1
|
Le Breton G, Loison C, Vynck K, Benichou E, Bonhomme O. Microscopic view on the polarization-resolved S-SHG intensity of the vapor/liquid interface of pure water. J Chem Phys 2024; 161:154712. [PMID: 39422210 DOI: 10.1063/5.0231240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
Second harmonic generation (SHG) is a nonlinear optical phenomenon where two photons at the frequency ω combine to form a single photon at the second-harmonic frequency 2ω. Since that second-order process is very weak in bulk isotropic media, optical SHG responses of interfaces provide a powerful and versatile technique to probe the molecular structure and dynamics of liquid interfaces. Both local dipole contributions and non-local quadrupole contributions can be interesting to investigate different properties of the interface, such as the molecular orientation or the charge density. However, a major difficulty is to comprehend the link between the S-SHG intensity and molecular details. This article reports a numerical approach to model the polarization-resolved SHG intensities of a model vapor/liquid interface of pure water. The influence of the interfacial local environment on the hyperpolarizability is taken into account using quantum mechanical/molecular mechanics calculations. The numerical predictions are in very good agreement with experiments. We detail the hypotheses made during the modeling steps and discuss the impact of various factors on the modeled SHG intensities, including the description of the exciting field in the interfacial layer, the effect of neighboring molecules on the second-harmonic polarization, and the presence of an additional static electric field at the interface.
Collapse
Affiliation(s)
- G Le Breton
- Institut Lumière Matière, UMR5306-UCBL-CNRS, 10 rue Ada Byron, 69622 Villeurbanne CEDEX, France
| | - C Loison
- Institut Lumière Matière, UMR5306-UCBL-CNRS, 10 rue Ada Byron, 69622 Villeurbanne CEDEX, France
| | - K Vynck
- Institut Lumière Matière, UMR5306-UCBL-CNRS, 10 rue Ada Byron, 69622 Villeurbanne CEDEX, France
| | - E Benichou
- Institut Lumière Matière, UMR5306-UCBL-CNRS, 10 rue Ada Byron, 69622 Villeurbanne CEDEX, France
| | - O Bonhomme
- Institut Lumière Matière, UMR5306-UCBL-CNRS, 10 rue Ada Byron, 69622 Villeurbanne CEDEX, France
| |
Collapse
|
2
|
Hore DK. Phase of the second-order susceptibility in vibrational sum frequency generation spectroscopy: Origins, utility, and measurement techniques. J Chem Phys 2024; 161:060902. [PMID: 39132786 DOI: 10.1063/5.0220817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/17/2024] [Indexed: 08/13/2024] Open
Abstract
Vibrational sum frequency generation can provide valuable structural information at surfaces and buried interfaces. Relating the measured spectra to the complex-valued second-order susceptibility χ(2) is at the heart of the technique and a requisite step in nearly all subsequent analyses. The magnitude and phase of χ(2) as a function of frequency reveal important information about molecules and materials in regions where centrosymmetry is broken. In this tutorial-style perspective, the origins of the χ(2) phase are first described, followed by the utility of phase determination. Finally, some practical methods of phase extraction are discussed.
Collapse
Affiliation(s)
- Dennis K Hore
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada and Department of Computer Science, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| |
Collapse
|
3
|
Yang P, Kumarasiri A, Hore D. Surface populations as a model for the distance-dependence of the interfacial refractive index. J Chem Phys 2024; 161:054703. [PMID: 39087546 DOI: 10.1063/5.0221234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/16/2024] [Indexed: 08/02/2024] Open
Abstract
Vibrational sum frequency spectra provide information about interfaces that is sensitive to the orientation of molecules, their electronic environment, and the local electric fields. Here, we use molecular dynamics simulations in order to study a surfactant, para-cyanophenol, at the air-water interface. The volume fractions of water and the organic surfactant are considered at various points over the nanometer-scale region in a Lorentz-Lorenz model. We find that the calculated ratios of nonlinear susceptibility tensor elements are in agreement with experimental data only when this depth profile was considered. We also use these data to evaluate the ratio of the C-N hyperpolarizability tensor elements in the interfacial region.
Collapse
Affiliation(s)
- Peter Yang
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| | - Aruna Kumarasiri
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| | - Dennis Hore
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
- Department of Computer Science, University of Victoria, Victoria, British Columbia V8W 3P6, Canada
| |
Collapse
|
4
|
Wang Y, Tang F, Yu X, Ohto T, Nagata Y, Bonn M. Heterodyne-Detected Sum-Frequency Generation Vibrational Spectroscopy Reveals Aqueous Molecular Structure at the Suspended Graphene/Water Interface. Angew Chem Int Ed Engl 2024; 63:e202319503. [PMID: 38478726 DOI: 10.1002/anie.202319503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Indexed: 04/12/2024]
Abstract
Graphene, a transparent two-dimensional conductive material, has brought extensive new perspectives and prospects to various aqueous technological systems, such as desalination membranes, chemical sensors, energy storage, and energy conversion devices. Yet, the molecular-level details of graphene in contact with aqueous electrolytes, such as water orientation and hydrogen bond structure, remain elusive or controversial. Here, we employ surface-specific heterodyne-detected sum-frequency generation (HD-SFG) vibrational spectroscopy to re-examine the water molecular structure at a freely suspended graphene/water interface. We compare the response from the air/graphene/water system to that from the air/water interface. Our results indicate that theχ y y z 2 ${{\chi }_{yyz}^{\left(2\right)}}$ spectrum recorded from the air/graphene/water system arises from the topmost 1-2 water layers in contact with the graphene, with the graphene itself not generating a significant SFG response. Compared to the air/water interface response, the presence of monolayer graphene weakly affects the interfacial water. Graphene weakly affects the dangling O-H group, lowering its frequency through its interaction with the graphene sheet, and has a very small effect on the hydrogen-bonded O-H group. Molecular dynamics simulations confirm our experimental observation. Our work provides molecular insight into the interfacial structure at a suspended graphene/water interface, relevant to various technological applications of graphene.
Collapse
Affiliation(s)
- Yongkang Wang
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Fujie Tang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, 361005, Xiamen, China
- Laboratory of AI for Electrochemistry (AI4EC), IKKEM, 361005, Xiamen, China
| | - Xiaoqing Yu
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Tatsuhiko Ohto
- Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Yuki Nagata
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Mischa Bonn
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
5
|
Niu K, Wang HF, Marcus RA. Sum rule comparison of narrowband and broadband sum frequency generation spectra and comparison with theory. Proc Natl Acad Sci U S A 2024; 121:e2402550121. [PMID: 38691590 PMCID: PMC11087750 DOI: 10.1073/pnas.2402550121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/26/2024] [Indexed: 05/03/2024] Open
Abstract
Earlier sum frequency generation (SFG) experiments involve one infrared and one visible laser, and a measurement of the intensity of the response, yielding data on the surface sensitive properties of the sample. Recently, both the real and imaginary components of the susceptibility were measured in two different sets of experiments. In one set, a broadband infrared laser was used, permitting observations at very short times, while in another set the infrared laser was narrowband, permitting higher spectral resolution. The differences in the spectrum obtained by the two will be most evident in studying narrow absorption bands, e.g., the band due to dangling OH bonds at a water interface. The direct comparisons in the integrated amplitude (sum rule) of the imaginary part of the dangling OH bond region differ by a factor of 3. Due to variations in experimental setup and data processing, corrections were made for the quartz reference, Fresnel factors, and the incident visible laser wavelength. After the corrections, the agreement differs now by the factors of 1.1 within broadband and narrowband groups and the two groups now differ by a factor of 1.5. The 1.5 factor may arise from the extra heating of the more powerful broadband laser system on the water surface. The convolution from the narrowband SFG spectrum to the broadband SFG spectrum is also investigated and it does not affect the sum rule. Theory and narrowband experiments are compared using the sum rule and agree to a factor of 1.3 with no adjustable parameters.
Collapse
Affiliation(s)
- Kai Niu
- Department of Physics, School of Science, Tianjin University of Technology and Education, Tianjin300222, China
- Division of Chemistry and Chemical Engineering, Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, CA91125
| | - Hong-fei Wang
- Department of Chemistry, School of Science, Westlake University, Hangzhou310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou310024, China
| | - Rudolph A. Marcus
- Division of Chemistry and Chemical Engineering, Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, CA91125
| |
Collapse
|
6
|
Seki T, Yu CC, Chiang KY, Yu X, Sun S, Bonn M, Nagata Y. Spontaneous Appearance of Triiodide Covering the Topmost Layer of the Iodide Solution Interface Without Photo-Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:3830-3837. [PMID: 38353041 PMCID: PMC10902846 DOI: 10.1021/acs.est.3c08243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Ions containing iodine atoms at the vapor-aqueous solution interfaces critically affect aerosol growth and atmospheric chemistry due to their complex chemical nature and multivalency. While the surface propensity of iodide ions has been intensely discussed in the context of the Hofmeister series, the stability of various ions containing iodine atoms at the vapor-water interface has been debated. Here, we combine surface-specific sum-frequency generation (SFG) vibrational spectroscopy with ab initio molecular dynamics simulations to examine the extent to which iodide ions cover the aqueous surface. The SFG probe of the free O-D stretch mode of heavy water indicates that the free O-D group density decreases drastically at the interface when the bulk NaI concentration exceeds ∼2 M. The decrease in the free O-D group density is attributed to the spontaneous appearance of triiodide that covers the topmost interface rather than to the surface adsorption of iodide. This finding demonstrates that iodide is not surface-active, yet the highly surface-active triiodide is generated spontaneously at the water-air interface, even under dark and oxygen-free conditions. Our study provides an important first step toward clarifying iodine chemistry and pathways for aerosol formation.
Collapse
Affiliation(s)
- Takakazu Seki
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Graduate School of Science and Technology, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Chun-Chieh Yu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Kuo-Yang Chiang
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Xiaoqing Yu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Shumei Sun
- Department of Physics, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Yuki Nagata
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
7
|
Kapil V, Kovács DP, Csányi G, Michaelides A. First-principles spectroscopy of aqueous interfaces using machine-learned electronic and quantum nuclear effects. Faraday Discuss 2024; 249:50-68. [PMID: 37799072 PMCID: PMC10845015 DOI: 10.1039/d3fd00113j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/18/2023] [Indexed: 10/07/2023]
Abstract
Vibrational spectroscopy is a powerful approach to visualising interfacial phenomena. However, extracting structural and dynamical information from vibrational spectra is a challenge that requires first-principles simulations, including non-Condon and quantum nuclear effects. We address this challenge by developing a machine-learning enhanced first-principles framework to speed up predictive modelling of infrared, Raman, and sum-frequency generation spectra. Our approach uses machine learning potentials that encode quantum nuclear effects to generate quantum trajectories using simple molecular dynamics efficiently. In addition, we reformulate bulk and interfacial selection rules to express them unambiguously in terms of the derivatives of polarisation and polarisabilities of the whole system and predict these derivatives efficiently using fully-differentiable machine learning models of dielectric response tensors. We demonstrate our framework's performance by predicting the IR, Raman, and sum-frequency generation spectra of liquid water, ice and the water-air interface by achieving near quantitative agreement with experiments at nearly the same computational efficiency as pure classical methods. Finally, to aid the experimental discovery of new phases of nanoconfined water, we predict the temperature-dependent vibrational spectra of monolayer water across the solid-hexatic-liquid phases transition.
Collapse
Affiliation(s)
- Venkat Kapil
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | | | - Gábor Csányi
- Engineering Laboratory, University of Cambridge, Cambridge, CB2 1PZ, UK
| | - Angelos Michaelides
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| |
Collapse
|
8
|
Chiang KY, Yu X, Yu CC, Seki T, Sun S, Bonn M, Nagata Y. Bulklike Vibrational Coupling of Surface Water Revealed by Sum-Frequency Generation Spectroscopy. PHYSICAL REVIEW LETTERS 2023; 131:256202. [PMID: 38181372 DOI: 10.1103/physrevlett.131.256202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 10/10/2023] [Accepted: 10/30/2023] [Indexed: 01/07/2024]
Abstract
Vibrational coupling between interfacial water molecules is important for energy dissipation after on-water chemistry, yet intensely debated. Here, we quantify the interfacial vibrational coupling strength through the linewidth of surface-specific vibrational spectra of the water's O─H (O─D) stretch region for neat H_{2}O/D_{2}O and their isotopic mixtures. The local-field-effect-corrected experimental SFG spectra reveal that the vibrational coupling between hydrogen-bonded interfacial water O─H groups is comparable to that in bulk water, despite the effective density reduction at the interface.
Collapse
Affiliation(s)
- Kuo-Yang Chiang
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Xiaoqing Yu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Chun-Chieh Yu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Takakazu Seki
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Shumei Sun
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Yuki Nagata
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
9
|
Litman Y, Lan J, Nagata Y, Wilkins DM. Fully First-Principles Surface Spectroscopy with Machine Learning. J Phys Chem Lett 2023; 14:8175-8182. [PMID: 37671886 PMCID: PMC10510433 DOI: 10.1021/acs.jpclett.3c01989] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023]
Abstract
Our current understanding of the structure and dynamics of aqueous interfaces at the molecular level has grown substantially due to the continuous development of surface-specific spectroscopies, such as vibrational sum-frequency generation (VSFG). As in other vibrational spectroscopies, we must turn to atomistic simulations to extract all of the information encoded in the VSFG spectra. The high computational cost associated with existing methods means that they have limitations in representing systems with complex electronic structure or in achieving statistical convergence. In this work, we combine high-dimensional neural network interatomic potentials and symmetry-adapted Gaussian process regression to overcome these constraints. We show that it is possible to model VSFG signals with fully ab initio accuracy using machine learning and illustrate the versatility of our approach on the water/air interface. Our strategy allows us to identify the main sources of theoretical inaccuracy and establish a clear pathway toward the modeling of surface-sensitive spectroscopy of complex interfaces.
Collapse
Affiliation(s)
- Yair Litman
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Jinggang Lan
- Department
of Chemistry, New York University, New York, New York 10003, United States
- Simons
Center for Computational Physical Chemistry at New York University, New York, New York 10003, United States
| | - Yuki Nagata
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - David M. Wilkins
- Centre
for Quantum Materials and Technologies School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, Northern Ireland, United Kingdom
| |
Collapse
|
10
|
Nguyen TTP, Raji F, Nguyen CV, Nguyen NN, Nguyen AV. Effects of Charged Surfactants on Interfacial Water Structure and Macroscopic Properties of the Air-Water Interface. Chemphyschem 2023:e202300062. [PMID: 37679310 DOI: 10.1002/cphc.202300062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/09/2023]
Abstract
Surfactants are used to control the macroscopic properties of the air-water interface. However, the link between the surfactant molecular structure and the macroscopic properties remains unclear. Using sum-frequency generation spectroscopy and molecular dynamics simulations, two ionic surfactants (dodecyl trimethylammonium bromide, DTAB, and sodium dodecyl sulphate, SDS) with the same carbon chain lengths and charge magnitude (but different signs) of head groups interact and reorient interfacial water molecules differently. DTAB forms a thicker but sparser interfacial layer than SDS. It is due to the deep penetration into the adsorption zone of Br- counterions compared to smaller Na+ ones, and also due to the flip-flop orientation of water molecules. SDS alters two distinctive interfacial water layers into a layer where H+ points to the air, forming strong hydrogen bonding with the sulphate headgroup. In contrast, only weaker dipole-dipole interactions with the DTAB headgroup are formed as they reorient water molecules with H+ point down to the aqueous phase. Hence, with more molecules adsorbed at the interface, SDS builds up a higher interfacial pressure than DTAB, producing lower surface tension and higher foam stability at a similar bulk concentration. Our findings offer improved knowledge for understanding various processes in the industry and nature.
Collapse
Affiliation(s)
- Thao T P Nguyen
- School of Chemical Engineering and UQ Node of the ARC Centre of Excellence for Enabling Eco-efficient Beneficiation of Minerals, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Foad Raji
- School of Chemical Engineering and UQ Node of the ARC Centre of Excellence for Enabling Eco-efficient Beneficiation of Minerals, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Cuong V Nguyen
- School of Chemical Engineering and UQ Node of the ARC Centre of Excellence for Enabling Eco-efficient Beneficiation of Minerals, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ngoc N Nguyen
- School of Chemical Engineering and UQ Node of the ARC Centre of Excellence for Enabling Eco-efficient Beneficiation of Minerals, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Anh V Nguyen
- School of Chemical Engineering and UQ Node of the ARC Centre of Excellence for Enabling Eco-efficient Beneficiation of Minerals, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
11
|
Shultz MJ, Bisson P, Wang J, Marmolejos J, Davies RG, Gubbins E, Xiong Z. High phase resolution: Probing interactions in complex interfaces with sum frequency generation. Biointerphases 2023; 18:058502. [PMID: 37902617 DOI: 10.1116/6.0002963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/20/2023] [Indexed: 10/31/2023] Open
Abstract
An often-quoted statement attributed to Wolfgang Pauli is that God made the bulk, but the surface was invented by the devil. Although humorous, the statement really reflects frustration in developing a detailed picture of a surface. In the last several decades, that frustration has begun to abate with numerous techniques providing clues to interactions and reactions at surfaces. Often these techniques require considerable prior knowledge. Complex mixtures on irregular or soft surfaces-complex interfaces-thus represent the last frontier. Two optical techniques: sum frequency generation (SFG) and second harmonic generation (SHG) are beginning to lift the veil on complex interfaces. Of these techniques, SFG with one excitation in the infrared has the potential to provide exquisite molecular- and moiety-specific vibrational data. This Perspective is intended both to aid newcomers in gaining traction in this field and to demonstrate the impact of high-phase resolution. It starts with a basic description of light-induced surface polarization that is at the heart of SFG. The sum frequency is generated when the input fields are sufficiently intense that the interaction is nonlinear. This nonlinearity represents a challenge for disentangling data to reveal the molecular-level picture. Three, high-phase-resolution methods that reveal interactions at the surface are described.
Collapse
Affiliation(s)
- Mary Jane Shultz
- Laboratory for Water and Surface Studies, Tufts University, Pearson Laboratory, 62 Talbot Ave., Medford, Massachusetts 02155
| | - Patrick Bisson
- Cambridge Polymer Group, Inc., 100 Trade Center Drive, Suite 200, Woburn, Massachusetts 01801
| | - Jing Wang
- Laboratory for Water and Surface Studies, Tufts University, Pearson Laboratory, 62 Talbot Ave., Medford, Massachusetts 02155
| | - Joam Marmolejos
- Laboratory for Water and Surface Studies, Tufts University, Pearson Laboratory, 62 Talbot Ave., Medford, Massachusetts 02155
| | - Rebecca G Davies
- Laboratory for Water and Surface Studies, Tufts University, Pearson Laboratory, 62 Talbot Ave., Medford, Massachusetts 02155
| | - Emma Gubbins
- Laboratory for Water and Surface Studies, Tufts University, Pearson Laboratory, 62 Talbot Ave., Medford, Massachusetts 02155
| | - Ziqing Xiong
- Laboratory for Water and Surface Studies, Tufts University, Pearson Laboratory, 62 Talbot Ave., Medford, Massachusetts 02155
| |
Collapse
|
12
|
Hsiao Y, Chou TH, Patra A, Wen YC. Momentum-dependent sum-frequency vibrational spectroscopy of bonded interface layer at charged water interfaces. SCIENCE ADVANCES 2023; 9:eadg2823. [PMID: 37043576 PMCID: PMC10096568 DOI: 10.1126/sciadv.adg2823] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Interface-specific hydrogen (H)-bonding network of water directly controls the energy transfer and chemical reaction pathway at many charged aqueous interfaces, yet to characterize these bonded water layer structures remains a challenge. We now develop a sum-frequency spectroscopic scheme with varying photon momenta as an all-optic solution for retrieving the vibrational spectra of the bonded water layer and the ion diffuse layer and, hence, microscopic structural and charging information about an interface. Application of the method to a model surfactant-water interface reveals a hidden weakly donor H-bonded water species, suggesting an asymmetric hydration-shell structure of fully solvated surfactant headgroups. In another application to a zwitterionic phosphatidylcholine lipid monolayer-water interface, we find a highly polarized bonded water layer structure associating to the phosphatidylcholine headgroup, while the diffuse layer contribution is experimentally proven to be negligible. Our all-optic method offers an in situ microscopic probe of electrochemical and biological interfaces and the route toward future imaging and ultrafast dynamics studies.
Collapse
Affiliation(s)
| | | | - Animesh Patra
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan, R. O. C
| | - Yu-Chieh Wen
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan, R. O. C
| |
Collapse
|