1
|
Drosou M, Bhattacharjee S, Pantazis DA. Combined Multireference-Multiscale Approach to the Description of Photosynthetic Reaction Centers. J Chem Theory Comput 2024; 20. [PMID: 39116215 PMCID: PMC11360140 DOI: 10.1021/acs.jctc.4c00578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024]
Abstract
A first-principles description of the primary photochemical processes that drive photosynthesis and sustain life on our planet remains one of the grand challenges of modern science. Recent research established that explicit incorporation of protein electrostatics in excited-state calculations of photosynthetic pigments, achieved for example with quantum-mechanics/molecular-mechanics (QM/MM) approaches, is essential for a meaningful description of the properties and function of pigment-protein complexes. Although time-dependent density functional theory has been used productively so far in QM/MM approaches for the study of such systems, this methodology has limitations. Here we pursue for the first time a QM/MM description of the reaction center in the principal enzyme of oxygenic photosynthesis, Photosystem II, using multireference wave function theory for the high-level QM region. We identify best practices and establish guidelines regarding the rational choice of active space and appropriate state-averaging for the efficient and reliable use of complete active space self-consistent field (CASSCF) and the N-electron valence state perturbation theory (NEVPT2) in the prediction of low-lying excited states of chlorophyll and pheophytin pigments. Given that the Gouterman orbitals are inadequate as a minimal active space, we define specific minimal and extended active spaces for the NEVPT2 description of electronic states that fall within the Q and B bands. Subsequently, we apply our multireference-QM/MM protocol to the description of all pigments in the reaction center of Photosystem II. The calculations reproduce the electrochromic shifts induced by the protein matrix and the ordering of site energies consistent with the identity of the primary donor (ChlD1) and the experimentally known asymmetric and directional electron transfer. The optimized protocol sets the stage for future multireference treatments of multiple pigments, and hence for multireference studies of charge separation, while it is transferable to the study of any photoactive embedded tetrapyrrole system.
Collapse
Affiliation(s)
- Maria Drosou
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Sinjini Bhattacharjee
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Dimitrios A. Pantazis
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
2
|
Solov’yov AV, Verkhovtsev AV, Mason NJ, Amos RA, Bald I, Baldacchino G, Dromey B, Falk M, Fedor J, Gerhards L, Hausmann M, Hildenbrand G, Hrabovský M, Kadlec S, Kočišek J, Lépine F, Ming S, Nisbet A, Ricketts K, Sala L, Schlathölter T, Wheatley AEH, Solov’yov IA. Condensed Matter Systems Exposed to Radiation: Multiscale Theory, Simulations, and Experiment. Chem Rev 2024; 124:8014-8129. [PMID: 38842266 PMCID: PMC11240271 DOI: 10.1021/acs.chemrev.3c00902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 06/07/2024]
Abstract
This roadmap reviews the new, highly interdisciplinary research field studying the behavior of condensed matter systems exposed to radiation. The Review highlights several recent advances in the field and provides a roadmap for the development of the field over the next decade. Condensed matter systems exposed to radiation can be inorganic, organic, or biological, finite or infinite, composed of different molecular species or materials, exist in different phases, and operate under different thermodynamic conditions. Many of the key phenomena related to the behavior of irradiated systems are very similar and can be understood based on the same fundamental theoretical principles and computational approaches. The multiscale nature of such phenomena requires the quantitative description of the radiation-induced effects occurring at different spatial and temporal scales, ranging from the atomic to the macroscopic, and the interlinks between such descriptions. The multiscale nature of the effects and the similarity of their manifestation in systems of different origins necessarily bring together different disciplines, such as physics, chemistry, biology, materials science, nanoscience, and biomedical research, demonstrating the numerous interlinks and commonalities between them. This research field is highly relevant to many novel and emerging technologies and medical applications.
Collapse
Affiliation(s)
| | | | - Nigel J. Mason
- School
of Physics and Astronomy, University of
Kent, Canterbury CT2 7NH, United
Kingdom
| | - Richard A. Amos
- Department
of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, U.K.
| | - Ilko Bald
- Institute
of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Gérard Baldacchino
- Université
Paris-Saclay, CEA, LIDYL, 91191 Gif-sur-Yvette, France
- CY Cergy Paris Université,
CEA, LIDYL, 91191 Gif-sur-Yvette, France
| | - Brendan Dromey
- Centre
for Light Matter Interactions, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, United Kingdom
| | - Martin Falk
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61200 Brno, Czech Republic
- Kirchhoff-Institute
for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - Juraj Fedor
- J.
Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - Luca Gerhards
- Institute
of Physics, Carl von Ossietzky University, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| | - Michael Hausmann
- Kirchhoff-Institute
for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - Georg Hildenbrand
- Kirchhoff-Institute
for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
- Faculty
of Engineering, University of Applied Sciences
Aschaffenburg, Würzburger
Str. 45, 63743 Aschaffenburg, Germany
| | | | - Stanislav Kadlec
- Eaton European
Innovation Center, Bořivojova
2380, 25263 Roztoky, Czech Republic
| | - Jaroslav Kočišek
- J.
Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - Franck Lépine
- Université
Claude Bernard Lyon 1, CNRS, Institut Lumière
Matière, F-69622, Villeurbanne, France
| | - Siyi Ming
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield
Road, Cambridge CB2 1EW, United Kingdom
| | - Andrew Nisbet
- Department
of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, U.K.
| | - Kate Ricketts
- Department
of Targeted Intervention, University College
London, Gower Street, London WC1E 6BT, United Kingdom
| | - Leo Sala
- J.
Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - Thomas Schlathölter
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
- University
College Groningen, University of Groningen, Hoendiepskade 23/24, 9718 BG Groningen, The Netherlands
| | - Andrew E. H. Wheatley
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield
Road, Cambridge CB2 1EW, United Kingdom
| | - Ilia A. Solov’yov
- Institute
of Physics, Carl von Ossietzky University, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| |
Collapse
|
3
|
Zhang YZ, Li K, Qin BY, Guo JP, Zhang QB, Zhao DL, Chen XL, Gao J, Liu LN, Zhao LS. Structure of cryptophyte photosystem II-light-harvesting antennae supercomplex. Nat Commun 2024; 15:4999. [PMID: 38866834 PMCID: PMC11169493 DOI: 10.1038/s41467-024-49453-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024] Open
Abstract
Cryptophytes are ancestral photosynthetic organisms evolved from red algae through secondary endosymbiosis. They have developed alloxanthin-chlorophyll a/c2-binding proteins (ACPs) as light-harvesting complexes (LHCs). The distinctive properties of cryptophytes contribute to efficient oxygenic photosynthesis and underscore the evolutionary relationships of red-lineage plastids. Here we present the cryo-electron microscopy structure of the Photosystem II (PSII)-ACPII supercomplex from the cryptophyte Chroomonas placoidea. The structure includes a PSII dimer and twelve ACPII monomers forming four linear trimers. These trimers structurally resemble red algae LHCs and cryptophyte ACPI trimers that associate with Photosystem I (PSI), suggesting their close evolutionary links. We also determine a Chl a-binding subunit, Psb-γ, essential for stabilizing PSII-ACPII association. Furthermore, computational calculation provides insights into the excitation energy transfer pathways. Our study lays a solid structural foundation for understanding the light-energy capture and transfer in cryptophyte PSII-ACPII, evolutionary variations in PSII-LHCII, and the origin of red-lineage LHCIIs.
Collapse
Affiliation(s)
- Yu-Zhong Zhang
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
| | - Kang Li
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Bing-Yue Qin
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jian-Ping Guo
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Quan-Bao Zhang
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Dian-Li Zhao
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Xiu-Lan Chen
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Jun Gao
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China.
| | - Lu-Ning Liu
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China.
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.
| | - Long-Sheng Zhao
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
| |
Collapse
|
4
|
Sarngadharan P, Holtkamp Y, Kleinekathöfer U. Protein Effects on the Excitation Energies and Exciton Dynamics of the CP24 Antenna Complex. J Phys Chem B 2024; 128:5201-5217. [PMID: 38756003 PMCID: PMC11145653 DOI: 10.1021/acs.jpcb.4c01637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024]
Abstract
In this study, the site energy fluctuations, energy transfer dynamics, and some spectroscopic properties of the minor light-harvesting complex CP24 in a membrane environment were determined. For this purpose, a 3 μs-long classical molecular dynamics simulation was performed for the CP24 complex. Furthermore, using the density functional tight binding/molecular mechanics molecular dynamics (DFTB/MM MD) approach, we performed excited state calculations for the chlorophyll a and chlorophyll b molecules in the complex starting from five different positions of the MD trajectory. During the extended simulations, we observed variations in the site energies of the different sets as a result of the fluctuating protein environment. In particular, a water coordination to Chl-b 608 occurred only after about 1 μs in the simulations, demonstrating dynamic changes in the environment of this pigment. From the classical and the DFTB/MM MD simulations, spectral densities and the (time-dependent) Hamiltonian of the complex were determined. Based on these results, three independent strongly coupled chlorophyll clusters were revealed within the complex. In addition, absorption and fluorescence spectra were determined together with the exciton relaxation dynamics, which reasonably well agrees with experimental time scales.
Collapse
Affiliation(s)
- Pooja Sarngadharan
- School of Science, Constructor
University, Campus Ring
1, 28759 Bremen, Germany
| | - Yannick Holtkamp
- School of Science, Constructor
University, Campus Ring
1, 28759 Bremen, Germany
| | | |
Collapse
|
5
|
Bhattacharjee S, Arra S, Daidone I, Pantazis DA. Excitation landscape of the CP43 photosynthetic antenna complex from multiscale simulations. Chem Sci 2024; 15:7269-7284. [PMID: 38756808 PMCID: PMC11095388 DOI: 10.1039/d3sc06714a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/07/2024] [Indexed: 05/18/2024] Open
Abstract
Photosystem II (PSII), the principal enzyme of oxygenic photosynthesis, contains two integral light harvesting proteins (CP43 and CP47) that bind chlorophylls and carotenoids. The two intrinsic antennae play crucial roles in excitation energy transfer and photoprotection. CP43 interacts most closely with the reaction center of PSII, specifically with the branch of the reaction center (D1) that is responsible for primary charge separation and electron transfer. Deciphering the function of CP43 requires detailed atomic-level insights into the properties of the embedded pigments. To advance this goal, we employ a range of multiscale computational approaches to determine the site energies and excitonic profile of CP43 chlorophylls, using large all-atom models of a membrane-bound PSII monomer. In addition to time-dependent density functional theory (TD-DFT) used in the context of a quantum-mechanics/molecular-mechanics setup (QM/MM), we present a thorough analysis using the perturbed matrix method (PMM), which enables us to utilize information from long-timescale molecular dynamics simulations of native PSII-complexed CP43. The excited state energetics and excitonic couplings have both similarities and differences compared with previous experimental fits and theoretical calculations. Both static TD-DFT and dynamic PMM results indicate a layered distribution of site energies and reveal specific groups of chlorophylls that have shared contributions to low-energy excitations. Importantly, the contribution to the lowest energy exciton does not arise from the same chlorophylls at each system configuration, but rather changes as a function of conformational dynamics. An unexpected finding is the identification of a low-energy charge-transfer excited state within CP43 that involves a lumenal (C2) and the central (C10) chlorophyll of the complex. The results provide a refined basis for structure-based interpretation of spectroscopic observations and for further deciphering excitation energy transfer in oxygenic photosynthesis.
Collapse
Affiliation(s)
- Sinjini Bhattacharjee
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Srilatha Arra
- Department of Physical and Chemical Sciences, University of L'Aquila Via Vetoio (Coppito 1) 67010 L'Aquila Italy
| | - Isabella Daidone
- Department of Physical and Chemical Sciences, University of L'Aquila Via Vetoio (Coppito 1) 67010 L'Aquila Italy
| | - Dimitrios A Pantazis
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| |
Collapse
|
6
|
Maity S, Daskalakis V, Jansen TLC, Kleinekathöfer U. Electric Field Susceptibility of Chlorophyll c Leads to Unexpected Excitation Dynamics in the Major Light-Harvesting Complex of Diatoms. J Phys Chem Lett 2024; 15:2499-2510. [PMID: 38410961 PMCID: PMC10926154 DOI: 10.1021/acs.jpclett.3c03241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/04/2024] [Accepted: 02/12/2024] [Indexed: 02/28/2024]
Abstract
Diatoms are one of the most abundant photosynthetic organisms on earth and contribute largely to atmospheric oxygen production. They contain fucoxanthin and chlorophyll-a/c binding proteins (FCPs) as light-harvesting complexes with a remarkable adaptation to the fluctuating light on ocean surfaces. To understand the basis of the photosynthetic process in diatoms, the excitation energy funneling within FCPs must be probed. A state-of-the-art multiscale analysis within a quantum mechanics/molecular mechanics framework has been employed. To this end, the chlorophyll (Chl) excitation energies within the FCP complex from the diatom Phaeodactylum tricornutum have been determined. The Chl-c excitation energies were found to be 5-fold more susceptible to electric fields than those of Chl-a pigments and thus are significantly lower in FCP than in organic solvents. This finding challenges the general belief that the excitation energy of Chl-c is always higher than that of Chl-a in FCP proteins and reveals that Chl-c molecules are much more sensitive to electric fields within protein scaffolds than in Chl-a pigments. The analysis of the linear absorption spectrum and the two-dimensional electronic spectra of the FCP complex strongly supports these findings and allows us to study the excitation transfer within the FCP complex.
Collapse
Affiliation(s)
- Sayan Maity
- School
of Science, Constructor University, Campus Ring 1, 28759 Bremen, Germany
| | - Vangelis Daskalakis
- Department
of Chemical Engineering, School of Engineering,
University of Patras, Patras 26504, Greece
| | - Thomas L. C. Jansen
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| | | |
Collapse
|
7
|
Saraceno P, Sláma V, Cupellini L. First-principles simulation of excitation energy transfer and transient absorption spectroscopy in the CP29 light-harvesting complex. J Chem Phys 2023; 159:184112. [PMID: 37962444 DOI: 10.1063/5.0170295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
The dynamics of delocalized excitons in light-harvesting complexes (LHCs) can be investigated using different experimental techniques, and transient absorption (TA) spectroscopy is one of the most valuable methods for this purpose. A careful interpretation of TA spectra is essential for the clarification of excitation energy transfer (EET) processes occurring during light-harvesting. However, even in the simplest LHCs, a physical model is needed to interpret transient spectra as the number of EET processes occurring at the same time is very large to be disentangled from measurements alone. Physical EET models are commonly built by fittings of the microscopic exciton Hamiltonians and exciton-vibrational parameters, an approach that can lead to biases. Here, we present a first-principles strategy to simulate EET and transient absorption spectra in LHCs, combining molecular dynamics and accurate multiscale quantum chemical calculations to obtain an independent estimate of the excitonic structure of the complex. The microscopic parameters thus obtained are then used in EET simulations to obtain the population dynamics and the related spectroscopic signature. We apply this approach to the CP29 minor antenna complex of plants for which we follow the EET dynamics and transient spectra after excitation in the chlorophyll b region. Our calculations reproduce all the main features observed in the transient absorption spectra and provide independent insight on the excited-state dynamics of CP29. The approach presented here lays the groundwork for the accurate simulation of EET and unbiased interpretation of transient spectra in multichromophoric systems.
Collapse
Affiliation(s)
- Piermarco Saraceno
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Vladislav Sláma
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Lorenzo Cupellini
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| |
Collapse
|
8
|
Ozaydin B, Curutchet C. Unraveling the role of thermal fluctuations on the exciton structure of the cryptophyte PC612 and PC645 photosynthetic antenna complexes. Front Mol Biosci 2023; 10:1268278. [PMID: 37790875 PMCID: PMC10544999 DOI: 10.3389/fmolb.2023.1268278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/30/2023] [Indexed: 10/05/2023] Open
Abstract
Protein scaffolds play a crucial role in tuning the light harvesting properties of photosynthetic pigment-protein complexes, influencing pigment-protein and pigment-pigment excitonic interactions. Here, we investigate the influence of thermal dynamic effects on the protein tuning mechanisms of phycocyanin PC645 and PC612 antenna complexes of cryptophyte algae, featuring closed or open quaternary structures. We employ a dual molecular dynamics (MD) strategy that combines extensive classical MD simulations with multiple short Born-Oppenheimer quantum/molecular mechanical (QM/MM) simulations to accurately account for both static and dynamic disorder effects. Additionally, we compare the results with an alternative protocol based on multiple QM/MM geometry optimizations of the pigments. Subsequently, we employ polarizable QM/MM calculations using time-dependent density functional theory (TD-DFT) to compute the excited states, and we adopt the full cumulant expansion (FCE) formalism to describe the absorption and circular dichroism spectra. Our findings indicate that thermal effects have only minor impacts on the energy ladder in PC612, despite its remarkable flexibility owing to an open quaternary structure. In striking contrast, thermal effects significantly influence the properties of PC645 due to the absence of a hydrogen bond controlling the twist of ring D in PCB β82 bilins, as well as the larger impact of fluctuations on the excited states of MBV pigments, which possess a higher conjugation length compared to other bilin types. Overall, the dual MD protocol combined with the FCE formalism yields excellent spectral properties for PC612 and PC645, and the resultant excitonic Hamiltonians pave the way for future investigations concerning the implications of open and closed quaternary structures on phycocyanin light harvesting properties.
Collapse
Affiliation(s)
- Beste Ozaydin
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona (UB), Barcelona, Spain
| | - Carles Curutchet
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
9
|
Maity S, Kleinekathöfer U. Recent progress in atomistic modeling of light-harvesting complexes: a mini review. PHOTOSYNTHESIS RESEARCH 2023; 156:147-162. [PMID: 36207489 PMCID: PMC10070314 DOI: 10.1007/s11120-022-00969-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
In this mini review, we focus on recent advances in the atomistic modeling of biological light-harvesting (LH) complexes. Because of their size and sophisticated electronic structures, multiscale methods are required to investigate the dynamical and spectroscopic properties of such complexes. The excitation energies, in this context also known as site energies, excitonic couplings, and spectral densities are key quantities which usually need to be extracted to be able to determine the exciton dynamics and spectroscopic properties. The recently developed multiscale approach based on the numerically efficient density functional tight-binding framework followed by excited state calculations has been shown to be superior to the scheme based on pure classical molecular dynamics simulations. The enhanced approach, which improves the description of the internal vibrational dynamics of the pigment molecules, yields spectral densities in good agreement with the experimental counterparts for various bacterial and plant LH systems. Here, we provide a brief overview of those results and described the theoretical foundation of the multiscale protocol.
Collapse
Affiliation(s)
- Sayan Maity
- Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759, Bremen, Germany
| | - Ulrich Kleinekathöfer
- Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759, Bremen, Germany.
| |
Collapse
|
10
|
Cignoni E, Cupellini L, Mennucci B. Machine Learning Exciton Hamiltonians in Light-Harvesting Complexes. J Chem Theory Comput 2023; 19:965-977. [PMID: 36701385 PMCID: PMC9933434 DOI: 10.1021/acs.jctc.2c01044] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Indexed: 01/27/2023]
Abstract
We propose a machine learning (ML)-based strategy for an inexpensive calculation of excitonic properties of light-harvesting complexes (LHCs). The strategy uses classical molecular dynamics simulations of LHCs in their natural environment in combination with ML prediction of the excitonic Hamiltonian of the embedded aggregate of pigments. The proposed ML model can reproduce the effects of geometrical fluctuations together with those due to electrostatic and polarization interactions between the pigments and the protein. The training is performed on the chlorophylls of the major LHC of plants, but we demonstrate that the model is able to extrapolate well beyond the initial training set. Moreover, the accuracy in predicting the effects of the environment is tested on the simulation of the small changes observed in the absorption spectra of the wild-type and a mutant of a minor LHC.
Collapse
Affiliation(s)
- Edoardo Cignoni
- Dipartimento di Chimica e
Chimica Industriale, University of Pisa, via G. Moruzzi 13, 56124Pisa, Italy
| | - Lorenzo Cupellini
- Dipartimento di Chimica e
Chimica Industriale, University of Pisa, via G. Moruzzi 13, 56124Pisa, Italy
| | - Benedetta Mennucci
- Dipartimento di Chimica e
Chimica Industriale, University of Pisa, via G. Moruzzi 13, 56124Pisa, Italy
| |
Collapse
|
11
|
Elias E, Liguori N, Croce R. The origin of pigment-binding differences in CP29 and LHCII: the role of protein structure and dynamics. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES : OFFICIAL JOURNAL OF THE EUROPEAN PHOTOCHEMISTRY ASSOCIATION AND THE EUROPEAN SOCIETY FOR PHOTOBIOLOGY 2023:10.1007/s43630-023-00368-7. [PMID: 36740636 DOI: 10.1007/s43630-023-00368-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/13/2023] [Indexed: 02/07/2023]
Abstract
The first step of photosynthesis in plants is performed by the light-harvesting complexes (LHC), a large family of pigment-binding proteins embedded in the photosynthetic membranes. These complexes are conserved across species, suggesting that each has a distinct role. However, they display a high degree of sequence homology and their static structures are almost identical. What are then the structural features that determine their different properties? In this work, we compared the two best-characterized LHCs of plants: LHCII and CP29. Using molecular dynamics simulations, we could rationalize the difference between them in terms of pigment-binding properties. The data also show that while the loops between the helices are very flexible, the structure of the transmembrane regions remains very similar in the crystal and the membranes. However, the small structural differences significantly affect the excitonic coupling between some pigment pairs. Finally, we analyzed in detail the structure of the long N-terminus of CP29, showing that it is structurally stable and it remains on top of the membrane even in the absence of other proteins. Although the structural changes upon phosphorylation are minor, they can explain the differences in the absorption properties of the pigments observed experimentally.
Collapse
Affiliation(s)
- Eduard Elias
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Nicoletta Liguori
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Roberta Croce
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
12
|
Grüning G, Wong SY, Gerhards L, Schuhmann F, Kattnig DR, Hore PJ, Solov’yov IA. Effects of Dynamical Degrees of Freedom on Magnetic Compass Sensitivity: A Comparison of Plant and Avian Cryptochromes. J Am Chem Soc 2022; 144:22902-22914. [DOI: 10.1021/jacs.2c06233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Gesa Grüning
- Department of Physics, Carl von Ossietzky University, Carl-von-Ossietzky-Street 9-11, 26129 Oldenburg, Germany
| | - Siu Ying Wong
- Department of Physics, Carl von Ossietzky University, Carl-von-Ossietzky-Street 9-11, 26129 Oldenburg, Germany
| | - Luca Gerhards
- Department of Physics, Carl von Ossietzky University, Carl-von-Ossietzky-Street 9-11, 26129 Oldenburg, Germany
| | - Fabian Schuhmann
- Department of Physics, Carl von Ossietzky University, Carl-von-Ossietzky-Street 9-11, 26129 Oldenburg, Germany
| | - Daniel R. Kattnig
- Department of Physics and Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, U.K
| | - P. J. Hore
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, U.K
| | - Ilia A. Solov’yov
- Department of Physics, Carl von Ossietzky University, Carl-von-Ossietzky-Street 9-11, 26129 Oldenburg, Germany
- Research Center for Neurosensory Science, Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany
- Center for Nanoscale Dynamics (CENAD), Carl von Ossietzky Universität Oldenburg, Institut für Physik, Ammerländer Heerstreet 114-118, 26129 Oldenburg, Germany
| |
Collapse
|
13
|
Sarngadharan P, Maity S, Kleinekathöfer U. Spectral densities and absorption spectra of the core antenna complex CP43 from photosystem II. J Chem Phys 2022; 156:215101. [DOI: 10.1063/5.0091005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Besides absorbing light, the core antenna complex CP43 of photosystem II is of great importance in transferring excitation energy from the antenna complexes to the reaction center. Excitation energies, spectral densities, and linear absorption spectra of the complex have been evaluated by a multiscale approach. In this scheme, quantum mechanics/molecular mechanics molecular dynamics simulations are performed employing the parameterized density functional tight binding (DFTB) while the time-dependent long-range-corrected DFTB scheme is applied for the excited state calculations. The obtained average spectral density of the CP43 complex shows a very good agreement with experimental results. Moreover, the excitonic Hamiltonian of the system along with the computed site-dependent spectral densities was used to determine the linear absorption. While a Redfield-like approximation has severe shortcomings in dealing with the CP43 complex due to quasi-degenerate states, the non-Markovian full second-order cumulant expansion formalism is able to overcome the drawbacks. Linear absorption spectra were obtained, which show a good agreement with the experimental counterparts at different temperatures. This study once more emphasizes that by combining diverse techniques from the areas of molecular dynamics simulations, quantum chemistry, and open quantum systems, it is possible to obtain first-principle results for photosynthetic complexes, which are in accord with experimental findings.
Collapse
Affiliation(s)
- Pooja Sarngadharan
- Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Sayan Maity
- Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Ulrich Kleinekathöfer
- Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
14
|
Cignoni E, Slama V, Cupellini L, Mennucci B. The atomistic modeling of light-harvesting complexes from the physical models to the computational protocol. J Chem Phys 2022; 156:120901. [DOI: 10.1063/5.0086275] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The function of light-harvesting complexes is determined by a complex network of dynamic interactions among all the different components: the aggregate of pigments, the protein, and the surrounding environment. Complete and reliable predictions on these types of composite systems can be only achieved with an atomistic description. In the last few decades, there have been important advances in the atomistic modeling of light-harvesting complexes. These advances have involved both the completeness of the physical models and the accuracy and effectiveness of the computational protocols. In this Perspective, we present an overview of the main theoretical and computational breakthroughs attained so far in the field, with particular focus on the important role played by the protein and its dynamics. We then discuss the open problems in their accurate modeling that still need to be addressed. To illustrate an effective computational workflow for the modeling of light harvesting complexes, we take as an example the plant antenna complex CP29 and its H111N mutant.
Collapse
Affiliation(s)
- Edoardo Cignoni
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| | - Vladislav Slama
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| | - Lorenzo Cupellini
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| | - Benedetta Mennucci
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| |
Collapse
|