1
|
Wolfe JT, Chen V, Chen Y, Tefft BJ. Identification of a subpopulation of highly adherent endothelial cells for seeding synthetic vascular grafts. J Thorac Cardiovasc Surg 2024:S0022-5223(24)00550-6. [PMID: 38972570 DOI: 10.1016/j.jtcvs.2024.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/07/2024] [Accepted: 06/27/2024] [Indexed: 07/09/2024]
Abstract
OBJECTIVE There is an unmet clinical need for alternatives to autologous vessel grafts. Small-diameter (<6 mm) synthetic vascular grafts are not suitable because of unacceptable patency rates. This mainly occurs due to the lack of an endothelial cell (EC) monolayer to prevent platelet activation, thrombosis, and intimal hyperplasia. There are no reliable methods to endothelialize small-diameter grafts because most seeded ECs are lost due to exposure to fluid shear stress after implantation. The goal of this work is to determine if EC loss is a random process or if it is possible to predict which cells are more likely to remain adherent. METHODS In initial studies, we sorted ECs using fluid shear stress and identified a subpopulation of ECs that are more likely to resist detachment. We use RNA sequencing to examine gene expression of adherent ECs compared with the whole population. Using fluorescence activated cell sorting, we sorted ECs based on the expression level of a candidate marker and studied their retention in small-diameter vascular grafts in vitro. RESULTS Transcriptomic analysis revealed that fibronectin leucine rich transmembrane protein 2 (FLRT2), encoding protein FLRT2, is downregulated in the ECs that are more likely to resist detachment. When seeded onto vascular grafts and exposed to shear stress, ECs expressing low levels of FLRT2 exhibit 59.2% ± 7.4% retention compared with 24.5% ± 6.1% retention for the remainder of the EC population. CONCLUSIONS For the first time, we show EC detachment is not an entirely random process. This provides validation for the concept that we can seed small-diameter vascular grafts only with highly adherent ECs to maintain a stable endothelium and improve graft patency rates.
Collapse
Affiliation(s)
- Jayne T Wolfe
- Joint Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, Wis
| | - Vaya Chen
- Versiti Blood Research Institute, Milwaukee, Wis
| | - Yiliang Chen
- Versiti Blood Research Institute, Milwaukee, Wis; Department of Medicine, Medical College of Wisconsin, Milwaukee, Wis; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wis
| | - Brandon J Tefft
- Joint Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, Wis; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wis.
| |
Collapse
|
2
|
Han JH, Park SY, Myung SH, Park J, Chang JH, Kim TH. Suppression of neointimal hyperplasia induced by arteriovenous anastomosis and balloon injury in rats by multimeric tumor necrosis factor-related apoptosis-inducing ligand. Mol Cells 2024; 47:100075. [PMID: 38823606 PMCID: PMC11227017 DOI: 10.1016/j.mocell.2024.100075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/30/2024] [Accepted: 05/26/2024] [Indexed: 06/03/2024] Open
Abstract
Excessive blood vessel wall thickening, known as intimal hyperplasia, can result from injury or inflammation and increase the risk of vascular diseases. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) plays key roles in tumor surveillance, autoimmune diseases, and apoptosis; however, its role in vascular stenosis remains controversial. Treatment with recombinant isoleucine zipper hexamerization domain soluble TRAIL (ILz(6):TRAIL) significantly inhibited the progression of neointimal hyperplasia (NH) induced by anastomosis of the carotid artery and jugular vein dose dependently, and adenovirus expressing secretable ILz(6):TRAIL also inhibited NH induced by balloon injury in the femoral artery of rats. This study demonstrated the preventive and partial regressive effects of ILz(6):TRAIL on anastomosis of the carotid artery and jugular vein- or balloon-induced NH.
Collapse
Affiliation(s)
- Ji Hye Han
- Department of Biochemistry, Chosun University School of Medicine, Gwangju 61452, Republic of Korea
| | - Sun-Young Park
- Department of Biochemistry, Chosun University School of Medicine, Gwangju 61452, Republic of Korea
| | - Seung-Hyun Myung
- Department of Biochemistry, Chosun University School of Medicine, Gwangju 61452, Republic of Korea
| | - Junghee Park
- Department of Biochemistry, Chosun University School of Medicine, Gwangju 61452, Republic of Korea
| | - Jeong Hwan Chang
- Surgery Department, Chang Surgical Clinic, Gwangju 62274, Republic of Korea
| | - Tae-Hyoung Kim
- Department of Biochemistry, Chosun University School of Medicine, Gwangju 61452, Republic of Korea.
| |
Collapse
|
3
|
Bačáková L, Chlupáč J, Filová E, Musílková J, Tomšů J, Wu YC, Svobodová L, Pražák Š, Brož A. Vascular Damage and Repair - Are Small-Diameter Vascular Grafts Still the "Holy Grail" of Tissue Engineering? Physiol Res 2024; 73:S335-S363. [PMID: 38836460 PMCID: PMC11412351 DOI: 10.33549/physiolres.935294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Cardiovascular diseases are the most important cause of morbidity and mortality in the civilized world. Stenosis or occlusion of blood vessels leads not only to events that are directly life-threatening, such as myocardial infarction or stroke, but also to a significant reduction in quality of life, for example in lower limb ischemia as a consequence of metabolic diseases. The first synthetic polymeric vascular replacements were used clinically in the early 1950s. However, they proved to be suitable only for larger-diameter vessels, where the blood flow prevents the attachment of platelets, pro-inflammatory cells and smooth muscle cells on their inner surface, whereas in smaller-diameter grafts (6 mm or less), these phenomena lead to stenosis and failure of the graft. Moreover, these polymeric vascular replacements, like biological grafts (decellularized or devitalized), are cell-free, i.e. there are no reconstructed physiological layers of the blood vessel wall, i.e. an inner layer of endothelial cells to prevent thrombosis, a middle layer of smooth muscle cells to perform the contractile function, and an outer layer to provide innervation and vascularization of the vessel wall. Vascular substitutes with these cellular components can be constructed by tissue engineering methods. However, it has to be admitted that even about 70 years after the first polymeric vascular prostheses were implanted into human patients, there are still no functional small-diameter vascular grafts on the market. The damage to small-diameter blood vessels has to be addressed by endovascular approaches or by autologous vascular substitutes, which leads to some skepticism about the potential of tissue engineering. However, new possibilities of this approach lie in the use of modern technologies such as 3D bioprinting and/or electrospinning in combination with stem cells and pre-vascularization of tissue-engineered vascular grafts. In this endeavor, sex-related differences in the removal of degradable biomaterials by the cells and in the behavior of stem cells and pre-differentiated vascular cells need to be taken into account. Key words: Blood vessel prosthesis, Regenerative medicine, Stem cells, Footprint-free iPSCs, sr-RNA, Dynamic bioreactor, Sex-related differences.
Collapse
Affiliation(s)
- L Bačáková
- Laboratory of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Corona S, Pernot M, Modine TE. The Pursuit of a Perfect Conduit. JACC Basic Transl Sci 2023; 8:35-36. [PMID: 36777166 PMCID: PMC9911328 DOI: 10.1016/j.jacbts.2022.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Silvia Corona
- UMCV, Haut-Lévêque Hospital, CHU Bordeaux, Pessac, France
| | - Mathieu Pernot
- UMCV, Haut-Lévêque Hospital, CHU Bordeaux, Pessac, France
| | | |
Collapse
|
5
|
Ono M, Kageyama S, O’Leary N, El-Kurdi MS, Reinöhl J, Solien E, Bianco RW, Doss M, Meuris B, Virmani R, Cox M, Onuma Y, Serruys PW. 1-Year Patency of Biorestorative Polymeric Coronary Artery Bypass Grafts in an Ovine Model. JACC. BASIC TO TRANSLATIONAL SCIENCE 2022; 8:19-34. [PMID: 36777172 PMCID: PMC9911320 DOI: 10.1016/j.jacbts.2022.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 11/10/2022]
Abstract
Many attempts have been made to inhibit or counteract saphenous vein graft (SVG) failure modes; however, only external support for SVGs has gained momentum in clinical utility. This study revealed the feasibility of implantation, and showed good patency out to 12 months of the novel biorestorative graft, in a challenging ovine coronary artery bypass graft model. This finding could trigger the first-in-man trial of using the novel material instead of SVG. We believe that, eventually, this novel biorestorative bypass graft can be one of the options for coronary artery bypass graft patients who have difficulty harvesting SVG.
Collapse
Key Words
- CABG, coronary artery bypass grafting
- CPB, cardiopulmonary bypass
- IH, intimal hyperplasia
- LAD, left anterior descending artery
- OCT, optical coherence tomography
- QCA, quantitative coronary angiography
- QFR, quantitative flow ratio
- RVG, restorative vascular graft
- SVG, saphenous vein graft
- coronary artery bypass graft
- coronary artery disease
- coronary revascularization
- ePTFE, expanded polytetrafluoroethylene
- polymeric bypass graft
- preclinical model
- quantitative flow ratio
- restorative vascular graft
Collapse
Affiliation(s)
- Masafumi Ono
- Amsterdam Universitair Medische Centra, University of Amsterdam, Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
- Department of Cardiology, National University of Ireland, Galway (NUIG), Galway, Ireland
| | - Shigetaka Kageyama
- Department of Cardiology, National University of Ireland, Galway (NUIG), Galway, Ireland
| | - Neil O’Leary
- Department of Cardiology, National University of Ireland, Galway (NUIG), Galway, Ireland
| | | | | | - Eric Solien
- American Preclinical Services, LLC, Minneapolis, Minnesota, USA
| | - Richard W. Bianco
- Experimental Surgical Services, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mirko Doss
- Department of Cardiac Surgery, Helios Clinic, Siegburg, Germany
| | - Bart Meuris
- Department of Cardiac Surgery, University Hospital Leuven, Leuven, Belgium
| | - Renu Virmani
- CVPath Institute, Inc, Gaithersburg, Maryland, USA
| | | | - Yoshinobu Onuma
- Department of Cardiology, National University of Ireland, Galway (NUIG), Galway, Ireland
| | - Patrick W. Serruys
- Department of Cardiology, National University of Ireland, Galway (NUIG), Galway, Ireland
- NHLI, Imperial College London, London, United Kingdom
- Address for correspondence: Dr Patrick W. Serruys, National University of Ireland, Galway (NUIG), University Road, Galway H91 TK33, Ireland.
| |
Collapse
|
6
|
Tsukada J, Mela P, Jinzaki M, Tsukada H, Schmitz-Rode T, Vogt F. Development of In Vitro Endothelialised Stents - Review. Stem Cell Rev Rep 2021; 18:179-197. [PMID: 34403073 DOI: 10.1007/s12015-021-10238-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2021] [Indexed: 01/12/2023]
Abstract
Endovascular treatment is prevalent as a primary treatment for coronary and peripheral arterial diseases. Although the introduction of drug-eluting stents (DES) dramatically reduced the risk of in-stent restenosis, stent thrombosis persists as an issue. Notwithstanding improvements in newer generation DES, they are yet to address the urgent clinical need to abolish the late stent complications that result from in-stent restenosis and are associated with late thrombus formation. These often lead to acute coronary syndromes with high mortality in coronary artery disease and acute limb ischemia with a high risk of limb amputation in peripheral arterial disease. Recently, a significant amount of research has focused on alternative solutions to improve stent biocompatibility by using tissue engineering. There are two types of tissue engineering endothelialisation methods: in vitro and in vivo. To date, commercially available in vivo endothelialised stents have failed to demonstrate antithrombotic or anti-stenosis efficacy in clinical trials. In contrast, the in vitro endothelialisation methods exhibit the advantage of monitoring cell type and growth prior to implantation, enabling better quality control. The present review discusses tissue-engineered candidate stents constructed by distinct in vitro endothelialisation approaches, with a particular focus on fabrication processes, including cell source selection, stent material composition, stent surface modifications, efficacy and safety evidence from in vitro and in vivo studies, and future directions.
Collapse
Affiliation(s)
- Jitsuro Tsukada
- Department of Diagnostic Radiology, Nihon University School of Medicine, 30-1, Oyaguchikamicho, Itabashi-ku, Tokyo, 173-8610, Japan. .,Department of Diagnostic Radiology, Keio University School of Medicine, 35, Shinanomachi, Shinjyuku-ku, Tokyo, 160-8582, Japan.
| | - P Mela
- Department of Mechanical Engineering and Munich School of BioEngineering, Technical University of Munich, Boltzmannstr. 15, Garching, Munich, 85748, Germany
| | - M Jinzaki
- Department of Diagnostic Radiology, Keio University School of Medicine, 35, Shinanomachi, Shinjyuku-ku, Tokyo, 160-8582, Japan
| | - H Tsukada
- Department of Surgery II, Tokyo Women's Medical University, 8-1, Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - T Schmitz-Rode
- AME - Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Pauwelsstrasse 30, Aachen, 52074, Germany
| | - F Vogt
- Department of Cardiology, University Hospital RWTH Aachen, Pauwelsstrasse 30, Aachen, 52074, Germany
| |
Collapse
|
7
|
Tanaka T, Tanaka R, Ogawa Y, Takagi Y, Sata M, Asakura T. Evaluation of small-diameter silk vascular grafts implanted in dogs. JTCVS OPEN 2021; 6:148-156. [PMID: 36003556 PMCID: PMC9390453 DOI: 10.1016/j.xjon.2021.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 11/25/2022]
Abstract
Objectives Methods Results Conclusions
Collapse
|
8
|
Fang S, Ellman DG, Andersen DC. Review: Tissue Engineering of Small-Diameter Vascular Grafts and Their In Vivo Evaluation in Large Animals and Humans. Cells 2021; 10:713. [PMID: 33807009 PMCID: PMC8005053 DOI: 10.3390/cells10030713] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 12/15/2022] Open
Abstract
To date, a wide range of materials, from synthetic to natural or a mixture of these, has been explored, modified, and examined as small-diameter tissue-engineered vascular grafts (SD-TEVGs) for tissue regeneration either in vitro or in vivo. However, very limited success has been achieved due to mechanical failure, thrombogenicity or intimal hyperplasia, and improvements of the SD-TEVG design are thus required. Here, in vivo studies investigating novel and relative long (10 times of the inner diameter) SD-TEVGs in large animal models and humans are identified and discussed, with emphasis on graft outcome based on model- and graft-related conditions. Only a few types of synthetic polymer-based SD-TEVGs have been evaluated in large-animal models and reflect limited success. However, some polymers, such as polycaprolactone (PCL), show favorable biocompatibility and potential to be further modified and improved in the form of hybrid grafts. Natural polymer- and cell-secreted extracellular matrix (ECM)-based SD-TEVGs tested in large animals still fail due to a weak strength or thrombogenicity. Similarly, native ECM-based SD-TEVGs and in-vitro-developed hybrid SD-TEVGs that contain xenogeneic molecules or matrix seem related to a harmful graft outcome. In contrast, allogeneic native ECM-based SD-TEVGs, in-vitro-developed hybrid SD-TEVGs with allogeneic banked human cells or isolated autologous stem cells, and in-body tissue architecture (IBTA)-based SD-TEVGs seem to be promising for the future, since they are suitable in dimension, mechanical strength, biocompatibility, and availability.
Collapse
Affiliation(s)
- Shu Fang
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, J. B. Winsløwsvej 25, 5000 Odense C, Denmark; (D.G.E.); (D.C.A.)
- The Danish Regenerative Center, Odense University Hospital, J. B. Winsløwsvej 4, 5000 Odense C, Denmark
- Institute of Clinical Research, University of Southern Denmark, J. B. Winsløwsvej 19, 5000 Odense C, Denmark
| | - Ditte Gry Ellman
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, J. B. Winsløwsvej 25, 5000 Odense C, Denmark; (D.G.E.); (D.C.A.)
- Institute of Clinical Research, University of Southern Denmark, J. B. Winsløwsvej 19, 5000 Odense C, Denmark
| | - Ditte Caroline Andersen
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, J. B. Winsløwsvej 25, 5000 Odense C, Denmark; (D.G.E.); (D.C.A.)
- The Danish Regenerative Center, Odense University Hospital, J. B. Winsløwsvej 4, 5000 Odense C, Denmark
- Institute of Clinical Research, University of Southern Denmark, J. B. Winsløwsvej 19, 5000 Odense C, Denmark
| |
Collapse
|
9
|
Wolf MF, Girdhar G, Anderson AA, Ubl SR, Thinamany S, Jeffers HN, DeRusha CE, Rodriguez‐Fernandez J, Hoffmann S, Strief CA. In vitro methodology for medical device material thrombogenicity assessments: A use condition and bioanalytical proof-of-concept approach. J Biomed Mater Res B Appl Biomater 2021; 109:358-376. [PMID: 32929881 PMCID: PMC7821245 DOI: 10.1002/jbm.b.34705] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/12/2020] [Accepted: 08/04/2020] [Indexed: 12/26/2022]
Abstract
Device manufacturers and regulatory agencies currently utilize expensive and often inconclusive in vivo vascular implant models to assess implant material thrombogenicity. We report an in vitro thrombogenicity assessment methodology where test materials (polyethylene, Elasthane™ 80A polyurethane, Pebax®), alongside positive (borosilicate glass) and negative (no material) controls, were exposed to fresh human blood, with attention to common blood-contact use conditions and the variables: material (M), material surface modification (SM) with heparin, model (Mo), time (T), blood donor (D), exposure ratio (ER; cm2 material/ml blood), heparin anticoagulation (H), and blood draw/fill technique (DT). Two models were used: (1) a gentle-agitation test tube model and (2) a pulsatile flow closed-loop model. Thrombogenicity measurements included thrombin generation (thrombin-antithrombin complex [TAT] and human prothrombin fragment F1.2), platelet activation (β-thromboglobulin), and platelet counts. We report that: (a) thrombogenicity was strongly dependent (p < .0001) on M, H, and T, and variably dependent (p < .0001 - > .05) on Mo, SM, and D (b) differences between positive control, test, and negative control materials became less pronounced as H increased from 0.6 to 2.0 U/ml, and (c) in vitro-to-in vivo case comparisons showed consistency in thrombogenicity rankings on materials classified to be of low, moderate, and high concern. In vitro methods using fresh human blood are therefore scientifically sound and cost effective compared to in vivo methods for screening intravascular materials and devices for thrombogenicity.
Collapse
|
10
|
Lampridis S, George SJ. Non-Autologous Grafts in Coronary Artery Bypass Surgery: A Systematic Review. Ann Thorac Surg 2020; 112:2094-2103. [PMID: 33340520 DOI: 10.1016/j.athoracsur.2020.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/17/2020] [Accepted: 11/02/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Suitable autologous conduits may be lacking when performing coronary artery bypass grafting (CABG). The aim of this review is to determine the status of non-autologous grafts in CABG. METHODS We conducted a literature search on MEDLINE All, Embase Classic and Embase through Ovid from 1960 to April 2020. RESULTS Of the 1579 records identified, 21 studies were included in the review. The following grafts were assessed for patency: 109 homologous saphenous veins (patency rates ranged from 66.7% at a median follow-up of 8.5 months to 0% at 6-12 and 7-18 months, respectively), 29 expanded polytetrafluoroethylene (ePTFE) grafts (from 80% at a median follow-up of 5 months to 14.3% at 45 months), 12 human umbilical veins (50% at a median follow-up of 6 months), 50 Bioflow bovine internal mammary arteries (from 15.8% to 0% at a mean follow-up of 9.5 and 19 months, respectively), 39 Perma-Flow grafts (80% and 76.9% at 1-3 and 12 months, respectively), 20 No-React bovine internal mammary arteries (57.1% at a median follow-up of 28 months and 23.1% at a mean follow-up of 7 months), 40 autologous venous endothelial cell-seeded ePTFE grafts (94.7% and 81% at a mean follow-up of 27 and 60 months, respectively) and 12 autologous venous endothelial cell-seeded cryopreserved homologous veins (83.3% at a mean follow-up of 8.5 months). CONCLUSIONS The goal of an alternative conduit with patency and attributes that match those of autografts remains elusive. Autologous endothelial cell-seeded synthetic grafts have demonstrated promising results but require further investigation.
Collapse
Affiliation(s)
| | - Sarah J George
- Bristol Medical School, University of Bristol, United Kingdom
| |
Collapse
|
11
|
Pooria A, Pourya A, Gheini A. Application of tissue-engineered interventions for coronary artery bypass grafts. Future Cardiol 2020; 16:675-685. [PMID: 32643391 DOI: 10.2217/fca-2019-0050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Coronary artery bypass graft is one of the extensively conducted procedures to release occlusion in the coronary vessel. Various biological grafts are used for this purpose, superiorly, saphenous vein graft, if unavailable, other vessels in the body, with likewise characteristics are exploited for the purpose. The choice of graft is yet under discovery that could impeccably meet all the requirements. Variation in perioperative and postoperative results have given uneven clinical inferences of these conduits. Alternatively, tissue-engineering is also being applied in this area for clinical improvements. This review underlines some of the commonly used grafts for coronary artery bypass graft and advancements in tissue engineering for this purpose.
Collapse
Affiliation(s)
- Ali Pooria
- Department of Cardiology, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Afsoun Pourya
- Student of Research Committee, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Gheini
- Department of Cardiology, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
12
|
Yuan Y, Khan S, Stewart DJ, Courtman DW. Engineering blood outgrowth endothelial cells to optimize endothelial nitric oxide synthase and extracellular matrix production for coating of blood contacting surfaces. Acta Biomater 2020; 109:109-120. [PMID: 32302726 DOI: 10.1016/j.actbio.2020.04.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 12/26/2022]
Abstract
Coverage of blood contacting surfaces by a functional endothelial layer is likely required to induce and maintain homeostasis. Blood outgrowth endothelial cells (BOECs), cultured from human peripheral blood monocytes, are readily available and functional autologous endothelial source that may represent a reasonable alternative to vascular derived cells. Endothelial nitric oxide synthase (eNOS) produces NO, an important factor that regulates homeostasis at the blood-contacting surface. We found that BOECs express markedly lower levels of eNOS protein (34% ± 13%, Western blot) and mRNA (29% ± 17%, qRT-PCR), as well as exhibiting reduced activity (49% ± 18%, Nitrite analysis) when compared to human umbilical vein endothelial cells (HUVECs) and human aortic endothelial cells. HUVECs grown on fibronectin, type I collagen, or laminin -coated surfaces exhibited significant reduction of eNOS mRNA and protein expression. However, no decrease in eNOS levels was observed in BOECs. Interestingly BOECs expressed significantly higher Collagen (Col) I compared to HUVECs, and blocking Col I synthesis significantly enhanced eNOS expression in BOECs. Inhibition of β1 integrin, focal adhesion kinase (FAK), or actin polymerization increased eNOS in both BOECs and HUVECs suggesting involvement of a signaling pathway culminating in stabilization of the cytoskeleton. Finally, we demonstrated that a Rho-associated protein kinases (ROCK) inhibitor, as a disruptor of actin stabilization, enhanced both eNOS expression and bioactivity. Taken together, our findings demonstrate that cell-ECM interactions are fundamental to the regulation of eNOS in BOECs and suggest that disruption of key intracellular pathways (such as ROCK) may be necessary to enhance functional activity of an endothelialized surface. STATEMENT OF SIGNIFICANCE: Development of biocompatible blood-contacting biomaterial surfaces has not been possible to date, leading many investigators to believe that a complete autologous endothelial layer will be necessary. Blood outgrowth endothelial cells (BOECs), cultured from human peripheral blood monocytes, are readily available and functional autologous endothelial source. Endothelial nitric oxide synthase (eNOS) produces NO, an important factor that regulates homeostasis at the blood-contacting surface. In this study, we show that eNOS displays limited expression in cultured BOECs. We further demonstrate that a strong negative regulation of eNOS is mediated by collagen substrates and that treatment with ROCK inhibitor could enhance both eNOS expression and activity in BOECs and help to rapidly establish a functional autologous endothelial layer on cardiovascular biomaterials.
Collapse
Affiliation(s)
- Yifan Yuan
- Ottawa Hospital Research Institute, General Campus, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; Department of Anaesthesiology, Yale University, 10 Amistad Rd, New Haven, CT 06519, United States
| | - Saad Khan
- Ottawa Hospital Research Institute, General Campus, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada
| | - Duncan J Stewart
- Ottawa Hospital Research Institute, General Campus, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; Department of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - David W Courtman
- Ottawa Hospital Research Institute, General Campus, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada; Department of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
13
|
Lykov AP, Poveshchenko OV, Surovtseva MA, Bondarenko NA, Kim II, Kretov EI, Prokhorikhin AA, Tarkova AR, Malaev DU, Boĭkov AA. [Effect of polyethylene terephthalate (Dacron®) on functional potential of human bone-marrow/progenitor stem cells]. ANGIOLOGII︠A︡ I SOSUDISTAI︠A︡ KHIRURGII︠A︡ = ANGIOLOGY AND VASCULAR SURGERY 2019; 25:25-30. [PMID: 30994604 DOI: 10.33529/angio2019103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Vascular grafts made of polytetrafluoroethylene and polyethylene terephthalate have widely been used in cardiovascular surgery. The causes of delayed colonization of such grafts by endotheliocytes and mesenchymal stem cells have not been adequately investigated. The authors examined the effect of polyethylene terephthalate on the functional activity of human bone marrow mesenchymal stem cells and endothelial progenitor cells in vitro. Proliferation (MTT assay, real-time cellular impedance), migration (Boyden chamber, real-time cellular impedance), and nitric oxide production (spectrophotometciacally) by progenitor endothelial cells and mesenchymal stem cells were assessed with and without the presence of polyethylene terephthalate. The functional activity of the cells was shown to depend on the presence of polyethylene terephthalate in a well with cells. Thus, polyethylene terephthalate turned out to exhibit a toxic effect on progenitor endothelial and mesenchymal stem cells. Treatment of grafts with gelatine or fibronectin improved colonization of grafts with cells.
Collapse
Affiliation(s)
- A P Lykov
- National Medical Research Centre named after Academician E.N. Meshalkin under the RF Ministry of Public Health, Novosibirsk, Russia; Research Institute of Clinical and Experimental Lymphology - Branch of the Institute of Pathology and Genetics under the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - O V Poveshchenko
- National Medical Research Centre named after Academician E.N. Meshalkin under the RF Ministry of Public Health, Novosibirsk, Russia; Research Institute of Clinical and Experimental Lymphology - Branch of the Institute of Pathology and Genetics under the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - M A Surovtseva
- National Medical Research Centre named after Academician E.N. Meshalkin under the RF Ministry of Public Health, Novosibirsk, Russia; Research Institute of Clinical and Experimental Lymphology - Branch of the Institute of Pathology and Genetics under the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - N A Bondarenko
- National Medical Research Centre named after Academician E.N. Meshalkin under the RF Ministry of Public Health, Novosibirsk, Russia; Research Institute of Clinical and Experimental Lymphology - Branch of the Institute of Pathology and Genetics under the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - I I Kim
- National Medical Research Centre named after Academician E.N. Meshalkin under the RF Ministry of Public Health, Novosibirsk, Russia; Research Institute of Clinical and Experimental Lymphology - Branch of the Institute of Pathology and Genetics under the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E I Kretov
- National Medical Research Centre named after Academician E.N. Meshalkin under the RF Ministry of Public Health, Novosibirsk, Russia
| | - A A Prokhorikhin
- National Medical Research Centre named after Academician E.N. Meshalkin under the RF Ministry of Public Health, Novosibirsk, Russia
| | - A R Tarkova
- National Medical Research Centre named after Academician E.N. Meshalkin under the RF Ministry of Public Health, Novosibirsk, Russia
| | - D U Malaev
- National Medical Research Centre named after Academician E.N. Meshalkin under the RF Ministry of Public Health, Novosibirsk, Russia
| | - A A Boĭkov
- National Medical Research Centre named after Academician E.N. Meshalkin under the RF Ministry of Public Health, Novosibirsk, Russia
| |
Collapse
|
14
|
Non-invasive functional molecular phenotyping of human smooth muscle cells utilized in cardiovascular tissue engineering. Acta Biomater 2019; 89:193-205. [PMID: 30878445 DOI: 10.1016/j.actbio.2019.03.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 12/20/2022]
Abstract
Smooth muscle cell (SMC) diversity and plasticity are limiting factors in their characterization and application in cardiovascular tissue engineering. This work aimed to evaluate the potential of Raman microspectroscopy and Raman imaging to distinguish SMCs of different tissue origins and phenotypes. Cultured human SMCs isolated from different vascular and non-vascular tissues as well as fixed human SMC-containing tissues were analyzed. In addition, Raman spectra and images of tissue-engineered SMC constructs were acquired. Routine techniques such as qPCR, histochemistry, histological and immunocytological staining were performed for comparative gene and protein expression analysis. We identified that SMCs of different tissue origins exhibited unique spectral information that allowed a separation of all groups of origin by multivariate data analysis (MVA). We were further able to non-invasively monitor phenotypic switching in cultured SMCs and assess the impact of different culture conditions on extracellular matrix remodeling in the tissue-engineered ring constructs. Interestingly, we identified that the Raman signature of the human SMC-based ring constructs was similar to the one obtained from native aortic tissue. We conclude that Raman microspectroscopic methods are promising tools to characterize cells and define cellular and extracellular matrix components on a molecular level. In this study, in situ measurements were marker-independent, fast, and identified cellular differences that were not detectable by established routine techniques. Perspectively, Raman microspectroscopy and MVA in combination with artificial intelligence can be suitable for automated quality monitoring of (stem) cell and cell-based tissue engineering products. STATEMENT OF SIGNIFICANCE: The accessibility of autologous blood vessels for surgery is limited. Tissue engineering (TE) aims to develop functional vascular replacements; however, no commercially available TE vascular graft (TEVG) exists to date. One limiting factor is the availability of a well-characterized and safe cell source. Smooth muscle cells (SMCs) are generally used for TEVGs. To engineer a TEVG, proliferating SMCs of the synthesizing phenotype are essential, whereas functional, sustainable TEVGs require SMCs of the contractile phenotype. SMC diversity and plasticity are therefore limiting factors, also for their quality monitoring and application in TE. In this study, Raman microspectroscopy and imaging combined with machine learning tools allowed the non-destructive, marker-independent characterization of SMCs, smooth muscle tissues and TE SMC-constructs. The spectral information was specific enough to distinguish for the first time the phenotypic switching in SMCs in real-time, and monitor the impact of culture conditions on ECM remodeling in the TE SMC-constructs.
Collapse
|
15
|
Asakura T, Tanaka T, Tanaka R. Advanced Silk Fibroin Biomaterials and Application to Small-Diameter Silk Vascular Grafts. ACS Biomater Sci Eng 2019; 5:5561-5577. [PMID: 33405687 DOI: 10.1021/acsbiomaterials.8b01482] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As the incidences of cardiovascular diseases have been on the rise in recent years, the need for small-diameter artificial vascular grafts is increasing globally. Although synthetic polymers such as expanded polytetrafluoroethylene or poly(ethylene terephthalate) have been successfully used for artificial vascular grafts ≥6 mm in diameter, they fail at smaller diameters (<6 mm) due to thrombus formation and intimal hyperplasia. Thus, development of vascular grafts for small diameter vessel replacement that are <6 mm in diameter remains a major clinical challenge. Silk fibroin (SF) from Bombyx mori silkworm is well-known as an excellent textile and also has been used as suture material in surgery for more than 2000 years. Many attempts to develop small-diameter SF vascular grafts with <6 mm in diameter have been reported. Here, research and development in small-diameter vascular grafts with SF are reviewed as follows: (1) the heterogeneous structure of SF fiber (Silk II), including the packing arrangements and type II β-turn structure of SF (Silk I*) before spinning; (2) SF modified by transgenic silkworm, which is more suitable for vascular grafts; (3) preparation of small-diameter SF vascular grafts; (4) characterization of SF in the hydrated state, including dynamics of water molecules by nuclear magnetic resonance; and (5) evaluation of the SF grafts by in vivo implantation experiment. According to the findings, SF is a promising material for small-diameter vascular graft development.
Collapse
Affiliation(s)
- Tetsuo Asakura
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Takashi Tanaka
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Ryo Tanaka
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
16
|
Effect of Polyethylene Terephthalate on Functional Properties of Endothelial and Mesenchymal Cells. Bull Exp Biol Med 2019; 166:580-585. [DOI: 10.1007/s10517-019-04395-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Indexed: 11/25/2022]
|
17
|
Bioprinted gelatin hydrogel platform promotes smooth muscle cell contractile phenotype maintenance. Biomed Microdevices 2018; 20:32. [PMID: 29594704 DOI: 10.1007/s10544-018-0274-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Three dimensional (3D) bioprinting has been proposed as a method for fabricating tissue engineered small diameter vascular prostheses. This technique not only involves constructing the structural features to obtain a desired pattern but the morphology of the pattern may also be used to influence the behavior of seeded cells. Herein, we 3D bioprinted a gelatin hydrogel microchannel construct to promote and preserve the contractile phenotype of vascular smooth muscle cells (vSMCs), which is crucial for vasoresponsiveness. The microchanneled surface of a gelatin hydrogel facilitated vSMC attachment and an elongated alignment along the microchannel direction. The cells displayed distinct F-actin anisotropy in the direction of the channel. The vSMC contractile phenotype was confirmed by the positive detection of contractile marker gene proteins (α-smooth muscle actin (α-SMA) and smooth muscle-myosin heavy chain (SM-MHC)). Having demonstrated the effectiveness of the hydrogel channels bioprinted on a film, the bioprinting was applied radially to the surface of a 3D tubular construct by integrating a rotating mandrel into the 3D bioprinter. The hydrogel microchannels printed on the 3D tubular vascular construct also orientated the vSMCs and strongly promoted the contractile phenotype. Together, our study demonstrated that microchannels bioprinted using a transglutaminase crosslinked gelatin hydrogel, could successfully promote and preserve vSMC contractile phenotype. Furthermore, the hydrogel bioink could be retained on the surface of a rotating polymer tube to print radial cell guiding channels onto a vascular graft construct.
Collapse
|
18
|
Laube H, Matthäus M. A new semi-automatic endothelial cell seeding technique for biological prosthetic heart valves. Int J Artif Organs 2018. [DOI: 10.1177/039139880102400413] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Until today, tissue heart valve prostheses have been made with biological dead porcine or bovine tissue. However, the durability of this tissue is limited due to degeneration and calcification. Surface seeding with vital human endothelial cells (EC) could improve valve durability and bio-compatibility. A new seeding technique that includes a newly developed special seeding device is presented here. Methods The aortic valve, including a cylinder of the aortic root, was prepared from a fresh porcine heart taken from the slaughterhouse. Porcine endothelial cells were removed by surface treatment with chemical detergent solutions. A new seeding device with an integrated CO2-incubator was designed. The device is composed of: the seeding chamber (SC), the rotation unit (RU), and the Control Unit (CU). The porcine aortic root cylinder with the valve leaflets is placed into the SC. A matrix of fibronectin is applied to the acellular valve. The SC is then filled with the endothelial cells suspended in modified Dulbecco's eagle medium (DMEM). Under cell culture conditions, the endothelial cell seeding of the tissue valve is established by rotating the valve around two orthogonal axes simultaneously and independently. This is done following the software controlled preset parameters. Results Using initial endothelial cell seeding concentrations of 6×106 endothelial cells/ml DMEM, it was possible to achieve a seeding efficiency of 80–85% within 3–4 hrs. Cell viability tests proved that 90–95% of the seeded endothelial cells are vital after the seeding procedure. Conclusions This new seeding technique allows the complex warped surface of a tissue heart valve to be covered with vital endothelial cells to form a confluent endothelial cell monolayer.
Collapse
Affiliation(s)
- H.R. Laube
- Department of Cardiovascular Surgery, University Hospital Charité, Humboldt University Berlin, Berlin - Germany
| | - M. Matthäus
- Department of Cardiovascular Surgery, University Hospital Charité, Humboldt University Berlin, Berlin - Germany
| |
Collapse
|
19
|
Filipe EC, Santos M, Hung J, Lee BS, Yang N, Chan AH, Ng MK, Rnjak-Kovacina J, Wise SG. Rapid Endothelialization of Off-the-Shelf Small Diameter Silk Vascular Grafts. JACC Basic Transl Sci 2018; 3:38-53. [PMID: 30062193 PMCID: PMC6058932 DOI: 10.1016/j.jacbts.2017.12.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 12/13/2017] [Accepted: 12/15/2017] [Indexed: 12/12/2022]
Abstract
Synthetic vascular grafts for small diameter revascularization are lacking. Clinically available conduits expanded polytetrafluorethylene and Dacron fail acutely due to thrombosis and in the longer term from neointimal hyperplasia. We report the bioengineering of a cell-free, silk-based vascular graft. In vitro we demonstrate strong, elastic silk conduits that support rapid endothelial cell attachment and spreading while simultaneously resisting blood clot and fibrin network formation. In vivo rat studies show complete graft patency at all time points, rapid endothelialization, and stabilization and contraction of neointimal hyperplasia. These studies show the potential of silk as an off-the-shelf small diameter vascular graft.
Collapse
Affiliation(s)
- Elysse C. Filipe
- Applied Materials Group, The Heart Research Institute, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Miguel Santos
- Applied Materials Group, The Heart Research Institute, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Juichien Hung
- Applied Materials Group, The Heart Research Institute, Sydney, New South Wales, Australia
| | - Bob S.L. Lee
- Applied Materials Group, The Heart Research Institute, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Nianji Yang
- Applied Materials Group, The Heart Research Institute, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Alex H.P. Chan
- Applied Materials Group, The Heart Research Institute, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Martin K.C. Ng
- Applied Materials Group, The Heart Research Institute, Sydney, New South Wales, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Jelena Rnjak-Kovacina
- Graduate School of Biomedical Engineering, University of New South Wales–Sydney, Sydney, New South Wales, Australia
| | - Steven G. Wise
- Applied Materials Group, The Heart Research Institute, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
20
|
Cikirikcioglu M, Sedelnikov N, Osorio-Da Cruz S, Khabiri E, Donmez Antal A, Tatar T, Tille JC, Hess OM, Kalangos A, Walpoth BH. Improved Neo-Endothelialization of Small Diameter ePTFE Grafts with Titanium Coating. Int J Artif Organs 2018; 29:990-9. [PMID: 17211821 DOI: 10.1177/039139880602901010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Patency of small synthetic bypass grafts is inferior compared to autologous grafts for revascularization procedures. Titanium coating of foreign surfaces has shown to decrease thrombogenicity, enhance biocompatibility and promote adhesion of endothelial cells. The aim of this study was to test the effect of titanium coating of small diameter ePTFE grafts on short term patency, neo-endothelialization and neointimal proliferation. Methods Bilateral carotid graft interposition was performed in 5 pigs with uncoated (n=5) and titanium-coated (n=5) ePTFE grafts (internal diameter=4 mm, length=5 cm), thus each pig served as its own control. At the end of the study (30 ± 3 days), patency and stenosis severity was assessed by carotid angiography. Animals were sacrificed and grafts were excised for histology and scanning electron microscopy. Morphometry of histologic sections was carried out to determine neointimal proliferation and percentage of neo-endothelial coverage. Results Patency rate was 80% for uncoated and titanium-coated grafts. Quantitative angiography did not show any significant difference in lumen size between two groups. Morphometry revealed a significantly higher cellular coverage with CD 31 positive endothelial cells for titanium-coated (84 ± 19%) than uncoated grafts (48 ± 26%, p<0.001). There was a non significant trend (p=0.112) towards increased neointimal proliferation in titanium-coated (94 ± 61 μm2/μm) compared to uncoated grafts (60 ± 57 μm2/μm). Conclusions Patency rate in uncoated and titanium-coated ePTFE grafts is similar at one month. However, titanium coated grafts show a significant improvement in neo-endothelialization compared to uncoated grafts.
Collapse
Affiliation(s)
- M Cikirikcioglu
- Department of Cardiovascular Surgery, University Hospital, Geneva, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Khorramirouz R, Kameli SM, Eftekharzadeh S, Kajbafzadeh AM. Application of omentum as anin vivobioreactor for regeneration of decellularized human internal mammary artery. J Biomed Mater Res A 2017; 105:2685-2693. [DOI: 10.1002/jbm.a.36121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/04/2017] [Accepted: 05/19/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Reza Khorramirouz
- Pediatric Urology Research Center, Department of Pediatric Urology; Pediatrics Center of Excellence, Tehran University of Medical Sciences; Tehran Iran
| | - Seyedeh Maryam Kameli
- Pediatric Urology Research Center, Department of Pediatric Urology; Pediatrics Center of Excellence, Tehran University of Medical Sciences; Tehran Iran
| | - Sahar Eftekharzadeh
- Pediatric Urology Research Center, Department of Pediatric Urology; Pediatrics Center of Excellence, Tehran University of Medical Sciences; Tehran Iran
| | - Abdol-Mohammad Kajbafzadeh
- Pediatric Urology Research Center, Department of Pediatric Urology; Pediatrics Center of Excellence, Tehran University of Medical Sciences; Tehran Iran
| |
Collapse
|
22
|
Evaluation of endothelialization in the center part of graft using 3 cm vascular grafts implanted in the abdominal aortae of the rat. J Artif Organs 2017; 20:221-229. [DOI: 10.1007/s10047-017-0957-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 03/25/2017] [Indexed: 01/22/2023]
|
23
|
Emmert MY, Fioretta ES, Hoerstrup SP. Translational Challenges in Cardiovascular Tissue Engineering. J Cardiovasc Transl Res 2017; 10:139-149. [PMID: 28281240 DOI: 10.1007/s12265-017-9728-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/03/2017] [Indexed: 01/23/2023]
Abstract
Valvular heart disease and congenital heart defects represent a major cause of death around the globe. Although current therapy strategies have rapidly evolved over the decades and are nowadays safe, effective, and applicable to many affected patients, the currently used artificial prostheses are still suboptimal. They do not promote regeneration, physiological remodeling, or growth (particularly important aspects for children) as their native counterparts. This results in the continuous degeneration and subsequent failure of these prostheses which is often associated with an increased morbidity and mortality as well as the need for multiple re-interventions. To overcome this problem, the concept of tissue engineering (TE) has been repeatedly suggested as a potential technology to enable native-like cardiovascular replacements with regenerative and growth capacities, suitable for young adults and children. However, despite promising data from pre-clinical and first clinical pilot trials, the translation and clinical relevance of such TE technologies is still very limited. The reasons that currently limit broad clinical adoption are multifaceted and comprise of scientific, clinical, logistical, technical, and regulatory challenges which need to be overcome. The aim of this review is to provide an overview about the translational problems and challenges in current TE approaches. It further suggests directions and potential solutions on how these issues may be efficiently addressed in the future to accelerate clinical translation. In addition, a particular focus is put on the current regulatory guidelines and the associated challenges for these promising TE technologies.
Collapse
Affiliation(s)
- Maximilian Y Emmert
- Institute for Regenerative Medicine (IREM), University of Zurich, Moussonstrasse 13, 8091, Zurich, Switzerland.,Heart Center Zurich, University Hospital Zurich, Zurich, Switzerland.,Wyss Translational Center Zurich, Zurich, Switzerland
| | - Emanuela S Fioretta
- Institute for Regenerative Medicine (IREM), University of Zurich, Moussonstrasse 13, 8091, Zurich, Switzerland
| | - Simon P Hoerstrup
- Institute for Regenerative Medicine (IREM), University of Zurich, Moussonstrasse 13, 8091, Zurich, Switzerland. .,Wyss Translational Center Zurich, Zurich, Switzerland.
| |
Collapse
|
24
|
Zhang J, Huang H, Ju R, Chen K, Li S, Wang W, Yan Y. In vivo biocompatibility and hemocompatibility of a polytetrafluoroethylene small diameter vascular graft modified with sulfonated silk fibroin. Am J Surg 2017; 213:87-93. [DOI: 10.1016/j.amjsurg.2016.04.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 03/30/2016] [Accepted: 04/04/2016] [Indexed: 10/20/2022]
|
25
|
Xie Y, Guan Y, Kim SH, King MW. The mechanical performance of weft-knitted/electrospun bilayer small diameter vascular prostheses. J Mech Behav Biomed Mater 2016; 61:410-418. [DOI: 10.1016/j.jmbbm.2016.04.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 04/04/2016] [Accepted: 04/06/2016] [Indexed: 11/16/2022]
|
26
|
Zou T, Fan J, Fartash A, Liu H, Fan Y. Cell-based strategies for vascular regeneration. J Biomed Mater Res A 2016; 104:1297-314. [PMID: 26864677 DOI: 10.1002/jbm.a.35660] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 01/17/2016] [Accepted: 01/19/2016] [Indexed: 01/12/2023]
Abstract
Vascular regeneration is known to play an essential role in the repair of injured tissues mainly through accelerating the repair of vascular injury caused by vascular diseases, as well as the recovery of ischemic tissues. However, the clinical vascular regeneration is still challenging. Cell-based therapy is thought to be a promising strategy for vascular regeneration, since various cells have been identified to exert important influences on the process of vascular regeneration such as the enhanced endothelium formation on the surface of vascular grafts, and the induction of vessel-like network formation in the ischemic tissues. Here are a vast number of diverse cell-based strategies that have been extensively studied in vascular regeneration. These strategies can be further classified into three main categories, including cell transplantation, construction of tissue-engineered grafts, and surface modification of scaffolds. Cells used in these strategies mainly refer to terminally differentiated vascular cells, pluripotent stem cells, multipotent stem cells, and unipotent stem cells. The aim of this review is to summarize the reported research advances on the application of various cells for vascular regeneration, yielding insights into future clinical treatment for injured tissue/organ.
Collapse
Affiliation(s)
- Tongqiang Zou
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, People's Republic of China
| | - Jiabing Fan
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, California, 90095
| | - Armita Fartash
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, California, 90095
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, People's Republic of China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, People's Republic of China.,National Research Center for Rehabilitation Technical Aids, Beijing, 100176, People's Republic of China
| |
Collapse
|
27
|
Uzarski JS, Cores J, McFetridge PS. Physiologically Modeled Pulse Dynamics to Improve Function in In Vitro-Endothelialized Small-Diameter Vascular Grafts. Tissue Eng Part C Methods 2015; 21:1125-34. [PMID: 25996580 PMCID: PMC4638211 DOI: 10.1089/ten.tec.2015.0110] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/18/2015] [Indexed: 01/01/2023] Open
Abstract
The lack of a functional endothelium on small-diameter vascular grafts leads to intimal hyperplasia and thrombotic occlusion. Shear stress conditioning through controlled hydrodynamics within in vitro perfusion bioreactors has shown promise as a mechanism to drive endothelial cell (EC) phenotype from an activated, pro-inflammatory wound state toward a quiescent functional state that inhibits responses that lead to occlusive failure. As part of an overall design strategy to engineer functional vascular grafts, we present a novel two-phase shear conditioning approach to improve graft endothelialization. Axial rotation was first used to seed uniform EC monolayers onto the lumenal surface of decellularized scaffolds derived from the human umbilical vein. Using computer-controlled perfusion circuits, a flow-ramping paradigm was applied to adapt endothelia to arterial levels of fluid shear stress and pressure without graft denudation. The effects of constant pulse frequencies (CF) on EC quiescence were then compared with pulse frequencies modeled from temporal fluctuations in blood flow observed in vivo, termed physiologically modeled pulse dynamics (PMPD). Constructs exposed to PMPD for 72 h expressed a more functional transcriptional profile, lower metabolic activity (39.8% ± 8.4% vs. 62.5% ± 11.5% reduction, p = 0.012), and higher nitric oxide production (80.42 ± 23.93 vs. 48.75 ± 6.93 nmol/10(5) cells, p = 0.028) than those exposed to CF. By manipulating in vitro flow conditions to mimic natural physiology, endothelialized vascular grafts can be stimulated to express a nonactivated phenotype that would better inhibit peripheral cell adhesion and smooth muscle cell hyperplasia, conditions that typically lead to occlusive failure. Development of robust, functional endothelia on vascular grafts by modulation of environmental conditions within perfusion bioreactors may ultimately improve clinical outcomes in vascular bypass grafting.
Collapse
Affiliation(s)
- Joseph S Uzarski
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida , Gainesville, Florida
| | - Jhon Cores
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida , Gainesville, Florida
| | - Peter S McFetridge
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida , Gainesville, Florida
| |
Collapse
|
28
|
Caputo M, Saif J, Rajakaruna C, Brooks M, Angelini GD, Emanueli C. MicroRNAs in vascular tissue engineering and post-ischemic neovascularization. Adv Drug Deliv Rev 2015; 88:78-91. [PMID: 25980937 PMCID: PMC4728183 DOI: 10.1016/j.addr.2015.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 04/24/2015] [Accepted: 05/07/2015] [Indexed: 12/19/2022]
Abstract
Increasing numbers of paediatric patients with congenital heart defects are surviving to adulthood, albeit with continuing clinical needs. Hence, there is still scope for revolutionary new strategies to correct vascular anatomical defects. Adult patients are also surviving longer with the adverse consequences of ischemic vascular disease, especially after acute coronary syndromes brought on by plaque erosion and rupture. Vascular tissue engineering and therapeutic angiogenesis provide new hope for these patients. Both approaches have shown promise in laboratory studies, but have not yet been able to deliver clear evidence of clinical success. More research into biomaterials, molecular medicine and cell and molecular therapies is necessary. This review article focuses on the new opportunities offered by targeting microRNAs for the improved production and greater empowerment of vascular cells for use in vascular tissue engineering or for increasing blood perfusion of ischemic tissues by amplifying the resident microvascular network.
Collapse
Affiliation(s)
- Massimo Caputo
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol, UK; RUSH University Medical Center, Chicago, IL, USA
| | - Jaimy Saif
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Cha Rajakaruna
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Marcus Brooks
- University Hospital Bristol NHS Trust-Vascular Surgery Unit, Bristol, UK
| | - Gianni D Angelini
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol, UK; National Heart and Lung Institute, Imperial College London, London, England, UK
| | - Costanza Emanueli
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol, UK; National Heart and Lung Institute, Imperial College London, London, England, UK.
| |
Collapse
|
29
|
A novel peritoneum derived vascular prosthesis formed on a latex catheter in an SDF-1 chemokine enriched environment: a pilot study. Int J Artif Organs 2015; 38:89-95. [PMID: 25744192 DOI: 10.5301/ijao.5000396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2015] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Although saphenous vein grafts are widely used conduits for coronary artery bypass graft surgery, their clinical value remains limited due to high failure rates. The aim of the study was to evaluate feasibility, safety, and biocompatibility of peritoneal derived vascular grafts (PDVG) formed on a silicone-coated, latex, Foley catheter in a stromal cell-derived factor (SDF-1)- enriched environment. METHODS Foley catheters were implanted into the parietal wall of 8 sheep. After 21 days the peritoneal cavity was re-opened and the newly formed tissue fragments were harvested. The animals were randomly assigned into: (1) study group in which conduits were incubated in a solution containing SDF-1, (2) control group without SDF-1 incubation. Left carotid arteries were accessed and "end-to-side" anastomoses were performed. Biological materials for histological examination were taken at 4, 7, 10, and 14 days. RESULTS AND CONCLUSIONS The study proved safety, feasibility, and biocompatibility of PDVG formed on the basis of a silicone-coated, latex catheter in an SDF-1 chemokine-enriched environment. These biological grafts effectively integrated with the native high-pressure arterial environment in an ovine model and provided favorable vascular profile. The potential clinical value of this technology needs to be further elucidated in long-term preclinical and clinical studies.
Collapse
|
30
|
Blaeser A, Campos DFD, Köpf M, Weber M, Fischer H. Assembly of thin-walled, cell-laden hydrogel conduits inflated with perfluorocarbon. RSC Adv 2014. [DOI: 10.1039/c4ra04135f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
31
|
Zhou M, Qiao W, Liu Z, Shang T, Qiao T, Mao C, Liu C. Development and in vivo evaluation of small-diameter vascular grafts engineered by outgrowth endothelial cells and electrospun chitosan/poly(ε-caprolactone) nanofibrous scaffolds. Tissue Eng Part A 2013; 20:79-91. [PMID: 23902162 DOI: 10.1089/ten.tea.2013.0020] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Successful engineering of a small-diameter vascular graft is still a challenge despite numerous attempts for decades. The present study aimed at developing a tissue-engineered vascular graft (TEVG) using autologous outgrowth endothelial cells (OECs) and a hybrid biodegradable polymer scaffold. OECs were harvested from canine peripheral blood and proliferated in vitro, as well as identified by immunofluorescent staining. Electrospun hybrid chitosan/poly(ε-caprolactone) (CS/PCL) nanofibers were fabricated and served as vascular scaffolds. TEVGs were constructed in vitro by seeding OECs onto CS/PCL scaffolds, and then implanted into carotid arteries of cell-donor dogs (n=6). After 3 months of implantation, 5 out of 6 of TEVGs remained patent as compared with 1 out of 6 of unseeded grafts kept patent. Histological and immunohistochemical analyses of the TEVGs retrieved at 3 months revealed the regeneration of endothelium, and the presence of collagen and elastin. OECs labeled with fluorescent dye before implantation were detected in the retrieved TEVGs, indicating that the OECs participated in the vascular tissue regeneration. Biomechanical testing of TEVGs showed good mechanical properties that were closer to native carotid arteries. RT-PCR and western blot analysis demonstrated that TEVGs had favorable biological functional properties resembling native arteries. Overall, this study provided a new strategy to develop small-diameter TEVGs with excellent biocompatibility and regeneration ability.
Collapse
Affiliation(s)
- Min Zhou
- 1 Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School , Nanjing, P.R. China
| | | | | | | | | | | | | |
Collapse
|
32
|
Hoesli CA, Garnier A, Juneau PM, Chevallier P, Duchesne C, Laroche G. A fluorophore-tagged RGD peptide to control endothelial cell adhesion to micropatterned surfaces. Biomaterials 2013; 35:879-90. [PMID: 24183170 DOI: 10.1016/j.biomaterials.2013.09.076] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 09/24/2013] [Indexed: 01/08/2023]
Abstract
The long-term patency rates of vascular grafts and stents are limited by the lack of surface endothelialisation of the implanted materials. We have previously reported that GRGDS and WQPPRARI peptide micropatterns increase the endothelialisation of prosthetic materials in vitro. To investigate the mechanisms by which the peptide micropatterns affect endothelial cell adhesion and proliferation, a TAMRA fluorophore-tagged RGD peptide was designed. Live cell imaging revealed that the micropatterned surfaces led to directional cell spreading dependent on the location of the RGD-TAMRA spots. Focal adhesions formed within 3 h on the micropatterned surfaces near RGD-TAMRA spot edges, as expected for cell regions experiencing high tension. Similar levels of focal adhesion kinase phosphorylation were observed after 3 h on the micropatterned surfaces and on surfaces treated with RGD-TAMRA alone, suggesting that partial RGD surface coverage is sufficient to elicit integrin signaling. Lastly, endothelial cell expansion was achieved in serum-free conditions on gelatin-coated, RGD-TAMRA treated or micropatterned surfaces. These results show that these peptide micropatterns mainly impacted cell adhesion kinetics rather than cell proliferation. This insight will be useful for the optimization of micropatterning strategies to improve vascular biomaterials.
Collapse
Affiliation(s)
- Corinne A Hoesli
- Centre de Recherche sur les Matériaux Avancés, Département de génie des mines, de la métallurgie et des matériaux, Université Laval, Québec G1V 0A6, Canada; Centre de recherche du CHU de Québec, Hôpital Saint-François d'Assise, Québec G1L 3L5, Canada; PROTEO Research Center and Département de génie chimique, Université Laval, Québec G1V 0A6, Canada.
| | | | | | | | | | | |
Collapse
|
33
|
Byrom MJ, Ng MKC, Bannon PG. Biomechanics and biocompatibility of the perfect conduit-can we build one? Ann Cardiothorac Surg 2013; 2:435-43. [PMID: 23977620 DOI: 10.3978/j.issn.2225-319x.2013.05.04] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 05/17/2013] [Indexed: 01/24/2023]
Abstract
No currently available conduit meets the criteria for an ideal coronary artery bypass graft. The perfect conduit would combine the availability and complication-free harvest of a synthetic vessel with the long-term patency performance of the internal mammary artery. However, current polymer conduits suffer from inelastic mechanical properties and especially poor surface biocompatibility, resulting in early loss of patency as a coronary graft. Approaches to manufacture an improved conduit using new polymers or polymer surfaces, acellular matrices, or cellular constructs have to date failed to achieve a commercially successful alternative. Elastin, by mimicking the native extracellular environment as well as providing elasticity, provides the 'missing link' in vascular conduit design and brings new hope for realization of the perfect conduit.
Collapse
Affiliation(s)
- Michael J Byrom
- The Baird Institute for Applied Heart and Lung Surgical Research, Sydney, Australia; ; Royal Prince Alfred Hospital, Sydney, Australia; ; University of Sydney, Sydney, Australia
| | | | | |
Collapse
|
34
|
Pontini A, Tocco I, Pandis L, Bassetto F, Vindigni V. Alternative conduits for microvascular anastomoses. Surg Innov 2013; 21:277-82. [PMID: 23965592 DOI: 10.1177/1553350613500721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Thrombotic events in vascular substitutes are the main cause of obliteration of most microvascular prostheses and subsequent failure of microvascular anastomoses. The development of new biomaterials for vascular replacement aims to obtain an ideal graft for microvascular surgery. Completely bioresorbable vascular prostheses with the capacity to induce regeneration and growth of a new vascular segment seem to overcome the limitations of contemporary artificial prostheses, mostly made of artificial materials and lacking the capacity to grow and be remodeled. Autologous vessels are currently the most used material for small-diameter arterial replacement. Immune acceptance is a major advantage offered by this technique, but the time required is a limitation in emergency surgery. The need for a prosthetic graft that would have the same properties as a small-diameter conduit has led investigators to pursue many avenues in vascular biology. This article details the development of microvascular synthetic prostheses, clarifying the current status and the future aims.
Collapse
|
35
|
Sanders KM, Koh SD, Ro S, Ward SM. Regulation of gastrointestinal motility--insights from smooth muscle biology. Nat Rev Gastroenterol Hepatol 2012; 9:633-45. [PMID: 22965426 PMCID: PMC4793911 DOI: 10.1038/nrgastro.2012.168] [Citation(s) in RCA: 275] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gastrointestinal motility results from coordinated contractions of the tunica muscularis, the muscular layers of the alimentary canal. Throughout most of the gastrointestinal tract, smooth muscles are organized into two layers of circularly or longitudinally oriented muscle bundles. Smooth muscle cells form electrical and mechanical junctions between cells that facilitate coordination of contractions. Excitation-contraction coupling occurs by Ca(2+) entry via ion channels in the plasma membrane, leading to a rise in intracellular Ca(2+). Ca(2+) binding to calmodulin activates myosin light chain kinase; subsequent phosphorylation of myosin initiates cross-bridge cycling. Myosin phosphatase dephosphorylates myosin to relax muscles, and a process known as Ca(2+) sensitization regulates the activity of the phosphatase. Gastrointestinal smooth muscles are 'autonomous' and generate spontaneous electrical activity (slow waves) that does not depend upon input from nerves. Intrinsic pacemaker activity comes from interstitial cells of Cajal, which are electrically coupled to smooth muscle cells. Patterns of contractile activity in gastrointestinal muscles are determined by inputs from enteric motor neurons that innervate smooth muscle cells and interstitial cells. Here we provide an overview of the cells and mechanisms that generate smooth muscle contractile behaviour and gastrointestinal motility.
Collapse
|
36
|
Dudash LA, Kligman F, Sarett SM, Kottke-Marchant K, Marchant RE. Endothelial cell attachment and shear response on biomimetic polymer-coated vascular grafts. J Biomed Mater Res A 2012; 100:2204-10. [PMID: 22623267 DOI: 10.1002/jbm.a.34119] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 02/06/2012] [Accepted: 02/07/2012] [Indexed: 11/06/2022]
Abstract
Endothelial cell (EC) adhesion, shear retention, morphology, and hemostatic gene expression on fibronectin (FN) and RGD fluorosurfactant polymer (FSP)-coated expanded polytetrafluoroethylene grafts were investigated using an in vitro perfusion system. ECs were sodded on both types of grafts and exposed to 8 dyn/cm(2) of shear stress. After 24 h, the EC retention on RGD-FSP-coated grafts was 59 ± 14%, which is statistically higher than the 36 ± 11% retention measured on FN grafts (p < 0.02). Additionally, ECs on RGD-FSP exhibited a more spread morphology and oriented in the direction of shear stress, as demonstrated by actin fiber staining. This spread morphology has been observed earlier in cells that are adapting to shear stress. Real-time PCR for vascular cell adhesion molecule 1, tissue factor, tissue plasminogen activator, and inducible nitric oxide synthase indicated that the RGD-FSP material did not activate the cells and that shear stress appears to induce a more vasoprotective phenotype, as shown by a significant decrease in VCAM-1 expression, compared with sodded grafts. RGD-FSP-coating allows for a cell layer that is more resistant to physiological shear stress, as shown by the increased cell retention over FN. This shear stable EC layer is necessary for in vivo endothelialization of the graft material, which shows promise to increase the patency of synthetic small diameter vascular grafts.
Collapse
Affiliation(s)
- Lynn A Dudash
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | |
Collapse
|
37
|
Stroncek J, Ren L, Klitzman B, Reichert W. Patient-derived endothelial progenitor cells improve vascular graft patency in a rodent model. Acta Biomater 2012; 8:201-8. [PMID: 21945828 DOI: 10.1016/j.actbio.2011.09.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 08/23/2011] [Accepted: 09/01/2011] [Indexed: 01/03/2023]
Abstract
Late outgrowth endothelial progenitor cells (EPCs) derived from the peripheral blood of patients with significant coronary artery disease were sodded into the lumens of small diameter expanded polytetrafluoroethylene (ePTFE) vascular grafts. Grafts (1mm inner diameter) were denucleated and sodded either with native EPCs or with EPCs transfected with an adenoviral vector containing the gene for human thrombomodulin (EPC+AdTM). EPC+AdTM was shown to increase the in vitro rate of graft activated protein C (APC) production 4-fold over grafts sodded with untransfected EPCs (p<0.05). Unsodded control and EPC-sodded and EPC+AdTM-sodded grafts were implanted bilaterally into the femoral arteries of athymic rats for 7 or 28 days. Unsodded control grafts, both with and without denucleation treatment, each exhibited 7 day patency rates of 25%. Unsodded grafts showed extensive thrombosis and were not tested for patency over 28 days. In contrast, grafts sodded with untransfected EPCs or EPC+AdTM both had 7 day patency rates of 88-89% and 28 day patency rates of 75-88%. Intimal hyperplasia was observed near both the proximal and distal anastomoses in all sodded graft conditions but did not appear to be the primary occlusive failure event. This in vivo study suggests autologous EPCs derived from the peripheral blood of patients with coronary artery disease may improve the performance of synthetic vascular grafts, although no differences were observed between untransfected EPCs and TM transfected EPCs.
Collapse
|
38
|
Zhou M, Liu Z, Liu C, Jiang X, Wei Z, Qiao W, Ran F, Wang W, Qiao T, Liu C. Tissue engineering of small-diameter vascular grafts by endothelial progenitor cells seeding heparin-coated decellularized scaffolds. J Biomed Mater Res B Appl Biomater 2011; 100:111-20. [PMID: 22113845 DOI: 10.1002/jbm.b.31928] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 05/22/2011] [Accepted: 06/25/2011] [Indexed: 01/06/2023]
Abstract
Successful construction of a small-diameter bioartificial vascular graft remains a great challenge. This study reports on novel tissue engineering vascular grafts (TEVGs) constructed by endothelial progenitor cells and heparin-coated decellularized vessels (DV). The DVs were fabricated from canine carotid arteries with observable depletion of cellular components. After heparin coating, the scaffolds possessed excellent antithrombogeneity. Canine endothelial progenitor cells harvested from peripheral blood were expanded and seeded onto heparin-coated DVs and cocultured in a custom-made bioreactor to construct TEVGs. Thereafter, the TEVGs were implanted into the carotid arteries of cell-donor dogs. After 3 months of implantation, the luminal surfaces of TEVGs exhibited complete endothelium regeneration, however, only a few disorderly cells and thrombosis overlaid the luminal surfaces of control DVs grafts, and immunofluorescent staining showed that the seeded cells existed in the luminal sides and the medial parts of the explanted TEVGs and partially contributed to the endothelium formation. Specifically, TEVGs exhibited significantly smaller hyperplastic neointima area compared with the DVs, not only at midportion (0.64 ± 0.08 vs. 2.13 ± 0.12 mm(2) , p < 0.001), but also at anastomotic sites (proximal sites, 1.03 ± 0.09 vs. 3.02 ± 0.16 mm(2), p < 0.001; distal sites, 1.84 ± 0.15 vs. 3.35 ± 0.21 mm(2), p < 0.001). Moreover, TEVGs had a significantly higher patency rate than the DVs after 3 months of implantation (19/20 vs. 12/20, p < 0.01). Overall, this study provided a new strategy to develop small-diameter TEVGs with excellent biocompatibility and high patency rate.
Collapse
Affiliation(s)
- Min Zhou
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Thebaud NB, Bareille R, Remy M, Bourget C, Daculsi R, Bordenave L. Human progenitor-derived endothelial cells vs. venous endothelial cells for vascular tissue engineering: an in vitro study. J Tissue Eng Regen Med 2011; 4:473-84. [PMID: 20112278 DOI: 10.1002/term.261] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The isolation of endothelial progenitor cells from human peripheral blood generates a great hope in vascular tissue engineering because of particular benefit when compared with mature endothelial cells. We explored the capability of progenitor-derived endothelial cells (PDECs) to line fibrin and collagen scaffolds in comparison with human saphenous and umbilical cord vein endothelial cells (HSVECs and HUVECs): (a) in a static situation, allowing definition of the optimal cell culture conditions with different media and cell-seeding densities to check cell behaviour; (b) under shear stress conditions (flow chambers or tubular vascular constructs), allowing investigation of cell response and mRNA expression on both substrates by oligonucleotide microarray analysis and quantitative real-time PCR. Well characterized PDECs: (a) could not be expanded adequately with the usual mature ECs culture media; (b) were able to colonize and grow on fibrin glue; (c) exhibited higher resistance to oxidative stress than HSVECs and HUVECs; (d) withstood physiological shear stress when lining both substrates in flow chambers, and their gene expression was regulated; (e) colonized a collagen-impregnated vascular prosthesis and were able to sense mechanical forces. Our results provide an improved qualification of PDECs for vascular tissue engineering.
Collapse
Affiliation(s)
- Noélie B Thebaud
- INSERM, U577 Bordeaux, Université Victor Segalen Bordeaux 2, Bordeaux, F-33076 France
| | | | | | | | | | | |
Collapse
|
40
|
Beamish JA, He P, Kottke-Marchant K, Marchant RE. Molecular regulation of contractile smooth muscle cell phenotype: implications for vascular tissue engineering. TISSUE ENGINEERING PART B-REVIEWS 2011; 16:467-91. [PMID: 20334504 DOI: 10.1089/ten.teb.2009.0630] [Citation(s) in RCA: 287] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The molecular regulation of smooth muscle cell (SMC) behavior is reviewed, with particular emphasis on stimuli that promote the contractile phenotype. SMCs can shift reversibly along a continuum from a quiescent, contractile phenotype to a synthetic phenotype, which is characterized by proliferation and extracellular matrix (ECM) synthesis. This phenotypic plasticity can be harnessed for tissue engineering. Cultured synthetic SMCs have been used to engineer smooth muscle tissues with organized ECM and cell populations. However, returning SMCs to a contractile phenotype remains a key challenge. This review will integrate recent work on how soluble signaling factors, ECM, mechanical stimulation, and other cells contribute to the regulation of contractile SMC phenotype. The signal transduction pathways and mechanisms of gene expression induced by these stimuli are beginning to be elucidated and provide useful information for the quantitative analysis of SMC phenotype in engineered tissues. Progress in the development of tissue-engineered scaffold systems that implement biochemical, mechanical, or novel polymer fabrication approaches to promote contractile phenotype will also be reviewed. The application of an improved molecular understanding of SMC biology will facilitate the design of more potent cell-instructive scaffold systems to regulate SMC behavior.
Collapse
Affiliation(s)
- Jeffrey A Beamish
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7207, USA
| | | | | | | |
Collapse
|
41
|
Abstract
This article discusses the importance of the endothelium for successful vascular grafts derived from both native arteries and synthetic materials. It also discusses the fundamental strategies to endothelialize synthetic grafts in animal experiments and in the clinic, as well as the use of endothelial progenitor cells (EPCs), bone marrow-derived cells, and mesothelium as endothelial substitutes.
Collapse
Affiliation(s)
- Michel R Hoenig
- Centre for Research in Vascular Biology, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
| | | | | |
Collapse
|
42
|
Abstract
Cardiovascular disease is the leading cause of mortality in the United States. The limited availability of healthy autologous vessels for bypass grafting procedures has led to the fabrication of prosthetic vascular conduits. Synthetic polymeric materials, while providing the appropriate mechanical strength, lack the compliance and biocompatibility that bioresorbable and naturally occurring protein polymers offer. Vascular tissue engineering approaches have emerged in order to meet the challenges of designing a vascular graft with long-term patency. In vitro culture techniques that have been explored with vascular cell seeding of polymeric scaffolds and the use of bioactive polymers for in situ arterial regeneration have yielded promising results. This review describes the development of polymeric materials in various tissue engineering strategies for the improvement in the mechanical and biological performance of an arterial substitute.
Collapse
Affiliation(s)
- Swathi Ravi
- Department of Surgery, Emory University, Atlanta, GA
- Biomedical Engineering, Emory University/Georgia Institute of Technology, Atlanta, GA
| | - Zheng Qu
- Department of Surgery, Emory University, Atlanta, GA
- Biomedical Engineering, Emory University/Georgia Institute of Technology, Atlanta, GA
| | - Elliot L. Chaikof
- Department of Surgery, Emory University, Atlanta, GA
- Biomedical Engineering, Emory University/Georgia Institute of Technology, Atlanta, GA
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA
| |
Collapse
|
43
|
Bérard X, Rémy-Zolghadri M, Bourget C, Turner N, Bareille R, Daculsi R, Bordenave L. Capability of human umbilical cord blood progenitor-derived endothelial cells to form an efficient lining on a polyester vascular graft in vitro. Acta Biomater 2009; 5:1147-57. [PMID: 18996071 DOI: 10.1016/j.actbio.2008.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 10/01/2008] [Accepted: 10/01/2008] [Indexed: 01/17/2023]
Abstract
One of the goals of vascular tissue engineering is to create functional conduits for small-diameter bypass grafting. The present biocompatibility study was undertaken to check the ability of cord blood progenitor-derived endothelial cells (PDECs) to take the place of endothelial cells in vascular tissue engineering. After isolation, culture and characterization of endothelial progenitor cells, the following parameters were explored, with a commercial knitted polyester prosthesis (Polymaille C, Laboratoires Pérouse, France) impregnated with collagen: cell adhesion and proliferation, colonization, cell retention on exposure to flow, and the ability of PDECs to be regulated by arterial shear stress via mRNA levels. PDECs were able to adhere to commercial collagen-coated vascular grafts in serum-free conditions, and were maintained but did not proliferate when seeded at 2.0 x 10(5) cm(-2). Cellularized conduits were analyzed by histology and histochemical staining, demonstrating collagen impregnation and the endothelial characteristics of the colonizing cells. Thirty-six hours after cell seeding the grafts were maintained for 6 h of either static conditions (controls) or application of pulsatile laminar shear stress, which restored the integrity of the monolayer. Finally, quantitative real-time RT-PCR analysis performed at 4 and 8 h from cells lining grafts showed that MMP1 mRNA only was increased at 4h whereas vWF, VE-cadherin and KDR were not significantly modified at 4 and 8 h. Our results show that human cord blood PDECs are capable of forming an efficient lining and to withstand shear stress.
Collapse
Affiliation(s)
- Xavier Bérard
- INSERM, U577, Bordeaux and Université Victor Segalen Bordeaux 2, UMR-577, Bordeaux F-33076, France
| | | | | | | | | | | | | |
Collapse
|
44
|
de Mel A, Bolvin C, Edirisinghe M, Hamilton G, Seifalian AM. Development of cardiovascular bypass grafts: endothelialization and applications of nanotechnology. Expert Rev Cardiovasc Ther 2009; 6:1259-77. [PMID: 18939913 DOI: 10.1586/14779072.6.9.1259] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
There is a critical clinical need for small-diameter bypass grafts, with applications involved in the coronary artery and lower limb. Commercially available materials give rise to unfavorable responses when in contact with blood and subjected to low-flow hemodynamics and, thus, are nonideal as small-diameter bypass grafts. Optimizing the mechanical properties to match both the native artery and the graft surfaces has received keen attention. Endothelialization of bypass grafts is considered a protective mechanism where the biochemicals produced from endothelial cells exert a range of favorable responses, including antithrombotic, noninflammatory responses and inhibition of intimal hyperplasia. In situ endothelialization is most desirable. Nanotechnology approaches facilitate all aspects of endothelialization, including endothelial progenitor cell mobilization, migration, adhesion, proliferation and differentiation. 'Surface nanoarchitecturing mechanisms', which mimic the natural extracellular matrix to optimize endothelial progenitor cell interaction and controlled delivery of various factors in the form of nanoparticles, which can be combined with gene therapy, are of keen interest. This article discusses the development of bypass grafts, focusing on the optimization of the biological properties of mechanically suitable grafts.
Collapse
Affiliation(s)
- Achala de Mel
- Centre of Nanotechnology, Biomaterial and Tissue Engineering, UCL Division of Surgery and Interventional Science, University College London, London, UK
| | | | | | | | | |
Collapse
|
45
|
Buddingh KT, Zeebregts CJ, Tilanus MEC, Roofthooft MTR, Broens PMA. Large neonatal thoracoabdominal aneurysm: case report and review of the literature. J Pediatr Surg 2008; 43:1361-4. [PMID: 18639697 DOI: 10.1016/j.jpedsurg.2008.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Revised: 01/31/2008] [Accepted: 02/05/2008] [Indexed: 11/19/2022]
Abstract
We present a neonate with a large saccular aneurysm of the thoracoabdominal aorta, extending from the intrathoracic aorta to the left common iliac artery. No underlying cause could be identified. Despite an early diagnosis, the aneurysm was deemed inoperable because of the lengthy involvement and the frail aspect of all visceral arteries. A review of the literature on congenital abdominal aortic aneurysm in infants was conducted. Eleven cases of live-born infants with a congenital abdominal aortic aneurysm have previously been published. None of them involved as large a part of the thoracic and abdominal aorta as the case presented here.
Collapse
Affiliation(s)
- K Tim Buddingh
- Division of Paediatric Surgery, Department of Surgery, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
46
|
Ishii Y, Sakamoto SI, Kronengold RT, Virmani R, Rivera EA, Goldman SM, Prechtel EJ, Hill JG, Damiano RJ. A novel bioengineered small-caliber vascular graft incorporating heparin and sirolimus: Excellent 6-month patency. J Thorac Cardiovasc Surg 2008; 135:1237-45; discussion 1245-6. [DOI: 10.1016/j.jtcvs.2007.09.077] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 09/04/2007] [Accepted: 09/17/2007] [Indexed: 12/01/2022]
|
47
|
Abstract
Atherosclerosis in the form of peripheral arterial disease results in significant morbidity. Surgical treatment options for peripheral arterial disease include angioplasty, endarterectomy, and bypass grafting. For bypass grafting, vein remains the conduit of choice; however, poor quality and limited availability have led to the use of prosthetic materials. Unfortunately, because of a lack of endothelium and compliance mismatch, neointimal hyperplasia develops aggressively, resulting in high failure rates. To improve graft patency, investigators have developed surgical, chemical, and biological graft modifications. This review describes common prosthetic materials, as well as approaches currently in use and under investigation to modify and improve prosthetic conduits for bypass grafting in an effort to improve graft patency rates.
Collapse
Affiliation(s)
- Muneera R Kapadia
- Northwestern University Feinberg School of Medicine, Division of Vascular Surgery, Chicago, IL 60611, USA
| | | | | |
Collapse
|
48
|
Kader KN, Yoder CM. Endothelial cell death on biomaterials: Theoretical and practical aspects of investigation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2008. [DOI: 10.1016/j.msec.2007.04.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
49
|
Aper T, Haverich A, Teebken O. Der Traum vom idealen Bypassmaterial in der Gefäßchirurgie. GEFÄSSCHIRURGIE 2008. [DOI: 10.1007/s00772-008-0587-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Fernandez P, Bourget C, Bareille R, Daculsi R, Bordenave L. Gene response in endothelial cells cultured on engineered surfaces is regulated by shear stress. ACTA ACUST UNITED AC 2007; 13:1607-14. [PMID: 17518757 DOI: 10.1089/ten.2006.0399] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In vitro endothelialization of small-diameter synthetic vascular prostheses confluently lined with cultured autologous endothelial cells (ECs) before implantation has been shown to increase their patency. Many authors have studied the effects of shear stress on EC gene response seeded on various substrates showing different gene expression profiles according to cell type, flow times, or shear type with different molecular biology techniques, but few studies have reported any EC gene response to shear stress when cells are seeded on vascular grafts. The purpose of this in vitro study was to investigate whether ECs were able to transduce shear stress at the level of the nucleus. Human saphenous vein ECs were seeded on glass slides coated with gelatin or fibrin glue or on 6-mm fibrin-glue-coated grafts. Then cells were exposed to 12 dyn/cm(2) for 4 h and ribonucleic acid (RNA) were extracted. The relative messenger RNA (mRNA) expression was studied using real-time quantitative polymerase chain reaction for the following mRNAs: von Willebrand Factor, tissue-plasminogen activator, CD31, vascular endothelial (VE)-cadherin, beta(1) integrin, and vascular endothelial growth factor receptor type 2. From parallel flow chambers, results have shown similar EC gene response on gelatin and fibrin glue under laminar shear stress with downregulation of prothrombotic genes, as well as upregulation of nonthrombotic genes and upregulation of adhesion molecules such as VE-cadherin, but some discrepancies are noted, with a downregulation of CD31 and kinase insert domain receptor (KDR) for the former, without significant variation for the latter. In comparison, results show upregulation of tissue type plasminogen activator gene and downregulation of KDR, VE-cadherin, and beta(1) integrin genes in ECs lining grafts. To conclude, the major finding of our study is to show that human saphenous vein ECs seeded on fibrin glue (in planar flow chambers or in tubular grafts) can be regulated using shear stress via gene expression changes in a nonthrombotic way.
Collapse
Affiliation(s)
- Philippe Fernandez
- INSERM-U.577, Bordeaux, F-33076 France; Université Victor Segalen Bordeaux 2, Bordeaux, F-33076 France.
| | | | | | | | | |
Collapse
|