1
|
Tan Y, Chen L, Ding G. Naturally Occurring Asterric Acid Analogs: Chemistry and Biology. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4518-4537. [PMID: 38386916 DOI: 10.1021/acs.jafc.3c06690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Asterric acid and its analogs belong to diphenyl ethers (DPEs) with multiple substitutions on A/B aromatic rings. This member of DPEs originates from the polyketide pathway and displays a wide range of biological effects. Though the structures of asterric acid analogs are not complex, there were only more than 50 asterric acid analogs found in nature from 1960 to 2023. In this review, the structures, bioactivities, and biosynthesis of asterric acid analogs are summarized. More importantly, the empirical rule about the shielding effect of B-ring on H-6 is suggested, and this provides a convenient and useful way to analyze the NMR spectral data of asterric acid analogs, based on which the chemical shift values of the A-ring in some asterric acid analogs are revised.
Collapse
Affiliation(s)
- Yue Tan
- State Key Laboratory of Basis and New Drug Development of Natural and Nuclear Drugs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, People's Republic of China
| | - Lin Chen
- Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Zhengzhou Key Laboratory of Synthetic Biology of Natural Products, Zhengzhou Key Laboratory of Medicinal Resources Research, Huanghe Science and Technology College, Zhengzhou 450006, People's Republic of China
| | - Gang Ding
- State Key Laboratory of Basis and New Drug Development of Natural and Nuclear Drugs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, People's Republic of China
| |
Collapse
|
2
|
Rajput A, Manna T, Husain SM. Anthrol reductases: discovery, role in biosynthesis and applications in natural product syntheses. Nat Prod Rep 2023; 40:1672-1686. [PMID: 37475701 DOI: 10.1039/d3np00027c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Covering: up to 2023Short-chain dehydrogenase/reductases (SDR) are known to catalyze the regio- and stereoselective reduction of a variety of substrate types. Investigations of the deoxygenation of emodin to chrysophanol has led to the discovery of the anthrol reductase activity of an SDR, MdpC involved in monodictyphenone biosynthesis of Aspergillus nidulans and provided access to (R)-dihydroanthracenone, a putative biosynthetic intermediate. This facilitated the identification of several MdpC-related enzymes involved in the biosynthesis of aflatoxins B1, cladofulvin, neosartorin, agnestins and bisanthraquinones. Because of their ability to catalyze the reduction of hydroanthraquinone (anthrols) using NADPH, they were named anthrol reductases. This review provides a comprehensive summary of all the anthrol reductases that have been identified and characterized in the last decade along with their role in the biosynthesis of natural products. In addition, the applications of these enzymes towards the chemoenzymatic synthesis of flavoskyrins, modified bisanthraquinones, 3-deoxy anthraquinones, chiral cycloketones and β-halohydrins have been discussed.
Collapse
Affiliation(s)
- Anshul Rajput
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, India.
| | - Tanaya Manna
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, India.
| | - Syed Masood Husain
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, India.
| |
Collapse
|
3
|
Hou A, Dickschat JS. Labelling studies in the biosynthesis of polyketides and non-ribosomal peptides. Nat Prod Rep 2023; 40:470-499. [PMID: 36484402 DOI: 10.1039/d2np00071g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covering: 2015 to 2022In this review, we discuss the recent advances in the use of isotopically labelled compounds to investigate the biosynthesis of polyketides, non-ribosomally synthesised peptides, and their hybrids. Also, we highlight the use of isotopes in the elucidation of their structures and investigation of enzyme mechanisms. The biosynthetic pathways of selected examples are presented in detail to reveal the principles of the discussed labelling experiments. The presented examples demonstrate that the application of isotopically labelled compounds is still the state of the art and can provide valuable information for the biosynthesis of natural products.
Collapse
Affiliation(s)
- Anwei Hou
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, West 7th Avenue No. 32, 300308 Tianjin, China.,Institute of Microbiology, Jiangxi Academy of Sciences, Changdong Road No. 7777, 330096 Nanchang, China
| | - Jeroen S Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany.
| |
Collapse
|
4
|
de Mattos-Shipley KMJ, Simpson TJ. The 'emodin family' of fungal natural products-amalgamating a century of research with recent genomics-based advances. Nat Prod Rep 2023; 40:174-201. [PMID: 36222427 PMCID: PMC9890505 DOI: 10.1039/d2np00040g] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Indexed: 11/06/2022]
Abstract
Covering: up to 2022A very large group of biosynthetically linked fungal secondary metabolites are formed via the key intermediate emodin and its corresponding anthrone. The group includes anthraquinones such as chrysophanol and cladofulvin, the grisandienes geodin and trypacidin, the diphenyl ether pestheic acid, benzophenones such as monodictyphenone and various xanthones including the prenylated shamixanthones, the agnestins and dimeric xanthones such as the ergochromes, cryptosporioptides and neosartorin. Such compounds exhibit a wide range of bioactivities and as such have been utilised in traditional medicine for centuries, as well as garnering more recent interest from the pharmaceutical sector. Additional interest comes from industries such as textiles and cosmetics due to their use as natural colourants. A variety of biosynthetic routes and mechanisms have been proposed for this family of compounds, being altered and updated as new biosynthetic methods develop and new results emerge. After nearly 100 years of such research, this review aims to provide a comprehensive overview of what is currently known about the biosynthesis of this important family, amalgamating the early chemical and biosynthetic studies with the more recent genetics-based advances and comparative bioinformatics.
Collapse
Affiliation(s)
| | - Thomas J Simpson
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| |
Collapse
|
5
|
Kutateladze DA, Jacobsen EN. Cooperative Hydrogen-Bond-Donor Catalysis with Hydrogen Chloride Enables Highly Enantioselective Prins Cyclization Reactions. J Am Chem Soc 2021; 143:20077-20083. [PMID: 34812618 PMCID: PMC8717859 DOI: 10.1021/jacs.1c10890] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cooperative asymmetric catalysis with hydrogen chloride (HCl) and chiral dual-hydrogen-bond donors (HBDs) is applied successfully to highly enantioselective Prins cyclization reactions of a wide variety of simple alkenyl aldehydes. The optimal chiral catalysts were designed to withstand the strongly acidic reaction conditions and were found to induce rate accelerations of 2 orders of magnitude over reactions catalyzed by HCl alone. We propose that the combination of strong mineral acids and chiral hydrogen-bond-donor catalysts may represent a general strategy for inducing enantioselectivity in reactions that require highly acidic conditions.
Collapse
Affiliation(s)
- Dennis A. Kutateladze
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Eric N. Jacobsen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
6
|
Qi F, Zhang W, Xue Y, Geng C, Huang X, Sun J, Lu X. Bienzyme-Catalytic and Dioxygenation-Mediated Anthraquinone Ring Opening. J Am Chem Soc 2021; 143:16326-16331. [PMID: 34586791 DOI: 10.1021/jacs.1c07182] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The C-10-C-4a bond cleavage of anthraquinone is believed to be a crucial step in fungal seco-anthraquinone biosynthesis and has long been proposed as a classic Baeyer-Villiger oxidation. Nonetheless, genetic, enzymatic, and chemical information on ring opening remains elusive. Here, a revised questin ring-opening mechanism was elucidated by in vivo gene disruption, in vitro enzymatic analysis, and 18O chasing experiments. It has been confirmed that the reductase GedF is responsible for the reduction of the keto group at C-10 in questin to a hydroxyl group with the aid of NADPH. The C-10-C-4a bond of the resultant questin hydroquinone is subsequently cleaved by the atypical cofactor-free dioxygenase GedK, giving rise to desmethylsulochrin. This proposed bienzyme-catalytic and dioxygenation-mediated anthraquinone ring-opening reaction shows universality.
Collapse
Affiliation(s)
- Feifei Qi
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Shandong Energy Institute, Qingdao, Shandong 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong 266101, China
| | - Wei Zhang
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Shandong Energy Institute, Qingdao, Shandong 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingying Xue
- International Centre for Bamboo and Rattan, State Forestry Administration Key Open Laboratory, Beijing 100102, China
| | - Ce Geng
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Shandong Energy Institute, Qingdao, Shandong 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong 266101, China
| | - Xuenian Huang
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Shandong Energy Institute, Qingdao, Shandong 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Sun
- International Centre for Bamboo and Rattan, State Forestry Administration Key Open Laboratory, Beijing 100102, China
| | - Xuefeng Lu
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Shandong Energy Institute, Qingdao, Shandong 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Marine Biology and Biotechnology Laboratory, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266101, China
| |
Collapse
|
7
|
Szwalbe AJ, Williams K, Song Z, de Mattos-Shipley K, Vincent JL, Bailey AM, Willis CL, Cox RJ, Simpson TJ. Characterisation of the biosynthetic pathway to agnestins A and B reveals the reductive route to chrysophanol in fungi. Chem Sci 2019; 10:233-238. [PMID: 30746079 PMCID: PMC6335632 DOI: 10.1039/c8sc03778g] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/23/2018] [Indexed: 01/08/2023] Open
Abstract
Two new dihydroxy-xanthone metabolites, agnestins A and B, were isolated from Paecilomyces variotii along with a number of related benzophenones and xanthones including monodictyphenone. The structures were elucidated by NMR analyses and X-ray crystallography. The agnestin (agn) biosynthetic gene cluster was identified and targeted gene disruptions of the PKS, Baeyer-Villiger monooxygenase, and other oxido-reductase genes revealed new details of fungal xanthone biosynthesis. In particular, identification of a reductase responsible for in vivo anthraquinone to anthrol conversion confirms a previously postulated essential step in aromatic deoxygenation of anthraquinones, e.g. emodin to chrysophanol.
Collapse
Affiliation(s)
- Agnieszka J Szwalbe
- School of Chemistry , University of Bristol , Cantock's Close , Bristol , BS8 1TS , UK .
| | - Katherine Williams
- School of Chemistry , University of Bristol , Cantock's Close , Bristol , BS8 1TS , UK .
| | - Zhongshu Song
- School of Chemistry , University of Bristol , Cantock's Close , Bristol , BS8 1TS , UK .
| | - Kate de Mattos-Shipley
- School of Chemistry , University of Bristol , Cantock's Close , Bristol , BS8 1TS , UK .
| | - Jason L Vincent
- Syngenta , Jealott's Hill International Research Centre , Bracknell , RG42 6EY , UK
| | - Andrew M Bailey
- School of Biological Sciences , 24 Tyndall Avenue , Bristol , BS8 1TQ , UK
| | - Christine L Willis
- School of Chemistry , University of Bristol , Cantock's Close , Bristol , BS8 1TS , UK .
| | - Russell J Cox
- School of Chemistry , University of Bristol , Cantock's Close , Bristol , BS8 1TS , UK .
- Institute for Organic Chemistry , Leibniz University of Hannover , 30167 , Germany
- BMWZ , Leibniz University of Hannover , 30167 , Germany
| | - Thomas J Simpson
- School of Chemistry , University of Bristol , Cantock's Close , Bristol , BS8 1TS , UK .
| |
Collapse
|
8
|
Matsuda Y, Gotfredsen CH, Larsen TO. Genetic Characterization of Neosartorin Biosynthesis Provides Insight into Heterodimeric Natural Product Generation. Org Lett 2018; 20:7197-7200. [DOI: 10.1021/acs.orglett.8b03123] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yudai Matsuda
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts
Plads, 2800 Kongens Lyngby, Denmark
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Charlotte H. Gotfredsen
- Department of Chemistry, Technical University of Denmark, Kemitorvet, 2800 Kongens Lyngby, Denmark
| | - Thomas O. Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts
Plads, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
9
|
Saha N, Mondal A, Witte K, Singh SK, Müller M, Husain SM. Monomeric Dihydroanthraquinones: A Chemoenzymatic Approach and its (Bio)synthetic Implications for Bisanthraquinones. Chemistry 2018; 24:1283-1286. [DOI: 10.1002/chem.201705998] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Nirmal Saha
- Molecular Synthesis and Drug Discovery Unit, Centre for Biomedical Research; Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus; Raebareli Road Lucknow 226014 India
| | - Amit Mondal
- Molecular Synthesis and Drug Discovery Unit, Centre for Biomedical Research; Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus; Raebareli Road Lucknow 226014 India
| | - Karina Witte
- Molecular Synthesis and Drug Discovery Unit, Centre for Biomedical Research; Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus; Raebareli Road Lucknow 226014 India
- Institut für Pharmazeutische Wissenschaften; Albert-Ludwigs-Universität Freiburg; Albertstrasse 25 79104 Freiburg Germany
| | - Shailesh Kumar Singh
- Molecular Synthesis and Drug Discovery Unit, Centre for Biomedical Research; Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus; Raebareli Road Lucknow 226014 India
| | - Michael Müller
- Institut für Pharmazeutische Wissenschaften; Albert-Ludwigs-Universität Freiburg; Albertstrasse 25 79104 Freiburg Germany
| | - Syed Masood Husain
- Molecular Synthesis and Drug Discovery Unit, Centre for Biomedical Research; Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus; Raebareli Road Lucknow 226014 India
| |
Collapse
|
10
|
Chen AJ, Frisvad JC, Sun BD, Varga J, Kocsubé S, Dijksterhuis J, Kim DH, Hong SB, Houbraken J, Samson RA. Aspergillus section Nidulantes (formerly Emericella): Polyphasic taxonomy, chemistry and biology. Stud Mycol 2016; 84:1-118. [PMID: 28050053 PMCID: PMC5198626 DOI: 10.1016/j.simyco.2016.10.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Aspergillus section Nidulantes includes species with striking morphological characters, such as biseriate conidiophores with brown-pigmented stipes, and if present, the production of ascomata embedded in masses of Hülle cells with often reddish brown ascospores. The majority of species in this section have a sexual state, which were named Emericella in the dual name nomenclature system. In the present study, strains belonging to subgenus Nidulantes were subjected to multilocus molecular phylogenetic analyses using internal transcribed spacer region (ITS), partial β-tubulin (BenA), calmodulin (CaM) and RNA polymerase II second largest subunit (RPB2) sequences. Nine sections are accepted in subgenus Nidulantes including the new section Cavernicolus. A polyphasic approach using morphological characters, extrolites, physiological characters and phylogeny was applied to investigate the taxonomy of section Nidulantes. Based on this approach, section Nidulantes is subdivided in seven clades and 65 species, and 10 species are described here as new. Morphological characters including colour, shape, size, and ornamentation of ascospores, shape and size of conidia and vesicles, growth temperatures are important for identifying species. Many species of section Nidulantes produce the carcinogenic mycotoxin sterigmatocystin. The most important mycotoxins in Aspergillus section Nidulantes are aflatoxins, sterigmatocystin, emestrin, fumitremorgins, asteltoxins, and paxillin while other extrolites are useful drugs or drug lead candidates such as echinocandins, mulundocandins, calbistrins, varitriols, variecolins and terrain. Aflatoxin B1 is produced by four species: A. astellatus, A. miraensis, A. olivicola, and A. venezuelensis.
Collapse
Affiliation(s)
- A J Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, PR China; CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - J C Frisvad
- Department of Systems Biology, Søltofts Plads B. 221, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - B D Sun
- China General Microbiological Culture Collection Centre, Institute of Microbiology, Chinese Academy of Sciences, Beichen West Road, Chaoyang District, Beijing, 100101, PR China
| | - J Varga
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726, Szeged, Hungary
| | - S Kocsubé
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726, Szeged, Hungary
| | - J Dijksterhuis
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - D H Kim
- Division of Forest Environment Protection, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - S-B Hong
- Korean Agricultural Culture Collection, National Institute of Agricultural Science, 166, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do, 55365, Republic of Korea
| | - J Houbraken
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - R A Samson
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| |
Collapse
|
11
|
Conradt D, Schätzle MA, Haas J, Townsend CA, Müller M. New Insights into the Conversion of Versicolorin A in the Biosynthesis of Aflatoxin B1. J Am Chem Soc 2015; 137:10867-9. [PMID: 26266881 DOI: 10.1021/jacs.5b06770] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A crucial and enigmatic step in the complex biosynthesis of aflatoxin B1 is the oxidative rearrangement of versicolorin A to demethylsterigmatocystin. This step is thought to proceed by an oxidation-reduction-oxidation sequence, in which the NADPH-dependent oxidoreductase AflM catalyzes the enclosed reduction step. AflM from Aspergillus parasiticus, after heterologous production in E. coli and purification, however, catalyzed the reduction of the hydroquinoid form of the starting compound versicolorin A (25% conversion) to a so far unknown product of aflatoxin biosynthesis. The asymmetric reduction of emodin hydroquinone to (R)-3,8,9,10-tetrahydroxy-6-methyl-3,4-dihydroanthracen-1(2H)-one (up to 82% for AflM) has also been observed in previous studies using MdpC from Aspergillus nidulans (monodictyphenone biosynthetic gene cluster). The first (nonenzymatic) reduction of emodin to emodin hydroquinone, for example with sodium dithionite, is obligatory for the enzymatic reduction by AflM or MdpC. These results imply an unprecedented role of AflM in the complex enzymatic network of aflatoxin biosynthesis.
Collapse
Affiliation(s)
- David Conradt
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg , Albertstr. 25, 79104 Freiburg, Germany
| | - Michael A Schätzle
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg , Albertstr. 25, 79104 Freiburg, Germany
| | - Julian Haas
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg , Albertstr. 25, 79104 Freiburg, Germany
| | - Craig A Townsend
- Department of Chemistry, The Johns Hopkins University , 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Michael Müller
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg , Albertstr. 25, 79104 Freiburg, Germany
| |
Collapse
|
12
|
Abstract
This review summarizes new findings concerning the sources and characteristics of various natural products that can be extracted from mangrove-associated microbes over the past three years (January 2011–December 2013).
Collapse
Affiliation(s)
- Jing Xu
- Key Laboratory of Protection and Development Utilization of Tropical Crop Germplasm Resources
- Ministry of Education
- College of Material and Chemical Engineering
- Hainan University
- Haikou 570228
| |
Collapse
|
13
|
|
14
|
New prenylxanthones from the deep-sea derived fungus Emericella sp. SCSIO 05240. Mar Drugs 2014; 12:3190-202. [PMID: 24879543 PMCID: PMC4071571 DOI: 10.3390/md12063190] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/03/2014] [Accepted: 05/05/2014] [Indexed: 11/20/2022] Open
Abstract
Four new prenylxanthones, emerixanthones A–D (1–4), together with six known analogues (5–10), were isolated from the culture of the deep-sea sediment derived fungus Emericella sp. SCSIO 05240, which was identified on the basis of morphology and ITS sequence analysis. The newstructures were determined by NMR (1H, 13C NMR, HSQC, HMBC, and 1H-1H COSY), MS, CD, and optical rotation analysis. The absolute configuration of prenylxanthone skeleton was also confirmed by the X-ray crystallographic analysis. Compounds 1 and 3 showed weak antibacterial activities, and 4 displayed mild antifungal activities against agricultural pathogens.
Collapse
|
15
|
Schätzle MA, Husain SM, Ferlaino S, Müller M. Tautomers of Anthrahydroquinones: Enzymatic Reduction and Implications for Chrysophanol, Monodictyphenone, and Related Xanthone Biosyntheses. J Am Chem Soc 2012; 134:14742-5. [DOI: 10.1021/ja307151x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Michael A. Schätzle
- Institut
für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, Albertstr.
25, 79104 Freiburg, Germany
| | - Syed Masood Husain
- Institut
für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, Albertstr.
25, 79104 Freiburg, Germany
| | - Sascha Ferlaino
- Institut
für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, Albertstr.
25, 79104 Freiburg, Germany
| | - Michael Müller
- Institut
für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, Albertstr.
25, 79104 Freiburg, Germany
| |
Collapse
|
16
|
Simpson TJ. Genetic and biosynthetic studies of the fungal prenylated xanthone shamixanthone and related metabolites in Aspergillus spp. revisited. Chembiochem 2012; 13:1680-8. [PMID: 22730213 DOI: 10.1002/cbic.201200014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Revised: 05/07/2012] [Indexed: 11/08/2022]
Abstract
Biosynthetic genes for the prenylated xanthone shamixanthone have been identified in the Aspergillus nidulans genome; based on assignment of putative functions from sequence analyses and selected gene deletions, a pathway was proposed leading from the anthraquinone emodin via the benzophenone carboxylic acid monodictyphenone and the xanthone emericellin to shamixanthone. Several aspects of this proposed pathway are inconsistent with previously identified biosynthetic intermediates: the anthraquinone chrysophanol and the benzophenone aldehyde derivatives arugosins F and A/B, isotopic labelling studies and chemical precedents. A new pathway is presented that provides a full rationale for the results of the gene deletion studies and reconciles them with previous biosynthetic results, and is in accord with established chemical and biosynthetic mechanisms. The importance of interpreting genetic information in terms of established biosynthetic events is discussed.
Collapse
Affiliation(s)
- Thomas J Simpson
- University of Bristol, School of Chemistry, Cantock's Close, Bristol, BS8 1TS, UK.
| |
Collapse
|
17
|
Masters KS, Bräse S. Xanthones from fungi, lichens, and bacteria: the natural products and their synthesis. Chem Rev 2012; 112:3717-76. [PMID: 22617028 DOI: 10.1021/cr100446h] [Citation(s) in RCA: 291] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Kye-Simeon Masters
- Institute for Organic Chemistry, Karlsruhe Institute of Technology, Germany.
| | | |
Collapse
|
18
|
Butts CP, Jones CR, Song Z, Simpson TJ. Accurate NOE-distance determination enables the stereochemical assignment of a flexible molecule – arugosin C. Chem Commun (Camb) 2012; 48:9023-5. [DOI: 10.1039/c2cc32144k] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Emervaridione and varioxiranediol, two new metabolites from the endophytic fungus, Emericella variecolor. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2011.09.079] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
20
|
Nielsen ML, Nielsen JB, Rank C, Klejnstrup ML, Holm DK, Brogaard KH, Hansen BG, Frisvad JC, Larsen TO, Mortensen UH. A genome-wide polyketide synthase deletion library uncovers novel genetic links to polyketides and meroterpenoids in Aspergillus nidulans. FEMS Microbiol Lett 2011; 321:157-66. [PMID: 21658102 DOI: 10.1111/j.1574-6968.2011.02327.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Fungi possess an advanced secondary metabolism that is regulated and coordinated in a complex manner depending on environmental challenges. To understand this complexity, a holistic approach is necessary. We initiated such an analysis in the important model fungus Aspergillus nidulans by systematically deleting all 32 individual genes encoding polyketide synthases. Wild-type and all mutant strains were challenged on different complex media to provoke induction of the secondary metabolism. Screening of the mutant library revealed direct genetic links to two austinol meroterpenoids and expanded the current understanding of the biosynthetic pathways leading to arugosins and violaceols. We expect that the library will be an important resource towards a systemic understanding of polyketide production in A. nidulans.
Collapse
Affiliation(s)
- Michael L Nielsen
- Department of Systems Biology, Center for Microbial Biotechnology, Technical University of Denmark, Lyngby, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Sanchez JF, Entwistle R, Hung JH, Yaegashi J, Jain S, Chiang YM, Wang CCC, Oakley BR. Genome-based deletion analysis reveals the prenyl xanthone biosynthesis pathway in Aspergillus nidulans. J Am Chem Soc 2011; 133:4010-7. [PMID: 21351751 PMCID: PMC3119361 DOI: 10.1021/ja1096682] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Xanthones are a class of molecules that bind to a number of drug targets and possess a myriad of biological properties. An understanding of xanthone biosynthesis at the genetic level should facilitate engineering of second-generation molecules and increasing production of first-generation compounds. The filamentous fungus Aspergillus nidulans has been found to produce two prenylated xanthones, shamixanthone and emericellin, and we report the discovery of two more, variecoxanthone A and epishamixanthone. Using targeted deletions that we created, we determined that a cluster of 10 genes including a polyketide synthase gene, mdpG, is required for prenyl xanthone biosynthesis. mdpG was shown to be required for the synthesis of the anthraquinone emodin, monodictyphenone, and related compounds, and our data indicate that emodin and monodictyphenone are precursors of prenyl xanthones. Isolation of intermediate compounds from the deletion strains provided valuable clues as to the biosynthetic pathway, but no genes accounting for the prenylations were located within the cluster. To find the genes responsible for prenylation, we identified and deleted seven putative prenyltransferases in the A. nidulans genome. We found that two prenyltransferase genes, distant from the cluster, were necessary for prenyl xanthone synthesis. These genes belong to the fungal indole prenyltransferase family that had previously been shown to be responsible for the prenylation of amino acid derivatives. In addition, another prenyl xanthone biosynthesis gene is proximal to one of the prenyltransferase genes. Our data, in aggregate, allow us to propose a complete biosynthetic pathway for the A. nidulans xanthones.
Collapse
Affiliation(s)
- James F. Sanchez
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, School of Pharmacy, 1985 Zonal Avenue, Los Angeles, California 90089, United States
| | - Ruth Entwistle
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, Kansas 66045, United States
| | - Jui-Hsiang Hung
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Junko Yaegashi
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, School of Pharmacy, 1985 Zonal Avenue, Los Angeles, California 90089, United States
| | - Sofina Jain
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, School of Pharmacy, 1985 Zonal Avenue, Los Angeles, California 90089, United States
| | - Yi-Ming Chiang
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, School of Pharmacy, 1985 Zonal Avenue, Los Angeles, California 90089, United States
- Graduate Institute of Pharmaceutical Science, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Clay C. C. Wang
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, School of Pharmacy, 1985 Zonal Avenue, Los Angeles, California 90089, United States
- Department of Chemistry, University of Southern California, College of Letters, Arts, and Sciences, Los Angeles, California 90089, United States
| | - Berl R. Oakley
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, Kansas 66045, United States
| |
Collapse
|
22
|
Márquez-Fernández O, Trigos A, Ramos-Balderas JL, Viniegra-González G, Deising HB, Aguirre J. Phosphopantetheinyl transferase CfwA/NpgA is required for Aspergillus nidulans secondary metabolism and asexual development. EUKARYOTIC CELL 2007; 6:710-20. [PMID: 17277172 PMCID: PMC1865657 DOI: 10.1128/ec.00362-06] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Accepted: 01/25/2007] [Indexed: 11/20/2022]
Abstract
Polyketide synthases (PKSs) and/or nonribosomal peptide synthetases (NRPSs) are central components of secondary metabolism in bacteria, plants, and fungi. In filamentous fungi, diverse PKSs and NRPSs participate in the biosynthesis of secondary metabolites such as pigments, antibiotics, siderophores, and mycotoxins. However, many secondary metabolites as well as the enzymes involved in their production are yet to be discovered. Both PKSs and NRPSs require activation by enzyme members of the 4'-phosphopantetheinyl transferase (PPTase) family. Here, we report the isolation and characterization of Aspergillus nidulans strains carrying conditional (cfwA2) and null (DeltacfwA) mutant alleles of the cfwA gene, encoding an essential PPTase. We identify the polyketides shamixanthone, emericellin, and dehydroaustinol as well as the sterols ergosterol, peroxiergosterol, and cerevisterol in extracts from A. nidulans large-scale cultures. The PPTase CfwA/NpgA was required for the production of these polyketide compounds but dispensable for ergosterol and cerevisterol and for fatty acid biosynthesis. The asexual sporulation defects of cfwA, DeltafluG, and DeltatmpA mutants were not rescued by the cfwA-dependent compounds identified here. However, a cfwA2 mutation enhanced the sporulation defects of both DeltatmpA and DeltafluG single mutants, suggesting that unidentified CfwA-dependent PKSs and/or NRPSs are involved in the production of hitherto-unknown compounds required for sporulation. Our results expand the number of known and predicted secondary metabolites requiring CfwA/NpgA for their biosynthesis and, together with the phylogenetic analysis of fungal PPTases, suggest that a single PPTase is responsible for the activation of all PKSs and NRPSs in A. nidulans.
Collapse
Affiliation(s)
- Olivia Márquez-Fernández
- Instituto de Ciencias Básicas, Universidad Veracruzana, Av. Dos Vistas s/n, Carretera Xalapa-Las Trancas, 91000 Veracruz, Xalapa, México
| | | | | | | | | | | |
Collapse
|
23
|
Xanthones as therapeutic agents: chemistry and pharmacology. LEAD MOLECULES FROM NATURAL PRODUCTS - DISCOVERY AND NEW TRENDS 2006. [DOI: 10.1016/s1572-557x(05)02016-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
24
|
|
25
|
Fosse C, Le Texier L, Roy S, Delaforge M, Grégoire S, Neuwels M, Azerad R. Parameters and mechanistic studies on the oxidative ring cleavage of synthetic heterocyclic naphthoquinones by Streptomyces strains. Appl Microbiol Biotechnol 2004; 65:446-56. [PMID: 15205932 DOI: 10.1007/s00253-004-1588-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2003] [Revised: 02/04/2004] [Accepted: 02/06/2004] [Indexed: 11/27/2022]
Abstract
Screening of fungal and bacterial strains allowed selection of two Streptomyces strains ( S. platensis and S. cinnamonensis) that oxidatively cleave, in moderate to high yields (up to 65% in 24 h), the quinonic ring of a thiazole fused 1,4-naphthoquinone compound, INO5042, used as a model compound for a series of homologous substituted heterocyclic naphthoquinones. The respective products of these whole-cell biotransformations were identified as isomeric phenol-carboxylic acids resulting from a C-C bond cleavage at a position vicinal to each one of the carbonyl groups. The culture and incubation conditions have been optimised and the mechanism of this biotransformation investigated using oxygen isotope incorporation. The results of 18O2 incorporation indicate a dioxygenase reaction, the mechanism of which is discussed in relation with that of hydroquinone-epoxidases, a family of oxygenating enzymes involved in the biosynthesis of polyketide antibiotics in Streptomyces.
Collapse
Affiliation(s)
- Céline Fosse
- Groupe Biocatalyse et Chimie Pharmacologique, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601, Université René Descartes-Paris V, 45 rue des Saints-Pères, 75006, Paris, France
| | | | | | | | | | | | | |
Collapse
|
26
|
Le Texier L, Roy S, Fosse C, Neuwels M, Azerad R. A biosynthetic microbial ability applied for the oxidative ring cleavage of non-natural heterocyclic quinones. Tetrahedron Lett 2001. [DOI: 10.1016/s0040-4039(01)00608-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
27
|
Carvalho MR, Barbosa LCDA, de Queiróz JH, Howarth OW. Novel lactones from Aspergillus versicolor. Tetrahedron Lett 2001. [DOI: 10.1016/s0040-4039(00)02154-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
28
|
Abstract
This review, with 350 references, gives information on the chemical study of 234 naturally occurring tetraoxygenated xanthones in 12 families, 53 genus and 182 species of higher plants, and two which are described as fungal and lichen metabolites. The value of these groups of substances in connection with pharmacological activity and therapeutic use of some species is described. The structural formulas of 135 isolated compounds, and their distribution, are also given.
Collapse
Affiliation(s)
- V Peres
- Departamento de Química, Universidade Federal de Viçosa, Minas Gerais, Brazil
| | | | | |
Collapse
|
29
|
Simpson TJ. Application of Isotopic Methods to Secondary Metabolic Pathways. BIOSYNTHESIS 1998. [DOI: 10.1007/3-540-69542-7_1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|