1
|
Al-Mohana SMS, Najeeb HN, Al-Utayjawee RM, Babaei F, Al-Owaedi OA. Theoretical investigation of thermoelectric properties of methyl blue-based molecular junctions. RSC Adv 2024; 14:23699-23709. [PMID: 39077326 PMCID: PMC11284912 DOI: 10.1039/d4ra03574g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024] Open
Abstract
Thermoelectric properties of a family of methyl blue-based molecular junctions were theoretically studied using a combination of density functional theory (DFT) methods, and quantum transport theory (QTT). Employing different numbers of amino groups not only proves itself as a powerful strategy for controlling the transport behaviour and lifting the transmission coefficient T(E) from 1.91 × 10-5 to 7.45 × 10-5 with increasing the amino groups from zero to four, but also it enhances the thermoelectric properties of these molecules, since it increases the Seebeck coefficient (S) from 106.8 to 202.4 μV K-1 and the electronic figure of merit (Z el T) has been raised from 0.15 to 0.35, making these molecules promising candidates for thermoelectric applications.
Collapse
Affiliation(s)
- Sarah M S Al-Mohana
- Department of Physics, Faculty of Science, University of Qom Qom 3716146611 Iran
- Iraqi Ministry of Education, Babylon Education Directorate Hilla 51001 Babylon Iraq
| | - Hussein N Najeeb
- Department of Laser Physics, College of Science for Women, University of Babylon Hilla 51001 Iraq
| | | | - Ferydon Babaei
- Department of Physics, Faculty of Science, University of Qom Qom 3716146611 Iran
| | - Oday A Al-Owaedi
- Department of Laser Physics, College of Science for Women, University of Babylon Hilla 51001 Iraq
- Al-Zahrawi University College Najaf-Karbala Street Karbala 56001 Iraq
| |
Collapse
|
2
|
Dantas Filho RV, de Queiroz TB. Screened optimally tuned range separated hybrid functional for solvated low bandgap molecular systems. J Chem Phys 2024; 161:034109. [PMID: 39007381 DOI: 10.1063/5.0213688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
The description of electronic properties of low bandgap molecular system is often performed by using density functional theory (DFT) and time dependent (TD) DFT calculations with the optimally tuned range-separated hybrid (OT-RSH) functional, as it contains the necessary ingredients to reliably predict charge transfer excitations. However, the range separating parameter (ω) is system-dependent and its optimization, including the chemical environment, is intricate. Refaely-Abramson et al. demonstrated that the gap renormalization in molecular crystals, a ground state property, can be represented by an OT-RSH functional screened by ɛstatic [Phys. Rev. B 88, 081204(R) (2013)], the zero frequency scalar dielectric constant. In this study, we propose the use of an OT-RSH functional screened by the scalar dielectric constant in the high frequency limit (OT-sRSH), ɛ∞, an appropriate constraint for vertical ionization energies or excitations in a dielectric environment. We have performed calculations for S,N-heteroacene derivatives in tetrahydrofuran and dichloromethane. The "unscreened" OT-RSH functional tends to underestimate experimental ionization potentials (IPs) and optical gaps (Egs) by up to 1.5 and 0.5 eV, respectively. In contrast, OT-sRSH functional calculations underestimate IPs and Egs by only 0.4 and 0.2 eV. We also compared the OT-sRSH results to explicitly solvated OT-RSH functional calculations for oligothiophenes in dioxane, benzene in ammonia, and methylene blue in water. We observe that both the approaches perform similarly for weakly interacting intermolecular systems and deviate for solvent-solute interacting systems, as expected. In conclusion, the OT-sRSH functional can describe molecular systems with environmental polarization effects accurately, a step toward describing realistic molecular systems.
Collapse
Affiliation(s)
- Reinaldo V Dantas Filho
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Av. dos Estados 5001, 09510-580 Santo André-SP, Brazil
| | - Thiago B de Queiroz
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Av. dos Estados 5001, 09510-580 Santo André-SP, Brazil
| |
Collapse
|
3
|
Tsuneda T, Taketsugu T. Singlet fission initiating organic photosensitizations. Sci Rep 2024; 14:829. [PMID: 38191637 PMCID: PMC10774408 DOI: 10.1038/s41598-023-50860-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 12/27/2023] [Indexed: 01/10/2024] Open
Abstract
The feasibility of singlet fission (SF) in organic photosensitizers is investigated through spin-flip long-range corrected time-dependent density functional theory. This study focuses on four major organic photosensitizer molecules: benzophenone, boron-dipyrromethene, methylene blue, and rose bengal. Calculations demonstrate that all these molecules possess moderate [Formula: see text]-stacking energies and closely-lying singlet (S) and quintet (triplet-triplet, TT) excitations, satisfying the essential conditions for SF: (1) Near-degenerate low-lying S and (TT) excitations with a significant S-T energy gap, and (2) Moderate [Formula: see text]-stacking energy of chromophores, slightly higher than solvation energy, enabling dissociation for triplet-state chromophore generation. Moreover, based on the El-Sayed rule, intersystem crossing is found to simultaneously proceed at very slow rates in all these photosensitizers. This is attributed to the fact that the lowest singlet excitation of the monomers partly involves [Formula: see text] transitions alongside the main [Formula: see text] transitions. The proposed mechanisms are strongly substantiated by comparisons with experimental studies.
Collapse
Affiliation(s)
- Takao Tsuneda
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan.
- Graduate School of Science Technology and Innovation, Kobe University, Nada-ku, Kobe, Hyogo, 657-8501, Japan.
| | - Tetsuya Taketsugu
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, 001-0021, Japan
| |
Collapse
|
4
|
Franzke Y, Holzer C, Andersen JH, Begušić T, Bruder F, Coriani S, Della Sala F, Fabiano E, Fedotov DA, Fürst S, Gillhuber S, Grotjahn R, Kaupp M, Kehry M, Krstić M, Mack F, Majumdar S, Nguyen BD, Parker SM, Pauly F, Pausch A, Perlt E, Phun GS, Rajabi A, Rappoport D, Samal B, Schrader T, Sharma M, Tapavicza E, Treß RS, Voora V, Wodyński A, Yu JM, Zerulla B, Furche F, Hättig C, Sierka M, Tew DP, Weigend F. TURBOMOLE: Today and Tomorrow. J Chem Theory Comput 2023; 19:6859-6890. [PMID: 37382508 PMCID: PMC10601488 DOI: 10.1021/acs.jctc.3c00347] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Indexed: 06/30/2023]
Abstract
TURBOMOLE is a highly optimized software suite for large-scale quantum-chemical and materials science simulations of molecules, clusters, extended systems, and periodic solids. TURBOMOLE uses Gaussian basis sets and has been designed with robust and fast quantum-chemical applications in mind, ranging from homogeneous and heterogeneous catalysis to inorganic and organic chemistry and various types of spectroscopy, light-matter interactions, and biochemistry. This Perspective briefly surveys TURBOMOLE's functionality and highlights recent developments that have taken place between 2020 and 2023, comprising new electronic structure methods for molecules and solids, previously unavailable molecular properties, embedding, and molecular dynamics approaches. Select features under development are reviewed to illustrate the continuous growth of the program suite, including nuclear electronic orbital methods, Hartree-Fock-based adiabatic connection models, simplified time-dependent density functional theory, relativistic effects and magnetic properties, and multiscale modeling of optical properties.
Collapse
Affiliation(s)
- Yannick
J. Franzke
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| | - Christof Holzer
- Institute
of Theoretical Solid State Physics, Karlsruhe
Institute of Technology (KIT), Wolfgang-Gaede-Str. 1, 76131 Karlsruhe, Germany
| | - Josefine H. Andersen
- DTU
Chemistry, Department of Chemistry, Technical
University of Denmark, Kemitorvet Building 207, DK-2800 Kongens Lyngby, Denmark
| | - Tomislav Begušić
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Florian Bruder
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| | - Sonia Coriani
- DTU
Chemistry, Department of Chemistry, Technical
University of Denmark, Kemitorvet Building 207, DK-2800 Kongens Lyngby, Denmark
| | - Fabio Della Sala
- Institute
for Microelectronics and Microsystems (CNR-IMM), Via Monteroni, Campus Unisalento, 73100 Lecce, Italy
- Center for
Biomolecular Nanotechnologies @UNILE, Istituto
Italiano di Tecnologia, Via Barsanti, 73010 Arnesano, Italy
| | - Eduardo Fabiano
- Institute
for Microelectronics and Microsystems (CNR-IMM), Via Monteroni, Campus Unisalento, 73100 Lecce, Italy
- Center for
Biomolecular Nanotechnologies @UNILE, Istituto
Italiano di Tecnologia, Via Barsanti, 73010 Arnesano, Italy
| | - Daniil A. Fedotov
- DTU
Chemistry, Department of Chemistry, Technical
University of Denmark, Kemitorvet Building 207, DK-2800 Kongens Lyngby, Denmark
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Susanne Fürst
- Institut
für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Technische Universität Berlin, Straße des 17 Juni 135, 10623, Berlin, Germany
| | - Sebastian Gillhuber
- Institute
of Inorganic Chemistry, Karlsruhe Institute
of Technology (KIT), Engesserstr. 15, 76131 Karlsruhe, Germany
| | - Robin Grotjahn
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Martin Kaupp
- Institut
für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Technische Universität Berlin, Straße des 17 Juni 135, 10623, Berlin, Germany
| | - Max Kehry
- Institute
of Physical Chemistry, Karlsruhe Institute
of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Marjan Krstić
- Institute
of Theoretical Solid State Physics, Karlsruhe
Institute of Technology (KIT), Wolfgang-Gaede-Str. 1, 76131 Karlsruhe, Germany
| | - Fabian Mack
- Institute
of Physical Chemistry, Karlsruhe Institute
of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Sourav Majumdar
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Brian D. Nguyen
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Shane M. Parker
- Department
of Chemistry, Case Western Reserve University, 10900 Euclid Ave, Cleveland, Ohio 44106 United States
| | - Fabian Pauly
- Institute
of Physics, University of Augsburg, Universitätsstr. 1, 86159 Augsburg, Germany
| | - Ansgar Pausch
- Institute
of Physical Chemistry, Karlsruhe Institute
of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Eva Perlt
- Otto-Schott-Institut
für Materialforschung, Friedrich-Schiller-Universität
Jena, Löbdergraben
32, 07743 Jena, Germany
| | - Gabriel S. Phun
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Ahmadreza Rajabi
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Dmitrij Rappoport
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Bibek Samal
- Department
of Chemical Sciences, Tata Institute of
Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Tim Schrader
- Otto-Schott-Institut
für Materialforschung, Friedrich-Schiller-Universität
Jena, Löbdergraben
32, 07743 Jena, Germany
| | - Manas Sharma
- Otto-Schott-Institut
für Materialforschung, Friedrich-Schiller-Universität
Jena, Löbdergraben
32, 07743 Jena, Germany
| | - Enrico Tapavicza
- Department
of Chemistry and Biochemistry, California
State University, Long Beach, 1250 Bellflower Boulevard, Long
Beach, California 90840-9507, United States
| | - Robert S. Treß
- Lehrstuhl
für Theoretische Chemie, Ruhr-Universität
Bochum, 44801 Bochum, Germany
| | - Vamsee Voora
- Department
of Chemical Sciences, Tata Institute of
Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Artur Wodyński
- Institut
für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Technische Universität Berlin, Straße des 17 Juni 135, 10623, Berlin, Germany
| | - Jason M. Yu
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Benedikt Zerulla
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz-Platz
1, 76344 Eggenstein-Leopoldshafen Germany
| | - Filipp Furche
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Christof Hättig
- Lehrstuhl
für Theoretische Chemie, Ruhr-Universität
Bochum, 44801 Bochum, Germany
| | - Marek Sierka
- Otto-Schott-Institut
für Materialforschung, Friedrich-Schiller-Universität
Jena, Löbdergraben
32, 07743 Jena, Germany
| | - David P. Tew
- Physical
and Theoretical Chemistry Laboratory, University
of Oxford, South Parks
Road, Oxford OX1 3QZ, United Kingdom
| | - Florian Weigend
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| |
Collapse
|
5
|
Förster A, Visscher L. Quasiparticle Self-Consistent GW-Bethe-Salpeter Equation Calculations for Large Chromophoric Systems. J Chem Theory Comput 2022; 18:6779-6793. [PMID: 36201788 PMCID: PMC9648197 DOI: 10.1021/acs.jctc.2c00531] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The GW-Bethe–Salpeter equation
(BSE) method
is promising for calculating the low-lying excitonic states of molecular
systems. However, so far it has only been applied to rather small
molecules and in the commonly implemented diagonal approximations
to the electronic self-energy, it depends on a mean-field starting
point. We describe here an implementation of the self-consistent and
starting-point-independent quasiparticle self-consistent (qsGW)-BSE approach, which is suitable for calculations on
large molecules. We herein show that eigenvalue-only self-consistency
can lead to an unfaithful description of some excitonic states for
chlorophyll dimers while the qsGW-BSE vertical excitation
energies (VEEs) are in excellent agreement with spectroscopic experiments
for chlorophyll monomers and dimers measured in the gas phase. Furthermore,
VEEs from time-dependent density functional theory calculations tend
to disagree with experimental values and using different range-separated
hybrid (RSH) kernels does change the VEEs by up to 0.5 eV. We use
the new qsGW-BSE implementation to calculate the
lowest excitation energies of the six chromophores of the photosystem
II (PSII) reaction center (RC) with nearly 2000 correlated electrons.
Using more than 11,000 (6000) basis functions, the calculation could
be completed in less than 5 (2) days on a single modern compute node.
In agreement with previous TD-DFT calculations using RSH kernels on
models that also do not include environmental effects, our qsGW-BSE calculations only yield states with local characters
in the low-energy spectrum of the hexameric complex. Earlier works
with RSH kernels have demonstrated that the protein environment facilitates
the experimentally observed interchromophoric charge transfer. Therefore,
future research will need to combine correlation effects beyond TD-DFT
with an explicit treatment of environmental electrostatics.
Collapse
Affiliation(s)
- Arno Förster
- Theoretical Chemistry, Vrije Universiteit, De Boelelaan 1083, NL-1081 HVAmsterdam, The Netherlands
| | - Lucas Visscher
- Theoretical Chemistry, Vrije Universiteit, De Boelelaan 1083, NL-1081 HVAmsterdam, The Netherlands
| |
Collapse
|
6
|
McKeon CA, Hamed SM, Bruneval F, Neaton JB. An optimally tuned range-separated hybrid starting point for ab initio GW plus Bethe–Salpeter equation calculations of molecules. J Chem Phys 2022; 157:074103. [DOI: 10.1063/5.0097582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The ab initio GW plus Bethe–Salpeter equation (GW-BSE, where G is the one particle Green's function and W is the screened Coulomb interaction) approach has emerged as a leading method for predicting excitations in both solids and molecules with a predictive power contingent upon several factors. Among these factors are the (1) generalized Kohn–Sham eigensystem used to construct the GW self-energy and to solve the BSE and (2) the efficacy and suitability of the Tamm–Dancoff approximation. Here, we present a detailed benchmark study of low-lying singlet excitations from a generalized Kohn–Sham (gKS) starting point based on an optimally tuned range-separated hybrid (OTRSH) functional. We show that the use of this gKS starting point with one-shot G0W0 and G0W0-BSE leads to the lowest mean absolute errors (MAEs) and mean signed errors (MSEs), with respect to high-accuracy reference values, demonstrated in the literature thus far for the ionization potentials of the GW100 benchmark set and for low-lying neutral excitations of Thiel’s set molecules in the gas phase, without the need for self-consistency. The MSEs and MAEs of one-shot G0W0-BSE@OTRSH excitation energies are comparable to or lower than those obtained with other functional starting points after self-consistency. Additionally, we compare these results with linear-response time-dependent density functional theory (TDDFT) calculations and find GW-BSE to be superior to TDDFT when calculations are based on the same exchange-correlation functional. This work demonstrates tuned range-separated hybrids used in combination with GW and GW-BSE can greatly suppress starting point dependence for molecules, leading to accuracy similar to that for higher-order wavefunction-based theories for molecules without the need for costlier iterations to self-consistency.
Collapse
Affiliation(s)
- Caroline A. McKeon
- Department of Physics, University of California, Berkeley, California 94720, USA
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Natural Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Samia M. Hamed
- Department of Physics, University of California, Berkeley, California 94720, USA
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Natural Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Fabien Bruneval
- Université Paris-Saclay, CEA, Service de Recherches de Métallurgie Physique, 91191 Gif-sur-Yvette, France
| | - Jeffrey B. Neaton
- Department of Physics, University of California, Berkeley, California 94720, USA
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Natural Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Kavli ENSI, University of California, Berkeley, California 94720, USA
| |
Collapse
|
7
|
Tamtaji M, Kazemeini M. Utilizing graphene oxide/gold/methylene blue ternary nanocomposite as a visible light photocatalyst for a plasmon-enhanced singlet oxygen generation. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-022-02271-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
8
|
Begušić T, Tapavicza E, Vaníček J. Applicability of the Thawed Gaussian Wavepacket Dynamics to the Calculation of Vibronic Spectra of Molecules with Double-Well Potential Energy Surfaces. J Chem Theory Comput 2022; 18:3065-3074. [PMID: 35420803 DOI: 10.1021/acs.jctc.2c00030] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Simulating vibrationally resolved electronic spectra of anharmonic systems, especially those involving double-well potential energy surfaces, often requires expensive quantum dynamics methods. Here, we explore the applicability and limitations of the recently proposed single-Hessian thawed Gaussian approximation for the simulation of spectra of systems with double-well potentials, including 1,2,4,5-tetrafluorobenzene, ammonia, phosphine, and arsine. This semiclassical wavepacket approach is shown to be more robust and to provide more accurate spectra than the conventional harmonic approximation. Specifically, we identify two cases in which the Gaussian wavepacket method is especially useful due to the breakdown of the harmonic approximation: (i) when the nuclear wavepacket is initially at the top of the potential barrier but delocalized over both wells, e.g., along a low-frequency mode, and (ii) when the wavepacket has enough energy to classically go over the low potential energy barrier connecting the two wells. The method is efficient and requires only a single classical ab initio molecular dynamics trajectory, in addition to the data required to compute the harmonic spectra. We also present an improved algorithm for computing the wavepacket autocorrelation function, which guarantees that the evaluated correlation function is continuous for arbitrary size of the time step.
Collapse
Affiliation(s)
- Tomislav Begušić
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Enrico Tapavicza
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, California 90840-9507, United States
| | - Jiří Vaníček
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
9
|
Abou Taka A, Lu SY, Gowland D, Zuehlsdorff TJ, Corzo HH, Pribram-Jones A, Shi L, Hratchian HP, Isborn CM. Comparison of Linear Response Theory, Projected Initial Maximum Overlap Method, and Molecular Dynamics-Based Vibronic Spectra: The Case of Methylene Blue. J Chem Theory Comput 2022; 18:3039-3051. [PMID: 35472264 DOI: 10.1021/acs.jctc.1c01127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The simulation of optical spectra is essential to molecular characterization and, in many cases, critical for interpreting experimental spectra. The most common method for simulating vibronic absorption spectra relies on the geometry optimization and computation of normal modes for ground and excited electronic states. In this report, we show that the utilization of such a procedure within an adiabatic linear response (LR) theory framework may lead to state mixings and a breakdown of the Born-Oppenheimer approximation, resulting in a poor description of absorption spectra. In contrast, computing excited states via a self-consistent field method in conjunction with a maximum overlap model produces states that are not subject to such mixings. We show that this latter method produces vibronic spectra much more aligned with vertical gradient and molecular dynamics (MD) trajectory-based approaches. For the methylene blue chromophore, we compare vibronic absorption spectra computed with the following: an adiabatic Hessian approach with LR theory-optimized structures and normal modes, a vertical gradient procedure, the Hessian and normal modes of maximum overlap method-optimized structures, and excitation energy time-correlation functions generated from an MD trajectory. Because of mixing between the bright S1 and dark S2 surfaces near the S1 minimum, computing the adiabatic Hessian with LR theory and time-dependent density functional theory with the B3LYP density functional predicts a large vibronic shoulder for the absorption spectrum that is not present for any of the other methods. Spectral densities are analyzed and we compare the behavior of the key normal mode that in LR theory strongly couples to the optical excitation while showing S1/S2 state mixings. Overall, our study provides a note of caution in computing vibronic spectra using the excited-state adiabatic Hessian of LR theory-optimized structures and also showcases three alternatives that are less sensitive to adiabatic state mixing effects.
Collapse
Affiliation(s)
- Ali Abou Taka
- Department of Chemistry and Biochemistry, University of California Merced, Merced, California 95343, United States
| | - Shao-Yu Lu
- Department of Chemistry and Biochemistry, University of California Merced, Merced, California 95343, United States
| | - Duncan Gowland
- Department of Physics, King's College London, London WC2R 2LS, United Kingdom
| | - Tim J Zuehlsdorff
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Hector H Corzo
- Department of Chemistry and Biochemistry, University of California Merced, Merced, California 95343, United States
| | - Aurora Pribram-Jones
- Department of Chemistry and Biochemistry, University of California Merced, Merced, California 95343, United States
| | - Liang Shi
- Department of Chemistry and Biochemistry, University of California Merced, Merced, California 95343, United States
| | - Hrant P Hratchian
- Department of Chemistry and Biochemistry, University of California Merced, Merced, California 95343, United States
| | - Christine M Isborn
- Department of Chemistry and Biochemistry, University of California Merced, Merced, California 95343, United States
| |
Collapse
|
10
|
Dunnett AJ, Gowland D, Isborn CM, Chin AW, Zuehlsdorff TJ. Influence of non-adiabatic effects on linear absorption spectra in the condensed phase: Methylene blue. J Chem Phys 2021; 155:144112. [PMID: 34654312 DOI: 10.1063/5.0062950] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Modeling linear absorption spectra of solvated chromophores is highly challenging as contributions are present both from coupling of the electronic states to nuclear vibrations and from solute-solvent interactions. In systems where excited states intersect in the Condon region, significant non-adiabatic contributions to absorption line shapes can also be observed. Here, we introduce a robust approach to model linear absorption spectra accounting for both environmental and non-adiabatic effects from first principles. This model parameterizes a linear vibronic coupling (LVC) Hamiltonian directly from energy gap fluctuations calculated along molecular dynamics (MD) trajectories of the chromophore in solution, accounting for both anharmonicity in the potential and direct solute-solvent interactions. The resulting system dynamics described by the LVC Hamiltonian are solved exactly using the thermalized time-evolving density operator with orthogonal polynomials algorithm (T-TEDOPA). The approach is applied to the linear absorption spectrum of methylene blue in water. We show that the strong shoulder in the experimental spectrum is caused by vibrationally driven population transfer between the bright S1 and the dark S2 states. The treatment of the solvent environment is one of many factors that strongly influence the population transfer and line shape; accurate modeling can only be achieved through the use of explicit quantum mechanical solvation. The efficiency of T-TEDOPA, combined with LVC Hamiltonian parameterizations from MD, leads to an attractive method for describing a large variety of systems in complex environments from first principles.
Collapse
Affiliation(s)
- Angus J Dunnett
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, 4 place Jussieu, 75005 Paris, France
| | - Duncan Gowland
- Department of Physics, King's College London, London WC2R 2LS, United Kingdom
| | - Christine M Isborn
- Chemistry and Chemical Biology, University of California Merced, Merced, California 95343, USA
| | - Alex W Chin
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, 4 place Jussieu, 75005 Paris, France
| | - Tim J Zuehlsdorff
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| |
Collapse
|
11
|
Hashemi Z, Leppert L. Assessment of the Ab Initio Bethe-Salpeter Equation Approach for the Low-Lying Excitation Energies of Bacteriochlorophylls and Chlorophylls. J Phys Chem A 2021; 125:2163-2172. [PMID: 33656894 PMCID: PMC8028335 DOI: 10.1021/acs.jpca.1c01240] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacteriochlorophyll and chlorophyll molecules are crucial building blocks of the photosynthetic apparatus in bacteria, algae, and plants. Embedded in transmembrane protein complexes, they are responsible for the primary processes of photosynthesis: excitation energy and charge transfer. Here, we use ab initio many-body perturbation theory within the GW approximation and Bethe-Salpeter equation (BSE) approach to calculate the electronic structure and optical excitations of bacteriochlorophylls a, b, c, d, and e and chlorophylls a and b. We systematically study the effects of the structure, basis set size, partial self-consistency in GW, and the underlying exchange-correlation approximation and compare our calculations with results from time-dependent density functional theory, multireference RASPT2, and experimental literature results. We find that optical excitations calculated with GW+BSE are in excellent agreement with experimental data, with an average deviation of less than 100 meV for the first three bright excitations of the entire family of (bacterio)chlorophylls. Contrary to state-of-the-art time-dependent density functional theory (TDDFT) with an optimally tuned range-separated hybrid functional, this accuracy is achieved in a parameter-free approach. Moreover, GW+BSE predicts the energy differences between the low-energy excitations correctly and eliminates spurious charge transfer states that TDDFT with (semi)local approximations is known to produce. Our study provides accurate reference results and highlights the potential of the GW+BSE approach for the simulation of larger pigment complexes.
Collapse
Affiliation(s)
- Zohreh Hashemi
- Institute of Physics, University of Bayreuth, Bayreuth 95440, Germany
| | - Linn Leppert
- Institute of Physics, University of Bayreuth, Bayreuth 95440, Germany.,MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands
| |
Collapse
|