence of bright excitons, hampering device performance. Therefore, it is crucial to create conditions in which these excitonic states can be visualized and controlled. Here, we show that compressive strain in WS2 enables phonon scattering of photoexcited electrons between momentum valleys, enhancing the formation of dark intervalley excitons. We show that the emission and spectral properties of momentum-forbidden excitons are accessible and strongly depend on the local strain environment that modifies the band alignment. This mechanism is further exploited for strain sensing in two-dimensional semiconductors, revealing a gauge factor exceeding 104.
Collapse
Affiliation(s)
- Saroj B Chand
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York 10031, New York, United States
| | - John M Woods
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York 10031, New York, United States
| | - Enrique Mejia
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York 10031, New York, United States
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Gabriele Grosso
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York 10031, New York, United States
- Physics Program, Graduate Center, City University of New York, New York 10016, New York, United States
| |
Collapse
|
13
|
Albagami A, Ambardar S, Hrim H, Sahoo PK, Emirov Y, Gutiérrez HR, Voronine DV. Tip-Enhanced Photoluminescence of Freestanding Lateral Heterobubbles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11006-11015. [PMID: 35170302 DOI: 10.1021/acsami.1c24486] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Two-dimensional (2D) semiconducting materials have promising applications in flexible optoelectronics, nanophotonics, and sensing based on the broad tunability of their optical and electronic properties. 2D nanobubbles form exciton funnels due to localized strain that can be used as local emitters for information processing. Their nanoscale optical characterization requires the use of near-field scanning probe microscopy (SPM). However, previous near-field studies of 2D materials were performed on SiO2/Si and metallic substrates using the plasmonic gap mode to increase the signal-to-noise ratio. Another challenge is the deterministic control of bubble size and location. We addressed these challenges by investigating the photoluminescence (PL) signals of freestanding monolayer lateral WSe2-MoSe2 heterostructures under the influence of strain exerted by a plasmonic SPM tip. For first time, we performed tip-enhanced PL imaging of freestanding 2D materials and studied the competition between the PL enhancement mechanisms by nanoindentation as a function of the tip-sample distance. We observed the tunability of PL as a function of bubble size, which opens new possibilities to design optoelectronic nanodevices.
Collapse
Affiliation(s)
- Abdullah Albagami
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States
- Department of Physics, King Saud University, Riyadh 11362, Kingdom of Saudi Arabia
| | - Sharad Ambardar
- Department of Medical Engineering, University of South Florida, Tampa, Florida 33620, United States
| | - Hana Hrim
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States
| | - Prasana K Sahoo
- Materials Science Centre, India Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Yusuf Emirov
- Nanotechnology Research and Education Center, University of South Florida, Tampa, Florida 33620, United States
| | - Humberto R Gutiérrez
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States
| | - Dmitri V Voronine
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States
- Department of Medical Engineering, University of South Florida, Tampa, Florida 33620, United States
| |
Collapse
|
14
|
|
15
|
Anantharaman SB, Jo K, Jariwala D. Exciton-Photonics: From Fundamental Science to Applications. ACS NANO 2021; 15:12628-12654. [PMID: 34310122 DOI: 10.1021/acsnano.1c02204] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Semiconductors in all dimensionalities ranging from 0D quantum dots and molecules to 3D bulk crystals support bound electron-hole pair quasiparticles termed excitons. Over the past two decades, the emergence of a variety of low-dimensional semiconductors that support excitons combined with advances in nano-optics and photonics has burgeoned an advanced area of research that focuses on engineering, imaging, and modulating the coupling between excitons and photons, resulting in the formation of hybrid quasiparticles termed exciton-polaritons. This advanced area has the potential to bring about a paradigm shift in quantum optics, as well as classical optoelectronic devices. Here, we present a review on the coupling of light in excitonic semiconductors and previous investigations of the optical properties of these hybrid quasiparticles via both far-field and near-field imaging and spectroscopy techniques. Special emphasis is given to recent advances with critical evaluation of the bottlenecks that plague various materials toward practical device implementations including quantum light sources. Our review highlights a growing need for excitonic material development together with optical engineering and imaging techniques to harness the utility of excitons and their host materials for a variety of applications.
Collapse
Affiliation(s)
- Surendra B Anantharaman
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Kiyoung Jo
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Deep Jariwala
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
16
|
Blundo E, Yildirim T, Pettinari G, Polimeni A. Experimental Adhesion Energy in van der Waals Crystals and Heterostructures from Atomically Thin Bubbles. PHYSICAL REVIEW LETTERS 2021; 127:046101. [PMID: 34355951 DOI: 10.1103/physrevlett.127.046101] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 05/08/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
The formation of gas-filled bubbles on the surface of van der Waals crystals provides an ideal platform whereby the interplay of the elastic parameters and interlayer forces can be suitably investigated. Here, we combine experimental and numerical efforts to study the morphology of the bubbles at equilibrium and highlight unexpected behaviors that contrast with the common assumptions. We exploit such observations to develop an accurate analytical model to describe the shape and strain of the bubbles and exploit it to measure the adhesion energy between a variety of van der Waals crystals, showing sizable material-dependent trends.
Collapse
Affiliation(s)
- Elena Blundo
- Physics Department, Sapienza University of Rome, 00185 Roma, Italy
| | - Tanju Yildirim
- Center for Functional Sensor and Actuator (CFSN), Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Giorgio Pettinari
- Institute for Photonics and Nanotechnologies, National Research Council (CNR-IFN), 00156 Roma, Italy
| | - Antonio Polimeni
- Physics Department, Sapienza University of Rome, 00185 Roma, Italy
| |
Collapse
|
17
|
Rao R, Kim H, Perea-López N, Terrones M, Maruyama B. Interaction of gases with monolayer WS 2: an in situ spectroscopy study. NANOSCALE 2021; 13:11470-11477. [PMID: 34160535 DOI: 10.1039/d1nr01483h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The optical and electronic properties of two-dimensional (2D) materials can be tuned through physical and chemical adsorption of gases. They are also ideal sensor platforms, where charge transfer from the adsorbate can induce a measurable change in the electrical resistance within a device configuration. While 2D materials-based gas sensors exhibit high sensitivity, questions exist regarding the direction of charge transfer and the role of lattice defects during sensing. Here we measured the dynamics of adsorption of NO2 and NH3 on monolayer WS2 using in situ photoluminescence (PL) and resonance Raman spectroscopy. Experiments were conducted across a temperature range of 25-250 °C and gas concentrations between 5-650 ppm. The PL emission energies blue- and red-shifted when exposed to NO2 and NH3, respectively, and the magnitude of the shift depended on the gas concentration as well as the temperature down to the lowest concentration of 5 ppm. Analysis of the adsorption kinetics revealed an exponential increase in the intensities of the trion peaks with temperature, with apparent activation energies similar to barriers for migration of sulfur vacancies in the WS2 lattice. The corresponding Resonance Raman spectra allowed the simultaneous measurement of the defect-induced LA mode. A positive correlation between the defect densities and the shifts in the PL emission energies establish lattice defects such as sulfur vacancies as the preferential sites for gas adsorption. Moreover, an increase in defect densities with temperature in the presence of NO2 and NH3 suggests that these gases may also play a role in the creation of lattice defects. Our study provides key mechanistic insights into gas adsorption on monolayer WS2, and highlights the potential for future development of spectroscopy-based gas sensors based on 2D materials.
Collapse
Affiliation(s)
- Rahul Rao
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH 45433, USA.
| | - Hyunil Kim
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH 45433, USA.
| | - Nestor Perea-López
- Department of Physics and Center for Two-Dimensional and Layered Materials, The Pennsylvania University, State College, PA, USA
| | - Mauricio Terrones
- Department of Physics and Center for Two-Dimensional and Layered Materials, The Pennsylvania University, State College, PA, USA and Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA and Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Benji Maruyama
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH 45433, USA.
| |
Collapse
|
18
|
Sanchez DA, Dai Z, Lu N. 2D Material Bubbles: Fabrication, Characterization, and Applications. TRENDS IN CHEMISTRY 2021. [DOI: 10.1016/j.trechm.2020.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Affiliation(s)
- Xiaoyang Zhu
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - David R Reichman
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| |
Collapse
|